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Abstract—The paper is dedicated to hardware accelerators for 
data sorting using tree-based recursive algorithms. Since 
recursive calls are not directly supported by hardware 
description languages, they are implemented using the model of a 
hierarchical finite state machine. The paper presents new results 
in: 1) computational models and hardware architectures; 2) 
optimization and parallel execution of recursive sorting 
algorithms; 3) the analysis and comparison of alternative and 
competitive techniques for implementation of recursive sorting 
algorithms both in hardware and software. Experiments with the 
proposed FPGA-based hardware accelerators demonstrate that 
the performance of sorting operations is increased compared to 
known implementations. 

I. INTRODUCTION

Recursive algorithms are frequently used in a wide range of 
practical applications [1] and the most often for various kinds 
of binary search. Let us consider an example of using a binary 
tree for sorting data [1]. Suppose that the nodes of the tree 
contain three fields: a pointer to the left child node, a pointer 
to the right child node, and a value (e.g. an integer or a pointer 
to a string). The nodes are maintained so that at any node, the 
left sub-tree only contains values that are less than the value at 
the node, and the right sub-tree contains only values that are 
greater. Methods [2] permit to process such a tree in hardware 
enabling incoming data items to be sorted. This is achieved 
with the aid of two recursive algorithms A1 and A2 in such a 
way that A1 builds the tree and A2 outputs the sorted data 
items from the tree. The algorithms A1 and A2 have two 
important features: 1) it is not necessary to rebuild the tree in 
order to insert new data items; and 2) the number of data items 
to be sorted might be unknown. Such features are required, in 
particular, for priority buffers (queues) that store an incoming 
(sequential) flow of data and allow outputs to be selectively 
extracted from the buffer for processing. Buffers of this type 
are required for such practical applications as [3,4] and they 
can be constructed in hardware on the basis of recursive 
sorting algorithms. These algorithms are also very common 
for other engineering applications both in hardware and in 
software [1,2]. 

Different methods for implementation of recursive 
algorithms in hardware are considered in [2,5-10]. This paper 
evaluates, analyzes, and improves hardware circuits that 
implement recursive algorithms with primary objective to use 
such circuits as FPGA-based accelerators targeted to data 
sorting and associated problems such as the considered above 
priority buffers. Many examples that demonstrate the 
advantages of recursion are presented in [1,2,5-14]. An in-
depth review and comparison of different approaches to 
hardware implementations appears in [14]. 

The remainder of this paper is organized in four sections. 
Section II suggests new parallel hardware-oriented algorithms 
for recursive data sorting and improves the known sequential 
algorithms. Section III is dedicated to models of hierarchical 
finite state machines (HFSM) that permit recursive algorithms 
to be implemented in hardware. Section IV presents the results 
of experiments, comparisons and analysis of the models, 
methods and implementations in hardware and software. The 
conclusion is given in Section V. 

II. RECURSIVE DATA SORTING

A. A Known Technique 
Algorithms for many computational problems are based on 

the generation and traversal of a binary tree where the 
recursive technique is very helpful. Let us assume that a tree 
for sorting has already been built. Now we would like to use 
the tree to output the sorted data. A known algorithm [2], 
mentioned in the introduction as A2, solves this problem. Note 
that algorithm A2 is sequential. We would like to accelerate 
sorting and this is achieved through parallelization considered 
below. 

B. Parallel Implementations 
Suppose input data items arrive in a sequence shown at the 

bottom of Fig. 1. In the first method that we propose (let us 
call it Sp), the left (such as the sub-tree with the root b in Fig. 
1 and the right (such as the sub-tree with the root c in Fig. 1) 
sub-trees of the main tree root (a in Fig. 1) are built and 
traversed in parallel using the algorithms A1 and A2. There are 
two simultaneously functioning HFSMs that are a master and 
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a slave. The master HFSM takes the first incoming data item; 
builds the root of the tree; and activates the slave HFSM. 
After that the master and the slave HFSMs implement the 
algorithm A1 for the left (see a fragment enclosed by a dashed 
curve in Fig. 1) and the right (see a fragment outside of the 
closed dashed curve in Fig. 1) sub-trees in parallel. As soon as 
the incoming flow of input items is ended, the master HFSM 
outputs the left sub-tree (the nodes b, d, e, h, i in Fig. 1); and 
the slave HFSM outputs the right sub-tree (the nodes c, f, g, j, 
k, l in Fig. 1). Thus, two algorithms A2 are executed in parallel 
by two HFSMs. 
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Fig. 1. Binary tree for data sort 

By adding simple counters to the root that count the 
number of left and right descendant nodes during the 
construction of the tree, we can easily calculate the addresses 
for the sorted data in an output memory. If needed, more 
parallel branches can be introduced using cascade structures.  

However, there is one significant limitation. If the tree is 
unbalanced, one HFSM will need significantly more time for 
data processing than the other. In the second method that we 
propose (let us call it Spp), the master HFSM activates the 
slave HFSM just if there is a sufficient number of processing 
steps. Each node of the tree is provided with two additional 
fields indicating the number of nodes in the left and in the 
right sub-trees accordingly. For the algorithm A2 two HFSMs, 
the master (HFSM1) and the slave (HFSM2), begin their job at 
the same time. Both the master and the slave HFSMs repeat 
the same steps to remember the way from the root for further 
backward. In each tree node, the master HFSM evaluates the 
number of nodes for forward propagation to the left Nl and to 
the right Nr. The latter (Nr) includes the number of nodes in 
the right sub-tree of the current node and the number of nodes 
in all right sub-trees encountered at the previous propagation 
steps. As soon as Nl and Nr differ in some predefined value 
(normally either 0 or 1), the master HFSM takes responsibility 
for sorting of the last root and the left sub-tree; and instructs 
the slave HFSM to continue sorting with the remainder of the 
tree. 

C. Improvements of Sequential Algorithms 
The known algorithm [2] can be in hardware through the 

use of dual-port memories and algorithmic modifications. Let 

us use dual-port memories to store words for both left and 
right sub-trees of nodes and a buffer register to store the 
currently selected node in the format: data+LA+RA (LA is the 
address of the left sub-tree and RA is the address of the right 
sub-tree). The dual-port memory permits two words to be 
accessed simultaneously through LA and RA of the buffer 
register. Each word stores similar information to the buffer 
register (i.e. data+LA+RA) for the left and for the right nodes.  
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Fig. 2. Improvement of sequential algorithm: the top-level module (a) and the 
module z1(µ) (b) 

At each recursive step up to three nodes can be processed 
within the same time slot. Thus, descendants of the child 
nodes can be analyzed to reduce the number of recursive 
calls/returns during the traversal procedure compared to the 
known method. The block diagram of the improved sequential 
algorithm is presented on Fig. 2. 

III. IMPLEMENTATIONS OF RECURSIVE ALGORITHMS

A. HFSM with Explicit Modules 
There are a variety of synthesizable specifications for 

recursive algorithms and we will use hierarchical graph-
schemes (HGS) [15] that can be seen as flow-charts with some 
predefined constraints. For example, Fig. 2 depicts the 
improved algorithms A2 in form of HGSs. A HGS can easily 
be converted to a HFSM using the method [15] and then 
formally coded in a hardware description language such as 
VHDL. The coding is done using the template proposed in [2], 
which is easily customizable for the given set of HGSs. The 
resulting (customized) VHDL code is synthesizable and 
permits the hardware to be designed in commercially available 
CAD systems, such as Xilinx ISE. 

The HFSM model, as describes in [2], has the following 
distinctive features. There are two stack memories with 
�log2Q� bits for modules (HGSs) and �log2R� bits for states (Q 
is the number of modules and R is the maximum number of 
states in one module). States in different modules can be 
assigned the same labels (i.e. the same codes). Each module 
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(HGS) is coded explicitly. That is why we will call this model 
HFSM with explicit modules. 

B. HFSM with Implicit Modules 
We propose a new model, which is called HFSM with 

implicit modules. It has a single stack of states and a state 
register. In this case states in different modules have to be 
assigned different labels (different codes). The stack is needed 
just to know which state has to be the target of the transition 
when a called module is terminated. In any module all 
necessary state transitions are realized through the register, 
much like it is done in a conventional FSM. 

IV. IMPLEMENTATION AND ANALYSIS

A. Experiments 
The synthesis and implementation of the circuits from the 

specification in VHDL were done in Xilinx ISE 11 for FPGA 
Spartan3E-1200E-FG320 of Xilinx. A random-number 
generator produces 211 items of data with a length of 14 bits 
(i.e. values in an interval between 0 and 16383). Values 
greater than 9999 are removed leaving 1200-1300 items 
available for further processing. These items are sorted using: 

1)  The known [2,7] Aknown and the improved Aimproved (see 
Fig. 2) sequential algorithms implemented on the basis of 
HFSMs with explicit and implicit modules. Hardware circuits 
based on different HFSM models differ in the used resources 
and the maximum attainable clock frequency. However, there 
is no difference for these models in the number of clock 
cycles required for data sorting by the same algorithm 
(because this number depends only on sorting algorithms to be 
chosen). The results are presented in Table I. The columns 
Aknown and Aimproved indicate the number of clock cycles for 
sorting; the Data column shows the number of data items that 
were sorted. An additional column Left/Right shows the 
number of nodes in the left and right sub-trees from the root, 
which is needed to examine the dependency of the results on 
the balance between the left and right sub-trees. 

2)  Two proposed parallel algorithms Sp and Spp (described 
in sub-section II.B) implemented with the aid of one master 
and one slave HFSM with implicit modules. Each HFSM 
(master and slave) executes the algorithm Aimproved and both 
HFSMs work in parallel. The results are presented in columns 
Sp and Spp of Table I. 

3)  The known [2,7] algorithm Aknown described in C++ 
program and implemented in software. Other algorithms 
referenced in points 1 and 2 above are hardware-oriented and 
their advantages have appeared just in hardware. The same 
data (randomly generated) were used for the software 
implementations. The results were produced on HP EliteBook 
2730p (Intel Core 2 Duo CPU, 1.87 GHz) computer. Table II 
provides sorting time per data item (in ns). 

Table III presents the maximum attainable clock frequency 
(F) in MHz and FPGA resources (the number of slices – S and 
the number of block RAMs - B) needed for different 
implementations indicated in points 1 and 2. Here in the 

columns HFSMLUT the stacks are built from LUTs and in the 
columns HFSMBRAM the stacks are built from the embedded in 
FPGA block RAMs. 

TABLE I. THE RESULTS OF EXPERIMENTS FOR POINTS 1 AND 2 

Data Aknown Aimproved Sp Spp Left/Right 
1211 4843 3373 5129 2701 185/1025 
1216 4863 3393 4749 2546 266/949 
1248 4991 3486 4579 2584 332/915 
1203 4811 3350 3714 2618 460/742 
1228 4911 3432 3499 2702 528/699 
1212 4847 3350 3279 2506 556/655 
1230 4919 3470 3101 2588 623/606 
1305 5919 3596 3533 2814 742/562 
1259 5035 3496 3727 2746 822/436 
1230 4919 3419 3629 2602 799/430 
1304 5215 3610 3853 2796 849/454 
1276 5103 3564 4167 2734 963/312 
1225 4899 3417 4101 2538 958/266 
1225 4899 3420 4185 2542 986/238 
1199 4795 3319 4354 2398 1051/147 

TABLE II. COMPARISON OF THE RESULTS OF IMPLEMENTATIONS IN HARDWARE 
AND IN SOFTWARE

Data  Aknown Aimproved Sp Spp Software 
1211 39.5 33.6 41.1 22.1 167.3 
1216 39.5 33.7 37.9 20.7 154.1 
1248 39.5 33.7 35.6 20.5 148.6 
1203 39.5 33.6 30.0 21.5 155.6 
1228 39.5 33.7 27.7 21.8 151.5 
1212 39.5 33.4 26.3 20.5 148.5 
1230 39.5 34.0 24.5 20.8 155.2 
1305 39.5 33.3 26.3 21.3 147.8 
1259 39.5 33.5 28.7 21.6 149.1 
1230 39.5 33.5 28.6 20.9 150.0 
1304 39.5 33.4 28.7 21.2 148.7 
1276 39.5 33.7 31.7 21.2 148.0 
1225 39.5 33.7 32.5 20.5 151.0 
1225 39.5 33.7 33.2 20.5 148.8 
1199 39.5 33.4 35.2 19.8 157.6 

TABLE III.  IMPLEMENTATION DETAILS

Implementation HFSMLUT HFSMBRAM 
F S B F S B 

HFSMe Aknown 101 714 5 70 149 7 
HFSMi Aknown 111 597 5 97 131 6 
HFSMe Aimproved 83 790 6 69 197 7 
HFSMi Aimproved 63 672 6 62 232 6 
HFSMe Sp 103 1115 8 67 586 10 
HFSMi Sp 103 986 8 68 574 10 
HFSMe Spp 101 1218 8 71 692 10 
HFSMi Spp 101 1194 8 78 626 10 

B. Analysis of the results and comparisons 

1)  Performance: Tables I and II permit the performance of 
different algorithms to be compared. From the results in the 
columns Aknown and Aimproved you can see that the improved 
sequential algorithm is faster than the known sequential 
algorithm for all lines. It is difficult to draw any particular 
conclusion for the algorithm Sp, because the results depend 
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considerably on the balance between the left and right sub-
trees of the root. If the tree is completely unbalanced, the 
results of Sp are not good at all. However, in case of a well-
balanced tree, the results from the algorithm Sp are 
significantly better than the results of the known algorithm. 
Besides, Sp gives base for Spp that provides the best 
performance and the results of Spp do not depend on the 
balance between the left and right sub-trees of the root. 

As can be seen from Table II, the hardware 
implementations are faster than software implementations for 
all the experiments even though the clock frequencies of the 
FPGA and the PC differ significantly. In spite of a 
significantly lower clock frequency, the performance of 
sorting operations in FPGA for the algorithm Spp is more than 
7 times faster than for software implementations. We believe 
that the results of Spp would be even better if more than one 
slave HFSM would be introduced. This is a direction for 
future work.  

2)  Resource consumption: As can be seen from Table III, 
the circuits in which the stacks are built from block RAMs 
consume the least number of FPGA slices and they require 1 
or 2 additional block RAMs. However, the maximum 
achievable clock frequency for such circuits is lower than for 
similar implementations with the stacks built from CLBs 
(from LUTs). If you compare the HFSM models described in 
section III (compare the lines of Table III marked with HFSMe
and HFSMi), you can see that HFSM with implicit modules 
requires less hardware resources.  

3)  Clarity of the specifications and potential for 
optimization: Let us compare the characteristics of the models 
in section III. Obviously, the HFSMi with implicit modules is 
less resource consuming. Another advantage is that there is an 
opportunity to apply known optimization methods that have 
been developed for conventional state machines. The HFSM 
model with explicit modules (HFSMe) is not so well suited for 
such optimization, mainly because states in different modules 
can be assigned the same codes. However, the HFSMi also 
possesses disadvantages, namely that modules become 
implicit and cannot be updated and refined easily. Although 
the HGSs for the HFSMi are the same and all features are 
supported, modularity, hierarchy and recursion become less
clear at the implementation level. Thus, the HFSMe is better in 
terms of clarity, reuse and the ease with which modifications 
can be made. The HFSMi is better in terms of resources, 
performance and the potential for optimization. Finally, it is 
up to the designer to decide what is more important and which 
model should be chosen for a particular system. 

V. CONCLUSION

The paper suggests new hardware-oriented parallel 
algorithms and improvements of known sequential algorithms 
for recursive data sorting, and clearly demonstrates the 
advantages of the innovations proposed based on prototyping 
in FPGA and abundant experiments. Recommendations and 
discussions are also presented.  

The presented results demonstrate good capabilities of 
FPGAs for accelerating recursive algorithms over tree-like 
data structures. The use of significantly more advanced and 
faster FPGAs available on the market (e.g. Virtex-5 family) 
would permit even faster recursive sorting (i.e. to gain even 
more advantages over software). Preliminary test of an 
interface between the FPGA-based prototyping board 
(NEXYS-2 of Digilent) and a PC computer permits to 
conclude that FPGA can be efficiently used to accelerate 
software programs that process tree-like data structures.  
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