
Application-Specific Customization of Soft Processor
Microarchitecture

Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto

{yiannac,steffan,jayar}@eecg.utoronto.ca

ABSTRACT
A key advantage of soft processors (processors built on an
FPGA programmable fabric) over hard processors is that
they can be customized to suit an application program’s
specific software. This notion has been exploited in the past
principally through the use of application-specific instruc-
tions. While commercial soft processors are now widely de-
ployed, they are available in only a few microarchitectural
variations. In this work we explore the advantage of tuning
the processor’s microarchitecture to specific software appli-
cations, and show that there are significant advantages in
doing so.

Using an infrastructure for automatically generating soft
processors that span the area/speed design space (while re-
maining competitive with Altera’s Nios II variations), we
explore the impact of tuning several aspects of microarchi-
tecture including: (i) hardware vs software multiplication
support; (ii) shifter implementation; and (iii) pipeline depth,
organization, and forwarding. We find that the processor de-
sign that is fastest overall (on average across our embedded
benchmark applications) is often also the fastest design for
an individual application. However, in terms of area effi-
ciency (i.e., performance-per-area), we demonstrate that a
tuned microarchitecture can offer up to 30% improvement
for three of the benchmarks and on average 11.4% improve-
ment over the fastest-on-average design. We also show that
our benchmark applications use only 50% of the available
instructions on average, and that a processor customized to
support only that subset of the ISA for a specific application
can on average offer 25% savings in both area and energy. Fi-
nally, when both techniques for customization are combined
we obtain an average improvement in performance-per-area
of 25%.

1. INTRODUCTION
Instruction set processors are an integral part of all mod-

ern digital systems, including systems now fully implemented
with FPGAs. While some vendors have included fixed, hard

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

processors on their FPGA die, there has been significant up-
take [15,16] of soft processors [3,4] which are constructed in
the programmable fabric itself. While soft processors can-
not match the performance, area, or power consumption of
a hard processor, their key advantage is the flexibility they
present in allowing different numbers of processors and spe-
cialization to the application through special instructions.

Specialization can also occur by selecting a different micro-
architecture for a specific application, and that is the focus
of this paper. We suggest that this kind of specialization
can be applied in two different contexts:

1. When an embedded processor is principally running
a single application for which both performance and
area are important factors—if a particular microarchi-
tecture can be shown to be advantageous over what
would otherwise be a single, general-purpose microar-
chitecture, there is a win. Moreover, this win is “free”
in a reconfigurable FPGA environment except for the
exploration time spent finding these customizations at
compile time.

2. When an embedded processor executes many applica-
tions on a reconfigurable FPGA, there may be value
in reducing the area consumed by the processor, either
to make room for something else that is dynamically
required or to reduce its power consumption, or pos-
sibly to increase the performance of the processor on
a per-program basis. Of course, these circumstances
have to be such that the reconfiguration itself does not
obviate the gain in benefit.

In this paper we show that the impact of varying several
microarchitectural axes varies widely across different embed-
ded applications. We then demonstrate that a soft processor
microarchitecture that has been tuned to a specific applica-
tion can be significantly more area-efficient than the best-on-
average processor, and that typical embedded applications
use less than half of the available Instruction Set Architec-
ture (ISA), despite the use of an unmodified version of gcc
as a compiler. By removing the hardware associated only
with these unused instructions (what we call ISA subsetting)
we can obtain significant area and power savings. Finally,
we show that microarchitectural tuning and ISA subsetting
are complementary.

This paper is organized as follows: in the following sub-
section we review related work. Section 2 briefly describes
our system for automatically generating soft processors with
different micro-architecture. Section 3 describes our method
of measuring the area, speed and power consumption of the



generated processors. Section 4 presents the impact of spe-
cialization for these metrics, and Section 5 concludes.

1.1 Related Work
Commercial customizable processors for inclusion in ASICs

are available from Tensilica [7] and ARC [1] which allow de-
signers to tune the processor with additional hardware in-
structions to better match their application requirements.
Altera Nios [4] and Xilinx Microblaze [3] market soft pro-
cessors that also allow customized instructions or hardware,
and are typically available in only a few microarchitectural
variants.

The CUSTARD [9] customizable threaded soft processor
is an FPGA implementation of a parameterizable core sup-
porting the following options: different number of hardware
threads and types, custom instructions, branch delay slot,
load delay slot, forwarding, and register file size. While the
available architectural axes seem interesting the results show
large overheads in the processor design: clock speed varied
only between 20 and 30 MHz on the 0.15 micron XC2V2000,
and the single-threaded base processor consumed 1800 slices
while the commercial Microblaze typically consumes less
than 1000 slices on the same device.

The PEAS-III project [11] focuses on ISA design and hard-
ware software co-design, and proposes a system which gen-
erates a synthesizable RTL description of a processor from a
clock-based micro-operation description of each instruction.
Although PEAS-III enables a broad range of exploration,
it requires changes to the description of many instructions
to produce a small structural change to the architecture.
PEAS-III was used [11] to conduct a synthesis-driven explo-
ration which explored changing the multiply/divide unit to
sequential (34-cycles), and then adding a MAC (multiply-
accumulate) instruction. The results compared the area and
clock frequency reported by the synthesis tool.

Mishra and Kejariwal augmented the EXPRESSION Ar-
chitecture Description Language (ADL) to include RTL gen-
eration enabling synthesis-driven architectural exploration [14].
The generated processors were shown to have significant
overhead versus an already poorly designed academic pro-
cessor meant only for simulation not synthesis. A small
exploration was then conducted [14] for an FFT benchmark
where the number of functional units were increased from
1 to 4, the number of stages in the multiplier unit were in-
creased from 1 to 4, and sin/cos instructions were added to
the instruction set. These customizations seemed promising
but the analysis did not consider the entire processor (mea-
surements were only made for the execution stage). More-
over, this exploration was performed for traditional hard
processors, with no reference to FPGA-based processors.

2. GENERATING SOFT PROCESSORS WITH
SPREE

Our long-term research agenda is to be able to automati-
cally navigate the soft processor design space, and to make
intelligent application-specific architectural trade-offs based
on a full understanding of soft processor architecture. The
work presented in this paper builds on the Soft Processor
Rapid Exploration Environment (SPREE) [19], a system we
developed to allow the fast and easy generation of a large
number of soft processor designs. In particular, SPREE
takes as input a high-level, text-based description of the

RTL Simulator

1. Correctness
2. Cycle count

3. Area
4. Clock frequency
5. Power

Benchmarks

RTL CAD Flow

Description
Architecture

Synthesizable
RTL

SPREE

Figure 1: Overview of the SPREE system.

target ISA and datapath, and generates an RTL description
of a working soft processor (SPREE is described in more de-
tail later in Section 2). SPREE was initially used to explore
the microarchitecture of soft processors [19], and allowed
us to study the impact on area, performance, and energy
of a given microarchitectural feature or trade-off across a
set of benchmark applications. For example, we are able
to vary the shifter implementation, hardware versus soft-
ware support for multiplication, and the pipeline depth and
forwarding capabilities. In this work we explore microarchi-
tectural “wins” on a per-application basis by customizing
the processor to the given application.

Figure 1 shows an overview of the SPREE system. Taking
a high-level description of an architecture as input, SPREE
automatically generates synthesizable RTL (in Verilog). We
then simulate the RTL description on benchmark applica-
tions to both ensure correctness of the processor, and to
measure the total number of cycles required to execute each
application. The RTL is also processed by CAD tools which
accurately measure the area, clock frequency, and power
of the generated soft processor. The following discussion
describes how SPREE generates a soft processor in more
detail—complete descriptions of SPREE are available in pre-
vious publications [17–19].

2.1 Input: The Architecture Description
The input to SPREE is a description of the desired pro-

cessor, composed of textual descriptions of both the tar-
get ISA and the processor datapath. Each instruction in
the ISA is described as a directed graph of generic oper-
ations (GENOPs), such as ADD, XOR, PCWRITE, LOADBYTE,
and REGREAD. The graph indicates the flow of data from one
GENOP to another required by that instruction. SPREE
provides a library of basic components (e.g., a register file,
adder, sign-extender, instruction fetch unit, forwarding line,
and more). A processor datapath is described by the user
as an interconnection of these basic components. As we de-
scribe below, SPREE ensures that the described datapath
is capable of implementing the target ISA.

2.2 Generating a Soft Processor
From the above inputs, SPREE generates a complete Ver-

ilog RTL model of the desired processor in three phases:
(i) datapath verification, (ii) datapath instantiation, and



(iii) control generation. In the datapath verification phase,
SPREE compares the submitted ISA description and data-
path description, ensuring that the datapath is functionally
capable of executing all of the instructions in the ISA de-
scription. The datapath instantiation phase automatically
generates multiplexers for sinks with multiple sources and
eliminates any components that are not required by the ISA.
Finally, the control generation phase implements the control
logic necessary to correctly operate the datapath, and emits
the Verilog descriptions of the complete processor design.

2.3 Limitations
There are several limitations to the scope of soft proces-

sor microarchitectures that we study in this paper. For now
we consider simple, in-order issue processors that use only
on-chip memory and hence have no cache. Since the rel-
ative speeds of memory and logic on a typical FPGA are
much closer than for a hard processor chip, we are less mo-
tivated to explore a memory hierarchy for soft processors.
The largest FPGA devices have more than one megabyte of
on chip memory which is adequate for the applications that
we study in this paper—however, in the future we do plan
to broaden our application base to those requiring off-chip
RAM and caches. We do not yet include support for dy-
namic branch prediction, exceptions, or operating systems.
Finally, in this paper we do not add new instructions to the
ISA (we restrict ourselves to a subset of MIPS-I) nor have
we modified the compiler, with the exception of evaluating
software versus hardware support for multiplication due to
the large impact of this aspect on cycle time and area.

3. EXPERIMENTAL FRAMEWORK
Having described the SPREE system in the previous sec-

tion, we now describe our framework for measuring and com-
paring the soft processors it produces. We present methods
for employing FPGA CAD tools, a methodology for measur-
ing and comparing soft processors (including variations of a
commercial soft processor), and the benchmark applications
that we use to do so.

3.1 FPGAs, CAD, and Soft Processors
While SPREE itself emits Verilog which is synthesizable

to any target FPGA architecture, we have selected Altera’s
Stratix [12] device for performing our FPGA-based explo-
ration. The library of processor components thus targets
Stratix I FPGAs. We use Quartus II v4.2 CAD software
for synthesis, technology mapping, placement and routing.
We synthesize all designs to a Stratix EP1S40F780C5 device
(a middle-sized device in the family, with the fastest speed
grade) and extract and compare area, clock frequency, and
power measurements as reported by Quartus.

We have taken the following measures to counteract vari-
ation caused by the non-determinism of CAD tool output:
(i) we have coded our designs structurally to avoid the cre-
ation of inefficient logic from behavioral synthesis; (ii) we
have experimented with optimization settings and ensured
that our conclusions do not depend on them, and (iii) for
the area and clock frequency of each soft processor design
we determine the arithmetic mean across 10 seeds (different
initial placements before placement and routing) so that we
are 95% confident that our final reported value is within 2%
of the true mean.

3.2 Metrics for Measuring Soft Processors
To measure area, performance, and energy, we must de-

cide on an appropriate set of specific metrics. For an FPGA,
one typically measures area by counting the number of re-
sources used. In Stratix, the main resource is the Logic Ele-
ment (LE), where each LE is composed of a 4-input lookup
table (LUT) and a flip flop. Other resources, such as the
hardware multiplier block, and memory blocks can be con-
verted into an equivalent number of LEs based on the rela-
tive areas of each in silicon.1 Hence we report area in terms
of equivalent LEs.

To measure performance, we report the wall-clock-time for
execution of a collection of benchmark applications, since re-
porting clock frequency or instructions-per-cycle (IPC) alone
can be misleading. To be precise, we multiply the clock pe-
riod (determined by the Quartus timing analyzer after rout-
ing) with the cycles-per-instruction (CPI) for each bench-
mark to attain the wall-clock-time execution for each bench-
mark. When comparing across benchmarks we normalize
the benchmark lengths and measure instruction throughput
in Millions of Instructions Per Second (MIPS).

To measure energy, we use Quartus’ Power Play tool which
produces a power measurement based on the switching ac-
tivities of post-placed-and-routed nodes—determined by sim-
ulating benchmark applications on a post-placed-and-routed
netlist of a processor in the Modelsim industrial RTL sim-
ulator. We subtract out static power, and we also subtract
the power of the I/O pins: I/O pin power dominates, and is
more dependent on how the processor interfaces to off-chip
resources than its microarchitecture. For each benchmark
we compare the energy-per-instruction, which is indepen-
dent of the length of each benchmark.

3.3 Comparing with Altera Nios II Variations
To ensure that our generated designs are indeed interest-

ing and do not suffer from prohibitive overheads, we have
selected Altera’s Nios II family of processors for compari-
son. Nios II has three mostly-unparameterized variations:
Nios II/e, a small unpipelined 6-CPI processor with se-
rial shifter and software multiplication; Nios II/s, a 5-stage
pipeline with multiplier-based barrel shifter, hardware mul-
tiplication, and instruction cache; and Nios II/f, a large
6-stage pipeline with dynamic branch prediction, instruc-
tion and data caches, and optional hardware divider.

We have taken several measures to ensure that comparison
against the Nios II variations is as fair as possible. We have
generated each of the Nios processors with memory systems
identical to those of our designs: two 64KB blocks of RAM
are used for separate instruction and data memories. We do
not include caches in our measurements, though some logic
required to support the caches will inevitably count towards
the Nios II areas. The Nios II instruction set is very similar
to the MIPS-I ISA with some minor modifications in favor of
Nios (for example, the Nios ISA has no tricky branch delay
slots)—hence Nios II and our generated processors are very
similar in terms of ISA. Nios II supports exceptions and OS
instructions, which are so far ignored by SPREE. Finally,
like Nios II, we also use gcc as our compiler, though we did
not modify any machine specific parameters nor alter the
instruction scheduling. Despite these differences, we believe
that comparisons between Nios II and our generated pro-

1The relative area of these blocks was provided by Altera [8].



Table 1: Benchmark applications evaluated.
Dyn. Instr.

Source Benchmark Modified Counts

MiBench [10] bitcnts di 26,175
CRC32 d 109,414
qsort* d 42,754

sha d 34,394
stringsearch d 88,937

FFT* di 242,339
dijkstra* d 214,408
patricia di 84,028

XiRisc [6] bubble sort - 1,824
crc - 14,353
des - 1,516
fft* - 1,901
fir* - 822

quant* - 2,342
iquant* - 1,896
turbo - 195,914
vlc - 17,860

Freescale [2] dhry* i 47,564

RATES [5] gol di 129,750
dct* di 269,953

* Contains multiply
d Reduced data input set
i Reduced number of iterations

cessors are relatively fair, and that we can be confident that
our architectural conclusions are sound.

3.4 Benchmark Applications
We measure the performance of our soft processors using

20 embedded benchmark applications from four sources (as
summarized in Table 1). Some applications operate solely on
integers, and others on floating point values (although for
now we use only software floating point emulation); some
are compute intensive, while others are control intensive.
Table 1 also indicates any changes we have made to the
application to support measurement, including reducing the
size of the input data set to fit in on-chip memory (d), and
decreasing the number of iterations executed in the main
loop to reduce simulation times (i). Additionally, all file
and other I/O were removed since we do not yet support an
operating system.

4. THE IMPACT OF CUSTOMIZING SOFT
PROCESSORS

In this section we use the SPREE system to measure the
impact of customizing soft processors to meet the needs of
individual applications. We first validate our generated soft
processors by comparing them to the Nios II variations, then
we investigate the opportunities for microarchitectural cus-
tomization afforded by each. Next we demonstrate the im-
pact of tuning the microarchitecture for a given application,
for example by selecting between hardware and software sup-
port for multiplication, the type of shifter implementation,
the number of pipeline stages, and options for multi-cycle
paths in a pipeline. We also explore the impact of ISA sub-
setting which eliminates hardware support for architectural
features not used by the application, and how ISA subset-
ting and microarchitectural tuning can both be combined.

4.1 Comparison with Nios II Variations
Figure 2 illustrates our comparison of SPREE generated

processors to the commercial Altera Nios II variations in
the performance-area space. SPREE’s generated processors

1000

2000

3000

4000

5000

6000

7000

8000

9000

500 700 900 1100 1300 1500 1700 1900

Area (Equivalent LEs)

A
ve

ra
ge

 W
al

l C
lo

ck
 T

im
e 

(u
s)

Generated Designs
Altera Nios II/e
Altera Nios II/s
Altera Nios II/f

Figure 2: Comparison of our generated designs vs
the three Altera Nios II variations.

span the design space between Nios II variations, while al-
lowing more fine-grained microarchitectural customization.
Processors between 600 and 1600 LEs can be generated with
up to 9x difference in performance. The figure also shows
that SPREE processors remain competitive with the com-
mercial Nios II. In fact, one of our generated processors is
both smaller and faster than the Nios II/s—hence we ex-
amine that processor in greater detail.

The processor of interest is an 80MHz 3-stage pipelined
processor, which is 9% smaller and 11% faster in wall-clock-
time than the Nios II/s, suggesting that the extra area
used to deepen Nios II/s’s pipeline succeeded in increas-
ing the frequency, but brought overall wall-clock-time per-
formance down. The generated processor has full inter-stage
forwarding support and hence no data hazards, and suffers
no branching penalty because of the branch delay slot in-
struction in MIPS. The CPI of this processor is 1.36 whereas
the CPIs of Nios II/s and Nios II/f are 2.36 and 1.97
respectively. However, this large gap in CPI is countered
by a large gap in clock frequency: Nios II/s and Nios

II/f achieve clock speeds of 120 MHz and 135 MHz re-
spectively, while the generated processor has a clock of only
80MHz. These results demonstrate the importance of evalu-
ating wall-clock-time over clock frequency or CPI alone, and
that faster frequency is not always better.

4.2 Tuning Soft Processor Microarchitecture
In this paper we explore the application-specific tuning of

four microarchitectural axes: (i) optional hardware multi-
plication support; (ii) choice of shifter implementation; (iii)
pipeline depth; and (iv) cycle latency of multi-cycle paths.
Each of these axes provides an application-specific tradeoff
in area, performance, and energy that we exploit. We ex-
plore the trade-offs for each axis independently, and then we
explore the benefits of tuning all axes to the needs of indi-
vidual applications at once. Finally, we evaluate the best
application-tuned processor for each benchmark application
versus the best overall general-purpose processor.

4.2.1 Hardware vs Software Multiplication
Hardware support for multiplication instructions can pro-

vide enormous performance improvements for multiplication-
intensive applications—however, this extra hardware signifi-
cantly increases the area and energy consumption of the pro-



0%

100%

200%

300%

400%

500%

600%

700%

800%

di
jk

st
ra

qs
or

t

dh
ry fir

F
F

T

dc
t

qu
an

t fft

iq
ua

nt

Benchmark

P
er

ce
nt

 In
cr

ea
se

 in
 E

xe
cu

te
d 

In
st

ru
ct

io
ns

Figure 3: The increase in total instructions executed
when changing from hardware to software multipli-
cation support.

-100.00%

-90.00%

-80.00%

-70.00%

-60.00%

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

vl
c

cr
c

tu
rb

o

de
s

C
R

C
32

pa
tr

ic
ia

sh
a

go
l

bi
tc

nt
s

bu
bb

le
_s

or
t

st
rin

gs
ea

rc
h

di
jk

st
ra

dh
ry

qs
or

t fir

F
F

T

dc
t

qu
an

t fft

iq
ua

nt

Benchmark

In
cr

ea
se

 in
 T

ot
al

 E
ne

rg
y 

(n
J)

Figure 4: Increase in total energy due to support
for hardware multiplication. Benchmarks to the left
of the vertical divider are those without multiply
instructions (note there is still energy overhead).

cessor. This trade-off is therefore very application specific,
hence we evaluate processors both with and without hard-
ware multiplication support; those without emulate mul-
tiplication in software using the C subroutine provided by
gcc, at the cost of each multiplication requiring a much
larger number of instructions to complete. Previous experi-
ments [19] (across many processors) demonstrated that sup-
porting multiplication in hardware costs approximately 220
LEs, which is significant compared to the size of processors
typically generated using SPREE. If the multiplier is also
used to perform shifting (as described in Metzgen [13]) then
the multiplier effectively costs only 100 LEs. These costs
are relatively consistent across architectures, and also have
no dependence on the application.

The performance benefit of hardware support for multipli-
cation depends heavily on the frequency of multiply instruc-
tions in the dynamic execution of a given application. As we
see in Figure 3 for the applications that contain multiplica-
tion instructions, the impact on the total number of instruc-
tions executed when changing from hardware to software
multiplication support varies widely across applications: for
example, iquant executes many multiplies while dijkstra

executes very few.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

Benchmarks

P
er

fo
rm

an
ce

 (
M

IP
S

) 
   

Serial Shifter
Multiplier-Based Shifter

Figure 5: Performance of a processor with different
shifter implementations.

Figure 4 shows the increase in energy consumed for pro-
cessors when changing from software to hardware multipli-
cation support. Note that for applications which do not use
multiplication, energy consumption is increased by nearly
2% because the multiplication logic can toggle even when
the multiplier is not being used.2 Applications that execute
many multiplications save immensely on energy, in some
cases 80% since the single hardware multiply instruction is
much more energy-efficient than executing the potentially
long subroutine.

4.2.2 Tuning the Shifter
The choice of shifter implementation provides another po-

tential avenue for application-tuning. In this work, we con-
sider three shifter implementations: (i) a serial shift reg-
ister; (ii) a multiplier-based barrel shifter using the hard
multiplier, as proposed by Metzgen [13], and (iii) a LUT-
based barrel shifter, implemented as tree of multiplexers.
We explored the trade-offs between these shifter implemen-
tations previously [19]. We found that compared to the se-
rial shifter, the multiplier-based shifter is 65 LEs larger and
the LUT-based shifter is 250 LEs larger. We also found that
on average the LUT-based shifter provides a negligible per-
formance benefit over the multiplier-based shifter—hence we
do not further consider the LUT-based shifter here.

Figure 5 shows the performance of a 3-stage pipelined pro-
cessor with either a serial shifter or multiplier-based shifter.
For many benchmarks, the multiplier-based shifter provides
a significant performance advantage, while for others the
benefit is only slight. Similar to multiplication, the per-
formance impact of more aggressive hardware support for
shifting depends on the frequency of shift operations exe-
cuted by the application. However, for shifters the resulting
performance is additionally dependent on the actual shift
amounts in the application: when shifting by one, a serial
shifter and barrel shifter have similar performance; as the
shift amount increases, so does the performance advantage
of the barrel shifter. When the barrel shifter does not bene-
fit the performance of a given application, the serial shifter
is the preferred choice since it consumes less area.

There are also application-specific tradeoffs related to the
energy consumption of different shifter implementations. When

2In the future, we will consider adding support to SPREE
that guards against such unnecessary toggling.



WBEX/M
F/D/R

(a) 2-Stage

F/D WBR/EX
/M

(b) 3-Stage

WBF EX
/MD

(c) 4-Stage

EX WBF D EX
/M

(d) 5-Stage

DF EX EX
/M WB2WB1

EX/R

(e) 7-Stage

EX
M
WB

− Execute
− Memory
− Writeback

F
D

LEGEND

Forwarding
Possible

Path

− Fetch
− Decode

R − Register

Figure 6: Processor pipeline organizations studied.
Arrows indicate possible for warding lines.

an application does not use shift operations, the energy con-
sumption of a processor that uses a serial shifter is slightly
better than one with a multiplier-based shifter. For exam-
ple, bubble sort and fir, which do not use shift operations,
experience an energy savings of over 7% when a serial shifter
is used. However, for a benchmark such as crc that uses
many shifts, the serial shifter can increase energy consump-
tion 160% compared to the multiplier-based shifter.

4.2.3 Tuning Pipeline Depth
The number of pipeline stages can greatly influence the

size and complexity of any processor. We have used SPREE
to generate pipelines between 2 and 7-stages deep3. In previ-
ous work [19] we observed that deepening the pipeline would
increase area substantially but irregularly: some stages could
be added cheaply, while others were more expensive. Using
as a baseline a processor with both a hardware multiplier
and multiplier-based shifter, in this work we explore pipeline
depth by implementing the pipelines shown in Figure 6. In
all pipelines, data hazards are resolved through interlocking,
and branches are statically predicted to be not taken.

Figure 7 shows the performance impact of varying pipeline
depth for four applications which are representative of sev-
eral trends that we observed. The figure shows that the
2-stage pipeline performs poorly compared to the rest: the
synchronous RAMs in Stratix must be read in a single stage
of the pipeline for this design, hence it suffers a stall cy-
cle. The 7-stage pipeline also has a disadvantage: branch
delay slot instructions are much more difficult to support in
such a deep pipeline, increasing the complexity of the con-
trol logic for this design. In contrast, the trends for the 3,
4, and 5-stage pipelines vary widely by application. Des ex-
periences up to 17% improved performance as the pipeline

3The 1-stage pipeline is omitted as it yields no benefit over
the 2-stage, and the 6-stage is omitted as we were unable
to achieve adequate clock frequency improvement over the
5-stage.

0

10

20

30

40

50

60

70

2-stage 3-stage 4-stage 5-stage 7-stage

Pipeline Depth

P
er

fo
rm

an
ce

 (
M

IP
S

) 
   

   
   

 

des
sha
stringsearch
dhry

Figure 7: Performance impact of varying pipeline
depth for select benchmarks.

depth increases from 3 to 5 stages, while for stringsearch

performance degrades by 18%. Sha maintains consistent
performance across the pipelines, which is a typical trend
for many applications. For dhry, performance decreases
by only 2% and then increases by 11%. Pipeline depth is
therefore another application-specific tradeoff, due to the
fact that some applications suffer more than others from
branch penalties, and data hazards of varying distances.

Although not shown, we found that the variance in trends
between applications for different forwarding paths is in-
significant. We found that they can provide area/performance/energy
tradeoffs in general, but none that differ significantly on
a per-application basis—e.g., forwarding is a “win” for all
applications, even when considering performance-per-area.
We also found that energy-per-instruction consistently de-
creases as pipeline depth increases, and this also has no
application-specific dependence. We attribute this decrease
to the impact of pipeline registers on glitching: the prop-
agation of a glitch stops at a pipeline register, hence the
additional pipeline registers in deeper pipelines result in de-
creased propagation of glitches.

4.2.4 Tuning with Unpipelined Multi-cycle Paths
Adding pipeline registers increases frequency but can also

increase total CPI, as data hazards and branch penalties re-
sult in additional pipeline stalls. Alternatively, registers can
be used in a more direct way for trading clock frequency and
CPI: registers can be inserted within a bottleneck pipeline
stage that occasionally prevent that stage from completing
in a single cycle, but that also allow the stage (and hence
the entire pipeline) to run at a higher clock frequency. As an
example, consider the execution stage if the multiplication
unit were the bottleneck: instead of using a pipelined mul-
tiplication unit, we could use an unpipelined 2-cycle multi-
plication unit. In this case, a multiplication instruction will
use the execution stage for two cycles (stalling the pipeline
for one extra cycle), while non-multiply instructions will use
the execution stage for only one cycle. In this way, we can
potentially improve performance by trading CPI for maxi-
mum operating clock frequency.

As a concrete example, we consider the 5-stage pipeline
with 2-cycle multiplier-based barrel shifter. This processor
has critical path through the shifter which limits the clock
speed to 82.0 MHz while achieving 1.80 average CPI across



0

10

20

30

40

50

60

70

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go
l

dc
t

dh
ry

O
V

E
R

A
LL

Benchmark

P
er

fo
rm

an
ce

 (
M

IP
S

)
2-cycle shifter
3-cycle shifter

Figure 8: The performance tradeoff in implementing
unpipelined multi-cycle paths on a processor across
the benchmark set.

the benchmark set. We can create another unpipelined
multi-cycle path by making the multiplier-based shifter a
3-cycle unpipelined execution unit which results in a clock
frequency of 90.2 MHz and 1.92 average CPI. The 10% clock
frequency improvement is countered by an average CPI in-
crease of 6.7%. Figure 8 shows the instruction through-
put in MIPS of both processors for each benchmark and
indicates that benchmarks can favor either implementation.
For example, bubble sort achieves 10% increased perfor-
mance when using the 3-cycle multiplier-based shifter while
crc achieves 6% increased performance with the 2-cycle im-
plementation. Hence we can use unpipelined multi-cycle
paths to make application-specific tradeoffs between clock
frequency and CPI. Note that this technique is not limited
to the execution stage, and can be applied anywhere in the
processor pipeline. In the set of explored processors this
technique was explored in large execution units (either the
shifter or multiplier) whenever these units lay in the critical
path.

4.3 Application-Tuned vs General Purpose
We have demonstrated that several microarchitectural axes

provide application-specific tradeoffs that can be tuned in
soft processors to better meet application requirements. In
this section we use SPREE to implement all combinations
of these architectural axes and exhaustively search for the
best processor for each application in our benchmark set.
We call this processor the application-tuned processor. We
also determine the processor performed best on average over
the complete benchmark set—this we refer to as the general-
purpose processor. We then analyze the difference between
the general purpose processor and the application-specific
processor and evaluate the potential for making application-
specific tradeoffs in soft processor microarchitecture.

Figure 9 shows the performance of all processors on each
benchmark measured in millions of instruction per second
(MIPS). The processors include all combinations of pipeline
stages, shifter implementations, and multiplication support
as well as different multi-cycle unpipelined paths. The bold
line indicates the performance on each benchmark of the
best-on-average (general-purpose) processor—this processor
(the 5-stage pipeline with LUT-based barrel shifting) pro-
vides the best arithmetic mean performance across the en-

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

O
V

E
R

A
LL

Benchmark

P
er

fo
rm

an
ce

 (
M

IP
S

)

General Purpose

Application-tuned

Figure 9: Performance of all processors on
each benchmark—in bold is the best-on-average,
(general-purpose) processor, the dashed line is the
fastest for each benchmark (application-tuned).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

O
V

E
R

A
LL

Benchmark

P
er

fo
rm

an
ce

 p
er

 U
ni

t A
re

a 
(M

IP
S

/L
E

) General Purpose

Application-tuned

Figure 10: Performance-per-area of all processors
on each benchmark—in bold is the best-on-average
(general-purpose) processor over all benchmarks,
the dashed is the best per benchmark (application-
tuned).

tire benchmark set, as represented by the OVERALL column.
The dashed line connects the processors that are fastest for
each individual benchmark. We observe that the best-on-
average processor is also often the fastest processor for each
benchmark, since the dashed line and bold line are often co-
linear. Some exceptions are stringsearch, CRC32, and
turbo, for which certain processors perform 16.4%, 13.3%,
and 5.7% faster respectively. Overall there is little room
for application specific consideration with respect to max-
imizing performance alone since the architectural axes we
consider generally trade area for speed. For example, the
benefit of using a serial shifter or software multiply is in re-
ducing area at the expense of performance; therefore, if only
performance is considered, there is no motivation for using
either of these two options.

We are therefore motivated to consider both area and
speed at the same time by measuring performance-per-area,
specifically by measuring MIPS/LE for each benchmark/processor
combination as shown in Figure 10. The bold line now
indicates the performance-per-area of the best-on-average
processor—this processor (the 3-stage pipeline with multiplier-



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

O
V

E
R

A
LL

Benchmark

P
er

fo
rm

an
ce

 p
er

 U
ni

t A
re

a 
(M

IP
S

/L
E

)
General Purpose
Application-tuned
Nios II

``

Figure 11: Performance-per-area across the bench-
mark set for the general-purpose, application-tuned,
and Nios II processor.

based shifter) provides the best arithmetic mean perfor-
mance across the entire benchmark set, as represented by
the OVERALL column. In this case, only 6 of the 20 bench-
marks achieve their highest performance-per-area using the
best overall processor; instead, the best processor for each
benchmark varies. By choosing an application-tuned pro-
cessor, each benchmark improves performance-per-area by
11.4% over the best overall processor on average across the
entire benchmark set; furthermore, stringsearch, qsort,
CRC32, and bubble sort improve performance-per-area
by approximately 30%. In future work, we expect this num-
ber to grow significantly when supporting more advanced
architectural axes such as datapath widths, branch predic-
tors, aggressive forwarding, caches, and VLIW datapaths.

We now compare our results with the Nios II proces-
sor variations. Figure 11 plots the performance-per-area
across the benchmark set for: (i) the best general-purpose
(best-on-average) processor; (ii) the best application-tuned
tuned processor; (iii) the best Nios II processor variation
(s, e, or f). For 9 of the 20 benchmarks, the application-
tuned processor yields significantly better performance-per-
area than any of either the general-purpose processor or the
commercial Nios II variants. The success of the Nios II on
the CRC32 benchmark is due to the exceptional wall-clock-
time performance of the Nios II/s. On average across all
benchmarks, the application-tuned processors generated by
SPREE are the most area-efficient, yielding 22% better re-
sults than Nios II because of the larger customization space
afforded by SPREE.

4.4 ISA Subsetting
So far we have investigated microarchitectural customiza-

tions that favor an individual application but still fully sup-
port the original ISA. In this section, we propose to capi-
talize on situations where: (i) only one application will run
on the soft processor; (ii) there exists a reconfigurable envi-
ronment allowing the hardware to be rapidly reconfigured to
support different applications or different phases of an appli-
cation. We customize the soft processor by having it support
only the fraction of the ISA which is actually used by the
application. SPREE performs this ISA subsetting by pars-
ing the application binary to decide the subsetted ISA, re-
moving unused connections and components from the input

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

A
V

E
R

A
G

E

P
er

ce
nt

 o
f I

S
A

 U
se

d

Figure 12: ISA usage across benchmark set.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T
_M

I

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

A
V

E
R

A
G

E

Benchmark

F
ra

ct
io

n 
of

 A
re

a

2-stage pipe, LUT-based barrel shift

3-stage pipe, multiplier-based barrel shift

5-stage pipe, LUT-based barrel shift

Figure 13: The impact on area of ISA subsetting on
three architectures.

datapath, and then generating simpler control. Figure 12
shows the fraction of the 50 MIPS-I instructions supported
by SPREE that are used by each benchmark, which is rarely
more than 50%. Bubble sort, fir, and CRC32 use only
about one quarter of the ISA. With such sparse use of the
ISA, we are motivated to investigate the effect of eliminating
the architectural support for unused instructions.

To evaluate the impact of ISA subsetting, for each of
the 20 benchmarks we subsetted three processor architec-
tures: (i) A 2-stage pipeline with LUT-based barrel shifting;
(ii) The 3-stage pipeline with multiplier-based barrel shift-
ing; (iii) a 5-stage pipeline with LUT-based barrel shifting.
All three processors utilize hardware multiplication support.
Since the cycle-by-cycle execution of each benchmark is un-
affected by this experiment, we use clock frequency to mea-
sure performance gain. The relative area of each subsetted
processor with respect to its non-subsetted version is shown
in Figure 13. It is evident that the three benchmarks which
use only 25% of the ISA (bubble sort, fir, and CRC32)
obtain the most significant area savings. For the 2-stage ar-
chitecture, these 3 benchmarks obtain a 60% area savings,
while most other benchmarks save 10-25% area. Closer in-
spection of these three benchmarks reveal that they are the
only benchmarks which do not contain shift operations—
shifters are large functional units in FPGAs, and their re-
moval leads to a large area savings.4 The savings is more

4In the MIPS ISA, there is no explicit nop instruction, hence



0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T
_M

I

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

A
V

E
R

A
G

E

Benchmark

C
lo

ck
 F

re
qu

en
cy

 S
pe

ed
up

2-stage pipe, LUT-based barrel shift

3-stage pipe, multiplier-based barrel shift

5-stage pipe, LUT-based barrel shift

Figure 14: The impact on clock speed of ISA sub-
setting on three architectures.

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go
l

dc
t

dh
ry

Benchmarks

Lo
gi

c 
E

ne
rg

y 
R

ed
uc

tio
n

Figure 15: Energy consumption of subsetting on 3-
stage pipeline.

pronounced in the 2 and 5-stage pipeline where the shifter
is LUT-based and hence larger (as seen in Section 4.2.2).

Figure 14 shows the clock frequency improvement for the
subsetted architectures. In general we see modest speedups
of 7% and 4% on average for the 2 and 5-stage pipelines,
respectively. The 3-stage pipeline is not improved at all,
as its critical path is in the data hazard detection logic and
hence cannot be removed. More positively, the modest clock
frequency speedups indicate that our pipelines have well-
balanced logic delays: when logic is removed from a given
path there is often another path to maintain the previous
critical path length, hence the odds of a given subsetting
reducing all paths is relatively small. However, there is no-
table performance improvement in the 2-stage pipeline for
the three benchmarks without shifts, bubble sort, fir, and
CRC32. This is because the LUT-based shifter lay in the
critical path of the pipeline and caused poor balancing of
logic delay. Removing the shifter allows for a roughly 20%
improvement in clock frequency for these benchmarks.

Figure 15 shows the reduction in energy resulting from

nops are encoded as a shift-left-by-zero. Therefore to re-
move the shifter, one must include special hardware to han-
dle these nop instructions, or else re-encode the nop. In this
work nops are re-encoded as add zero (similar to Nios II) to
allow for complete removal of the shifter, since all bench-
marks use adds.

0

10

20

30

40

50

60

70

80

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T
_M

I

di
jk

st
ra

pa
tr

ic
ia go
l

dc
t

dh
ry

A
V

E
R

A
G

E

Benchmark

P
er

fo
rm

an
ce

 p
er

 A
re

a 
(M

IP
S

/1
00

0L
E

s)
   

   
  General purpose

Application-tuned

Subsetted general purpose

Subsetted application-tuned

Figure 16: Performance-per-area of tuning, subset-
ting, and their combination.

ISA subsetting. Note that energy dissipated by the memory
is ignored since it accounts for 80-90% of the energy, and
it can never be removed by subsetting since all applications
fetch and write to memory. The figure demonstrates that
the removal of high-toggle rate components and simplified
control result in significant energy savings in the proces-
sor pipeline. The subsetted processors of some benchmarks
such as fft, bitcnts, and CRC32 provide greater than 65%
energy savings. On average across all the subsetted proces-
sors, approximately 27% of the non-memory energy can be
saved. A miniscule increase in energy was seen for the dct

benchmark which we attribute to noise in the CAD system,
total system energy decreased very slightly but the fraction
attributed to logic increased unexpectedly.

4.5 Combining Customization Techniques
We have presented two methods for creating application-

specific soft processors: (i) architectural tuning, which al-
ters soft processor architecture to favor a specific bench-
mark; and (ii) ISA subsetting, which removes architectural
support that is not utilized by the benchmark. In this sec-
tion we compare the effectiveness of the two techniques in
terms of performance-per-area both individually and com-
bined. We define the best general-purpose processor as the
single processor which achieves the greatest performance-
per-area on average across all benchmarks, and the best
application-tuned processors as the set of processors which
achieve the best performance-per-area for each benchmark.
For each processor and benchmark we then perform ISA sub-
setting, and measure the performance-per-area of the four
combinations: general-purpose, application-tuned, subset-
ted general-purpose, and subsetted application-tuned.

Figure 16 shows the performance-per-area for all four com-
binations. As shown previously, the application-tuned pro-
cessor is consistently better than the general-purpose pro-
cessor. ISA subsetting is more effective on the general-
purpose processor than on the application-tuned processors:
the performance-per-area is improved by 16.2% on average
for the general-purpose processor while by only 8.6% for the
application-tuned processor. This is intuitive since since
the hardware which was eliminated during subsetting was
likely reduced in size during the tuning of the application-
tuned processor. For example, fir uses no shifting, there-
fore a small serial shifter is chosen during tuning and later



removed in subsetting, resulting in a less dramatic area
reduction. There is a large variation when deciding be-
tween these two methods: some benchmarks such as fir

achieve up to 25% increased performance-per-area by using
the application-tuned processor over the subsetted general-
purpose processor, while others such as qsort achieve a
25% increase by using the subsetted general-purpose pro-
cessor over the application-tuned processor (i.e., they are
opposite). These two methods are very competitive as sum-
marized in Figure 16 by the AVERAGE bars, which show the
subsetted general-purpose processor having slightly higher
performance-per-area than the application-tuned (by only
2.2%).

The subsetted application-tuned processor combines all
customizations (both the microarchitectural tuning and the
ISA subsetting) and therefore often achieves the best performance-
per-area. The combination of the two techniques is com-
plementary: on average, subsetted application-tuned pro-
cessors achieve more than 10% better performance-per-area
across the benchmark set than either microarchitectural tun-
ing or ISA subsetting alone. However, for each benchmark,
either technique can come to within 4% of the combined
approach. Overall, the combined approach can improve
performance-per-area by up to 80% for bubble sort, and
by 24.5% on average across the benchmark set.

5. CONCLUSIONS
The reconfigurability of soft processors can be exploited

to meet design constraints by making application-specific
tradeoffs in their microarchitecture. In this paper we used
the SPREE infrastructure to generate and evaluate cus-
tomized RTL implementations of soft processors, investi-
gating the individual tradeoffs in customizing the hardware
support for multiplication, the shifter implementation, the
pipeline depth, and the number of cycles in unpipelined
multi-cycle paths. We applied all of these customizations
in all combinations and determined that the best of these
application-specific processors offers considerable advantages
over the best-on-average general purpose processor: an im-
provement in performance-per-area of 11.4% on average across
all benchmarks.

We also used the SPREE infrastructure to perform ISA
subsetting, where the hardware support for unused parts
of the ISA are removed for each application. We obtained
large reductions in the area and power of the processors
with this technique—reductions of approximately 25% for
both metrics on average and up to 60% for some bench-
marks. Combining our techniques for microarchitectural
tuning with ISA subsetting results in an even more dramatic
benefit, where performance-per-area is improved by 24.5%
on average across all benchmarks.

In the future we will explore a more broad set of cus-
tomizations including branch prediction, caches, datapath
width, VLIW datapath parallelism, and other more advanced
architectural features. We also plan to investigate more ag-
gressive customization of these processors, including chang-
ing the ISA to encourage better customization. Finally, we
are interested in exploring the benefits of tuning the com-
piler based on a more exact knowledge of the target archi-
tecture.

6. REFERENCES
[1] ARCtangent. http://www.arc.com.

[2] Dhrystone 2.1. http://www.freescale.com.

[3] MicroBlaze. http://www.xilinx.com/microblaze.

[4] Nios II.
http://www.altera.com/products/ip/processors/nios2.

[5] RATES - A Reconfigurable Architecture TEsting Suite.
http://www.eecg.utoronto.ca/∼lesley/benchmarks/rates/.

[6] XiRisc.
http://www.micro.deis.unibo.it/∼campi/XiRisc/.

[7] Xtensa. http://www.tensilica.com.

[8] R. Cliff. Altera Corporation. Private Comm, 2005.

[9] R. Dimond, O. Mencer, and W. Luk. CUSTARD - A
Customisable Threaded FPGA Soft Processor and
Tools . In International Conference on Field
Programmable Logic (FPL), August 2005.

[10] M. Guthaus and et al. MiBench: A free, comercially
representative embedded benchmark suite. In In Proc.
IEEE 4th Annual Workshop on Workload
Characterisation, December 2001.

[11] M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi,
A. Kitajima, and M. Imai. PEAS-III: An ASIP Design
Environment, September 2000.

[12] D. M. Lewis and et al. The StratixTM routing and
logic architecture. In International symposium on
Field-programmable gate arrays, pages 12–20, 2003.

[13] P. Metzgen. Optimizing a High-Performance 32-bit
Processor for Programmable Logic. In International
Symposium on System-on-Chip, 2004.

[14] P. Mishra, A. Kejariwal, and N. Dutt.
Synthesis-driven Exploration of Pipelined Embedded
Processors. In VLSI Design, pages 921–926, 2004.

[15] K. Morris. Embedded Dilemma.
http://www.fpgajournal.com/articles/embedded.htm,
November 2003.

[16] J. Turley. Survey: Who uses custom chips. Embedded
Systems Programming, August 2005.

[17] P. Yiannacouras. SPREE.
http://www.eecg.utoronto.ca/∼yiannac/SPREE/.

[18] P. Yiannacouras. The Microarchitecture of
FPGA-Based Soft Processors. Master’s thesis,
University of Toronto, 2005.

[19] P. Yiannacouras, J. Rose, and J. G. Steffan. The
Microarchitecture of FPGA Based Soft Processors. In
CASES’05: International Conference on Compilers,
Architecture and Synthesis for Embedded Systems,
pages 202–212. ACM Press, 2005.


