
Application-specific Hardware Accelerator for
Implementing Recursive Sorting Algorithms

Dmitri Mihhailov #1, Valery Sklyarov *2, Iouliia Skliarova *3, Alexander Sudnitson #4

CED, Tallinn University of Technology
Tallinn, Estonia

1 d.mihhailov@ttu.ee
4 alsu@cc.ttu.ee

* DETI/IEETA/HIPEAC, University of Aveiro
Aveiro, Portugal
2 skl@ua.pt

3 iouliia@ua.pt

Abstract—The paper is dedicated to hardware accelerators for
data sorting using tree-based recursive algorithms. Since
recursive calls are not directly supported by hardware
description languages, they are implemented using the model of a
hierarchical finite state machine. The paper presents new results
in: 1) computational models and hardware architectures; 2)
optimization and parallel execution of recursive sorting
algorithms; 3) the analysis and comparison of alternative and
competitive techniques for implementation of recursive sorting
algorithms both in hardware and software. Experiments with the
proposed FPGA-based hardware accelerators demonstrate that
the performance of sorting operations is increased compared to
known implementations.

I. INTRODUCTION

Recursive algorithms are frequently used in a wide range of
practical applications [1] and the most often for various kinds
of binary search. Let us consider an example of using a binary
tree for sorting data [1]. Suppose that the nodes of the tree
contain three fields: a pointer to the left child node, a pointer
to the right child node, and a value (e.g. an integer or a pointer
to a string). The nodes are maintained so that at any node, the
left sub-tree only contains values that are less than the value at
the node, and the right sub-tree contains only values that are
greater. Methods [2] permit to process such a tree in hardware
enabling incoming data items to be sorted. This is achieved
with the aid of two recursive algorithms A1 and A2 in such a
way that A1 builds the tree and A2 outputs the sorted data
items from the tree. The algorithms A1 and A2 have two
important features: 1) it is not necessary to rebuild the tree in
order to insert new data items; and 2) the number of data items
to be sorted might be unknown. Such features are required, in
particular, for priority buffers (queues) that store an incoming
(sequential) flow of data and allow outputs to be selectively
extracted from the buffer for processing. Buffers of this type
are required for such practical applications as [3,4] and they
can be constructed in hardware on the basis of recursive
sorting algorithms. These algorithms are also very common
for other engineering applications both in hardware and in
software [1,2].

Different methods for implementation of recursive
algorithms in hardware are considered in [2,5-10]. This paper
evaluates, analyzes, and improves hardware circuits that
implement recursive algorithms with primary objective to use
such circuits as FPGA-based accelerators targeted to data
sorting and associated problems such as the considered above
priority buffers. Many examples that demonstrate the
advantages of recursion are presented in [1,2,5-14]. An in-
depth review and comparison of different approaches to
hardware implementations appears in [14].

The remainder of this paper is organized in four sections.
Section II suggests new parallel hardware-oriented algorithms
for recursive data sorting and improves the known sequential
algorithms. Section III is dedicated to models of hierarchical
finite state machines (HFSM) that permit recursive algorithms
to be implemented in hardware. Section IV presents the results
of experiments, comparisons and analysis of the models,
methods and implementations in hardware and software. The
conclusion is given in Section V.

II. RECURSIVE DATA SORTING

A. A Known Technique
Algorithms for many computational problems are based on

the generation and traversal of a binary tree where the
recursive technique is very helpful. Let us assume that a tree
for sorting has already been built. Now we would like to use
the tree to output the sorted data. A known algorithm [2],
mentioned in the introduction as A2, solves this problem. Note
that algorithm A2 is sequential. We would like to accelerate
sorting and this is achieved through parallelization considered
below.

B. Parallel Implementations
Suppose input data items arrive in a sequence shown at the

bottom of Fig. 1. In the first method that we propose (let us
call it Sp), the left (such as the sub-tree with the root b in Fig.
1 and the right (such as the sub-tree with the root c in Fig. 1)
sub-trees of the main tree root (a in Fig. 1) are built and
traversed in parallel using the algorithms A1 and A2. There are
two simultaneously functioning HFSMs that are a master and

269

978-1-4244-8982-4/10/$26.00 ©2010 IEEE

a slave. The master HFSM takes the first incoming data item;
builds the root of the tree; and activates the slave HFSM.
After that the master and the slave HFSMs implement the
algorithm A1 for the left (see a fragment enclosed by a dashed
curve in Fig. 1) and the right (see a fragment outside of the
closed dashed curve in Fig. 1) sub-trees in parallel. As soon as
the incoming flow of input items is ended, the master HFSM
outputs the left sub-tree (the nodes b, d, e, h, i in Fig. 1); and
the slave HFSM outputs the right sub-tree (the nodes c, f, g, j,
k, l in Fig. 1). Thus, two algorithms A2 are executed in parallel
by two HFSMs.

���

���

���

���

�	�

���

	��

���

�

��� ���

���������	�����������

���������	��������������

���

�

� �

� �

�
�

�
�

�
�

�

�
�

Fig. 1. Binary tree for data sort

By adding simple counters to the root that count the
number of left and right descendant nodes during the
construction of the tree, we can easily calculate the addresses
for the sorted data in an output memory. If needed, more
parallel branches can be introduced using cascade structures.

However, there is one significant limitation. If the tree is
unbalanced, one HFSM will need significantly more time for
data processing than the other. In the second method that we
propose (let us call it Spp), the master HFSM activates the
slave HFSM just if there is a sufficient number of processing
steps. Each node of the tree is provided with two additional
fields indicating the number of nodes in the left and in the
right sub-trees accordingly. For the algorithm A2 two HFSMs,
the master (HFSM1) and the slave (HFSM2), begin their job at
the same time. Both the master and the slave HFSMs repeat
the same steps to remember the way from the root for further
backward. In each tree node, the master HFSM evaluates the
number of nodes for forward propagation to the left Nl and to
the right Nr. The latter (Nr) includes the number of nodes in
the right sub-tree of the current node and the number of nodes
in all right sub-trees encountered at the previous propagation
steps. As soon as Nl and Nr differ in some predefined value
(normally either 0 or 1), the master HFSM takes responsibility
for sorting of the last root and the left sub-tree; and instructs
the slave HFSM to continue sorting with the remainder of the
tree.

C. Improvements of Sequential Algorithms
The known algorithm [2] can be in hardware through the

use of dual-port memories and algorithmic modifications. Let

us use dual-port memories to store words for both left and
right sub-trees of nodes and a buffer register to store the
currently selected node in the format: data+LA+RA (LA is the
address of the left sub-tree and RA is the address of the right
sub-tree). The dual-port memory permits two words to be
accessed simultaneously through LA and RA of the buffer
register. Each word stores similar information to the buffer
register (i.e. data+LA+RA) for the left and for the right nodes.

yes

�����

µ �����	

�����

���� �����	

�������	µµµµ

���

�����������	��
µ ���

����� �������	
µ ���
���	���

�����

���µ��
���

�����������	��
��
�������

���µ�	�����

���

��

no

yes

����� �����	

�������	µµµµ

���

����� �������	

����� ���
���	���

���yes no

no

��z z1(µ)a10

a11

a12

a13

a14

a20

a21 a22

a23
a24

Fig. 2. Improvement of sequential algorithm: the top-level module (a) and the
module z1(µ) (b)

At each recursive step up to three nodes can be processed
within the same time slot. Thus, descendants of the child
nodes can be analyzed to reduce the number of recursive
calls/returns during the traversal procedure compared to the
known method. The block diagram of the improved sequential
algorithm is presented on Fig. 2.

III. IMPLEMENTATIONS OF RECURSIVE ALGORITHMS

A. HFSM with Explicit Modules
There are a variety of synthesizable specifications for

recursive algorithms and we will use hierarchical graph-
schemes (HGS) [15] that can be seen as flow-charts with some
predefined constraints. For example, Fig. 2 depicts the
improved algorithms A2 in form of HGSs. A HGS can easily
be converted to a HFSM using the method [15] and then
formally coded in a hardware description language such as
VHDL. The coding is done using the template proposed in [2],
which is easily customizable for the given set of HGSs. The
resulting (customized) VHDL code is synthesizable and
permits the hardware to be designed in commercially available
CAD systems, such as Xilinx ISE.

The HFSM model, as describes in [2], has the following
distinctive features. There are two stack memories with
�log2Q� bits for modules (HGSs) and �log2R� bits for states (Q
is the number of modules and R is the maximum number of
states in one module). States in different modules can be
assigned the same labels (i.e. the same codes). Each module

270

(HGS) is coded explicitly. That is why we will call this model
HFSM with explicit modules.

B. HFSM with Implicit Modules
We propose a new model, which is called HFSM with

implicit modules. It has a single stack of states and a state
register. In this case states in different modules have to be
assigned different labels (different codes). The stack is needed
just to know which state has to be the target of the transition
when a called module is terminated. In any module all
necessary state transitions are realized through the register,
much like it is done in a conventional FSM.

IV. IMPLEMENTATION AND ANALYSIS

A. Experiments
The synthesis and implementation of the circuits from the

specification in VHDL were done in Xilinx ISE 11 for FPGA
Spartan3E-1200E-FG320 of Xilinx. A random-number
generator produces 211 items of data with a length of 14 bits
(i.e. values in an interval between 0 and 16383). Values
greater than 9999 are removed leaving 1200-1300 items
available for further processing. These items are sorted using:

1) The known [2,7] Aknown and the improved Aimproved (see
Fig. 2) sequential algorithms implemented on the basis of
HFSMs with explicit and implicit modules. Hardware circuits
based on different HFSM models differ in the used resources
and the maximum attainable clock frequency. However, there
is no difference for these models in the number of clock
cycles required for data sorting by the same algorithm
(because this number depends only on sorting algorithms to be
chosen). The results are presented in Table I. The columns
Aknown and Aimproved indicate the number of clock cycles for
sorting; the Data column shows the number of data items that
were sorted. An additional column Left/Right shows the
number of nodes in the left and right sub-trees from the root,
which is needed to examine the dependency of the results on
the balance between the left and right sub-trees.

2) Two proposed parallel algorithms Sp and Spp (described
in sub-section II.B) implemented with the aid of one master
and one slave HFSM with implicit modules. Each HFSM
(master and slave) executes the algorithm Aimproved and both
HFSMs work in parallel. The results are presented in columns
Sp and Spp of Table I.

3) The known [2,7] algorithm Aknown described in C++
program and implemented in software. Other algorithms
referenced in points 1 and 2 above are hardware-oriented and
their advantages have appeared just in hardware. The same
data (randomly generated) were used for the software
implementations. The results were produced on HP EliteBook
2730p (Intel Core 2 Duo CPU, 1.87 GHz) computer. Table II
provides sorting time per data item (in ns).

Table III presents the maximum attainable clock frequency
(F) in MHz and FPGA resources (the number of slices – S and
the number of block RAMs - B) needed for different
implementations indicated in points 1 and 2. Here in the

columns HFSMLUT the stacks are built from LUTs and in the
columns HFSMBRAM the stacks are built from the embedded in
FPGA block RAMs.

TABLE I. THE RESULTS OF EXPERIMENTS FOR POINTS 1 AND 2

Data Aknown Aimproved Sp Spp Left/Right
1211 4843 3373 5129 2701 185/1025
1216 4863 3393 4749 2546 266/949
1248 4991 3486 4579 2584 332/915
1203 4811 3350 3714 2618 460/742
1228 4911 3432 3499 2702 528/699
1212 4847 3350 3279 2506 556/655
1230 4919 3470 3101 2588 623/606
1305 5919 3596 3533 2814 742/562
1259 5035 3496 3727 2746 822/436
1230 4919 3419 3629 2602 799/430
1304 5215 3610 3853 2796 849/454
1276 5103 3564 4167 2734 963/312
1225 4899 3417 4101 2538 958/266
1225 4899 3420 4185 2542 986/238
1199 4795 3319 4354 2398 1051/147

TABLE II. COMPARISON OF THE RESULTS OF IMPLEMENTATIONS IN HARDWARE
AND IN SOFTWARE

Data Aknown Aimproved Sp Spp Software
1211 39.5 33.6 41.1 22.1 167.3
1216 39.5 33.7 37.9 20.7 154.1
1248 39.5 33.7 35.6 20.5 148.6
1203 39.5 33.6 30.0 21.5 155.6
1228 39.5 33.7 27.7 21.8 151.5
1212 39.5 33.4 26.3 20.5 148.5
1230 39.5 34.0 24.5 20.8 155.2
1305 39.5 33.3 26.3 21.3 147.8
1259 39.5 33.5 28.7 21.6 149.1
1230 39.5 33.5 28.6 20.9 150.0
1304 39.5 33.4 28.7 21.2 148.7
1276 39.5 33.7 31.7 21.2 148.0
1225 39.5 33.7 32.5 20.5 151.0
1225 39.5 33.7 33.2 20.5 148.8
1199 39.5 33.4 35.2 19.8 157.6

TABLE III. IMPLEMENTATION DETAILS

Implementation HFSMLUT HFSMBRAM
F S B F S B

HFSMe Aknown 101 714 5 70 149 7
HFSMi Aknown 111 597 5 97 131 6
HFSMe Aimproved 83 790 6 69 197 7
HFSMi Aimproved 63 672 6 62 232 6
HFSMe Sp 103 1115 8 67 586 10
HFSMi Sp 103 986 8 68 574 10
HFSMe Spp 101 1218 8 71 692 10
HFSMi Spp 101 1194 8 78 626 10

B. Analysis of the results and comparisons

1) Performance: Tables I and II permit the performance of
different algorithms to be compared. From the results in the
columns Aknown and Aimproved you can see that the improved
sequential algorithm is faster than the known sequential
algorithm for all lines. It is difficult to draw any particular
conclusion for the algorithm Sp, because the results depend

271

considerably on the balance between the left and right sub-
trees of the root. If the tree is completely unbalanced, the
results of Sp are not good at all. However, in case of a well-
balanced tree, the results from the algorithm Sp are
significantly better than the results of the known algorithm.
Besides, Sp gives base for Spp that provides the best
performance and the results of Spp do not depend on the
balance between the left and right sub-trees of the root.

As can be seen from Table II, the hardware
implementations are faster than software implementations for
all the experiments even though the clock frequencies of the
FPGA and the PC differ significantly. In spite of a
significantly lower clock frequency, the performance of
sorting operations in FPGA for the algorithm Spp is more than
7 times faster than for software implementations. We believe
that the results of Spp would be even better if more than one
slave HFSM would be introduced. This is a direction for
future work.

2) Resource consumption: As can be seen from Table III,
the circuits in which the stacks are built from block RAMs
consume the least number of FPGA slices and they require 1
or 2 additional block RAMs. However, the maximum
achievable clock frequency for such circuits is lower than for
similar implementations with the stacks built from CLBs
(from LUTs). If you compare the HFSM models described in
section III (compare the lines of Table III marked with HFSMe
and HFSMi), you can see that HFSM with implicit modules
requires less hardware resources.

3) Clarity of the specifications and potential for
optimization: Let us compare the characteristics of the models
in section III. Obviously, the HFSMi with implicit modules is
less resource consuming. Another advantage is that there is an
opportunity to apply known optimization methods that have
been developed for conventional state machines. The HFSM
model with explicit modules (HFSMe) is not so well suited for
such optimization, mainly because states in different modules
can be assigned the same codes. However, the HFSMi also
possesses disadvantages, namely that modules become
implicit and cannot be updated and refined easily. Although
the HGSs for the HFSMi are the same and all features are
supported, modularity, hierarchy and recursion become less
clear at the implementation level. Thus, the HFSMe is better in
terms of clarity, reuse and the ease with which modifications
can be made. The HFSMi is better in terms of resources,
performance and the potential for optimization. Finally, it is
up to the designer to decide what is more important and which
model should be chosen for a particular system.

V. CONCLUSION

The paper suggests new hardware-oriented parallel
algorithms and improvements of known sequential algorithms
for recursive data sorting, and clearly demonstrates the
advantages of the innovations proposed based on prototyping
in FPGA and abundant experiments. Recommendations and
discussions are also presented.

The presented results demonstrate good capabilities of
FPGAs for accelerating recursive algorithms over tree-like
data structures. The use of significantly more advanced and
faster FPGAs available on the market (e.g. Virtex-5 family)
would permit even faster recursive sorting (i.e. to gain even
more advantages over software). Preliminary test of an
interface between the FPGA-based prototyping board
(NEXYS-2 of Digilent) and a PC computer permits to
conclude that FPGA can be efficiently used to accelerate
software programs that process tree-like data structures.

ACKNOWLEDGMENT

The authors would like to thank Ivor Horton for very useful
comments and suggestions. This research was supported by
the European Union through the European Regional
Development Fund.

REFERENCES
[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stain, Introduction

to Algorithms, 2nd edition, MIT Press, 2002.
[2] V. Sklyarov, “FPGA-based implementation of recursive algorithms,”

Microprocessors and Microsystems. Special Issue on FPGAs:
Applications and Designs, vol. 28/5-6, pp. 197–211, 2004.

[3] S.A. Edwards, “Design Languages for Embedded Systems”, Computer
Science Technical Report CUCS-009-03, Columbia University, May,
2003.

[4] H.T. Sun, “First Failure Data Capture in Embedded System”,
Proceedings of IEEE IIT, 2007, May 17-20, Chicago, USA, pp. 183-
187, 2007.

[5] T. Maruyama, M. Takagi, and T. Hoshino, “Hardware implementation
techniques for recursive calls and loops”, Proc. 9th Int. Workshop on
Field-Programmable Logic and Applications - FPL’99, Glasgow, UK,
1999, pp. 450-455.

[6] T. Maruyama and T. Hoshino, “A C to HDL compiler for pipeline
processing on FPGAs”, Proc. IEEE Symposium on Field-
Programmable Custom Computing Machines - FCCM’2000, CA, USA,
2000, pp. 101-110.

[7] V. Sklyarov, I. Skliarova, and B. Pimentel, "FPGA-based
Implementation and Comparison of Recursive and Iterative
Algorithms", Proc. 15th Int. Conference on Field-Programmable Logic
and Applications - FPL'2005, Finland, 2005, pp. 235-240.

[8] G. Ferizis and H. ElGindy, “Mapping recursive functions to
reconfigurable hardware”, Proc. 16th Int. Conference on Field
Programmable Logic and Applications – FPL’06, Madrid, Spain, 2006,
pp. 283-288.

[9] S. Ninos and A. Dollas, “Modeling recursion data structures for FPGA-
based implementation”, Proc.18th Int. Conference on Field
Programmable Logic and Applications – FPL’08, Heidelberg,
Germany, 2008, pp. 11-16.

[10] S.A. Edwards, “The Challenges of Synthesizing Hardware from C-Like
Languages”, IEEE Design & Test of Computers, vol. 23, issue 5,
September-October 2006, pp. 375-386.

[11] J.V. Nobble, “Recurses!”, Computing in Science & Engineering,
May/June 2003, vol. 5, issue 3, pp. 76-81.

[12] G. Stitt and J. Villarreal, “Recursion flattering”, Proc. 18th ACM Great
Lakes symposium on VLSI – GLSVLSI’08, FL, USA, 2008, pp. 131-
134.

[13] R. Rugina and M. Rinard, ”Recursion unrolling for divide and conquer
programs”, Proc. 13th Int. Workshop on Languages and Compilers for
Parallel Computing - LCPC’2000, NY, USA, 2000, pp. 34-48.

[14] I. Skliarova and V. Sklyarov, "Recursion in Reconfigurable Computing:
a Survey of Implementation Approaches", Proc. 19th Int. Conference
on Field Programmable Logic and Applications – FPL’2009, Prague,
Czech Republic, 2009, pp. 224-229.

[15] V. Sklyarov, “Hierarchical Finite-State Machines and their Use for
Digital Control”, IEEE Transactions on VLSI Systems, 1999, vol. 7, no.
2, pp. 222-228.

272

