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Abstract. The survey presents a selection of the methods of the fault detection and isolation suitable to be useful for the diagnostics of the
complex, large scale industrial processes. The paper focuses on these methods that have appropriately high level of potential applicability in
industrial practice. The novelty of the paper relies on the discussion of the dependency of the level of knowledge about diagnosed process
and recommended diagnostic approaches. Appropriate recommendations were given in the convenient form of the table.
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1. Introduction

In the last twenty years there has been observed a rapid de-
velopment of the methods of fault diagnostics, originating
from the theory of modeling and identification, as well as ar-
tificial intelligence technology approaches. The most detailed
description of these methods can be found in the books [1–
10]. There had also been written a lot of survey papers on the
methods of fault diagnostics [11–18]. As a valuable source
of information may serve proceedings from IFAC Sympo-
sium on Fault Detection, Supervision and Safety for Techni-
cal Processes – SafeProcess, which has been organized every
3 years, since 1991. In parallel to the SafeProcess series of
conferences, the Polish track of Diagnostics of Processes and
Systems has been organized since 1996. Many methods have
been developed for fault detection, isolation and identifica-
tion, but their practical usefulness is usually limited to the
certain class of processes. The possibilities of application of
particular methods are determined by the specific nature of
the process being diagnosed on one hand, and on the other,
the form and degree of knowledge about the process required
by the given method.

This work concerns the evaluation of usefulness of differ-
ent methods of detection and isolation of faults for diagnos-
tics of the complex processes (LSS – Large Scale Systems),
applied in the chemical, petrochemical, energy industry etc.
Such processes include hundreds or even thousands of devices
usually operating in difficult and variable conditions and the
diversity and number of faults is very high. Diagnostics of
such complex technological systems is a very difficult task.
There occurs a number of specific problems, conditions and
restrictions, which are not important while diagnosing low
scale processes, as well as machines or devices. These prob-
lems and restrictions influence in a significant way the choice
of methods of the faults detection and isolation. Among these
problems there are to be considered [7, 19, 20]:

• complexity of systems being diagnosed, which contain

thousands of devices operating usually in difficult and vari-
able conditions. Thus, the number of faults may be very
high;

• the requirement of realizing diagnostic tasks on-line, with
the use of working data only, as one can’t disturb the op-
eration of a process by the test impulses;

• changeability of the structure of the process connected with
the turning on and off the technological devices, discon-
necting measuring instruments etc. Such changeability of
structure constitutes very essential impediment during de-
signing a diagnostic system;

• uncertainties of measurements and symptoms of faults,
• lack of data for emergency states. In databases of the sys-

tems for automatic control (DCS and SCADA) there are
available rich sets of measurement data, but the archived
time series concern mainly regular process operation and
few referrer to registered abnormal or emergency states.
A diagnostic system should detect and recognize serious
breakdowns, for which there is no learning data, compris-
ing also potential breakdowns, which had never occurred
before;

• the delays of the faults symptoms. The diagnosed process
is a dynamic system, so a certain amount of time elapses
from appearance of the fault to the moment of arising of
its measurable symptoms. The time is dependent on the
dynamic properties of the part of the process being tested.
The same fault is detected by different diagnostic signals in
different time instances. The algorithm of fault isolation can
generate false diagnoses if there is no built-in mechanism,
which makes the course of inference robust to symptoms’
delays.

The algorithms of diagnostic inference intended for di-
agnosing complex technological systems should acknowledge
the above mentioned problems and effectively solve them.

The most significant, while choosing the methods of faults
detection and isolation, is the degree of available knowledge
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about the process being diagnosed. Simple methods of detec-
tion base only on the analysis of thresholds (constraints) or the
statistical or spectral analysis of the particular process vari-
ables. The advanced methods make use of models for faults
detection. These are both – models designed on the basis of
the knowledge of equations describing physical phenomena
taking place in the process, and the models created on the
basis of the process data. One only need to know the relation
between the inputs of the particular part of the process and
the modeled output for a detection.

In order to isolate the fault it is essential to know the di-
agnostic relation, i.e. relation between faults and values of the
diagnostic signals. This relation can be determined in three
ways: as a result of process modeling with the influence of
faults; on the basis of learning with the use of measurement
data from emergency states; or on the basis of expert knowl-
edge. The way of acquiring such knowledge to a high ex-
tent determines the forms of its notation and the choice of
method of faults isolation. Thus, these methods determine the
obtained quality of diagnosing, with faults’ distinguishability
among others.

While classifying the knowledge on the diagnosed process
one can differentiate four main cases:

• there are not known models of the diagnosed process, only
the constraints are known,

• only the qualitative model of the diagnosed process and the
constraints are known,

• the quantitative models of the diagnosed process are
known, but the influence of the fault is not taken into ac-
count,

• the quantitative models of the diagnosed process taking
into consideration the influence of faults are known.

Below, one can find the characteristics of the application
properties of the methods for the fault detection and isolation
for the four above mentioned cases, in respect to diagnostics
of the complex industrial processes.

2. Diagnostics of the processes

without using models

In the case of not knowing the models of the process most-
ly are used the control of thresholds of the process variables
and control deviations for detecting the faults. Sometimes, the
statistical or spectral analysis of the measurement signals are
applied. There are used logical functions of alarms or rules
for faults isolation, in which premises are the results of con-
straints checking. Described scheme of diagnosing is shown
in Fig. 1.

For recognition of abnormal or emergency states in the
systems of industrial processes automation (SCADA, DCS)
there is frequently used an alarm signalizing system, which is
a simplified version of a diagnostic system. The methods for
controlling the limits, which are generally used in the alarm
systems for fault detection, have a lot of disadvantages [8],
such as:

• occurrence of a very large number of alarms within a short
period of time in the states of serious faults. According
to EEMUA (The Engineering Equipment and Materials
Users’ Association) the average daily number of alarms in
petrochemical industry is estimated on 1500, and in energy
industry on 2000, whereas max. 144 is recommended;

• no possibility of detecting some of the faults due to symp-
tom cancelling effects caused by the control systems (the
example of such fault can be the leakage of a toxic sub-
stance from the tank of a controlled level),

• long fault detection delays,
• a very large number of possible causes for some alarms.

Fig. 1. The scheme of diagnosing based on checking the constraints

Interpreting a large amount of alarms occurring within a
very short period of time is a serious problem for the opera-
tors, the more because the alarm systems are usually devoid
of the mechanisms for faults isolation, i.e. they are unable to
point out the real cause of faulty state. The phenomena taking
place here is called information overload, what can result in
stress [8]. It can lead to additional operator’s mistakes, which
accumulated with the previously obtained faults may cause
serious accidents. The mechanism of such unfavorable (posi-
tive) feedback was the cause of many serious breakdowns in
nuclear or conventional power stations and chemical plants.

A fault isolation is implemented only in few alarm sys-
tems. The diagnostic signals are the results of the control of
limits interpreted in a binary or tri-state way {-1, 0, +1}.
These signals are the inputs of the algorithm of the fault iso-
lation. The relation between values of the diagnostic signals
and the faults takes the form of the logical function (with bi-
nary diagnostic signals) or “IF the values of the diagnostic

signals THEN fault(s)” type of rules with trivalent diagnostic
signals.

The diagnostic relation in the form of logical function has
been used for a long time, among others in the works [21–23].
Logical function can, in a general case, combine binary di-
agnostic signals generated with the use of different methods,
including the methods of signal analysis. Logical function is
individually designed for each fault. This way one can get the
procedures for the particular faults isolation without conduct-
ing comprehensive diagnostic analysis. However, the logical
function might be the same for a variety of faults. When
designing these functions for only chosen faults one can be
unable to state the lack of isolability between them and the
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omitted faults. The method does not take into account the un-
certainties of symptoms and faults-symptoms relation. It also
does not ensure the robustness to the changes of the process’s
structure and the set of measurements. Applying the rules in
respect to fault isolation conducted on the basis of the limits
control results and signals analysis has similar disadvantages.

3. Process diagnostics with the use

of qualitative models

The qualitative models used in diagnostics of industrial
processes are Signed Directed Graphs (SDG) [24, 25]. They
represent cause-and-effect relationships between process vari-
ables in technological systems. The nodes of the graph are
process variables. The nodes corresponding to the measur-
able variables are observable nodes. The arcs of the graph
represent direct relations between the variables in the super-
vised process. The arrows of the arcs reflect the directions
of interactions between the process variables, thus the direc-
tions of propagation of the alarms in the process. The arcs
of the graph are marked, “+” what stands for the consistent
and “−” for the opposite direction of changes of the adjoining
variables.

SDG graphs are used mainly for the fault isolation in con-
junction with the detection conducted on the basis of the con-
trol of limits. Additionally, on the basis of the cause-and-
effect graphs there can be applied the control of compatibility
of directions of changes of the values of process variables.
The faults which cause incompatibilities with directions are
detected in this way. As an example may serve the control
of compatibility of directions of changes in the control sig-
nal passed to the control valve and the controlled medium
flow. However such test cannot detect slow valve sedimenta-
tion process, but is sensitive for all abrupt faults, e.g. blocking
of the actuator’s piston rod.

The status of the variables in the basic version of the
method takes 3 values {+, 0, −}, where “0” means normal
state, “+” means exceeding the high limit of the alarm and “−“
means exceeding the low limit for the alarm. Faults, which are
not clearly represented on the SDG graph, cause the alarms.
The fault is manifested by the occurrence of a sequence of
alarms. Identification of the initial (causal) alarm enables in-
dicating the faults, which caused this alarm. The diagnosis
is then formulated on the basis of the graph analysis. One
determines the paths of the graph, which are consistent with
the values in the observable nodes. The initial node in such
path constitutes causal alarm. There can be many solutions
(paths of the graph) consistent with the observed alarms. The
diagnosis indicates then a subset of indistinguishable faults.
The method has been discussed in the works [23–28]. Shizo-
ka and others [24] suggested the improvement of the method
through applying 5 statuses of each variable. It is also possi-
ble to implement inference on the basis of the graph with the
use of fuzzy logic [26].

In the works [29, 30], the use of GP process graphs, which
are the extensions of SDG graphs, was proposed. In the GP
graphs are also represented faults, which constitute a separat-

ed group of inputs (Fig. 2). This approach, in a clearer way,
presents the relations between alarms and faults. GP graph can
be used to isolate faults also in relation to detection conducted
on the basis of the partial models of the process.

Fig. 2. Exemplary GP graph for the simple process

SDP graphs can be developed on the basis of expert’s
knowledge: designers, process engineers, control engineers
and process operators. That is why these methods are particu-
larly useful in the first stage of diagnostic system design. They
can be implemented quickly and at reasonable cost, while ap-
plying the methods making use of processes’ models require
longer time for identification of models and larger financing.
That is why the simple methods are recommended to be used
in LSS diagnostics.

Qualitative models of the complex processes are much
easier to elaborate than the analytical ones. These models de-
scribe the relations between process variables and explicitly
(GP graphs) or implicitly (SDG graphs) between faults and
alarms. Their advantage is a possibility to determine the se-
quence of alarms for particular faults. Such knowledge can be
additionally used in fault inference, what allows for increasing
faults isolability in comparison to inference on the basis of
the fault-diagnostic signal values (alarms) relation. However,
this method can be unreliable. It is difficult to properly define
the alarm limits. The values of limits for particular variables
are interrelated and defining them in a wrong way may lead
to false diagnoses. In addition, the operating control system
compensates the influence of some faults, resulting in a lack
of certain alarms despite the existence of their causes. Lack
of algorithm robustness to the changes of sets of measureable
variables (observable nodes) is another disadvantage of infer-
ence on the basis of the graphs. It is necessary to modify the
graph on a current basis when the above mentioned changes
occur.

Apart from the SDG graphs there is also applied abduction
logical inference with the use of cause-and-effect graphs (also
called AND/OR/NOT graphs). This method was developed in
the works of Ligęza and his co-workers [31–35]. Cause-and-
effect graph is a model of logical relation between the symp-
toms (phenomena) describing the behavior of the process.
Abduction aims at determining the causes of the discovered
breakdown. Thus, this method cannot be used for early fault
recognition, e.g. in order to secure the process or re-configure
the structure of the control system. The bond-graphs are the
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other qualitative models used in the diagnosis of processes
[36, 37].

4. Diagnostics with the use of quantitative mod-

els without taking into consideration the in-

fluence of faults

4.1. General scheme. The methods of detection making use
of the models of the systems play fundamental role in the di-
agnostics of processes, whereas these are models built for the
normal state of the process [3–16]. Such methods allow for
early detection of the small size faults, before they reveal their
negative effects. The general scheme of diagnosing with the
use of quantitative models not including the faults influence
is shown in Fig. 3.

Fig. 3. The general scheme of diagnosing with the use of quantitative
models not including the faults influence

4.2. Fault detection. A set of partial models is usually used
for fault detection in the complex processes. These models are
designed for particular devices and assemblies in their nor-
mal state (without any faults). The collection of these models
should cover the whole process being diagnosed. The diag-
nostics based on the partial models has many advantages in
relation to the diagnostics based on global models, i.e. of the
whole process, such as: shorter detection time, simpler mod-
els, lower design costs, greater flexibility of the diagnostic
system.

Different kinds of process models can be used for fault
detection. The most comprehensive model of the process can
be derived directly from the physical equations, e.g. balance
equations. Such a model reflects the properties of the process
in the whole range of operation. If the equations describing
the process have confounding form, then the residuals are cal-
culated as a difference between the left and the right side of
the equations (Fig. 4). Designing the models based on the
description of the physical phenomena is, for many systems,

very difficult or even impossible, because the nature of some
of the phenomena occurring in the industrial processes is not
known. This limits the application, of this method to process-
es, which are described by relatively simple relations.

Fig. 4. Generation of residuals on the basis of the equations (in a con-
founding form) describing physical phenomena

Linear models in the form of state equations, opera-
tor transmittances, state observers or Kalman filters [3, 10,
11] have limited applicability in the diagnostics of industrial
processes due to non-linearity of the processes and variable
operating point. In the case of such models, the residuals are
specified as a difference between the measured and modeled
values of the output signals (Fig. 5).

Fig. 5. The diagram of residues’ generation and their evaluation

The fault detection based on the estimation of the pa-
rameters of the process models also has limited applicabili-
ty [38]. In this case, the residuals constitute the differences
between the nominal and estimated values of the parame-
ters of the process models or physical factors evaluated on
their basis. This method is mainly used for the well-defined
processes, such as mechanical and electric processes, but
rarely for the thermal or chemical ones, because it is difficult
to define the appropriate models. Its disadvantages are: detec-
tion delay, high computational power expenditures together
with the necessity of on-line identification of the parameters
of the process models and problems with detecting additive
faults.

Approximation models are applied due to the difficulties
and restrictions in use of the analytical models. They repre-
sent only selected functional features of the real process with
proper accuracy. They are created on the basis of the measure-
ment data and expert’s knowledge about the model’s structure.
The range of usefulness of this type of models is limited to
the range of input and output signals, on the basis of which
the model were created.

Neural and fuzzy models and their combinations [6–8, 11,
14, 18] are of particular practical importance. Such models
are tuned based on the measurement data recorded during
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process exploitation. They give a good image of the system
in the scope of variability of the signals, on the basis of which
they have been trained. Industrial applications are dominated
by unidirectional, multilayer neural networks with delays in
the input signals. Another solution are unidirectional, multi-
layer networks with dynamic neurons [6, 18]. There are also
used RBF radial networks and GMDH networks [8, 10, 16,
39–41].

Neural-fuzzy systems [5–8, 11, 14, 42] are a convenient
tools for modeling for the purpose of residual generation on
the basis of the measurement data and expert’s knowledge.
They have a lot of well-known advantages and a disadvantage
relaying in the fact that the number of rules grows rapidly
with the increase in the number of inputs and the number of
fuzzy sets defined for particular inputs. This limits their ap-
plication to the systems with the relatively small number of
inputs. However, in diagnostics of industrial processes, partial
models are utilized. Due to this fact, restrictions of neural-
fuzzy systems are not that important. Moreover, the effective
method of limitation of the number of model inputs is the
variable aggregation approach [8]. It relies on replacing the
subset of input signals with the signal being its properly se-
lected function. In order to make use from this approach one
needs to use knowledge concerning physical phenomena tak-
ing place in the process.

The additive model is a new developed and highly promis-
ing method of modeling of the processes for the purpose of
fault detection. They had been discussed in the work [43],
whereas Łabęda-Grudziak had applied them for the fault de-
tection [44, 45]. The additive model of the MISO structure
for input signals X1, X2, ..., Xp and one output signal Y is as
follows:

Y = α+

p∑

j=1

ϕj(Xj) + ε, (1)

where: error ε is independent from (X1, X2, ..., Xp), E(ε)+0,
V ar(ε) = σ2 and ϕj are one-dimensional functions of Xj

variable, not necessarily linear, estimated on the basis of da-
ta. The assumption of independence of the input signals is
not required. Relations between the output and input sig-
nals are estimated by using non-parametric techniques of
smoothing, such as natural cubic splines [44, 45]. The model
is tuned with the use of the iteration backfitting algorithm
[42]. Research conducted by Łabęda-Grudziak [45] shows
high practical usefulness of this method for industrial appli-
cations.

All mentioned methods of detection, based on the quan-
titative models are quite troublesome in exploitation. Each
maintenance and modernization of the technological installa-
tion require repeated tuning of these models. When a non-
stationary systems are considered, the passage of time is also
such a factor.

A very important issue is ensuring the robustness of detec-
tion algorithms for inaccuracy of modeling, disturbances and
measurement noises. The known active approaches [3, 13],
consisting in generating such signal of residual that will not
be sensitive to disturbances and inaccuracy of the model and
at the same time will detect the faults, are in practice very dif-
ficult to obtain. They require deep knowledge on the process,
e.g. observers of unknown input or parity equations in the in-
ternal form. Passive methods have much important practical
significance. The robustness of the algorithm is achieved in
the decision phase and not in the phase of residual generation.

One of the approaches to build robust models is the mod-
el identification with limited value of identification error [46,
47]. The approach based on determination of statistical error
bounds has the greatest practical importance [7, 48–53]. The
identification process is carried out without consideration of
its uncertainty, while, in the second step, the model uncer-
tainty is modeled (error model) based on residual signal. The
robustness is determined by the adaptive threshold signal ap-
plied to residual. The methodology of forming the envelope
of uncertainty in the time domain in respect to fuzzy and
neural models is intensively developed at the University of
Zielona Góra [48–52]. Fault signaling takes place after ex-
ceeding by the residual value upper or lower envelope of the
area of uncertainty – adaptation limit.

However, in the case of large scale systems, on-line deter-
mination of residuals decision thresholds requires high com-
putational power. The simpler, and comparably efficient solu-
tion [45] is the application of fuzzy evaluation of the residuals
[6–8, 14, 54] in conjunction with experimental determination
of the parameters of fuzzy sets. The fuzzy evaluation enables
taking into account the uncertainty of modeling errors, dis-
turbances, measurement noise and the problem of the prop-
er specification of the threshold values. In the simplest case
there is used fuzzy bi-valued evaluation of the absolute value
of the residual. In the case of tri-valued evaluation (Fig. 6)
the sign of residual is additionally taken into account, what
can increase fault distinguishability indices [8—55].

The result of fuzzy residuals evaluation are fuzzy diagnos-
tic signals. The value of fuzzy signal is therefore determined
by the factors of membership of the calculated residual value
to particular fuzzy sets. The advantage of this approach is a
possibility of experimental assessment of parameters of the
fuzzy sets used while making decision about the occurrence
of a fault. These parameters can be fixed automatically on the
basis of the analysis of statistical parameters of the residual
time series in a normal process state, what is presented in
Fig. 7.

Making decision not on the basis of current value of resid-
uals, but on the basis of its value in the time window of
specific length is another simple method for increasing the
robustness of fault detection.
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Fig. 6. The schematics of tri-valued evaluation of residuals

Fig. 7. Graphic interface for the determining the parameters of fuzzyfication of the residuals in AMandD system

4.3. Fault isolation. There are two possible approaches to
specifying the faults-diagnostic signals values relation in the
case where fault detection is model-based without taking in-
to consideration the influence of faults. The first one rely on
learning on the basis of the sequence of measurement data
for the normal condition and conditions with faults, and the
second on using expert’s knowledge.

The method of learning [5, 6, 14, 18] is a very attractive
way of getting knowledge on relations between diagnostic sig-
nals values and faults. However, in order to learn, one needs
to have measurement data characterizing all the states of the
process, which should be recognized, so the normal condition
of the process, as well as states with faults. Getting such data
from exploitation of the complex process is usually impossi-
ble. Unacceptable, and often unworkable is introducing faults

in the real processes. The condition of applying this method
is then the knowledge on the process’s model, which allows
for the simulation of the faults. This means that we have to
dispose of models taking into account the influence of the
faults.

When it comes to industrial processes, gathering measure-
ment data for all the states of the process is impossible. The
number of the possible faults is very high and particular ab-
normal or emergency conditions occur very rarely. Moreover,
technological installations in chemical, power or food indus-
tries are, in major part, individual solutions or are realised
in rarely series. It all makes getting the sequence of leaning
data, representing particular emergency conditions – impossi-
ble. Diagnostic system should therefore detect and recognize
serious breakdowns, which had never occurred before. Meth-
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ods requiring determination of symptoms-faults relation in the
stage of learning have then limited application in the diagnos-
tics of industrial processes. However, they are highly useful
in diagnostics in serial production of e.g. engines, pumps.

In diagnostics of complex technological systems the most
significant are methods utilizing expert’s knowledge in the
process of designing fault-symptoms relation. Good knowl-
edge about the process allows for determining this relation
in a relatively simple way. The designer of a diagnostic sys-
tem can additionally use the knowledge of process engineers,
process operators and maintenance staff.

Expert’s knowledge about faults-symptoms relation can be
presented in many different forms. When using binary eval-
uation of residuals, the diagnostic relation can take a form
of [5–8]: logical function, diagnostic trees, binary diagnostic
matrix or rules of different forms. The most often used are
the rules that correspond to columns (2) or rows (3) of the
binary diagnostic matrix:

if (s1 = ν1,k)... ∧ (sj = νj,k)... ∧ (sJ = νJ,k)

then (fk); νj ∈ 0, 1,
(2)

if (sj = 1) then (fa ∨ ... ∨ fk ∨ fn). (3)

Similar forms of presentation are used with multi-valued eval-
uation of the residuals. The extension of a binary diagnostic
matrix is Fault Isolation System (FIS) [6–8, 55, 56]. The ex-
tensions in respect to the binary diagnostic matrix are as fol-
lows:

a) with every diagnostic signal can be associated an individual
set of its values Vj ,

b) set Vj of j-th value of a diagnostic signal can be multi-
valued,

c) any FIS element can contain both – single value or subset
of values of a diagnostic signals.

FIS rules have the form of:

if (s1 ∈ V1,k)... ∧ (sj ∈ Vj,k)... ∧ (sJ ∈ VJ,k)

then (fk),
(4)

where Vj,k is a subset of possible values of sj in the state of
fault fk, or:

if (sj = ν) then (fa ∨ ... ∨ fk ∨ fn). (5)

Rule (5) corresponds to subset of faults F (sj = ν), which
can generate symptoms sj = ν.

In the case of fuzzy bi-valued evaluation of the residuals
applied in the record of diagnostic relation, there are used bi-
nary diagnostic matrix or principles (2) or (3), whereas when
fuzzy multi-valed evaluation – FIS system or principles (4),
or, eventually (5).

When choosing the form of notation of relation between
faults and diagnostic signals values a deciding factor is the
robustness of diagnostic system to changes in the structure of

the process being diagnosed, including the changes in the set
of fault-less measurement paths. Logical functions, diagnos-
tic trees, binary diagnostic matrix, information system, which
are specified at the stage of designing of the diagnostic sys-
tem are rigid and not robust to the changes of structure of the
process. Also in the rules of (2) or (4), together with changes
of the set of the accessible measurement signals, there is also
a change in the set of premises. Moreover, in the case of large
scale systems, where the number of realized tests is huge, the
rules corresponding to the columns of binary diagnostic ma-
trix or information system are inconvenient due to a very large
number of premises.

The method of diagnostic relation notation, robust in the
sense of the possible changes of the process’s structure, are
rules of a (3) and (5) types, where the particular symptoms
correspond to subsets of faults that cause these symptoms.
This dependency is constant. In the case of changing the struc-
ture of the process or as a result of previous diagnoses, this
rule can be temporarily eliminated from the set of active rules,
but its form is constant. What is more, this rule has a compact
form, because the number of possible faults presented in the
conclusion is not high, especially in the case of using partial
models.

On the basis of rules (3), (5) one can automatically re-
construct the binary diagnostic matrix or FIS, thus the rules
corresponding to the fault signatures – (2), (4) respectively.
Such rules can be contradictory, i.e. they may have the same
premises and different conclusions. They correspond to the
unisolable faults.

There is a wide range of methods for faults isolation. In
work [42] there are 2 main groups: classification methods and
methods of automatic inference. The classification methods
are difficult to apply in LSS due to the above mentioned diffi-
culties with specifying pattern data for the states with faults.
Automatic inference is conducted on the basis of rules. Due
to the variability of the structure of a diagnosed process, the
methods of automatic inference are better suitable in the in-
dustrial processes diagnoses. Uncertainties of diagnostic sig-
nals inclines the application of fuzzy evaluation of residuals
and inference with the use of fuzzy logic.

The general diagram of inference based on the applica-
tion of partial models to fault detection and fuzzy inference
on the faults is presented in Fig. 8. Characteristic is the lack
of the defuzzyfication block. The diagnosis shows faults and
corresponding degrees of activation δ of rules, which are in-
terpreted as factors of conviction on appearance of the certain
faults.

Different algorithms of diagnostic inference destined to di-
agnose complex industrial systems are presented in the works
[6–8, 55, 57]. Discussing the specific diagnostic algorithm,
taking into consideration all the problems included in Sec. 2
exceeds the frames of this paper.
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Fig. 8. The diagram of diagnosing with the use of fuzzy logic

5. Diagnostics with the use of quantitative

models including the influence of faults

The greatest potential for achieving quick and accurate diag-
nosis gives the use of analytical models, taking into consider-
ation the influence of faults (6) on the value of the process’s
outputs:

ẋ(t) = φ[x(t),u(t),f(t)],

y(t) = ψ[x(t),u(t),f (t)]).
(6)

From these models one can directly determine the relation
between the values of residuals and faults. Therefore, applied
scheme of diagnosing (Fig. 9) is similar to this one present-
ed in Fig. 3. The difference lies in the sources of knowledge
about the fault-symptoms relation.

Fig. 9. The general scheme of diagnosing with the use of quantitative
models including the faults influence

By carrying out linearization of an equation in the work-
ing point of the process and Laplace Transform one achieves
transmittance model in the following form:

y(s) = G(s)u(s) + H(s)f (s). (7)

Residuals resulting from (7) can be presented in two forms
[4] – analytical and internal:

r = y(s) − G(s)u(s) = H(s)f (s). (8)

Analytical form r = y(s) − G(s)u(s) shows the depen-
dency of residual from input and output signals and can be

used to faults detection, whereas internal form r = H(s)f (s)
defines the dependency of residual from faults and is a basis
for fault isolation.

Table 1
Internal form of the residuals

f1 . . . fk ... fK

r1 H1,1 H1,k H1,K

. . .

rj Hj,1 Hj,k Hj,K

. . .

rJ HJ,1 HJ,k HJ,K

In practice, application of linear models for fault detection
in industrial processes, usually non-linear, is not recommend-
ed. One usually uses models describing physical phenomena
without conducting linearization. If they were designed with
fault influence taken into consideration, then one assumes that
fault vector f(t) = 0. The alternative are neural or fuzzy mod-
els.

One can claim that in the case of knowing the internal
form, the level of knowledge on diagnostic relation is higher
than in other forms of notation of this relation. The internal
form includes information on dynamics of the fault influence
on the residuals. One can, of course, simplify this relation
and derive other forms of notation of the faults – diagnostic
signals values relation, such as binary diagnostic matrix, FIS
system, rules (2), (3) and others.

The knowledge on the internal form allows also for appli-
cation of, apart from the method of structural residuals, the
method of directional [3, 4] or sequence residuals [58, 59].
All these methods enable designing secondary residuals on
the basis of primary ones what allows for forming residuals
sensitivity for different subsets of faults and leads to increas-
ing the distinguishability of the faults.

The methods of structural and directional residues are
commonly known. In the case of structural residuals one uses
only information on sensitivity or non-sensitivity of the resid-
uals for particular faults. In this case H matrix is simplified to
binary diagnostic matrix. The evaluation of the current values
of the residuals is binary. Isolability of faults is achieved when
the signatures of the faults (columns of the binary diagnostic
matrix) are different for particular faults [4, 6–8].

In the case of directional residuals the isolation is con-
ducted on the basis of the analysis of position of directional
vectors in the space of residuals [3, 4, 6, 9]. Directional vec-
tors are determined by residuals gains for particular faults.
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It means that instead of Hj,k transmittance there is used on-
ly cj,k gains of the particular residual on k-th faults. It is
assumed that particular Hj,k transmittances are of static char-
acter, i.e. don’t possess integrate part. A given fault, after
decaying of the transient states appears always at this direc-
tion. In order to get a possibility of fault isolation, the set of
residuals is designed in such a way that particular faults result
in orientation specific for them in the parity space.

The above mentioned methods did not take into consid-
eration dynamic influence of faults on residuals. The method
of sequential residuals [52, 53] is based on the analysis of
sequences of occurring symptoms. The method allows for
designing the secondary residuals in such a way so as to
achieve individual symptom sequences for particular faults.
This method, similar to structural and directional residuals
requires the knowledge on residuals in the internal form. Due
to this fact the costs of design are high. The method can then
be applied in the cases of well-recognized processes, operating
in working point vicinity, for which necessary mathematical
models can be created. Another area of application are critical
processes, where the costs of design are negligible compared
to the potential losses in the emergency states.

It can be stated that in diagnostics of large scale process-
es do not apply well established theoretical methods of fault
recognition with the use of structural, directional, sequential
residuals, observers of the unknown inputs etc. [3, 4, 6, 9,
10, 12, 13, 60]. It results from the difficulty of obtaining the
description of the process taking into account the influence
of faults on the value of residuals. It has to be therefore high-
lighted that only in the case of the knowledge on the internal
form of residuals it is possible to identify the faults, i.e. defin-
ing its size and time of development.

6. Summary

In this work application properties of the methods for fault
detection and isolation for the aforementioned four cases, dif-
fering in the degree of knowledge about the process with re-
spect to the problem of diagnostics of the complex industrial
processes, are described. Table 2 presents these methods and
their properties.

Main detection and isolation methods and their exploita-
tion properties corresponding to the four highlighted in Sec. 1
cases of diagnosing, characterized by various degrees of
knowledge about the diagnosed process, are summarized in
Table 2. The degree of knowledge about the process to a de-
cisive extent determines the achievable quality of diagnosing,
defined as the ability of early detection and precise isolation
of faults.

Column 1 corresponds to the situation where there are no
known models of the diagnosed object and only limits are
known. This is the simplest approach, but it has many draw-
backs. There is a possibility of using simple fault isolation
methods in the case when the qualitative model of the diag-
nosed process and limits are known (column 2). However, the

quality of diagnosing increases slightly, due to the limitation
of fault detection for limits control and known weaknesses of
this method. The quality of diagnosing is growing strongly in
the case of the use of quantitative models for fault detection
and isolation algorithms using experts’ knowledge (column 3).
In this case, early detection of a small-size faults and the di-
agnosis indicating possible faults are obtained. The precision
of diagnosis is dependent on the obtained fault distinguisha-
bility, which is decisively influenced by the selection of a
set of measurements and the appropriate design of the set of
detection algorithms and the diagnostic relation. The highest
quality of diagnosis is obtained when the quantitative models
of the diagnosed object taking into account the fault influence
are known (column 4). In this case, the diagnostic relation is
derived from the internal form of the equations describing
the process. The most advanced methods of fault isolation
and identification may be used. However, this approach is ex-
tremely difficult for practical use, because achieving models
with fault influence for complex processes is very difficult and
expensive.

The simplest approach without models of a diagnosed
process applied, but only with the limits of the process vari-
ables is commonly used. It seems that the methods based
on quantitative models applied for fault detection in relation
with the isolation methods making use of expert’s knowledge
about the relations between faults and diagnostic signals val-
ues will dominate in the nearest future. Methods based on the
analytical models taking into account the influence of faults
will be applied only for critical objects that pose a serious
threat to the human safety, environment and the technology
installation.

Problems connected with application of diagnostic sys-
tems for large scale processes will force new fields of research
to appear, such as:

• the development of diagnostic methods for variable struc-
ture processes, batch processes and hybrid processes
(continuous-discrete),

• ensuring great robustness of diagnostic algorithms to
measurement uncertainties, process models and faults-
symptoms relation, and also for the symptoms delays, mul-
tiple faults, changes of the process’ structure etc.,

• the development of methods for diagnosing multiple faults,
• the development of methods of distributed diagnostics,
• the development of specialized sensors for detecting and/or

measurement of different kinds of destructive phenomena,
• the development of software tools for designing on-line

diagnostics of the process and fault tolerant systems,
• integration of diagnostic systems with the process control

systems and software for analysing the process’ safety.

Knowledge about the industrial processes diagnostics is
now so well established, that one can expect fast replacement
of the simple alarm systems by the advanced diagnostic sys-
tems.

Bull. Pol. Ac.: Tech. 62(3) 2014 579

Unauthenticated | 10.248.254.158

Download Date | 9/10/14 9:59 AM



J.M. Kościelny and M. Syfert

Table 2
The comparison of the applied methods and properties of on-line diagnostics depending on the level of knowledge about the diagnosed process

Methods/properties The degree of knowledge about the diagnosed process

Small Medium Large Very large

The type
of available knowledge

The models are not
known, the limitations
are known

Qualitative model
and the restrictions
are known

Quantitative models
not including the influence
of the faults are known

Quantitative models
including the influence
of the faults are known

The applied
detection methods

• limits control

• spectral analysis

• limits control

• qualitative models and
simple heuristic de-
pendencies

• analytical models

• neural models

• fuzzy models

• statistical models

• analytical models

• other models

The methods
of acquiring knowledge
about the fault-symptoms
relation

• expert knowledge

• observations – moni-
toring of theprocess

• expert knowledge

• observations – moni-
toring of the process

• expert knowledge

• training on the basis
of measurement data

• modelling, including
the influence of the
faults

The form of notation of
faults-symptoms relation

• logical functions

• rules

• logical functions

• rules

• binary diagnostic ma-
trix

• binary diagnostic ma-
trix

• FIS information sys-
tem

• rules, logical
functions

• diagnostic trees

• areas in the space
of residuals

• internal form of struc-
tural residuals

• directional residuals

• sequential residuals

The applied
isolation methods

• inference on the basis
of logical functions

• inference on the basis
of rules

• inference on the basis
of rules

• analysis
of propagation
of alarms and direc-
tions of interactions
between variables –
specifying root alarm

• inference on the basis
of signatures (classifi-
cation)

• automatic reasoning

• classification

• automatic reasoning

The possibility
of faults identification

not possible not possible limited exists

The quality of diagnosis low medium high very high

Remarks • concealing the symp-
toms by control loops

• detecting medium and
large faults

• low distinguishability
of faults

• long time of detection
and isolation

• detection algorithms
do not require tuning
after maintenance of
the process

• concealing the symp-
toms by control loops

• medium distinguisha-
bility of faults

• long time of detection
and isolation

• detection algorithms
do not require tuning
after maintenance of
the process

• a possibility of early
fault detection

• a possibility of detect-
ing small faults

• high distinguishability
of faults

• models require fre-
quent tuning (period-
ically, after mainte-
nance)

• a possibility of early
fault detection

• a possibility of detect-
ing small faults

• a possibility
of achieving the great-
est distinguishability
of faults (structuring
of residuals)

• costs and difficulties
with gaining models
including the influ-
ence of faults
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