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Abstract

Operating systems only provide general-purpose I/O op-
timisation since they have to service various types of ap-
plications. However, application level I/O optimisation can
achieve better performance since an application has a bet-
ter knowledge of how to optimise disk I/O for the applica-
tion. In this paper we provide a solution for application-
specific I/O for optimising a search engine. It shows a 28%
improvement when compared to the general-purpose I/O
optimisation of Linux. Our result also shows a 11% im-
provement when the Linux I/O optimisation is bypassed.

1 Introduction

Information Retrieval (IR) is the process of finding rel-
evant information, based on user queries, in a large collec-
tion of documents. To increase query throughput, an index
of all documents is pre-generated. User queries are satisfied
by searching the index. Traditionally hard disks are used
to store the index and document collection. However, hard
disks suffer from mechanical limitations, including the seek
time and rotational latency.

Historically three techniques have been used for disk I/O
optimisation. First, buffer caching keeps already-referenced
disk data in main memory. Further disk I/O requests are re-
duced if the requests can be satisfied by simply referencing
the memory buffer. Since system main memory is limited,
not all disk data can be buffered. Various buffer replacement
policies have been developed to keep the most-referenced
or most-valuable disk data in memory. Second, prefetch-
ing (also called readahead) reads disk data into the memory
buffer in advance. When the data is needed by subsequent
disk I/O requests, these requests can be served by referenc-
ing the memory buffer. Prefetching is normally used for
sequential disk access only and can be detrimental to ran-
dom disk access. Third, scheduling re-orders the requests
issued by applications, causing the disk head to move in

one direction from the centre of the disk to the edge before
moving from the edge back to the centre, in order to reduce
the total seek distance necessary to service a set of requests.
Scheduling minimises overall disk seek times and thus in-
creases disk throughput.

General-purpose operating systems usually provide
buffer caching, prefetching and scheduling optimisation al-
gorithms. However, the I/O algorithms are general-purpose,
as these operating systems have to serve various kinds of
applications. For special-purpose applications, it is better
for applications to deploy their own I/O optimisation algo-
rithms, rather than using the general ones provided by the
underlying operating system.

In the paper, we provide a solution for an application-
specific I/O for a search engine, using special-purpose
buffer caching, prefetching and scheduling algorithms. We
also discuss how to bypass the OS’s I/O optimisation (using
Linux as an example). Our application-specific I/O optimi-
sation shows a 28% improvement when compared with the
general-purpose optimisation algorithms in Linux. Our re-
sult also shows a 11% performance increase when the Linux
I/O optimisation is bypassed.

2 Overview

2.1 Application Level

Inverted files are a well-known index structure in infor-
mation retrieval. The index has two parts: a dictionary of
unique terms extracted from a document collection and a list
of postings (a pair of <document number, term frequency>)
for each of the dictionary terms [28]. A key objective in the
development of the index is to reduce the size of the inverted
files, since large inverted files require more I/O to load the
postings. Here we discuss techniques to reduce the size of
the list of postings since the size of the postings dominates
the total size of the inverted files.

Compression is often used to reduce the size of the post-
ings [26]. By comparing Variable Byte, Elias gamma, Elias



delta, Golomb and Binary Interpolative compressions, Trot-
man [25] concludes that Variable Byte coding should be
used unless disk space is at a premium. Anh & Moffat sub-
sequently [4, 5] construct word-aligned binary codes, which
are effective at compression and fast at decompression.

Skipping and impact ordering can also improve runtime
performance even though they do not reduce the amount of
I/O required. Skipping avoids processing parts of the post-
ings list by skipping over postings which are unlikely to be
relevant [17]. For impact ordering, the postings list is sorted
using some impact factors (influence on relevance score),
and the processing of the list is stopped after reaching a cer-
tain threshold [3]. Anh & Moffat [6] develop dynamic im-
pact ordering, which has a better computation performance
than searching to completion.

Strohman & Croft [24] provide an in-memory retrieval
system, combining impact ordering with inverted list skip-
ping. Their system can evaluate queries 7 times faster than
the algorithm presented by Anh & Moffat [6]. However in
such systems, only partial postings are stored (due to main
memory constrains), so they are unable to search to com-
pletion, something essential for medical and legal search.

Markatos [16] shows the existence of temporal locality
in queries and suggests that dynamic caching should be used
when a large cache memory is available, and static caching
is better for small cache memory. Baeza-Yates et al [7] sug-
gest that caching posting lists results in better hit ratios than
caching query answers, and that static caching can be more
effective than dynamic caching.

Fagni et al [12] propose an adaptive prefetching strat-
egy, which anticipates future requests, to improve the per-
formance of web search engines. Lempel & Moran [15]
develop a dynamic caching algorithm (Probabilistic Drive
Caching), that includes a prefetching capability.

2.2 Kernel Level

An old and yet still widely used buffer replacement al-
gorithm is the Least Recently Used (LRU) algorithm, due
to its simple and effective exploitation of temporal local-
ity: a block that is accessed recently is likely to be accessed
again in the near future. There are also a large number of
other algorithms such as LRU-K, 2Q, MQ, LRFU, ARC,
LIRS [11]. All these algorithms focus only on temporal
locality. Song et al [13] propose a scheme called Dual Lo-
cality (DULO), which takes consideration of both temporal
and spatial locality to improve I/O performance.

Butt et al [9] show that prefetching has a significant im-
pact on the performance of various replacement policies,
and prefetching can significantly improve the performance
of sequential access applications, but not random access ap-
plications. We believe access to inverted files is essentially
random and so low level prefetching will be ineffective.

Pai et al [19] and Wu et al [27] discuss the default reada-
head1 algorithm in the Linux 2.6 kernel. Pai et al impove
random workloads with small changes to the readahead al-
gorithm, while Wu et al develop a new algorithm called on-
demand readahead, which reduces the complexity of the de-
fault algorithm with slight performance increases.

Pratt & Heger [20] conduct an comparison of four I/O
schedulers implemented in the Linux 2.6 kernel under var-
ious workload scenarios, including Noop, Deadline, Antic-
ipatory and Completely Fair Queueing (CFQ). They con-
clude that there is no best I/O scheduler and the choice of
an I/O scheduler depends on the workload pattern, the hard-
ware setup and the file system used. Seelam et al [23] imple-
ment a new I/O scheduler called Cooperative Anticipatory
Scheduler (CAS) base on the Anticipatory Scheduler (AS).
CAS addresses the starvation encountered in AS.

2.3 The Linux I/O Subsystem

An operating system must provide protection against un-
authorised access to system resources. Modern processors
provide a hardware solution by having at least two different
protection levels in the CPU itself. The Linux kernel utilises
such a hardware solution, allowing kernel code to execute
at the highest level (supervisor mode) and user applications
to execute at the lowest level (user mode). Figure 1 shows
a global picture of various components that form the block
I/O subsystem in the Linux 2.6 kernel.

At the top level of the subsystem, the Virtual File System
(VFS) provides a common file model for various different
file systems. The generic block layer provides a common
interface for various disks. The disk cache provides a data
buffering mechanism and the readahead reads data in ad-
vance. The kernel uses a variant buffer replacement pol-
icy similar to the 2Q replacement policy [14]. The kernel
maintains two LRU lists called the active list and the in-
active list. The active list is used for holding the actively
accessed pages of all processes, while the inactive list con-
tains less frequently accessed pages. Pages on the inactive
list are replaced when the system has high memory usage.
There are two types of readahead; static and dynamic. For
static readahead, the kernel always performs I/O requests
in blocks, where a block is normally two physical disk sec-
tors. Dynamic readahead only applies to sequential access,
here a current window holds the disk data for the current re-
quest and a readahead window holds the data that satisfies
expected future requests.

The disk drivers, at the lowest level, perform the actual
I/O requests to disk. The order of I/O requests issued by ap-
plications can differ from the ones performed by the drivers
as disk requests are scheduled by the I/O scheduler. In case
of a read, the drivers read data from disk to the buffer cache

1In the Linux kernel, prefetching is often referred as readahead.



Figure 1. The Linux I/O Subsystem (from [8])

and then the kernel copies the requested buffer to the appli-
cation. The extra copy operation is required as the kernel
and applications operate in different CPU modes.

The design of the Linux I/O subsystem has drawbacks.
First, an extra copy operation is required for read and write
requests. However, the O_DIRECT in the Linux 2.6 ker-
nel bypasses the I/O subsystem and thus allows direct disk
read and write. Second, buffer replacement policies man-
age buffer caches usually in terms of sectors. Individual
applications often use their own data structures. It is more
efficient to buffer the application’s data structures. How-
ever, such data structures are not visible to the kernel. The
same is true for readahead and I/O scheduling.

In summary, what an operating system can provide is
general-purpose I/O algorithms since it has to serve var-
ious types of applications. Applications define their own
special-purpose data structures, while the OS kernel oper-
ates in sectors. This extra mapping of application’s data
structures into sectors is time consuming.

3 Application-specific I/O Optimisation

Caching can be achieved using either query results or
posting lists. Caching query results not only optimises
disk I/O, but also avoids reprocessing of queries evaluation.
However, queries tend to have low frequency of repetition
and thus result in a high cache miss rate [7].

Caching posting lists, on the other hand, can reach a high
hit ratio [7]. One way of implementing a cache is to de-
ploy a buffer replacement policy, like LRU or Least Fre-
quently Used (LFU), which defines how efficiently a finite
amount of cache memory is used for large amounts of data
on disk. This is so called dynamic, due to frequent update

of the cache memory. One of the challenges for dynamic
caching is that caching variable sized posting lists is diffi-
cult in terms of cache memory management.

Instead of frequent update of cache memory, another
way to cache posting lists is to define what posting lists are
the most important and then let them stay in cache memory
without eviction. This is called static caching because the
most important posting lists are already cached, there is no
need to further update the cache memory. The open ques-
tion is how to define the importance of postings lists. One
solution is to choose query terms which have highest query-
term frequencies fq(t). Another solution can be based on
document-term frequencies fd(t). Terms with high fd(t)
have long posting lists, thus consume more cache memory.
However, caching long posting lists reduces disk I/O further
as it takes more time to read long posting lists from disk.
Baeze-Yates et al [7] argue that the importance should be
defined as fq(t)

fd(t) (Posting lists with high query-term frequen-
cies and short length in size are preferred). Static caching
simplifies cache management by eliminating the buffer re-
placement policy problem. However, there is a price to pay.
Because the importance of posting lists is based on the anal-
ysis of the early query log, the importance needs to be re-
defined if incoming queries are outside the coverage of the
early query log. The operation of dealing such problem is
to re-fill the cache, resulting in very low hit ratio and per-
formance decrease.

Both dynamic and static caching have pros and cons.
Dynamic caching is good at keeping up with frequent
change in queries, while static caching simplifies cache
management and results in high hit ratio under normal cir-
cumstances. An obvious question to address is the possi-
bility of combining both dynamic and static caching. The
potential problems are: (1) which posting lists to cache dy-
namically and which to cache statically, (2) how to dis-
tribute cache memory among them, (3) is there a perfor-
mance gain for such a combination.

Prefetching and scheduling are straightforward. The ac-
cess pattern of a search engine can be predicted by the query
terms. Posting lists for the next term can be prefetched
while the current term is being processed.

If we consider that posting lists are sorted in alphabetic
order of the dictionary terms, we can define a new scheduler
which sorts disk I/O requests in the order of the dictionary
terms. The sorting can be either local or global, where lo-
cal means sorting terms in a single query and global means
sorting terms in several queries executed concurrently. Lo-
cal sorting has quick individual response time while global
sorting has better overall performance. For the scheduler,
once the sorting is performed in ascending order, then next
time the sorting should be done in descending order, and so
on. This allows the disk head to move from the centre of the
disk to the edge and then back to the centre.



4 Test Data

We used the .GOV collection [10]. For evaluation of the
search engine, we concentrated on efficiency, rather than
effectiveness. However, we deployed Okapi BM25 [21] for
ranking:

RSVd =
∑
t∈q

log

(
N

dft

)
· (k1 + 1) tftd

k1

(
(1 − b) + b ×

(
Ld

Lavg

))
+ tftd

Here, N is the total number of documents, and dft and
tftd are the number of documents containing the term t
and the frequency of the term in document d, and Ld and
Lavg are the length of document d and the average length
of all documents. The empirical parameters k1 and b have
been shown to be effective when set to 1.2 and 0.75 re-
spectively [21]. There are other models of Okapi BM25.
However, this model guarantees positive RSVd values as
log N

dft
is always positive. Positive numbers are required

when Variable Byte coding is used to compress/decompress
quantised RSVd values.

Table 1 shows a summary of the document collection.
The documents in the collection were parsed with common
stopwords included (not removed) and no stemming. The
postings were stored in alphabetic order of the words in
the dictionary, and were compressed using Variable Byte
coding. The postings file has two versions: (1) the stan-
dard postings file which stores the pairs of <document num-
ber, term frequency>, (2) the pre-BM25 version stores the
pairs of <document number, pre-calculated BM25 result>,
where the pre-calculated BM25 ranking result (+0.5) were
rounded to the nearest integer.

Our pre-BM25 quantisation is a variant of Moffat &
Anh’s quantisation method [18, 3], in which term frequen-
cies are approximately mapped to the range (0..2b) and
stored in b bits. Moffat & Anh claim that quantisation only
slightly affects the retrieval precision when the value of b
is greater than 5. In our current research, we are not con-
cerned with retrieval precision instead we concentrate on
performance and rely on the result of Moffat and Anh when
it comes to the precision loss through quantisation.

We created two raw disk images with a simple structure
for the two postings files. Each image had a copy of the cor-
responding postings file at the beginning, followed by the
dictionary file which started at a new sector location. The
raw disk images were copied to the disk using the dd com-
mand. Two macros were defined to convert a file location to
a sector location and to find the offset in the sector. By using
raw disk images, we avoided the overhead of the file system
and the variance of testing results due to fragmentation.

The TREC 2007 Million Query Track [2] was used for
throughput evaluation. The track has a total of one mil-
lion queries with a total of 41095 terms. The average query
length is about 4 terms.

Collection 18GB Documents 1247753
Unique Words 8849995 Avg Doc Length 975 words
Postings File 819MB With Pre-BM25 818MB

Dictionary File 394MB
Raw Image 1.2GB With Pre-BM25 1.2GB

Table 1. Summary of the .GOV collection

Specification ST380215A Capacity 80GB
Speed 7200RPM Transfer Rate 100MB/sec

Cache Buffer 2MB Avg Latency 4.16ms

Table 2. Specification for the test disk [22]

5 Experiments

We conducted tests on a PC with an Intel single core Pen-
tium 4 CPU running at 2.4GHz, with 512KB of L2 cache
and a speed of 533MHz for the Front Side Bus. The system
has 768MB of DDR266 main memory. We used separate
disks for installation of kernels and testing. The testing disk
is the IDE primary master, while the kernel disk is config-
ured as the primary slave. The kernel disk is not needed for
the performance test. Table 2 shows the specification for
the testing disk. The chosen Linux distribution was Debian
Etch, with the default Linux 2.6.8 kernel.

Throughout our experiments, only the pre-BM25 raw
disk image was used because preliminary experiments show
that ranking is always faster than the standard BM25 image.
The RDTSC instruction was used for timing purpose and
the number of cycles returned by RDTSC was converted to
seconds. In order to minimise bias, we re-booted the testing
machine for each run and the swap partition used for Linux
was disabled. Each test was run five times and the average
was taken as the final result.

We carried out two categories of testing. First we used
O_DIRECT to demonstrate the effectiveness of caching,
prefetching and scheduling for the search engine. The rea-
son we used O_DIRECT but not the default read() is be-
cause we want to minimise the impact of the Linux I/O sub-
system and concentrate on application level optimisation.
Then we compared the performance of the application level
I/O optimisation with the Linux I/O subsystem by compar-
ing O_DIRECT to normal read().

5.1 Application Level

For caching, we deployed static caching, dynamic
caching and the combination of both. Stopwords tend to
have long posting list and caching them can reduce disk I/O.
We used the list of stopwords from [1] and there were 571
stopwords in the list. The posting list of a stopword was
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Figure 2. Performance of the caching, prefetching and scheduling algorithms for the search engine

statically cached when it first appeared in a query. We de-
veloped a simple LRU cache policy for dynamic caching
and the cache policy was defined to cache postings lists of
terms which were repeated more than once. We did not want
to simply cache all terms dynamically, so as to avoiding fre-
quent cache eviction. The size of the dynamic cache mem-
ory was defined as the total available physically memory
after that which had been allocated for the static caching.
We found that the maximum number of posting lists, the
dynamic caching could hold, was 2400 for the given query
set.

In this paper, we are not trying to find an optimal solu-
tion for application level caching. Instead, we want to use
simple but effective caching algorithm to demonstrate that
application level caching is better than the generic kernel
level I/O optimisation.

Figure 2(a) shows the performance of the static and dy-
namic caching individually and in combination against nor-
mal O_DIRECT in which there is no optimisation at all.
Static and dynamic caching performed about 38% and 71%
better than normal O_DIRECT (which took about 451 sec-
onds), and the overall performance of static and dynamic
caching had about 73% increase. As shown in the figure,
the dynamic caching performed a lot better than the static
caching. This did not mean that the dynamic caching al-
gorithm was superior to the static since they were allocated
with different size of cache memory. Note that the max-
imum number of entries for dynamic cache was 2400 for
both individual and overall testing.

For prefetching, we defined two buffers for storing post-
ing lists: one for serving the current request, while the other
serves the next request. Two threads were introduced to in-
terchangeably switch between the two buffers. While one
thread waits for I/O, the other can process the posting list
already loaded in the other buffer. As shown in Figure 2(b),
the performance of prefetching was almost the same as nor-
mal O_DIRECT. This is not what we expect and is probably
due to the overhead of multi-threading (in our implementa-
tion, new threads were allocated for each single query).

For scheduling, we re-ordered the query terms in alpha-

betic order of dictionary terms. The first query was sorted
in ascending order while the second was sorted in descend-
ing order, and so on. Since we processed one query at a
time, we only sorted query terms locally. The performance
of the scheduling was about 9 seconds faster than normal
O_DIRECT as shown in Figure 2(c).

5.2 Search Engine Comparison

We carried out four tests: (1) O_DIRECT Normal, (2)
O_DIRECT Optimised, (3) read() Normal and (4) read()
Optimised. The optimised tests had the application level
I/O subsystem enabled, while the normal tests had no appli-
cation level optimisation. The O_DIRECT tests was essen-
tially the same as the read() tests, and the only difference
was the way the disk was accessed.

As Shown in Figure 3, the processing time for ranking
and decompression were similar for all tests, where decom-
pression is the process of decompressing posting lists, and
the ranking is the process of accumulating ranking results.

The I/O read time is the total time taken reading the
postings from the disk. The O_DIRECT Normal test took
the longest time for reading I/O (about 451 seconds). The
O_DIRECT Optimised test performed about 73% better
than O_DIRECT Normal. The read() Normal and Opti-
mised tests took about 167 and 136 seconds, respectively.
Interestingly, read() Optimised also benefited from the ap-
plication level optimisation. O_DIRECT Optimised beat
read() Normal by 47 seconds (28% improvement), show-
ing that application-specific optimisation was superior to
that is offered by the Linux kernel. O_DIRECT Optimised
also beat read() Optimised by 16 seconds (11% improve-
ment), demonstrating the overhead of the Linux I/O subsys-
tem when the application provided its own I/O optimisation.

The total time is comprised of the ranking time, decod-
ing time and the I/O read time. The ranking time repre-
sents the part of the search engine which is CPU-intensive,
whereas the I/O read time represents the part which is I/O-
intensive. By using either application level or kernel level
I/O optimisations, we have shifted the search engine to
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CPU-bound. The overall total improvement for O_DIRECT
Optimised was about 31%, 7% and 2% when compared
with O_DIRECT Normal, read() Normal and Optimised.

6 Conclusion & Future Work

We have shown the efficiency of an application-specific
I/O optimisation over the Linux kernel I/O optimisation
for search engines. Among the caching, prefetching and
scheduling algorithms, caching is the most effective method
for optimising disk I/O. However, caching is the most com-
plicated I/O algorithm to implement. For the disk ac-
cess of the search engine, the overall improvement of the
application-specific I/O subsystem is about 73% and 28%
when compared with no disk I/O optimisation and the Linux
I/O subsystem respectively. Our results also show an 11%
overhead of the Linux I/O subsystem when the application
provides its own I/O optimisation.

In the future, we plan to further improve the caching,
prefetching and scheduling algorithms and to address the
CPU boundness of the application.
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