
Application-Specific Accelerators for
Communications

Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

Abstract For computation-intensive digital signal processing algorithms, complex-

ity is exceeding the processing capabilities of general-purpose digital signal proces-

sors (DSPs). In some of these applications, DSP hardware accelerators have been

widely used to off-load a variety of algorithms from the main DSP host, including

FFT, FIR/IIR filters, multiple-input multiple-output (MIMO) detectors, and error

correction codes (Viterbi, Turbo, LDPC) decoders. Given power and cost consid-

erations, simply implementing these computationally complex parallel algorithms

with high-speed general-purpose DSP processor is not very efficient. However, not

all DSP algorithms are appropriate for off-loading to a hardware accelerator. First,

these algorithms should have data-parallel computations and repeated operations

that are amenable to hardware implementation. Second, these algorithms should

have a deterministic dataflow graph that maps to parallel datapaths. The accelerators

that we consider are mostly coarse grain to better deal with streaming data transfer

for achieving both high performance and low power. In this chapter, we focus on

some of the basic and advanced digital signal processing algorithms for communi-

cations and cover major examples of DSP accelerators for communications.

Yang Sun

Rice University, 6100 Main St., Houston, TX 77005, e-mail: ysun@rice.edu

Kiarash Amiri

Rice University, 6100 Main St., Houston, TX 77005, e-mail: kiaa@rice.edu

Michael Brogioli

Freescale Semiconductor Inc., 7700 W. Parmer Lane, MD: PL63, Austin TX 78729,

e-mail: michael.brogioli@freescale.com

Joseph R. Cavallaro

Rice University, 6100 Main St., Houston, TX 77005, e-mail: cavallar@rice.edu

329S.S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,

DOI 10.1007/978-1-4419-6345-1_13, © Springer Science+Business Media, LLC 2010

330 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

1 Introduction

In third-generation (3G) wireless systems, the signal processing algorithm complex-

ity has begun to exceed the processing capabilities of general purpose digital signal

processors (DSPs). With the inclusion of multiple-input multiple-output (MIMO)

technology in the fourth-generation (4G) wireless system, the DSP algorithm com-

plexity has far exceeded the processing capabilities of DSPs. Given area and power

constraints for the mobile handsets one can not simply implement computation in-

tensive DSP algorithms with gigahertz DSPs. Besides, it is also critical to reduce

base station power consumption by utilizing optimized hardware accelerator design.

Fortunately, only a few DSP algorithms dominate the main computational complex-

ity in a wireless receiver. These algorithms, including Viterbi decoding, Turbo de-

coding, LDPC decoding, MIMO detection, and channel equalization/FFT, need to

be off-loaded to hardware coprocessors or accelerators, yielding high performance.

These hardware accelerators are often integrated in the same die with DSP proces-

sors. In addition, it is also possible to leverage the field-programmable gate array

(FPGA) to provide reconfigurable massive computation capabilities.

DSP workloads are typically numerically intensive with large amounts of both

instruction and data level parallelism. In order to exploit this parallelism with a pro-

grammable processor, most DSP architectures utilize Very Long Instruction Word,

or VLIW architectures. VLIW architectures typically include one or more regis-

ter files on the processor die, versus a single monolithic register file as is often

the case in general purpose computing. Examples of such architectures are the

Freescale StarCore processor, the Texas Instruments TMS320C6x series DSPs as

well as SHARC DSPs from Analog Devices, to name a few [14, 28, 39].

In some cases due to the idiosyncratic nature of many DSPs, and the imple-

mentation of some of the more powerful instructions in the DSP core, an optimizing

compiler can not always target core functionality in an optimal manner. Examples of

this include high performance fractional arithmetic instructions, for example, which

may perform highly SIMD functionality which the compiler can not always deem

safe at compile time.

While the aforementioned VLIW based DSP architectures provide increased par-

allelism and higher numerical throughput performance, this comes at a cost of ease

in programmability. Typically such machines are dependent on advanced optimizing

compilers that are capable of aggressively analyzing the instruction and data level

parallelism in the target workloads, and mapping it onto the parallel hardware. Due

to the large number of parallel functional units and deep pipeline depths, modern

DSP are often difficult to hand program at the assembly level while achieving opti-

mal results. As such, one technique used by the optimizing compiler is to vectorize

much of the data level parallelism often found in DSP workloads. In doing this,

the compiler can often fully exploit the single instruction multiple data, or SIMD

functionality found in modern DSP instruction sets.

Despite such highly parallel programmable processor cores and advanced com-

piler technology, however, it is quite often the case that the amount of available

instruction and data level parallelism in modern signal processing workloads far

Application-Specific Accelerators for Communications 331

exceeds the limited resources available in a VLIW based programmable processor

core. For example, the implementation complexity for a 40 Kbps DS-CDMA sys-

tem would be 41.8 Gflops/s for 60 users [50], not to mention 100 Mbps+ 3GPP

LTE system. This complexity largely exceeds the capability of nowadays DSP pro-

cessors which typically can provide 1-5 Gflops performance, such as 1.5 Gflops TI

C6711 DSP processor and 1.8 Gflops ADI TigerSHARC Processor. In other cases,

the functionality required by the workload is not efficiently supported by more gen-

eral purpose instruction sets typically found in embedded systems. As such the need

for acceleration at both the fine grain and coarse grain levels is often required, the

former for instruction set architecture (ISA) like optimization and the latter for task

like optimization.

Additionally, wireless system designers often desire the programmability offered

by software running on a DSP core versus a hardware based accelerator, to allow

flexibility in various proprietary algorithms. Examples of this can be functionality

such as channel estimation in baseband processing, for which a given vendor may

want to use their own algorithm to handle various users in varying system conditions

versus a pre-packaged solution. Typically these demands result in a heterogeneous

system which may include one or more of the following: software programmable

DSP cores for data processing, hardware based accelerator engines for data pro-

cessing, and in some instances general purpose processors or micro-controller type

solutions for control processing.

The motivations for heterogeneous DSP system solutions including hardware ac-

celeration stem from the tradeoffs between software programmability versus the

performance gains of custom hardware acceleration in its various forms. There are

a number of heterogenous accelerator based architectures currently available today,

as well as various offerings and design solutions being offered by the research com-

munity.

There are a number of DSP architectures which include true hardware based ac-

celerators which are not programmable by the end user. Examples of this include the

Texas Instruments’ C55x and C64x series of DSPs which include hardware based

Viterbi or Turbo decoder accelerators for acceleration of wireless channel decod-

ing [26, 27].

1.1 Coarse Grain Versus Fine Grain Accelerator Architectures

Coarse–grain accelerator based DSP systems entail a co–processor type design

whereby larger amounts of work are run on the sometimes configurable co–processor

device. Current technologies being offered in this area support offloading of func-

tionality such as FFT and various matrix-like computations to the accelerator versus

executing in software on the programmable DSP core.

As shown in Figure 1, coarse grained heterogeneous architectures typically in-

clude a loosely coupled computational grid attached to the host processor. These

types of architectures are sometimes built using an FPGA, ASIC, or vendor pro-

332 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

Memory Interface

Host
Processor

Main
 Memory

R
e

c
o

n
fi
g

u
ra

b
le

 P
la

n
e

Fig. 1 Traditional coarse grained accelerator architecture. [8]

grammable acceleration engine for portions of the system. Tightly coupled loop

nests or kernels are then offloaded from executing in software on the host processor

to executing in hardware on the loosely coupled grid.

Fine–grain accelerator based architectures are the flip-side to the coarse grained

accelerator mindset. Typically, ISAs provide primitives that allow low cost, low

complexity implementations while still maintaining high performance for a broad

range of input applications. In certain cases, however, it is often advantageous to

offer instructions specialized to the computational needs of the application. Adding

new instructions to the ISA, however, is a difficult decision to make. On the one

hand they may provide significant performance increases for certain subsets of ap-

plications, but they must still be general enough such that they are useful across a

much wider range of applications. Additionally, such instructions may become ob-

solete as software evolves and may complicate future hardware implementations of

the ISA [53]. Vendors such as Tensilica, however, offer toolsets to produce config-

urable extensible processor architectures typically targeted at the embedded commu-

nity [25]. These types of products typically allow the user to configure a predefined

subset of processor components to fit the specific demands of the input applica-

tion. Figure 2 shows the layout of a typical fine grained reconfigurable architecture

whereby a custom ALU is coupled with the host processors pipeline.

In summary, both fine grained acceleration and coarse grained acceleration can

be beneficial to the computational demands of DSP applications. Depending on

the overall design constraints of the system, designers may chose a heterogeneous

coarse grained acceleration system or a strictly software programmable DSP core

system.

Application-Specific Accelerators for Communications 333

Host Processor
Pipeline

Register
File

Shadow
Register

File

Reconfigurable
Array (RA)

Execution

 Control
 Unit

Configuration Control and Caching Unit

Fig. 2 Example fine grained reconfigurable architecture with customizable ALU for ISA exten-

sions. [8]

1.2 Hardware/Software Workload Partition Criteria

In partitioning any workload across a heterogeneous system comprised of recon-

figurable computational accelerators, programmable DSPs or programmable host

processors, and varied memory hierarchy, a number of criteria must be evaluated in

addition to application profile information to determine whether a given task should

execute in software on the host processor or in hardware on FPGA or ASIC, as well

where in the overall system topology each task should be mapped. It is these sets of

criteria that typically mandate the software partitioning, and ultimately determine

the topology and partitioning of the given system.

Spatial locality of data is one concern in partitioning a given task. In a typical

software implementation running on a host processor, the ability to access data in

a particular order efficiently is of great importance to performance. Issues such as

latency to memory, data bus contention, data transfer times to local compute ele-

ment such as accelerator local memory, as well as type and location of memory

all need to be taken into consideration. In cases where data is misaligned, or not

contiguous or uniformly strided in memory, additional overhead may be needed to

arrange data before block DMA transfers can take place or data can efficiently be

computed on. In cases where data is not aligned properly in memory, significant

performance degradations can be seen due to decreased memory bandwidth when

performing unaligned memory accesses on some architectures. When data is not

uniformly strided, it may be difficult to burst transfer even single dimensional strips

of memory via DMA engines. Consequently, with non-uniformly strided data it may

be necessary to perform data transfers into local accelerator memory for computa-

tion via programmed I/O on the part of the host DSP. Inefficiencies in such methods

of data transfer can easily overshadow any computational benefits achieved by com-

pute acceleration of the FPGA. The finer the granularity of computation offloaded

334 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

for acceleration in terms of compute time, quite often the more pronounced the side

effects of data memory transfer to local accelerator memory.

Data level parallelism is another important criteria in determining the partition-

ing for a given application. Many applications targeted at VLIW-like architectures,

especially signal processing applications, exhibit a large amount of both instruction

and data level parallelism [24]. Many signal processing applications often contain

enough data level parallelism to exceed the available functional units of a given

architecture. FPGA fabrics and highly parallel ASIC implementations can exploit

these computational bottlenecks in the input application by providing not only large

numbers of functional units but also large amounts of local block data RAM to sup-

port very high levels of instruction and data parallelism, far beyond that of what a

typical VLIW signal processing architecture can afford in terms of register file real

estate. Furthermore, depending on the instruction set architecture of the host proces-

sor or DSP, performing sub-word or multiword operations may not be feasible given

the host machine architecture. Most modern DSP architecures have fairly robust in-

struction sets that support fine grained multiword SIMD acceleration to a certain

extent. It is often challenging, however, to efficiently load data from memory into

the register files of a programmable SIMD style processor to be able to efficiently

or optimally utilize the SIMD ISA in some cases.

Computational complexity of the application often bounds the programmable

DSP core, creating a compute bottleneck in the system. Algorithms that are im-

plemented in FPGA are often computationally intensive, exploiting greater amounts

of instruction and data level parallelism than the host processor can afford, given

the functional unit limitations and pipeline depth. By mapping computationally in-

tense bottlenecks in the application from software implementation executing on host

processor to hardware implementation in FPGA, one can effectively alleviate bot-

tlenecks on the host processor and permit extra cycles for additional computation or

algorithms to execute in parallel.

Task level parallelism in a portion of the application can play a role in the ideal

partitioning as well. Quite often, embedded applications contain multiple tasks that

can execute concurrently, but have a limited amount of instruction or data level par-

allelism within each unique task [51]. Applications in the networking space, and

baseband processing at layers above the data plane typically need to deal with pro-

cessing packets and traversing packet headers, data descriptors and multiple task

queues. If the given task contains enough instruction and data level parallelism to

exhaust the available host processor compute resources, it can be considered for

partitioning to an accelerator. In many cases, it is possible to concurrently execute

multiple of these tasks in parallel, either across multiple host processors or across

both host processor and FPGA compute engine depending on data access patterns

and cross task data dependencies. There are a number of architectures which have

accelerated tasks in the control plane, versus data plane, in hardware. One example

of this is the Freescale Semiconductor QorIQ platform which provides hardware ac-

celeration for frame managers, queue managers and buffer managers. In doing this,

the architecture effectively frees the programmable processor cores from dealing

with control plane management.

Application-Specific Accelerators for Communications 335

MIMO

Encoder

... MIMO

Detector

... Channel

Decoder

MIMO

Equalizer &

Estimator

...

Fig. 3 Basic structure of an MIMO receiver.

2 Hardware Accelerators for Communications

Processors in 3G and 4G cellular systems typically require high speed, throughput,

and flexibility. In addition to this, computationally intensive algorithms are used to

remove often high levels of multiuser interference especially in the presence of mul-

tiple transmit and receive antenna MIMO systems. Time varying wireless channel

environments can also dramatically deteriorate the performance of the transmission,

further requiring powerful channel equalization, detection, and decoding algorithms

for different fading conditions at the mobile handset. In these types of environments,

it is often the case that the amount of available parallel computation in a given ap-

plication or kernel far exceeds the available functional units in the target processor.

Even with modern VLIW style DSPs, the number of available functional units in a

given clock cycle is limited and prevents full parallelization of the application for

maximum performance. Further, the area and power constraints of mobile handsets

make a software-only solution difficult to realize.

Figure 3 depicts a typical MIMO receiver model. Three major blocks, MIMO

channel estimator & equalizer, MIMO detector, and channel decoder, determine the

computation requirements of a MIMO receiver. Thus, it is natural to offload these

very computational intensive tasks to hardware accelerators to support high data

rate applications. Example of these applications include 3GPP LTE with 326 Mbps

downlink peak data rate and IEEE 802.16e WiMax with 144 Mbps downlink peak

data rate. Further, future standards such as LTE-Advance and WiMax-m are target-

ing over 1 Gbps speeds.

Data throughput is an important metric to consider when implementing a wireless

receive. Table 1 summaries the data throughput performance for different MIMO

wireless technologies as of 2009. Given the current DSP processing capabilities,

it is very necessary to develop application-specific hardware accelerators for the

complex MIMO algorithms.

336 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

Table 1 Throughput performance of different MIMO systems

HSDPA+ LTE LTE WiMax Rel 1.5 WiMax Rel 1.5

(2×2 MIMO) (2×2 MIMO) (4×4 MIMO) (2×2 MIMO) (4×4 MIMO)

Downlink 42 Mbps 173 Mbps 326 Mbps 144 Mbps 289 Mbps

Uplink 11.5 Mbps 58 Mbps 86 Mbps 69 Mbps 69 Mbps

2.1 MIMO Channel Equalization Accelerator

The total workload for a given channel equalizer performed as a baseband pro-

cessing part on the mobile receiver can be decomposed into multiple tasks as

depicted in Figure 4. This block diagram shows the various software process-

ing blocks, or kernels, that make up the channel equalizer firmware executing on

the digital signal processor of the mobile receiver. The tasks are: channel esti-

mation based on known pilot sequence, covariance computation (first row or col-

umn) and circularization, FFT/IFFT (Fast Fourier transform and Inverse Fast Fourier

transform) post-processing for updating equalization coefficients, finite–impulse re-

sponse (FIR) filtering applied on the received samples (received frame), and user

detection (despreading–descrambling) for recovering the user information bits. The

computed data is shared between the various tasks in a pipeline fashion, in that the

output of covariance computation is used as the input to the matrix circularization

algorithm.

The computational complexity of various components of the workload vary with

the number of users in the system, as well as users entering and leaving the cell

as well as channel conditions. Regardless of this variance in the system conditions

at runtime, the dominant portions of the workload are the channel estimation, fast

Time

`

Decoded

Bit Stream
Received

Bit Stream

C
h
a
n
n
e
l

E
s
ti
m

a
ti
o
n

C
o
v
a
ri
a
n
c
e
 M

a
tr

ix

C
o
m

p
u
ta

ti
o
n

C
o
v
a
ri
a
n
c
e
 M

a
tr

ix

C
ir
c
u
la

ri
z
a
ti
o
n

F
a
s
t

F
o
u
ri
e
r

T
ra

n
s
fo

rm

F
a

s
t

F
o

u
ri
e

r
T

ra
n

s
fo

rm

P
o

s
t

P
ro

c
e

s
s

In
v
e

rs
e

 F
a

s
t

F
o

u
ri
e

r
T

ra
n

s
fo

rm

F
IR

 F
ilt

e
r

D
e
s
p
re

a
d
in

g
 /

D
e
s
c
ra

m
b
lin

g

Fig. 4 Workload partition for a channel equalizer.

Application-Specific Accelerators for Communications 337

`

DSP

FPGA

C
h

a
n

n
e

l

E
s

ti
m

a
ti

o
n

C
h

a
n

n
e

l

E
s

ti
m

a
ti

o
n

C
h

a
n

n
e

l

E
s

ti
m

a
ti

o
n

C
o

v
a

ri
a

n
c

e
 M

a
tr

ix

C
o

m
p

u
ta

ti
o

n
F

F
T

P
o

s
t

F
F

T

P
ro

c
e

s
s

in
g

IF
F

T

F
IR

F
il

te
ri

n
g

D
e
s
p

re
a
d

D
e
s
c
ra

m
b

le

Received

Sequence

Decoded

Sequence

Fig. 5 Channel equalizer DSP/hardware accelerator partitioning.

Fourier transform, inverse fast Fourier transform and FIR filtering as well as de-

spreading and descrambling.

As an example, using the workload partition criteria for partitioning function-

ality between a programmable DSP core and system containing multiple hardware

for a 3.5G HSDPA system, it has been shown that impressive performance results

can be obtained. In studying the bottlenecks of such systems when implemented

on a programmable DSP core in software, it has been found the key bottlenecks in

the system to be the channel estimation, fast fourier transform (FFT), inverse fast

fourier transform (IFFT), FIR filter, and to a lesser extent despreading and descram-

bling as illustrated in Figure 4 [9]. By migrating the 3.5G implementation from

a solely software based implementation executing on a TMS320C64x based pro-

grammable DSP core to a heterogeneous system containing not only programmable

DSP cores but also distinct hardware acceleration for the various bottlenecks, the

authors achieve almost an 11.2x speedup in the system [9]. Figure 5 illustrates the

system partitioning between programmable DSP core and hardware (e.g. FPGA or

ASIC) accelerator that resulted in load balancing the aforementioned bottlenecks.

The arrows in the diagram illustrate the data flow between local programmable

DSP core on-chip data caches and the the local RAM arrays. In the case of channel

estimation, the work is performed in parallel between the programmable DSP core

and hardware acceleration. Various other portions of the workload are offloaded to

hardware based accelerators while the programmable DSP core performs the lighter

weight signal processing code and book keeping.

Despite the ability to achieve over 11x speedup in performance, it is important

to note that the experimental setup used in these studies was purposely pessimistic.

The various FFT, IFFT, etc compute blocks in these studies were offloaded to dis-

crete FPGA / ASIC accelerators. As such, data had to be transferred, for example,

338 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

Tx RxH

Fig. 6 MIMO transmitter and receiver

from local IFFT RAM cells to FIR filter RAM cells. This is pessimistic in terms of

data communication time. In most cases the number of gates required for a given

accelerator implemented in FPGA/ASIC was low enough that multiple accelerators

could be implemented within a single FPGA/ASIC drastically reducing chip-to-chip

communication time.

2.2 MIMO Detection Accelerators

MIMO systems, Figure 6, have been shown to be able to greatly increase the reliabil-

ity and data rate for point-to-point wireless communication [47]. Multiple-antenna

systems can be used to improve the reliability and diversity in the receiver by provid-

ing the receiver with multiple copies of the transmitted information. This diversity

gain is obtained by employing different kinds of space-time block code (STBC)

[1, 45, 46]. In such cases, for a system with M transmit antennas and N receive an-

tennas and over a time span of T time symbols, the system can be modeled as

Y = HX+N, (1)

where H is the N ×M channel matrix. Moreover, X is the M×T space-time code

matrix where its xi j element is chosen from a complex-valued constellation of

the order w = | | and corresponds to the complex symbol transmitted from the i-th

antenna at the j-th time. The Y matrix is the received N×T matrix where yi j is the

perturbed received element at the i-th receive antenna at the j-th time. Finally, N is

the additive white Gaussian noise matrix on the receive antennas at different time

slots.

MIMO systems could also be used to further expand the transmit data rate using

other space-time coding techniques, particularly layered space-time (LST) codes

[17]. One of the most prominent examples of such space-time codes is Vertical

Bell Laboratories Layered Space-Time (V-BLAST) [20], otherwise known as spatial

multiplexing (SM). In the spatial multiplexing scheme, independent symbols are

transmitted from different antennas at different time slots; hence, supporting even

higher data rates compared to space-time block codes of lower data rate [1, 45]. The

spatial multiplexing MIMO system can be modeled similar to Eq. (1) with T = 1

since there is no coding across the time domain:

Application-Specific Accelerators for Communications 339

y = Hx+n, (2)

where H is the N ×M channel matrix, x is the M-element column vector where its

xi-th element corresponds to the complex symbol transmitted from the i-th antenna,

and y is the received N-th element column vector where yi is the perturbed received

element at the i-th receive antenna. The additive white Gaussian noise vector on the

receive antennas is denoted by n.

While spatial multiplexing can support very high data rates, the complexity of the

maximum-likelihood detector in the receiver increases exponentially with the num-

ber of transmit antennas. Thus, unlike the case in Eq. (1), the maximum-likelihood

detector for Eq. (2) requires a complex architecture and can be very costly. In order

to address this challenge, a range of detectors and solutions have been studied and

implemented. In this section, we discuss some of the main algorithmic and architec-

tural features of such detectors for spatial multiplexing MIMO systems.

2.2.1 Maximum-Likelihood (ML) Detection

The Maximum Likelihood (ML) or optimal detection of MIMO signals is known to

be an NP-complete problem. The maximum-likelihood (ML) detector for Eq. (2) is

found by minimizing the

∣

∣

∣

∣y−Hx
∣

∣

∣

∣

2

2
(3)

norm over all the possible choices of x ∈ M . This brute-force search can be a

very complicated task, and as already discussed, incurs an exponential complexity

in the number of antennas, in fact for M transmit antennas and modulation order

of w = | |, the number of possible x vectors is wM . Thus, unless for small dimen-

sion problems, it would be infeasible to implement it within a reasonable area-time

constraint [10, 19].

2.2.2 Sphere Detection

Sphere detection can be used to achieve ML (or close-to-ML) with reduced com-

plexity [15, 23] compared to ML. In fact, while the norm minimization of Eq. (3) is

exponential complexity, it has been shown that using the sphere detection method,

the ML solution can be obtained with much lower complexity [15].

In order to avoid the significant overhead of the ML detection, the distance norm

can be simplified [13] as follows:

D(s) = ‖ y−Hs ‖2

= ‖ QHy−Rs ‖2=
1

i=M

|yi
′−

M

j=i

Ri, js j|2, (4)

340 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

. . .

.
.

. . .

.
. .

.
.

. . .

.
.

.

. . .

i=M

i=M-1

i=1

1

2

w

1 w 1 2 w

2

1 2 w 1 2 w 1 2 w

Fig. 7 Calculating the distances using a tree. Partial norms, PNs, of dark nodes are less than the

threshold. White nodes are pruned out.

where H = QR represents the channel matrix QR decomposition, R is an upper

triangular matrix, QQH = I and y′ = QHy.

The norm in Eq. (4) can be computed in M iterations starting with i = M. When

i = M, i.e. the first iteration, the initial partial norm is set to zero, TM+1(s
(M+1)) = 0.

Using the notation of [11], at each iteration the Partial Euclidean Distances (PEDs)

at the next levels are given by

Ti(s
(i)) = Ti+1(s

(i+1))+ |ei(s
(i))|2 (5)

with s(i) = [si,si+1, ...,sM]T , and i = M,M− 1, ...,1, where

|ei(s
(i))|2 = |yi

′−Ri,isi −
M

j=i+1

Ri, js j|2. (6)

One can envision this iterative algorithm as a tree traversal with each level of the tree

corresponding to one i value or transmit antenna, and each node having w′ children

based on the modulation chosen.

The norm in Eq. (6) can be computed in M iterations starting with i = M,

where M is the number of transmit antennas. At each iteration, partial (Euclidian)

distances, PDi = |yi
′ −M

j=i Ri, js j|2 corresponding to the i-th level, are calculated

and added to the partial norm of the respective parent node in the (i− 1)-th level,

PNi = PNi−1 + PDi. When i = M, i.e. the first iteration, the initial partial norm is

set to zero, PNM+1 = 0. Finishing the iterations gives the final value of the norm.

As shown in Figure 7, one can envision this iterative algorithm as a tree traversal

problem where each level of the tree represents one i value, each node has its own

PN, and w children, where w is the QAM modulation size. In order to reduce the

search complexity, a threshold, C, can be set to discard the nodes with PN > C.

Therefore, whenever a node k with a PNk > C is reached, any of its children will

Application-Specific Accelerators for Communications 341

have PN ≥ PNk > C. Hence, not only the k-th node, but also its children, and all

nodes lying beneath the children in the tree, can be pruned out.

There are different approaches to search the entire tree, mainly classified as

depth-first search (DFS) approach and K-best approach, where the latter is based on

breadth-first search (BFS) strategy. In DFS, the tree is traversed vertically [2, 11];

while in BFS [22, 52], the nodes are visited horizontally, i.e. level by level.

In the DFS approach, starting from the top level, one node is selected, the PNs of

its children are calculated, and among those new computed PNs, one of them, e.g.

the one with the least PN, is chosen, and that becomes the parent node for the next

iteration. The PNs of its children are calculated, and the same procedure continues

until a leaf is reached. At this point, the value of the global threshold is updated with

the PN of the recently visited leaf. Then, the search continues with another node at

a higher level, and the search controller traverses the tree down to another leaf. If

a node is reached with a PN larger than the radius, i.e. the global threshold, then

that node, along with all nodes lying beneath that, are pruned out, and the search

continues with another node.

The tree traversal can be performed in a breadth-first manner. At each level, only

the best K nodes, i.e. the K nodes with the smallest Ti, are chosen for expansion. This

type of detector is generally known as the K-best detector. Note that such a detector

requires sorting a list of size K×w′ to find the best K candidates. For instance, for a

16-QAM system with K = 10, this requires sorting a list of size K×w′ = 10×4= 40

at most of the tree levels.

2.2.3 Computational Complexity of Sphere Detection

In this section, we derive and compare the complexity of the proposed techniques.

The complexity in terms of number of arithmetic operations of a sphere detection

operation is given by

JSD(M,w) =
1

i=M

JiE{Di}, (7)

where Ji is the number of operations per node in the i-th level. In order to compute

Ji, we refer to the VLSI implementation of [11], and note that, for each node, one

needs to compute the Ri, js j, multiplications, where, except for the diagonal element,

Ri,i, the rest of the multiplications are complex valued. The expansion procedure,

Eq. (4), requires computing Ri, js j for j = i+1, ...,M, which would require (M− i)
complex multiplications, and also computing Ri,isi for all the possible choices of

s j ∈ . Even though, there are w different s js, there are only (
√

w

2
− 1) different

multiplications required for QAM modulations. For instance, for a 16-QAM with

{±3±3 j,±1±1 j,±3±1 j,±1±3 j}, computing only (Ri, j×3) would be sufficient

for all the choices of modulation points. Finally, computing the ‖ . ‖2 requires a

squarer or a multiplier, depending on the architecture and hardware availabilities.

342 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

Fig. 8 Number of addition and multiplications operations for 16-QAM with different number of

antennas, M.

In order to compute the number of adders for each norm expansion in (4), we

note that there are (M − i) complex valued adders required for yi
′ −M

j=i+1 Ri, js j,

and w more complex adders to add the newly computed Ri,isi values. Once the w dif-

ferent norms, |yi
′−M

j=i Ri, js j

∣

∣

2
, are computed, they need to be added to the partial

distance coming from the higher level, which requires w more addition procedures.

Finally, unless the search is happening at the end of the tree, the norms need to be

sorted, which assuming a simple sorter, requires w(w+1)/2 compare-select opera-

tions.

Therefore, keeping in mind that each complex multiplier corresponds to four

real-valued multipliers and two real-valued adders, and that every complex adder

corresponds to two real-valued adders, Ji is calculated by

Ji(M,w) = Jmult + Jadd(M,w)

Jmult(M,w) = ((

√
w

2
−1)+4(M− i)+1)

Jadd(M,w) = (2(M− i)+2w+w)+ (w(w+1)/2) · sign(i−1),

where sign(i−1) is used to ensure sorting is counted only when the search has not

reached the end of the tree, and is equal to:

sign(t) =

{

1 t ≥ 1

0 otherwise
. (8)

Moreover, we use , and to represent the hardware-oriented costs for one

adder, one compare-select unit and one multiplication operation, respectively.

Figure 8 shows the number of addition and multiplication operations needed for

a 16-QAM system with different number of antennas.

Application-Specific Accelerators for Communications 343

Pre-Processing Unit

(PPU)

Tree Traversal

Unit

(TTU)

Computation Unit

(CMPU)

Node Ordering Unit

(NOU)

Sphere

Detector

Channel Matrix Received Vector

Detected Vector

PD Unit

#1

PD Unit

#2

.

.

.

PD Unit

#w

Computation Unit

(CMPU)

Previous PD
PD_1

PD_2

PD_w

.

.

.

Fig. 9 Sphere Detector architecture with multiple PED function units.

2.2.4 Depth-First Sphere Detector Architecture

The depth-first sphere detection algorithm [11, 15, 19, 23] traverses the tree in a

depth-first manner: the detector visits the children of each node before visiting its

siblings. A constraint, referred to as radius, is often set on the PED for each level of

the tree. A generic depth-first sphere detector architecture is shown in Figure 9. The

Pre-Processing Unit (PPU) is used to compute the QR decomposition of the channel

matrix as well as calculate QHy. The Tree Traversal Unit (TTU) is the controlling

unit which decides in which direction and with which node to continue. Computa-

tion Unit (CMPU) computes the partial distances, based on (4), for w different s j.

Each PD unit computes |yi
′−M

j=i Ri, js j|2 for each of the w children of a node. Fi-

nally, the Node Ordering Unit (NOU) is for finding the minimum and saving other

legitimate candidates, i.e. those inside Ri, in the memory.

As an example to show the algorithm complexity, an FPGA implementation syn-

thesis result for a 50 Mbps 4×4 16-QAM depth-first sphere detector is summarized

in Table 2 [2].

Table 2 FPGA Resource Utilization for Sphere Detector

Device Xilinx Virtex-4 xc4vfx100-12ff1517

Number of Slices 4065/42176 (9%)

Number of FFs 3344/84352 (3%)

Number of Look-Up Tables 6457/84352 (7%)

Number of RAMB16 3/376 (1%)

Number of DSP48s 32/160 (20%)

Max. Freq. 125.7 MHz

344 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

Fig. 10 The K-best MIMO detector architecture. The intermediate register banks contain the sort-

ing information as well as the other values, i.e. R matrix.

2.2.5 K-Best Detector Architecture

K-best is another popular algorithm for implementing close-to-ML MIMO detec-

tion [22, 52]. The performance of this scheme is suboptimal compared to ML and

sphere detection. However, it has a fixed complexity and relatively straightforward

architecture. In this section, we briefly introduce the architecture [22] to implement

the K-best MIMO detector. As illustrated in Figure 10, the PE elements at each

stage compute the euclidean norms of (6), and find the best K candidates, i.e. the

K candidates with the smallest norms, and pass them as the surviving candidates

to the next level. It should be pointed out that the equation (2) can be decomposed

into separate real and imaginary parts [22], which would double the size of the ma-

trices. While such decomposition reduces the complex-valued operations of nodes

into real-valued operations, it doubles the number of levels of the tree. Therefore,

as shown in Figure 10, there are 8 K-best detection levels for the 4-antenna system.

By selecting the proper K value, the real-value decomposition MIMO detection will

not cause performance degradation compared to the complex-value MIMO detec-

tion [32].

In summary, both depth-first and K-best detectors have a regular and parallel

data flow that can be efficiently mapped to hardware. The large amount of required

multiplications makes the algorithm very difficult to be realized in a DSP processor.

As the main task of the MIMO detector is to search for the best candidate in a very

short time period, it would be more efficient to be mapped on a parallel hardware

searcher with multiple processing elements. Thus, to sustain the high throughput

MIMO detection, an MIMO hardware accelerator is necessary.

2.3 Channel Decoding Accelerators

Error correcting codes are widely used in digital transmission, especially in wire-

less communications, to combat the harsh wireless transmission medium. To achieve

high throughput, researchers are investigating more and more advanced error cor-

rection codes. The most commonly used error correcting codes in modern systems

are convolutional codes, Turbo codes, and low-density parity-check (LDPC) codes.

As a core technology in wireless communications, FEC (forward error correction)

coding has migrated from the basic 2G convolutional/block codes to more powerful

3G Turbo codes, and LDPC codes forecast for 4G systems.

Application-Specific Accelerators for Communications 345

As codes become more complicated, the implementation complexity, especially

the decoder complexity, increases dramatically which largely exceeds the capability

of the general purpose DSP processor. Even the most capable DSPs today would

need some types of acceleration coprocessor to offload the computation-intensive

error correcting tasks. Moreover, it would be much more efficient to implement

these decoding algorithms on dedicated hardware because typical error correction

algorithms use special arithmetic and therefore are more suitable for ASICs or FP-

GAs. Bitwise operations, linear feedback shift registers, and complex look-up tables

can be very efficiently realized with ASICs/FPGAs.

In this section, we will present some important error correction algorithms and

their efficient hardware architectures. We will cover major error correction codes

used in the current and next generation communication standards, such as 3GPP

LTE, IEEE 802.11n Wireless LAN, IEEE 802.16e WiMax, and etc.

2.3.1 Viterbi Decoder Accelerator Architecture

In telecommunications, convolutional codes are among the most popular error cor-

rection codes that are used to improve the performance of wireless links. For exam-

ple, convolutional codes are used in the data channel of the second generation (2G)

mobile phone system (eg. GSM) and IEEE 802.11a/n wireless local area network

(WLAN). Due to their good performance and efficient hardware architectures, con-

volutional codes continue to be used by the 3G/4G wireless systems for their control

channels, such as 3GPP LTE and IEEE 802.16e WiMax.

A convolutional code is a type of error-correcting code in which each m-bit in-

formation symbol is transformed into an n-bit symbol, where m/n is called the code

rate. The encoder is basically a finite state machine, where the state is defined as the

contents of the memory of the encoder. Figure 11 (a) and (b) show two examples of

convolutional codes with constraint length K = 3, code rate R = 1/3 and constraint

length K = 7, code rate R = 1/2, respectively.

The Viterbi algorithm is an optimal decoding algorithm for the decoding of con-

volutional codes [16, 49]. The Viterbi algorithm enumerates all the possible code-

words and selects the most likely sequence. The most likely sequence is found by

traversing a trellis. The trellis diagram for a K = 3 convolutional code (cf. Figure

11(a)) is shown in Figure 12.

In general, a Viterbi decoder contains four blocks: branch metric calculation

(BMC) unit, add-compare-select (ACS) unit, survivor memory unit (SMU), and

trace back (TB) unit as shown in Figure 13. The decoder works as follows. BMC cal-

culates all the possible branch metrics from the channel inputs. ACS unit recursively

calculates the state metrics and the survivors are stored into a survivor memory. The

survivor paths contain state transitions to reconstruct a sequence of states by tracing

back. This reconstructed sequence is then the most likely sequence sent by the trans-

mitter. In order to reduce memory requirements and latency, Viterbi decoding can

be sliced into blocks, which are often referred to as sliding windows. The sliding

window principle is shown in Figure 14. The ACS recursion is carried out for the

346 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

S0 S1

+ +

+

Information u

Parity c0

Parity c1

(a)

S0 S1
Information u

Parity c0

Parity c1

(b)

+

S2 S3 S4 S5

+

+ Parity c2

Fig. 11 Convolutional encoder. (a) K=3, R=1/3. (b) K=7, R=1/2 encoder used for WLAN.

entire code block. The trace back operation is performed on every sliding window.

To improve the reliability of the trace back, the decisions for the last T (also referred

to warmup window) steps will be discarded. Thus, after a fixed delay of L+2T , the

decoder begins to produce decoded bits on every clock cycle.

Like an FFT processor [4, 12, 33], a Viterbi decoder has a very regular data struc-

ture. Thus, it is very natural to implement a Viterbi decoder in hardware to support

high speed applications, such as IEEE 802.11n wireless LAN with 300 Mbps peak

data rate.

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

t t+1 t+2 t+3 t+4

Fig. 12 A 4-state trellis diagram for the encoder in Figure 11(a). The solid lines indicate transitions

for a “0" input and the dashed lines for a “1" input. Each stage of the trellis consists of 2K−2 Viterbi

butterflies. One such butterfly is highlighted at step t +2.

Application-Specific Accelerators for Communications 347

Branch

Metric

Calc.

ACS

Arrays

SM

Regs

Survivor

Memory

Channel input Trace

Back

Decoded bits

Fig. 13 Viterbi decoder architecture with parallel ACS function units.

The most complex operations in the Viterbi algorithm is the ACS recursion. Fig-

ure 15(a) shows one ACS butterfly of the 4-state trellis described above (cf. Fig-

ure 12). Each butterfly contains two ACS units. For each ACS unit, there are two

branches leading from two states on the left, and going to a state on the right. A

branch metric is computed for each branch of an ACS unit. Note that it is not neces-

sary to calculate every branch metric for all 4 branches in an ACS butterfly, because

some of them are identical depending on the trellis structure. Based on the old state

metrics (SMs) and branch metrics (BMs), the new state metrics are updated as:

SM(0) = min
(

SM(0)+BM(0,0),SM(1)+BM(1,0)
)

(9)

SM(2) = min
(

SM(0)+BM(0,2),SM(1)+BM(1,2)
)

. (10)

Given a constraint length of K convolutional code, 2K−2 ACS butterflies would be

required for each step of the decoding. These butterflies can be implemented in serial

or parallel. To maximize the decoding throughput, a parallel implementation is often

used. The basic parallel ACS architecture can process one bit of the message at each

clock cycle. However, the processing speed can be possibly increased by N times

by merging every N stages of the trellis into one high-radix stage with 2N branches

for every state. Figure 16 shows the radix-2, radix-4, and radix-8 trellis structures.

Figure 17 shows a radix-8 ACS architecture which can process three message bits

over three trellis path bits. Generally for a radix-N ACS architecture, it can process

log2 N message bits over log2 N trellis path bits. For high speed applications, high

radix ACS architectures are very common in a Viterbi decoder. The top level of a

generic Viterbi decoder accelerator is shown in Figure 18. Although a pure software

0 N+K-2
L T

W1
W2

W3
W4

Received

sequence

Fig. 14 Sliding window decoding with warmup. Decoding length = L. Warmup length = T .

348 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

+

+

-

SM(0)

SM(1)

SM’(0)

BM(0,0)

BM(1,0)

BM(0,0)
SM(0)

SM(1)

SM’(0)

SM’(2)
BM(1,2)

BM
(1

,0
)

BM
(0,2)

(a)

(b)

0

1

0

1

2

3

0

2

1

3

0

1

2

3

(c)

Stage 1 Stage 2

...

BM(1,0)

ACS

BM(0,2)

BM(1,2)

SM’(2)

+

+

-

0

1

ACS

Fig. 15 ACS butterfly architecture. (a) Basic butterfly structure. (b) ACS butterfly hardware im-

plementation. (c) In-place butterfly structure for a 4-state trellis diagram.

approach is feasible for a modern DSP processor, it is much more cost effective

to implement the Viterbi decoder with a hardware accelerator. The decoder can be

memory mapped to the DSP external memory space so that the DMA transfer can

be utilized without the intervention of the host DSP. Data is passed in and out is in

a pipelined manner so that the decoding can be simultaneously performed with I/O

operations.

(a)

(b) (c)

Fig. 16 Different radix trellis structure. (a) Radix-2 trellis. (b) Radix-4 trellis. (c) Radix-8 trellis.

Application-Specific Accelerators for Communications 349

ACS Switch ACS Switch ACS

Fig. 17 Radix-8 ACS architecture.

2.3.2 Turbo Decoder Accelerator Architecture

Turbo codes are a class of high-performance capacity-approaching error-correcting

codes [5]. As a break-through in coding theory, Turbo codes are widely used in many

3G/4G wireless standards such as CDMA2000, WCDMA/UMTS, 3GPP LTE, and

IEEE 802.16e WiMax. However, the inherently large decoding latency and complex

iterative decoding algorithm have made it rarely being implemented in a general

purpose DSP. For example, Texas Instruments’ latest multi-core DSP processor TI

C6474 employs a Turbo decoder accelerator to support 2 Mbps CDMA Turbo codes

for the base station [27]. The decoding throughput requirement for 3GPP LTE Turbo

codes is to be more than 80 Mbps in the uplink and 320 Mbps in the downlink. Be-

cause the Turbo codes used in many standards are very similar, e.g. the encoding

polynomials are same for WCDMA/UMTS/LTE, the Turbo decoder is often accel-

erated by reconfigurable hardware.

A classic Turbo encoder structure is depicted in Figure 19. The basic encoder

consists of two systematic convolutional encoders and an interleaver. The informa-

tion sequence u is encoded into three streams: systematic, parity 1, and parity 2.

Here the interleaver is used to permute the information sequence into a second dif-

ferent sequence for encoder 2. The performance of a Turbo code depends critically

on the interleaver structure [36].

The BCJR algorithm [3], also called forward-backward algorithm or Maximum

a posteriori (MAP) algorithm, is the main component in the Turbo decoding pro-

cess. The basic structure of Turbo decoding is functionally illustrated in Figure 20.

Branch

Metric
Calc.

Register
Arrays

Survivors &
Trace Back

DSP Core

D

M

A

E

M

I

F

DSP Processor

D
S

P
 I
F

Viterbi Decoder Accelerator

Radix-N

ACS
Arrays

Fig. 18 A generic Viterbi decoder accelerator architecture. Data movement between DSP proces-

sor and accelerator is via DMA. Fully-parallel ACS function units are used to support high speed

decoding.

350 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

QPP

Interleaver

D D D

D D D

u

X

Y1

Y2
Π Encoder 2

Encoder 1

u c0

c1

c2

(a) (b)

Fig. 19 Turbo encoder structure. (a) Basic structure. (b) Structure of Turbo encoder in 3GPP LTE.

The decoding is based on the MAP algorithm. During the decoding process, each

MAP decoder receives the channel data and a priori information from the other

constituent MAP decoder through interleaving () or deinterleaving (−1), and pro-

duces extrinsic information at its output. The MAP algorithm is an optimal symbol

decoding algorithm that minimizes the probability of a symbol error. It computes

the a posteriori probabilities (APPs) of the information bits as follows:

(ûk) =
∗

max
u:uk=1

{

k−1(sk−1)+ k(sk−1,sk)+k(sk))
}

(11)

− ∗
max

u:uk=0

{

k−1(sk−1)+ k(sk−1,sk)+k(sk))
}

, (12)

ks 1+ks

0

1

2

3

4

5

6

7

2+ks 3+ks 4+ks
kk cu ,

0=ku
1=ku

Forward recursion α

Backward recursion β

MAP 1

MAP 2

1−
∏

yu

yc1

yc2

LaLe

∏∏

La Le

(a) (b)

1 1

2 2

Fig. 20 Basic structure of an iterative Turbo decoder. (a) Iterative decoding based on two MAP

decoders. (b) Forward/backward recursion on trellis diagram.

Application-Specific Accelerators for Communications 351

+

+

-

0

1

LUT

+
State

m

γ0

α0

(a) (b)

α1

γ1

α0

γ0

α0

γ1

α1

α0

Fig. 21 ACSA structure. (a) Flow of state metric update. (b) Circuit implementation of an ACSA

unit.

where k and k denote the forward and backward state metrics, and are calculated

as follows:

k(sk) =
∗

max
sk−1

{k−1(sk−1)+ k(sk−1,sk)}, (13)

k(sk) =
∗

max
sk+1

{k+1(sk+1)+ k(sk,sk+1)}. (14)

The k term above is the branch transition probability that depends on the trellis dia-

gram, and is usually referred to as a branch metric. The max star operator employed

in the above descriptions is the core arithmetic computation that is required by the

MAP decoding. It is defined as:

∗
max(a,b) = log(ea + eb) = max(a,b)+ log(1+ e−|a−b|). (15)

A basic add-compare-select-add (ACSA) unit is shown in Figure 21. This circuit can

process one step of the trellis per cycle and is often referred to as Radix-2 ACSA

unit. To increase the processing speed, the trellis can be transformed by merging

every two stages into one radix-4 stage as shown in Figure 22. Thus, the throughput

can be doubled by applying this transform. For an N state Turbo codes, N such

ACSA unit would be required in each step of the trellis processing. To maximize

the decoding throughput, a parallel implementation is usually employed to compute

all the N state metrics simultaneously.

In the original MAP algorithm, the entire set of forward metrics needs to be

computed before the first soft log-likelihood ratio (LLR) output can be generated.

This results in a large storage of K metrics for all N states, where K is the block

length and N is the number of states in the trellis diagram. Similar to the Viterbi

algorithm, a sliding window algorithm is often applied to the MAP algorithm to

reduce the decoding latency and memory storage requirement. By selecting a proper

length of the sliding window, e.g. 32 for a rate 1/3 code, there is nearly no bit error

rate (BER) performance degradation. Figure 23(a) shows an example of the sliding

window algorithm, where a dummy reverse metric calculation (RMC) is used to get

the initial values for metrics. The sliding window hardware architecture is shown

352 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

+

+

-

0

1

LUT

+

+

+

-

0

1

LUT

+

-

0

1

LUT

+
State

m

11

01

10

00

kβ1−kγ kγ

2−ks
1−ks ks

2−ks ks

2−kα kβ),(2 kkk ss
−

γ2−kα

0

1

(a)

(b)

γ0

α0

γ1
γ2

γ3

α1
α2

α3

α0

γ0

α0

α1

γ1

γ2

γ3

α2

α3

α0

Fig. 22 (a) An example of Radix-4 trellis. (b) Radix-4 ACSA circuit implementation.

in Figure 23(b). The decoding operation is based on three recursion units, two used

for the reverse (or backward) recursions (dummy RMC 1 and effective RMC 2),

and one for forward recursion (FMC). Each recursion unit contains parallel ACSA

units. After a fixed latency, the decoder produces the soft LLR outputs on every

clock cycle. To further increase the throughput, a parallel sliding window scheme

[6, 30, 34, 44, 48] is often applied as shown in Figure 24.

Another key component of Turbo decoders is the interleaver. Generally, the inter-

leaver is a device that takes its input bit sequence and produces an output sequence

that is as uncorrelated as possible. Theoretically a random interleaver would have

the best performance. But it is difficult to implement a random interleaver in hard-

ware. Thus, researchers are investigating pseudo-random interleavers such as the

row-column permutation interleaver for 3G Rel-99 Turbo coding as well as the new

QPP interleaver [41] for 3G LTE Turbo coding. The main differences between these

two types of pseudo-random interleavers is the capability to support parallel Turbo

decoding. The drawback of the row-column permutation interleaver is that memory

conflicts will occur when employing multiple MAP decoders for parallel decoding.

Extra buffers are necessary to solve the memory conflicts caused by the row-column

permutation interleaver [37]. To solve this problem, the new 3G LTE standard has

Application-Specific Accelerators for Communications 353

Buffer

FBMC

RBMC

1

FMC RAM

LLRC

û

M

U

X

M

U

X

Lc (y
u
)

Lc (y
c1,2

)

La (u)

)ˆ(uLe

RBMC

2

RMC 1

RMC 2

ACSA x 8

W

Received

sequence
... ...

FMC FMC FMC FMC

RMC 2 RMC 1

RMC 2 RMC 1

RMC 2 RMC 1

RMC 2

(a)

(b)

Fig. 23 Sliding window MAP decoder. (a) An example of sliding window MAP algorithm, where a

dummy RMC is performed to achieve the initial metrics. (b) MAP decoder hardware architecture.

adopted a new interleaver structure called QPP interleaver [41]. Given an informa-

tion block length N, the x-th QPP interleaved output position is given by

(x) = (f2x
2 + f1x) mod N,0 ≤ x, f1, f2 < N. (16)

It has been shown in [41] that the QPP interleaver will not cause memory con-

flicts as long as the parallelism level is a factor of N. The simplest approach to

implement an interleaver is to store all the interleaving patterns in non-violating

memory such as ROM. However, this approach can become very expensive because

it is necessary to store a large number of interleaving patterns to support decoding of

multiple block size Turbo codes such as 3GPP LTE Turbo codes. Fortunately, there

usually exists an efficient hardware implementation for the interleaver. For exam-

ple, Figure 25 shows a circuit implementation for the QPP interleaver in 3GPP LTE

standard [44].

A basic Turbo accelerator architecture is shown in Figure 26. The main differ-

ence between the Viterbi decoder and the Turbo decoder is that the Turbo decoder

is based on the iterative message passing algorithms. Thus, a Turbo accelerator may

need more communication and control coordination with the DSP host processor.

For example, the interleaving addresses can be generated by the DSP processor

and passed to the Turbo accelerator. The DSP can monitor the decoding process to

decide when to terminate the decoding if there are no more decoding gains. Alter-

nately, the Turbo accelerator can be configured to operate without DSP intervention.

To support this feature, some special hardware such as interleavers have to be config-

urable via DSP control registers. To decrease the required bus bandwidth, interme-

354 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

FMC
1 N/4

FMC

N/4 N/2

RMC

RMC

FMC

N/2 3N/4

RMC

N/4+W

N/4-W

N/2-W

FMC

3N/4 N3N/4-W

RMC

(a)

(b)

(c)

(d)

N/2+W

3N/4+W

Fig. 24 An example of parallel sliding window decoding, where a decode block is sliced into 4

sections. The sub-blocks are overlapped by one sliding window length W in order to get the initial

value for the boundary states.

diate results should not be passed back to the DSP processor. Only the successfully

decoded bits need to be passed back to the DSP processor, e.g. via the DSP DMA

controller. Further, to support multiple Turbo codes in different communication sys-

tems, a flexible MAP decoder is necessary. In fact, many standards employ similar

Turbo code structures. For instance, CDMA, WCDMA, UMTS, and 3GPP LTE all

use an eight-state binary Turbo code with polynomial (13, 15, 17). Although IEEE

802.16e WiMax and DVB-RCS standards use a different eight-state double binary

Turbo code, the trellis structures of these Turbo codes are very similar as illustrated

in Figure 27. Thus, it is possible design multi-standard Turbo decoders based on

flexible MAP decoder datapaths [31, 40, 44]. It has been shown in [44] that the area

overhead to support multi-codes is only about 7%. In addition, when the through-

put requirement is high, e.g. more than 20 Mbps, multiple MAP decoders can be

activated to increase the throughput performance.

+

A

B

Y

K

П(x)
П(x0)

Г(x)

2f2

Г(x0)
Г(x0)

D

П(x+1)=(П(x)+Г(x)) mod K

Г(x+1)=(Г(x)+2f2) mod K

-

+

0
A

B

Y
D

-
Init

1

0

1
0

1

Init

Fig. 25 An circuit implementation for the QPP interleaver (x) = (f2x
2 + f1x)modK [44].

Application-Specific Accelerators for Communications 355

...

In
te

rc
o
n

n
e
ct

MEM

MAP

MAP

MEM

MEM

MAP

Interleaver

DSP

Core
...

D
M

A
 C

o
n

tr
o

ll
e
r

Fig. 26 Turbo decoder accelerator architecture. Multiple MAP decoders are used to support high

throughput decoding of Turbo codes. Special function units such as interleavers are also imple-

mented in hardware.

In summary, due to the iterative structures, a Turbo decoder needs more Gflops

than what is available in a general purpose DSP processor. For this reason, Texas

Instruments’ latest C64x DSP processor integrates a 2 Mbps 3G Turbo decoder ac-

celerator in the same die [27]. Because of the parallel and recursive algorithms and

special logarithmic arithmetics, it is more cost effective to realize a Turbo decoder

in hardware.

2.3.3 LDPC Decoder Accelerator Architecture

A low-density parity-check (LDPC) code [18] is another important error correcting

code that is the among one of the most efficient coding schemes discovered as of

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Input 00 Input 01 Input 10 Input 11

(a)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(b)

Fig. 27 Radix-4 trellis structures of (a) CDMA/WCDMA/UMTS/LTE Turbo codes and (b)

WiMax/DVB-RCS Turbo codes.

356 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

PEV

1

PEV

2

PEV

3

PEV

N

PEC 1 PEC 2 PEC M

...

...

Soft

In/Out

Soft

In/Out

Soft

In/Out

Soft

In/Out

Check memory + Interconnects

PEC 1 PEC 2 PEC z...

...PEV
1

PEV
2

PEV

z

Variable memory + Interconnects

(a)
(b)

PEV

N-1

Soft

In/Out

Fig. 28 Implementation of LDPC decoders, where PEC denotes processing element for check

node and PEV denotes processing element for variable node. (a) Fully-parallel. (b) Semi-parallel.

2009. The remarkable error correction capabilities of LDPC codes have led to their

recent adoption in many standards, such as IEEE 802.11n, IEEE 802.16e, and IEEE

802 10GBase-T. The huge computation and high throughput requirements make it

very difficult to implement a high throughput LDPC decoder on a general purpose

DSP. For example, a 5.4 Mbps LDPC decoder was implemented on TMS320C64xx

DSP running at 600 MHz [29]. This throughput performance is not enough to sup-

port high data rates defined in new wireless standards. Thus, it is important to de-

velop area and power efficient hardware LDPC decoding accelerators.

A binary LDPC code is a linear block code specified by a very sparse binary

M×N parity check matrix: H ·xT = 0, where x is a codeword and H can be viewed

as a bipartite graph where each column and row in H represent a variable node and

a check node, respectively.

The decoding algorithm is based on the iterative message passing algorithm (also

called belief propagation algorithm), which exchanges the messages between the

variable nodes and check nodes on graph. The hardware implementation of LDPC

decoders can be serial, semi-parallel, and fully-parallel as shown in Figure 28. Fully-

parallel implementation has the maximum processing elements to achieve very high

throughput. Semi-parallel implementation, on the other hand, has a lesser number

of processing elements that can be re-used, e.g. z number of processing elements are

employed in Figure 28(b). In a semi-parallel implementation, memories are usually

required to store the temporary results. In many practical systems, semi-parallel

implementations are often used to achieve 100 Mbps to 1 Gbps throughput with

reasonable complexity [7, 21, 35, 42, 43, 54].

In LDPC decoding, the main complexity comes from the check node processing.

Each check node receives a set of variable node messages denoted as Nm. Based on

these data, check node messages are computed as

mn =
j∈Nm\n

�mj =
(

j∈Nm

�mj

)

⊟mn,

Application-Specific Accelerators for Communications 357

f (·) g (·)

FIFO

λmn… λm2 λm1

λmn

Λmn …Λm2 Λm1

+

-

MinSign bit

LUT

LUT
-

Neg

a

b

|a|

|b|

)1log(|)(|xe−+

Sign(a) ^ Sign(b)

Min(|a|, |b|)

1 1

+

|x|

|x| |x|

D

)1log(|)(|xe−+

0

1

Fig. 29 Recursive architecture to compute check node messages [42].

where mn and mn denote the check node message and the variable node message,

respectively. The special arithmetic operators � and ⊟ are defined as follows:

a� b � f (a,b) = log
1+ eaeb

ea + eb

= sign(a)sign(b)
(

min(|a|, |b|)+ log(1+ e−(|a|+|b|))− log(1+ e
−
∣

∣|a|−|b|
∣

∣

)
)

,

a⊟b � g(a,b) = log
1− eaeb

ea− eb

= sign(a)sign(b)
(

min(|a|, |b|)+ log(1− e−(|a|+|b|))− log(1− e
−
∣

∣|a|−|b|
∣

∣

)
)

.

Figure 29 shows a hardware implementation from [42] to compute check node mes-

sagemn for one check row m. Because multiple check rows can be processed simul-

taneously in the LDPC decoding algorithm, multiple such check node units can be

used to increase decoding speed. As the number of ALU units in a general purpose

DSP processor is limited, it is difficult to achieve more than 10 Mbps throughput in

a DSP implementation.

Given a random LDPC code, the main complexity comes not only from the com-

plex check node processing, but also from the interconnection network between

check nodes and variable nodes. To simplify the routing of the interconnection net-

work, many practical standards usually employ structured LDPC codes, or quasi-

cyclic LDPC (QC-LDPC) codes. The parity check matrix of a QC-LDPC code is

shown in Figure 30. Table 3 summaries the design parameters of the QC-LDPC

codes for IEEE 802.11n WLAN and IEEE 802.16e WiMax wireless standards. As

can be seen, many design parameters are in the same range for these two appli-

cations, thus it is possible to design a reconfigurable hardware to support multiple

standards [42].

358 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

Table 3 Design parameters for H in standardized LDPC codes

z j k Check node degree Variable node degree Max. throughput

WLAN 802.11n 27-81 4-12 24 7-22 2-12 600 Mbps

WiMax 802.16e 24-96 4-12 24 6-20 2-6 144 Mbps

As an example, a multi-standard semi-parallel LDPC decoder accelerator archi-

tecture is shown in Figure 31 [42]. In order to support several hundreds Mbps data

rate, multiple PEs are used to process multiple check rows simultaneously. As with

Turbo decoding, LDPC decoding is also based on an iterative decoding algorithm.

The iterative decoding flow is as follows: at each iteration, 1× z APP messages,

denoted as Ln are fetched from the L-memory and passed through a permuter (eg.

barrel shifter) to be routed to z PEs (z is the parallelism level). The soft input infor-

mation mn is formed by subtracting the old extrinsic message mn from the APP

message Ln. Then the PEs generate new extrinsic messages mn and APP messages

Ln, and store them back to memory. The operation mode of the LDPC accelerator

needs to be configured in the beginning of the decoding. After that, it should work

without DSP intervention.Once it has finished decoding, the decoded bits are passed

back to the DSP processor. Figure 32 shows the ASIC implementation result of this

decoder (VLSI layout view) and its power consumption for different block sizes.

As the block size increases, the number of active PEs increases, thus more power is

consumed.

3 Summary

Digital signal processing complexity in high-speed wireless communications is driv-

ing a need for high performance heterogenous DSP systems with real-time pro-

cessing. Many wireless algorithms, such as channel decoding and MIMO detection,

demonstrate significant data parallelism. For this class of data-parallel algorithms,

application specific DSP accelerators are necessary to meet real-time requirements

z 2z ... kz

z

2z

jz

x

...

Fig. 30 Structured LDPC parity check matrix with j block rows and k block columns. Each sub-

matrix is a z× z identity shifted matrix.

Application-Specific Accelerators for Communications 359

PE

1

Λ
-M

em

L-Mem

Interconnection

network

. . .

+
-

λmn

L’n

Λmn

Ln

+

PE

2

Λ
-M

em

+
-

+

PE

z

Λ
-M

em

+
-

+

DSP

IF

DMA

Interconnection

network (Inverse)

Fig. 31 Semi-parallel LDPC decoder accelerator architecture. Multiple PEs (number of z) are used

to increase decoding speed. Variable messages are stored in L-memory and check messages are

stored in -memory. An interconnection network along with an inverse interconnection network

are used to route data.

while minimizing power consumption. Spatial locality of data, data level paral-

lelism, computational complexity, and task level parallelism are four major criteria

to identify which DSP algorithm should be off-loaded to an accelerator. Additional

cost incurred from the data movement between DSP and hardware accelerator must

be also considered.

There are a number of DSP architectures which include true hardware based ac-

celerators. Examples of these include the Texas Instruments’ C64x series of DSPs

PE + Λ-Memory

x96

L-Mem
Permuter

DSP I/F

Ctrl M
O

R

Misc

Logic

(a) 5mm

500 1000 1500 2000 2500
250

275

300

325

350

375

400

425

450

Block size (bit)

)
W

m(
n

oit
p

m
u

s
n

o
c r

e
w

o
P

(b)

Fig. 32 An example of a LDPC decoder hardware accelerator [42]. (a) VLSI layout view (3.5 mm2

area, 90nm technology). (b) power consumptions for different block sizes.

360 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

which include a 2 Mbps Turbo decoding accelerator [27], and Freescale Semicon-

ductor’s six core broadband wireless access DSP MSC8156 which includes a pro-

grammable 200 Mbps Turbo decoding accelerator (6 iterations), a 115 Mbps Viterbi

decoding accelerator (K = 9), an FFT/IFFT accelerator for sizes 128, 256, 512, 1024

or 2048 points at up to 350 million samples/s, and a DFT/IDFT for sizes up to 1536

points at up to 175 million samples/s [38].

Relying on a single DSP processor for all signal processing tasks would be a

clean solution. As a practical matter, however, multiple DSP processors are nec-

essary for implementing a next generation wireless handset or base station. This

means greater system cost, more board space, and more power consumption. Inte-

grating hardware communication accelerators, such as MIMO detectors and chan-

nel decoders, into the DSP processor silicon can create an efficient System on Chip.

This offers many advantage: the dedicated accelerators relieve the DSP processor

of the parallel computation-intensive signal processing burden, freeing DSP pro-

cessing capacity for other system control functions that more greatly benefit from

programmability.

References

1. Alamouti, S.M.: A simple transmit diversity technique for wireless communications. IEEE

Journal on Selected Areas in Communications 16(8), 1451–1458 (1998)
2. Amiri, K., Cavallaro, J.R.: FPGA implementation of dynamic threshold sphere detection for

MIMO systems. IEEE Asilomar Conference on Signals, Systems and Computers pp. 94–98

(2006)
3. Bahl, L., Cocke, J., Jelinek, F., Raviv, J.: Optimal decoding of linear codes for minimizing

symbol error rate. IEEE Transactions on Information Theory IT-20, 284–287 (1974)
4. Bass, B.: A low-power, high-performance, 1024-point FFT processor. In: IEEE International

Solid-State Circuit Conference (ISSCC) (1999)
5. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and

decoding: Turbo-codes. In: IEEE International Conference on Communications, pp. 1064–

1070 (1993)
6. Bougard, B., Giulietti, A., Derudder, V., Weijers, J.W., Dupont, S., Hollevoet, L., Catthoor, F.,

Van der Perre, L., De Man, H., Lauwereins, R.: A scalable 8.7-nJ/bit 75.6-Mb/s parallel con-

catenated convolutional (turbo-) codec. In: IEEE International Solid-State Circuit Conference

(ISSCC) (2003)
7. Brack, T., Alles, M., Lehnigk-Emden, T., Kienle, F., Wehn, N., Lapos, Insalata, N., Rossi, F.,

Rovini, M., Fanucci, L.: Low complexity LDPC code decoders for next generation standards.

In: Design, Automation, and Test in Europe (DATE), pp. 1–6 (2007)
8. Brogioli, M.: Reconfigurable heterogeneous DSP/FPGA based embedded architectures for

numerically intensive embedded computingworkloads. Ph.D. thesis, Rice University, Hous-

ton, Texas, USA (2007)
9. Brogioli, M., Radosavljevic, P., Cavallaro, J.: A general hardware/software codesign method-

ology for embedded signal processing and multimedia workloads. In: IEEE 40th Asilomar

Conference on Signals, Systems, and Computers, pp. 1486–1490 (2006)
10. Burg, A.: VLSI circuits for MIMO communication systems. Ph.D. thesis, Swiss Federal

Institute of Technology, Zurich, Switzerland (2006)
11. Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., Bolcskei, H.: VLSI im-

plementation of MIMO detection using the sphere decoding algorithm. IEEE Journal of

Solid-State Circuits 40(7), 1566–1577 (2005)

Application-Specific Accelerators for Communications 361

12. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier se-

ries. Mathematics of Computation 19, 297–301 (1965)

13. Damen, M.O., Gamal, H.E., Caire, G.: On maximum likelihood detection and the search for

the closest lattice point. IEEE Transactions on Information Theory 49(10), 2389–2402 (2003)

14. Devices, A.: The SHARC Processor Family. http://www.analog.com/en/embedded-

processing-dsp/sharc/processors/index.html (2009)

15. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice,

including a complexity analysis. Mathematics of Computation 44(170), 463–471 (1985)

16. Forney, G.D.: The Viterbi algorithm. Proceedings of the IEEE 61(3), 268–278 (1973)

17. Foschini, G.: Layered space-time architecture for wireless communication in a fading envi-

ronment when using multiple antennas. Bell Labs. Tech. Journal 2, 41–59 (1996)

18. Gallager, R.: Low-density parity-check codes. IEEE Transactions on Information Theory 8,

21–28 (1962)

19. Garrett, D., Davis, L., ten Brink, S., Hochwald, B., Knagge, G.: Silicon complexity for max-

imum likelihood MIMO detection using spherical decoding. IEEE Journal of Solid-State

Circuits 39(9), 1544–1552 (2004)

20. Golden, G., Foschini, G.J., Valenzuela, R.A., Wolniansky, P.W.: Detection algorithms and

initial laboratory results using V-BLAST space-time communication architecture. Electronics

Letters 35, 14–15 (1999)

21. Gunnam, K., Choi, G.S., Yeary, M.B., Atiquzzaman, M.: VLSI architectures for layered de-

coding for irregular LDPC codes of WiMax. In: IEEE International Conference on Commu-

nications, pp. 4542–4547 (2007)

22. Guo, Z., Nilsson, P.: Algorithm and implementation of the K-best sphere decoding for MIMO

detection. IEEE Journal on Selected Areas in Communications 24(3), 491–503 (2006)

23. Hassibi, B., Vikalo, H.: On the sphere-decoding algorithm I. Expected complexity. IEEE

Transactions on Signal Processing 53(8), 2806–2818 (2005)

24. Hunter, H.C., Moreno, J.H.: A new look at exploiting data parallelism in embedded systems.

In: Proceedings of the International Conference on Compilers, Architectures and Synthesis

for Embedded Systems, pp. 159–169 (2003)

25. Tensilica Inc.: http://www.tensilica.com (2009)

26. Texas Instruments: TMS320C55x DSP CPU Programmer’s Reference Supplement.

http://focus.ti.com/lit/ug/spru652g/spru652g.pdf (2005)

27. Texas Instruments: TMS320C6474 high performance multicore processor datasheet.

http://focus.ti.com/docs/prod/folders/print/tms320c6474.html (2008)

28. Instruments, T.: TMS320C6000 CPU and Instruction Set Reference Guide.

http://dspvillage.ti.com (2001)

29. Lechner, G., Sayir, J., Rupp, M.: Efficient DSP implementation of an LDPC decoder. In: IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, pp.

665–668 (2004)

30. Lee, S.J., Shanbhag, N.R., Singer, A.C.: Area-efficient high-throughput MAP decoder archi-

tectures. IEEE Transactions on VLSI Systems 13, 921–933 (2005)

31. Martina, M., Nicola, M., Masera, G.: A flexible UMTS-WiMax turbo decoder architecture.

IEEE Transactions on Circuits and Systems II 55, 369–273 (2008)

32. Myllylä, M., Silvola, P., Juntti, M., Cavallaro, J.R.: Comparison of two novel list sphere detec-

tor algorithms for mimo-ofdm systems. IEEE International Symposium on Personal Indoor

and Mobile Radio Communications (2006)

33. Parhi, K.K.: VLSI Digital Signal Processing Systems Design and Implementation. Wiley

(1999)

34. Prescher, G., Gemmeke, T., Noll, T.G.: A parametrizable low-power high-throughput turbo-

decoder. In: IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), vol. 5, pp. 25–28 (2005)

35. Rovini, M., Gentile, G., Rossi, F., Fanucci, L.: A scalable decoder architecture for IEEE

802.11n LDPC codes. In: IEEE Global Telecommunications Conference, pp. 3270–3274

(2007)

362 Yang Sun, Kiarash Amiri, Michael Brogioli, and Joseph R. Cavallaro

36. Sadjadpour, H., Sloane, N., Salehi, M., Nebe, G.: Interleaver design for turbo codes. IEEE

Journal on Seleteced Areas in Communications 19, 831–837 (2001)

37. Salmela, P., Gu, R., Bhattacharyya, S., Takala, J.: Efficient parallel memory organization for

turbo decoders. In: Proc. European Signal Processing Conf., pp. 831–835 (2007)

38. Freescale Semiconductor: MSC8156 six core broadband wireless access DSP.

www.freescale.com/starcore (2009)

39. Semiconductor, F.: Freescale Starcore Architecture. www.freescale.com/starcore (2009)

40. Shin, M.C., Park, I.C.: A programmable turbo decoder for multiple 3G wireless standards.

In: IEEE Solid-State Circuits Conference, vol. 1, pp. 154–484 (2003)

41. Sun, J., Takeshita, O.: Interleavers for turbo codes using permutation polynomials over integer

rings. IEEE Transactions on Information Theory 51(1) (2005)

42. Sun, Y., Cavallaro, J.R.: A low-power 1-Gbps reconfigurable LDPC decoder design for mul-

tiple 4G wireless standards. In: IEEE International SOC Conference (SoCC), pp. 367–370

(2008)

43. Sun, Y., Karkooti, M., Cavallaro, J.R.: VLSI decoder architecture for high throughput, vari-

able block-size and multi-rate LDPC codes. In: IEEE International Symposium on Circuits

and Systems (ISCAS), pp. 2104–2107 (2007)

44. Sun, Y., Zhu, Y., Goel, M., Cavallaro, J.R.: Configurable and scalable high throughput turbo

decoder architecture for multiple 4G wireless standards. In: IEEE International Conference

on Application-Specific Systems, Architectures and Processors (ASAP), pp. 209–214 (2008)

45. Tarokh, V., Jafarkhani, H., Calderbank, A.R.: Space-time block codes from orthogonal de-

signs. IEEE Transactions on Information Theory 45(5), 1456–1467 (1999)

46. Tarokh, V., Jafarkhani, H., Calderbank, A.R.: Space time block coding for wireless commu-

nications: Performance results. IEEE Journal on Selected Areas in Communications 17(3),

451–460 (1999)

47. Telatar, I.E.: Capacity of multiantenna Gaussian channels. European Transactions on

Telecommunications 10, 585–595 (1999)

48. Thul, M.J., Gilbert, F., Vogt, T., Kreiselmaier, G., Wehn, N.: A scalable system architecture

for high-throughput turbo-decoders. Journal of VLSI Signal Processing pp. 63–77 (2005)

49. Viterbi, A.: Error bounds for convolutional coding and an asymptotically optimum decoding

algorithm. IEEE Transactions on Information Theory IT-13, 260–269 (1967)

50. Wijting, C., Ojanperä, T., Juntti, M., Kansanen, K., Prasad, R.: Groupwise serial multiuser

detectors for multirate DS-CDMA. In: IEEE Vehicular Technology Conference, vol. 1, pp.

836–840 (1999)

51. Willmann, P., Kim, H., Rixner, S., Pai, V.S.: An efficient programmable 10 Gigabit Ethernet

network interface card. In: ACM International Symposium on High-Performance Computer

Architecture, pp. 85–86 (2006)

52. Wong, K., Tsui, C., Cheng, R.S., Mow, W.: A VLSI architecture of a K-best lattice decoding

algorithm for MIMO channels. IEEE International Symposium on Circuits and Systems 3,

273–276 (2002)

53. Ye, Z.A., Moshovos, A., Hauck, S., Banerjee, P.: CHIMAERA: A High–Performance Archi-

tecture with a Tightly–Coupled Reconfigurable Functional Unit. In: Proceedings of the 27th

Annual International Symposium on Computer Architecture, pp. 225–235 (2000)

54. Zhong, H., Zhang, T.: Block-LDPC: a practical LDPC coding system design approach. IEEE

Transactions on Circuits and Systems I: Fundamental Theory and Applications 52(4), 766–

775 (2005)

	Application-Specific Accelerators for Communications
	1 Introduction
	1.1 Coarse Grain Versus Fine Grain Accelerator Architectures
	1.2 Hardware/Software Workload Partition Criteria

	2 Hardware Accelerators for Communications
	2.1 MIMO Channel Equalization Accelerator
	2.2 MIMO Detection Accelerators
	2.2.1 Maximum-Likelihood (ML) Detection
	2.2.2 Sphere Detection
	2.2.3 Computational Complexity of Sphere Detection
	2.2.4 Depth-First Sphere Detector Architecture
	2.2.5 K-Best Detector Architecture

	2.3 Channel Decoding Accelerators
	2.3.1 Viterbi Decoder Accelerator Architecture
	2.3.2 Turbo Decoder Accelerator Architecture
	2.3.3 LDPC Decoder Accelerator Architecture

	3 Summary
	References

