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ABSTRACT 
Soft-core microprocessors mapped onto field-programmable gate 
arrays (FPGAs) represent an increasingly common embedded 
software implementation option. Modern FPGA soft-cores are 
parameterized to support application-specific customization, 
wherein pre-defined units, such as a multiplication unit or 
floating-point unit, may be included in the microprocessor 
architecture to speed up software execution at the expense of 
increased size. We introduce a methodology for fast application-
specific customization of a parameterized FPGA soft core, using 
synthesis and execution to obtain size and performance data in 
order to create a tool that can be used across a variety of tool 
platforms and FPGA devices. As synthesizing a soft core takes 
tens of minutes, developing heuristics that execute in an 
acceptable time of an hour or two, yet find near-optimal results, is 
a challenge. We consider two approaches, one using a traditional 
CAD approach that does an initial characterization using synthesis 
to create an abstract problem model and then explores the solution 
space using a knapsack algorithm, and the other using a synthesis-
in-the-loop exploration approach. We compare approaches for a 
variety of design constraints, on 11 EEMBC benchmarks, using 
an actual Xilinx soft-core processor, and for two different 
commercial Xilinx FPGA devices. Our results show that the 
approaches can generate a customized configuration exhibiting 
roughly 2x speedups over a base soft core, reaching within 4% of 
optimal in about 1.5 hours, including complete synthesis of the 
soft-core onto the FPGA, compared to over 11 hours for 
exhaustive search. Our results also show that including synthesis-
in-the-loop, compared to a traditional CAD approach, improved 
speedups by an average of 20% when size constraints were tight. 
The approaches may also be applicable to soft-core processors 
targeted to ASICs in addition to FPGAs.  

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: – 
Microprocessor/microcomputer applications, Real-time and 
embedded systems. 

General Terms 
Performance, Design, Experimentation. 

Keywords 
Tuning, customization, FPGA, soft-core processors, 
parameterized platforms.  

1. INTRODUCTION 
Microprocessors on field-programmable gate array (FPGA) chips 
are becoming an increasingly popular software implementation 
platform, due to their coexistence on-chip with custom logic. Such 
coexistence can reduce parts costs and board sizes, and can 
improve system performance due to reduced communication 
times between processor and FPGA. A hard-core processor is laid 
out on the chip next to the FPGA’s configurable logic fabric 
[2][4][18]. In contrast, a soft-core processor [3][17] is synthesized 
onto the FPGA’s fabric, just like any other circuit. Compared to 
hard-core microprocessors on some FPGA devices, soft-core 
processors have the advantages of utilizing standard mass-
produced and hence lower-cost FPGA parts and of enabling a 
custom number of microprocessors per FPGA (subject to size 
constraints) – over 100 soft-core processors can fit on modern 
high-end FPGAs. However, soft-core processors have the 
disadvantages of reduced processor performance, higher power 
consumption, and larger size. 
While any microprocessor soft-core could conceivably be mapped 
to an FPGA, FPGA vendors have in the past few years introduced 
soft-core processors specifically targeted for FPGA 
implementation. Such FPGA soft-cores have instruction sets, 
arithmetic-logic units, register files, and other features specifically 
tailored to efficiently use FPGA resources, or perhaps more 
accurately, to avoid inefficient use of FPGA resources that may 
occur when synthesizing a general soft-core processor to an 
FPGA. The performance overhead of such soft-core processors on 
FPGAs compared to general soft-core processors on ASICs 
(application-specific integrated circuits) can thus be significantly 
less than the overheads when comparing FPGA versus ASIC 
implementations of general circuits.  
A feature of FPGA soft-core processors is that of core 
configuration by the user (the application developer) through the 
setting of parameters. Configurable parameters may include 
instantiating a cache (and specifying its size), or instantiating a 
predefined datapath unit (like a multiplier or floating-point unit) 
and an accompanying instruction that uses the instantiated unit. 
Parameterized soft cores represent a different problem from that 
of developing custom datapath units and accompanying custom 
instructions, as done in application-specific instruction-set 
processors (ASIPs) like the ASIC-oriented ASIPs [15] or FPGA-
oriented ASIPs [5], due to the “on/off” (or limited number of) 
values of the parameters.  Yiannacouras [20] showed, using Altera 
FPGAs, that tuning a parameterized soft-core processor to an 
application could yield significant performance/size 
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improvements and reduced overall size versus a processor tuned 
to be best on average.  

 

The contribution of this work is in developing effective 
approaches for automatically customizing a parameterized soft-
core processor to an application. Presently, FPGA soft-core 
processor users must manually determine the best core 
configuration for a software application. Such manual 
configuration either results in unduly long exploration times due 
to evaluating too many configurations, or results in a sub-optimal 
configuration. We consider two approaches, a traditional CAD 
approach that maps to an abstract problem model and then solves 
the problem thoroughly while relying on estimations, and a 
synthesis-in-the-loop approach that uses actual synthesis and 
execution during exploration but searches only a fraction of the 
solution space. While our work’s motivation lies in soft cores for 
FPGAs, our approaches may apply to ASICs also. 

2. SOFT-CORE FRAMEWORK AND 
EXPLORATION METHOD 
We developed our methodology using a Xilinx MicroBlaze FPGA 
soft-core processor [17], but the methodology would be applicable 
to other FPGA soft-core frameworks. The Xilinx MicroBlaze, 
referred to hereafter as MB, is a 32-bit soft-core processor 
designed for efficient implementation on Xilinx FPGAs. The MB 
is a single-issue in order execution processor. The MB can be 
configured to instantiate any combination of the following five 
components: multiplier, barrel shifter, divider, floating-point unit 
(FPU), and data cache. The first four components are each 
“on/off” type, either being instantiated or not instantiated, and 
only one instance of each component type is allowed (due to the 
MB being single-issue). The data cache, when instantiated, can be 
2 Kbyte, 4 Kbyte, or 8 Kbyte, but we only consider 4 Kbytes in 
this paper for simplicity. Furthermore, the MB supports two cache 
types, an older basic cache, and a newer better performing 
“MCH” cache, although we only consider the latter. We thus 
consider 25=32 possible MB configurations. When any of the first 
four components is instantiated, the MB includes a special 
instruction that uses that component (e.g., a multiply instruction), 
and the MB compiler generates code utilizing that special 
instruction. We refer to a base MB as an MB with none of the five 
extra components instantiated, and a full MB as an MB with all 
five components instantiated.  
Instantiating a component increases an MB’s size, but may 
improve an application’s performance, depending on the 
application. We define the task of customizing a MicroBlaze for a 
particular software application as the task of instantiating a 
particular combination of components, known as a configuration, 
such that design goals, which may involve performance and/or 
size, are best met for an application running on the customized 
MB.  
We measure performance as the time to execute an application 
once from beginning to end (typically an embedded benchmark 
application loops back to its beginning after the end). That time is 
the number of clock cycles multiplied by the clock period, 
referred to hereafter as the application runtime. We utilized Xilinx 
ISE and EDK tools to determine the clock period by synthesizing 
a configured MB onto a specific FPGA device. We measured the 
number of clock cycles by executing an application on an MB 
mapped to the FPGA device, with the application slightly 
modified to communicate with a clock-cycle counting circuit.  
The cycle counting circuit non-intrusively counts clocks cycles 

while the application executes, and does not affect the 
application’s performance. 
A basic measure of a soft core’s size on an FPGA is the number of 
utilized lookup tables (LUTs)1. However, a soft core may also 
utilize hard-core FPGA resources, such as hard-core multipliers or 
block RAMs. To be able to straightforwardly plot and compare 
sizes of different soft-core configurations, we assign an equivalent 
LUT value to hard-core resources. We did so by first measuring 
the regular LUTs, hard-core multipliers, and block RAM utilized 
in a full MB. We then combine the individual size metrics into a 
single size metric representing equivalent LUTs. Figure 1 presents 
the equations for calculating equivalent LUTs for a given 
MicroBlaze configuration. Assuming each type of resource (LUT, 
hard-core multiplier, or block RAM) is of equal importance, 
Figure 2 lists the equivalent LUT values for each hardcore unit.  
Then for a given configured MB, the equivalent LUTs, 
LUTEquivalent, is the sum of the regular LUTs, LUTRegular, used for 
logic to support datapath components, the equivalent LUTs for 
hard-core multipliers, LUTEquivalent(Mult), and the equivalent LUTs 
for block RAMs, LUTEquivalent(BRAM). The equivalent LUTs for the 
utilized multipliers is equal to ratio of multipliers used, #MultUsed, 
to multipliers in a full MB, #Multfull MB, multiplied by the number 
of regular LUTs in a full MB, LUTfull MB. Likewise, the equivalent 
LUT for the utilized block RAMs is equal to ratio of block RAM 
used, sizeBRAMUsed, to block RAM in a full MB, sizeBRAMfull MB, 
multiplied by the number of regular LUTs in a full MB, LUTfull MB. 
Of course, a user can weigh regular LUTs, multipliers, or block 
RAMs more heavily if that resource happens to be more valuable 
to the user. We recently noted that another research group 
working closely with Altera independently developed a similar 
equivalent LUT concept for similar size comparison purposes 
[20], thus lending confidence to the use of the equivalent LUT 
size metric during soft-core exploration. All LUT data in this 
paper represents equivalent LUTs. Interestingly, we recently 
discovered that our equivalent LUT concept correlates almost 
perfectly with Xilinx’s own equivalent gate concept. 
Note that the equivalent LUT concept is essentially a cost function 
that combines three terms by normalizing them and weighing 

                                                 
1 We originally utilized configurable logic blocks (CLBs) as a measure of 

size, but MicroBlaze designers at Xilinx informed us that LUTs are a 
more accurate and useful measure.  

 

 
Figure 1: Equations for calculating Equivalent LUT value of a 

configured MB. 
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Figure 2:  Equivalent LUT values for hard-core units.  
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them equally. Our approach is not strictly dependent on the 
above-described cost function; other functions could be used, 
including an approach where users specify the relative weights, or 
where different normalization methods are used.  
In our experiments, we considered 11 benchmarks essentially 
selected at random from EEMBC [6], a benchmark suite intended 
for embedded systems. We report data for all of the randomly 
selected EEMBC benchmarks that we were able to compile and 
execute on the Xilinx MicroBlaze. In addition, we also considered 
an internally developed ray tracing application (raytrace) that is 
predominantly a floating-point application.  
For each benchmark, we utilized scripts to run our search 
heuristics, where those scripts automatically performed FPGA 
synthesis and executed the application whenever necessary. The 
scripts execute on a computer connected to an FPGA development 
board (an ML310 board in our case). While the use of synthesis 
and execution may be viewed as a strength of our approach, it 
may also be viewed as a limitation, as there may be situations 
when a user wishes to explore but does not have a development 
board. A different approach involving pre-characterized cores, 
possibly combined with a soft-core simulation, might be 
necessary in that case. Alternatively, there may be a situation 
where an application cannot readily be run from scripts, such as 
when the application’s execution requires human-generated 
input/output. In this case, our search approach could be 
supplemented with human interaction during the execution phases 
of exploration.   
Figure 3 demonstrates the benefits of customizing an FPGA soft-
core processor for one application. The figure presents the 
application runtimes for the EEMBC benchmark aifir running on 

each of the 32 possible MB configurations. Considering only the 
Pareto-optimal configurations, the MB configurations have a 2X 
variation in application runtime and a 2X variation in LUTs, 
clearly demonstrating the benefits of configuring the MB to a 
particular application and its performance and size constraints.  
Figure 4 presents the performance speedups of performance-
optimal configured MB for all 12 benchmarks, as determined by 
exhaustively examining all possible configurations for each 
application. The optimal MB configuration on average has a 3.5x 
speedup compared to a base MB and a maximum speedup of 
11.1x for the application matmul. However, obtaining that data by 
performing exhaustive exploration for this application required 
approximately 15 minutes per configuration (with 99% of that 
time spent on synthesis and with certain configurations requiring 
more than 15 minutes), resulting in over eleven hours of 
exploration tool runtime. Even for the relatively small number of 

 
Figure 3: Size versus application runtime for all MicroBlaze configurations executing the aifir EEMBC benchmark, with all Pareto 

points labeled. An additional labeled point (FPU) is highlighted to show the performance overhead of instantiating an 
underutilized component, due to lengthening of the clock cycle.   
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Figure 4: Speedups for base (Base MB), full (Full MB), and 
optimal (Optimal MB) MicroBlaze configurations.  



configurable options we considered, exhaustively evaluating all 
possible configurations is already quite prohibitive, as a core user 
would need to re-evaluate all configurations anytime significant 
changes, and potentially even small changes, are made to the 
application, a common occurrence in a software design cycle. 
Furthermore, we expect that the number of configurable options 
will continue to increase for soft-core processors. As such, if the 
configurability is doubled from five options to ten options, the 
execution time for an exhaustive evaluation increases from 
approximately 11 hours to 11 days. 
We sought to develop methods that would execute in 
approximately 1-2 hours – a tool runtime that we believe FPGA 
designers will find reasonable during the optimization step of 
design. Due to using synthesis during exploration, and because 
synthesis takes on the order of tens of minutes, the key feature of 
our developed heuristics must be that of executing only a few 
synthesis runs such that total customization time is on the order of 
1-2 hours.  

3. SOFT-CORE CUSTOMIZATION FOR 
APPLICATION RUNTIME 
We consider the common goal of customizing an MB to minimize 
a particular application’s runtime, with and without a size 
constraint. Fast tuning of configurable hardware platforms has 
been the subject of several recent research efforts. Most efforts 
assume that hundreds or thousands of configurations can be 
examined [1][7][9][10][11][13][14], but the 15 minute synthesis 
time in the FPGA soft-core problem means that only about 5-15 
synthesis runs can be conducted.  

3.1 Traditional CAD Approach: 0-1 Knapsack 
We first considered developing a traditional CAD approach to 
tuning soft cores. The approach pre-characterizes the application 
and soft core, maps the problem to an abstract (and inexact) 
model, and then thoroughly solves the problem model.  
We observed that the soft-core configuration problem could be 
approximately cast to a 0-1 knapsack problem, wherein one seeks 
to maximize the value of items placed in a knapsack having a 
weight constraint, with each item having a value and a weight. In 

the fractional knapsack problem, one can include any fraction of 
items, while in the 0-1 knapsack problem, the only allowed 
fractions are 0 or 1, meaning the items are indivisible. We 
consider each optional MB component as an indivisible item. We 
assign a component’s value to be the ratio of the speedup 
increment that occurs when instantiating that component 
compared to a base MB (e.g., a speedup of 1.4 has an increment 
of 0.4), over the size increment compared to a base MB. Note that 
the speedup increment for a component depends on the 
application, but the size increment is application independent. 
This cast is approximate, because speedup increments may not 
always be strictly additive when multiple components are 
instantiated. For example, component A may have an increment 
of 0.4 and B of 0.3, but A and B together may only yield an 
increment of 0.6, not 0.7. Likewise, size increments may not be 
strictly additive.  

 

Component Cache Floating 
Point Divider Multiplier

Barrel Shifter 5.2 % 1.0 %  0.0 % 10.4 % 

Multiplier 6.7 % 1.9 % 26.0 % 

Divider 2.9 % 0.0 %  

Floating Point 5.1 %   

Figure 5: Average pairwise speedup-increment additive 
inaccuracies for all pairs of benchmarks.  

Figure 5 presents the inaccuracy of the additive assumption for all 
pairs of components. The additive assumption holds well (near-
zero inaccuracy) for four pairs of components. Adding multiplier 
and barrel shifter speedup increments yields 10% inaccuracy, due 
to some shifts being achievable with a multiplier, and vice versa. 
Adding multiplier and divider speedup increments yields 26% 
inaccuracy.  
A well-known optimal algorithm for solving the 0-1 knapsack 
problem first sorts items by their value/weight ratio, and then 
finds the optimal solutions using a dynamic programming 
algorithm [16]. To execute that algorithm, we must first compute 
the speedup increment (value) for each component. As that 
speedup is application dependent, we first execute six 
synthesis/executions, for the base MB, for the MB with a 
multiplier only, for the MB with a barrel shifter only, with an FPU 
only, with a divider only, and finally with only a cache. Figure 6 
shows speedup increments, size increments, and their ratios, for 
the aifir EEMBC benchmark application. 
 The dynamic programming algorithm has what is known as a 
“pseudo-polynomial” runtime complexity of O (n*W), where n is 
the number of items, and W is the knapsack weight constraint. 
This algorithm is known to be fast when W is a “small” integer, 
with a magnitude of perhaps 10,000 – 1,000,000, and of course 
when n is also small. Fortunately, W is indeed a small integer in 
the case of our MB configuration problem (a full MB is only 
12,000 equivalent LUTs) and n is of course small in our problem 
(5 instantiatable units).  
This approach applies six synthesis/execution runs when initially 
determining the component speedup and size increments, 
requiring about an hour, which dominates the approach’s runtime. 
The inputs to the dynamic programming algorithm – n (number of 
soft core parameters) and W (number of available LUTs) – can 
each accommodate large increases before the 0-1 knapsack 

 

 
 
 
 

 
 

Figure 6: Speedup increment, size increment, and their ratio, for each MB component for the aifir benchmark.  
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algorithm runtimes approach a non-negligible time (versus 
synthesis) of tens of minutes. Even then, we have found that we 
can “quantize” the knapsacks weights by dividing all weights by 
10  to yield a 10x algorithm speedup with almost no degradation 
in quality of results.    

3.2 Synthesis-in-the-Loop Approach: Impact-
Ordered Trees 

Casting the soft-core configuration problem to 0-1 knapsack 
yields an approach with desired tool runtime and near-optimal 
results. However, the approach makes an assumption that speedup 
and size increments are additive, which is inaccurate for some 
pairs of components. As demonstrated in the later experiments 
section, those inaccuracies can result in sub-optimal solutions. We 
thus sought to also develop an approach that did not rely on the 
additive speedup increment assumption, but rather used 
synthesis/execution during exploration – synthesis-in-the-loop –
while still executing just a few synthesis/execution runs.  
We developed a greedy search method based on an approach 
proven effective in other parameterized architecture configuration 
research. The greedy method pre-determines the impact each 
parameter individually has on design metrics, and then searches 
the parameters in sequence, ordered from highest impact to 
lowest. For example, Zhang [21] used that method for 
customizing a highly configurable cache, where evaluating each 
configuration took many minutes due to lengthy simulations, and 
found near optimal results. We thus investigated such an impact-
ordered approach.  
The first phase of the approach determines the impact of each 
component. We can define impact simply as the speedup, but 
through experimentation, we found that a better definition takes 

the ratio of speedup/size, just as in the knapsack problem. Thus, 
the first phase of the approach computes speedup increments, size 
increments, and their ratio, requiring six synthesis and execution 
runs, and resulting in the same data as in Figure 6. The second 
phase considers the components in order of their impact. For the 
current component, the approach instantiates the component, 
synthesizes and executes, and determines the application’s 
runtime and size. If instantiating the component improves runtime 
and meets size constraints, the component is added; otherwise, it 
is not. The approach then moves on to the next component.  

 

 

 
 
 
 
 
 
 

Figure 7: Impact-ordered tree approach: (a) application-
specific impact-ordered tree for the aifir benchmark, (b) fixed 

impact-ordered tree. Note that neither approach actually 
generates the entire tree – both make a single descent to a leaf 

node.  
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FPU Cache

We refer to the above approach as an application-specific impact-
ordered tree approach. Essentially, if we envision the entire 
solution space as a tree, as in Figure 7, the approach orders the 
levels of the tree, and then descends into only one sub-tree at each 
level, until reaching a single leaf node. The first phase orders the 
tree’s levels, while the second phase makes a single descent. This 
approach requires six synthesis/executions for phase one, and five 
synthesis/executions for phase two, resulting in 11 total 
synthesis/executions.  

(a) (b) 

We also investigated a variation of the above approach with the 
goal of reducing the number of synthesis/execution runs, by pre-
determining average component impacts on a suite of typical 
benchmarks, rather than determining impacts on a per-application 
basis. The approach essentially moves phase one of the above 
approach from the tool user to the tool developer, thus cutting out 
six of the eleven synthesis/execution runs, leaving just five such 
runs. We refer to this approach as a fixed-order impact-ordered 
tree approach, because the impact ordering is fixed. Figure 8 
shows the data averaged for all our benchmarks, with the 
speedup/size data resulting in the impact ordering shown in Figure 
7(b).  

3.3 No Size Constraint 
Each of our algorithms assumes the problem we are solving is 
determining the best soft-core processor configuration given a 
limited size constraint. Some design scenarios impose no size 
constraint on the FPGA soft-core processor, instead seeking only 
the minimum application runtime. In the absence of a size 
constraint, one might assume minimal application runtime could 
be achieved by simply instantiating a full MB. However, this 
assumption is false, as was illustrated in Figure 4. Figure 4 
presented the performance speedup for different MB 
configurations: a base MB, a full MB, and an MB configured for 
optimal application runtime (determine by exhaustive search) for 
the corresponding application compared to the base MB 
configuration. Notice for some applications that the full MB is 
actually slower than the optimal. The reason is because as more 
components are instantiated, the MB clock period may be 
lengthened, due in part to longer delays necessary for the 
increased wire routing within the larger MB. The point labeled 

 
 
 
 

 
 

 
Figure 8: Speedup increment, size increment, and their ratio, for each MB component averaged across all 12 benchmarks.  
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Figure 9: Average speedups obtained by the various exploration approaches, for: (a) no size constraint, (b) a fixed size constraint 

set at 80% of the size of a full MB, (c) a per-application-tailored size constraint of 80% of the size of the optimal MB for that 
application (as determined in (a)), all on a Virtex-II Pro device.  

FPU in Figure 3 clearly illustrates the impact of longer delay 
caused by adding an underutilized FPU component.  
To handle the no size constraint situations, in either the 0-1 
knapsack approach or the impact-ordered tree approaches, we 
simply use a size constraint that is equal to (or larger) than the 
size of a full MB.  

4. APPLICATION RUNTIME 
MINIMIZATION EXPERIMENTS 
We implemented the knapsack, application-specific impact-
ordered tree, and fixed-order impact-ordered tree approaches as 
scripts executing with Xilinx Platform Studio synthesis tools, 
coupled with a Xilinx Virtex-II Pro FPGA development board 
(ML310), for all 12 embedded benchmark applications. To 
compare the approaches with optimal results, we also 
implemented an exhaustive search approach that simply 
performed synthesis/execution for all 32 possible soft-core 
configurations.  
Figure 9(a) presents the average speedups and tool runtimes for 
each approach for the scenario of unconstrained size. Exhaustive 
search requires over 700 minutes (11 hours) and finds average 
speedups of 2.3. The knapsack approach finds near-optimal 
solutions with a speedup of 2.2. Both impact-ordered tree 
approaches find the optimal solution. The fixed impact-ordered 
tree approach had the fastest runtime of 108 minutes. However, 
the knapsack approach should actually have roughly the same 
runtime, as both approaches synthesize about the same number of 
configurations. One particular configuration examined by the 
knapsack approach, namely a base MB with a barrel shifter alone, 
happened to have an unusually long synthesis time. Such 
anomalous synthesis runtimes are an artifact of the nature of 
FPGA physical design heuristics. In general, one should assume 
that the knapsack approach and the fixed impact-ordered tree 
approach will have equally fast tool runtimes. 
One might wonder whether any ordering of the tree levels in the 
fixed impact-ordered tree approach would in fact yield the optimal 
configuration. We thus implemented another heuristic using a 
random ordering – barrel shifter, cache, FPU, divider, multiplier. 
Figure 9(a) shows that this random impact-ordered tree approach 
performs worse, though for the unconstrained size problem this 
approach is actually somewhat competitive.  
Figure 9(b) presents the average speedups and tool runtimes for 
each approach for a fixed size constraint, chosen to be 80% of the 
size of a full MB. We also obtained data for a 50% constraint, 
with similar results (not shown). The plot again shows that the 

impact-ordered tree approaches find optimal speedups (2.2), the 
knapsack approach finds near-optimal solutions (2.0), and the 
random impact-ordered tree approach is no longer competitive.  
We sought to see how each approach would perform in a scenario 
where the size constraint was tight enough to prohibit use of the 
best performing MB for a given application. We thus created a 
unique size constraint for each application. Figure 9(c) presents 
the average speedups and tool runtimes for each approach with a 
tailored size constraint being 80% of the best performing MB for 
each particular application (as determined through exhaustive 
search with no size constraint, and choosing the smallest among 
equally performing configurations). We also obtained data for a 
50% constraint, with similar results (not shown). While the fixed 
and application-specific impact-ordered tree approaches find the 
optimal, the knapsack heuristic performs very poorly for this size 
constraint. We found that the reason for the knapsack’s poor 
results is due to the inaccuracy of the additive speedup increment 
assumption, which caused sub-optimal combinations of 
components to be selected.  
To further evaluate the effectiveness of the approaches, we re-
implemented the entire set of experiments for a Xilinx Spartan2 
FPGA. Figure 10 presents the average speedups and tool runtimes 
for each approach for the case of unconstrained size. Again, the 
impact-ordered tree approaches are the best performing 
approaches, but the approaches chose configurations that were 
slightly below optimal on average. The application-specific 
approach found the optimal configuration in 11 of 12 cases, with a 
20% worsening in performance for only one application. The 
fixed approach also resulted in a 20% worsening of performance 
for that same application, along with a 10% worsening for another 
application, but overall found the optimal configuration in 10 of 
12 cases.  
From this data, the fixed-order impact-ordered tree approach 
seems preferable. Of course, one must consider that our fixed-
order was determined from the very same 12 benchmarks that we 
then used to compare the approaches. To examine this issue, we 
used six randomly selected benchmarks to define the fixed 
ordering, and then applied the approaches on the other six 
benchmarks only. The fixed impact-ordered tree approach again 
found the optimal for the constraint situations of Figure 9(a), (b), 
and (c), and even found the optimal for the situation of Figure 10. 
(Interestingly, the knapsack approach appeared markedly worse 
for that particular subset of six benchmarks). Of course, applying 
a particular fixed order on a radically different benchmark may 
yield worse results. Vendors might address that situation by 
having different fixed orderings for different application domains 

(a) (b) (c) 

0

200

400

600

800

1 1.5 2 2.5

Speedup

To
ol

 R
un

 T
im

e 
(m

)

0

200

400

600

800

1 1.5 2 2.5

Speedup

To
ol

 R
un

 T
im

e 
(m

)

0

200

400

600

800

1 1.5 2 2.5

Speedup

To
ol

 R
un

 T
im

e 
(m

)

Fixed order Impact-
ordered Tree 

Application-Specific
Impact-ordered Tree 

Random Impact-
ordered Tree

Exhaustive

Knapsack



0

4

8

12

16

20

0
20

00
40

00
60

00
80

00
10

00
0

Size (Equivalent LUTs)

A
pp

lic
at

io
n 

R
un

tim
e 

(m
s)

Nothing

Barrel Shifter

Multiplier and Barrel
Shifter
Barrel Shifter and MCH
cache
Multiplier, Barrel Shifter
and MCH Cache

0

50

100

150

200

250

300

1 1.2 1.4 1.6
Speedup

To
ol

 R
un

tim
e 

(m
) Fixed order Impact-

ordered Tree
Application-Specific
Impact-ordered Tree
Random Impact-
ordered Tree
Exhaustive 

Knapsack

Figure 11: Pareto Optimal points for aifir benchmark running 
on the Virtex-II Pro FPGA  Figure 10: Average speedups for the approaches on a Spartan2 

FPGA.  

(e.g., control, signal processing, etc. ), allowing the user to select a 
domain.   
The application-specific impact-ordered tree approach is more 
robust in the presence of new benchmarks, but at the expense of 
about twice the tool runtime.  

5. ADDITIONAL CONSIDERATIONS 
5.1 Pareto Optimal Points Generation 
Rather than minimizing application runtime (possibly with a size 
constraint), a designer may instead wish to obtain a set of possible 
design configurations that represent tradeoffs among application 
runtime and size. The configurations that represent meaningful 
tradeoffs – those for which no other configuration exists that is 
better or equal in both runtime and size – are known as Pareto 
points. For any reasonable design goal that combines performance 
and area, the Pareto points represent the only configurations that 
need to be considered. One approach to generating Pareto points 
is to exhaustively generate points for all possible configurations, 
and then remove all non-Pareto points. However, exhaustively 
examining all possible configurations may be too slow.  
We instead utilize a heuristic method proposed by Givargis et al. 
[8] specifically for the purpose of finding Pareto points for 
parameterized system-on-a-chip platforms with configurable 
parameters in the cache, bus, and processor. That method 
heuristically prunes the search space by first exhaustively finding 
Pareto points for inter-dependent parameter subsets only, and then 
by composing the sets of Pareto points into a single set using an 
exact composition algorithm. The approach is heuristic because 
defining inter-dependent parameter subsets is inexact – 
parameters outside a particular subset may actually have some 
small dependencies with those in the subset. Givargis showed 
high accuracy, with search space pruning of over 99%. 
We adopt this approach to our problem by defining inter-
dependency as having speedup overlap beyond some threshold – 
in other words, as having a large speedup increment additive 
inaccuracy (>10%) as was presented in Figure 5. From that data, 
the barrel shifter and multiplier would be seen as inter-dependent, 
as well as the multiplier and divider. Thus, all three of those 
components form one inter-dependent subset. For the heuristic’s 
first phase, we examine all component pairs for inter-dependency, 
resulting in the inter-dependent component subsets. In the second 
phase, we exhaustively evaluate all possible configurations of the 
inter-dependent subsets, for which we would examine all eight 
configurations of the three inter-dependent components. Note, 
however, that seven of those eight configurations were already 
examined in the first phase, and thus only one new configuration 

(the one with all three components instantiated) needs to be 
examined in the second phase for this inter-dependent subset. The 
remaining components form their own subsets, and we examine 
both configurations of each subset – again, both such 
configurations have already been evaluated in the first phase. 
The complexity of the first phase is O(n2), where n is the number 
of components, but the complexity of the second phase is 
exponential. While the overall complexity is exponential, in 
practice the inter-dependent subset determination yields extensive 
pruning. Palesi et al. [12] further extended this exploration 
approach to provide faster execution by heuristically searching in 
the second phase.  
Figure 11 shows the Pareto points generated by the heuristic for 
the aifir benchmark on the Virtex-II Pro FPGA. The heuristic 
finds all but one of the Pareto points highlight in Figure 3. A core 
user can choose a configuration from among the various Pareto-
optimal configurations to meet system constraints. For aifir, the 
Pareto-optimal configurations range from a base MB, to a MB 
with multiplier, barrel shifter, and cache that has a 2x performance 
improvement but 4x size increase compared to the base MB. 

5.2 Problem Variations 
Our formulation considered only two-valued (“on/off”) soft core 
parameters. Some parameters may have more than two possible 
values, such as a cache component that may be instantiated in one 
of several different sizes, or a multiplier that may be instantiated 
in one of several different versions trading off size and 
performance. We could extend the 0-1 knapsack to consider such 
multi-valued parameters by considering each version of a 
component as a separate component, and then using a disjunctive 
knapsack formulation [19] that prohibits specific items from 
appearing simultaneously in the knapsack (corresponding to 
prohibiting two versions of the same component, such as 
prohibiting two caches or two multipliers). We could extend the 
impact-order tree approaches by adding more than just two 
branches at the tree level corresponding to the multi-valued 
parameter, and either exploring all parameter values at the level, 
or heuristically exploring a few.  Of course, multi-valued 
parameters may increase runtimes.   
Our formulation considered five components. One can expect the 
number of soft-core parameters to increase beyond five. Figure 12 
shows estimated tool runtimes for five to twelve two-valued 
parameters.  While the approaches are significantly faster than 
exhaustive methods, the application-specific impact-ordered tree 
approach’s runtime does increase to nearly 10 hours for twelve 
parameters. In contrast, the fixed-order impact-ordered tree scales 



well, requiring just less than 3 hours for twelve parameters. Of 
course, the figure only shows runtime and not quality of results. 
We intend to investigate approaches for multi-valued parameters, 
and for more parameters, in future work.  

6. CONCLUSIONS 
We presented a methodology for automatically configuring FPGA 
soft-core processors. We considered two approaches: a traditional 
CAD approach, which pre-characterized applications, mapped to 
an abstract problem model, and used a 0-1 knapsack algorithm 
coupled with estimated size and performance values to optimally 
search the (inexact) solution space; and a synthesis-in-the-loop 
approach using impact-ordered tree search heuristics, which 
search only a fraction of the solution space but are guided by 
exact size and performance numbers. While the traditional CAD 
approach yielded good results, its reliance on estimation led to 
20% sub-optimal results when we imposed tight size constraints.  
In contrast, the synthesis-in-the-loop approach yielded optimal or 
near-optimal speedups in all considered situations, while having 
competitive runtimes to the knapsack approach. The fixed-order 
impact-ordered tree synthesis-in-the-loop heuristic yielded near-
optimal results in about 1.5 hours per application, but did poorly 
on a few examples. The application-specific impact-ordered tree 
approach demonstrated more robustness by yielding optimal or 
near-optimal results for all examples, but with runtimes of about 
200 minutes. The fixed-order impact-ordered tree is acceptable 
due to good results with runtimes in our target of 1-2 hours, but 
the application-specific impact-order tree approach would be 
preferred if more runtime is available. Both heuristics should 
therefore be made available to a designer.  Future work includes 
investigating soft cores with more parameters, and with more than 
two values per parameter.  
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