
Application-Specific Instruction Set Processor for SoC implementation
of Modern Signal Processing Algorithms
Liu, Z. H., Dickson, K., & McCanny, J. (2005). Application-Specific Instruction Set Processor for SoC
implementation of Modern Signal Processing Algorithms. IEEE Transactions on Circuits and Systems I: Regular
Papers, 52(4), 755-765. https://doi.org/10.1109/TCSI.2005.844109

Published in:
IEEE Transactions on Circuits and Systems I: Regular Papers

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:09. Aug. 2022

https://doi.org/10.1109/TCSI.2005.844109
https://pure.qub.ac.uk/en/publications/5d686fbd-54c5-43a3-9210-3480ecf0a8ca

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 4, APRIL 2005 755

Application-Specific Instruction Set Processor
for SoC Implementation of Modern Signal

Processing Algorithms
Zhaohui Liu, Kevin Dickson, and John V. McCanny, Fellow, IEEE

Abstract—A novel application-specific instruction set processor
(ASIP) for use in the construction of modern signal processing
systems is presented. This is a flexible device that can be used
in the construction of array processor systems for the real-time
implementation of functions such as singular-value decomposition
(SVD) and QR decomposition (QRD), as well as other impor-
tant matrix computations. It uses a coordinate rotation digital
computer (CORDIC) module to perform arithmetic operations
and several approaches are adopted to achieve high performance
including pipelining of the micro-rotations, the use of parallel
instructions and a dual-bus architecture. In addition, a novel
method for scale factor correction is presented which only needs
to be applied once at the end of the computation. This also re-
duces computation time and enhances performance. Methods
are described which allow this processor to be used in reduced
dimension (i.e., folded) array processor structures that allow
tradeoffs between hardware and performance. The net result is
a flexible matrix computational processing element (PE) whose
functionality can be changed under program control for use in a
wider range of scenarios than previous work. Details are presented
of the results of a design study, which considers the application
of this decomposition PE architecture in a combined SVD/QRD
system and demonstrates that a combination of high performance
and efficient silicon implementation are achievable.

Index Terms—Application-specific instruction set processor
(ASIP), coordinate rotation digital computer (CORDIC) pro-
cessors, modern signal processing, QR decomposition (QRD),
singular-value decomposition (SVD), system on chip (SoC).

I. INTRODUCTION

O
VER THE PAST decade or more, extensive research has

been devoted to the development of modern signal pro-

cessing algorithms and methods which have widespread po-

tential provided these can be implemented in real-time using

cost effective hardware/software solutions. Examples of the al-

gorithms are ones that involve matrix algebraic methods such

as QR decomposition (QRD) and singular-value decomposi-

tion (SVD). Such methods are increasingly used in applica-

tions such as direction estimation, spectrum analysis and recur-

sive least squares (RLS) filtering. The real-time, computational

Manuscript received September 22, 2003; revised August 23, 2004. This work
was supported in part by the Northern Ireland Special Universities Research
(SPUR 2) programme as well as funding for a studentship from the Department
of Employment and Learning. This paper was recommended by Associate Ed-
itor K. Chakrabarty.

The authors are with the Institute of Electronics, Communications
and Information Technology (ECIT), Queen’s University Belfast,
Belfast BT3 9DT, Northern Ireland, U.K. (e-mail: z.liu@ecit.qub.ac.uk;
k.dickson@ecit.qub.ac.uk; j.mccanny@ecit.qub.ac.uk).

Digital Object Identifier 10.1109/TCSI.2005.844109

complexity of such algorithms tends to be high, usually signif-

icantly greater than more conventional [e.g., fast Fourier trans-

form (FFT), finite-impulse response (FIR) filter based] tech-

niques, in many cases reaching the limits of what is achiev-

able with current technology. As a consequence, considerable

research has also been undertaken into parallel architectures and

systematic methodologies for mapping matrix algorithms onto

such architectures. Examples include the early work by Gen-

tleman and Kung [1] and by McWhirter et al. [2], [3] on tri-

angular systolic array architectures for QRD. Considerable ef-

fort has also been devoted to SVD architectures, including the

work done by Luk et al. [4]–[6]. Indeed, many modern signal

processing algorithms are heavily dependent on these two Ja-

cobi-rotation based matrix factorizations, i.e., QRD and SVD.

Research has also been undertaken on more detailed architec-

tural aspects relating to the design of processor elements suit-

able for constructing such systems. An important contribution

has been the work of Van Dijk et al. [7]. They recognized that a

Jacobi processor based on a coordinate rotation digital computer

(CORDIC) arithmetic element can be used in a variety of such

applications and described systems based around the concept of

a board containing processor chips connected to a PC/worksta-

tion. This involves the use of a host program to control this mul-

tiprocessor system and reconfigurable interconnections to allow

the underlying array to be configured to suit different applica-

tions.

Related research undertaken in this laboratory and in collabo-

ration with others [8]–[10] has been concerned with the detailed

design and implementation of system-on-chip (SoC) architec-

tures, the prime focus being array processors for QRD. Designs

described based on both application-specific integrated circuits

(ASIC) and field-programmable gate array (FPGA) technolo-

gies have been reported. This has been motivated by the real-

ization that the use of algorithms based on such methods will

start to see much more widespread practical application once

they can be implemented cost effectively in silicon. Our re-

cent research has therefore involved finding efficient methods

for mapping triangular QR array processors onto linear arrays

[8], the development of generic SoC architectures for this, the

establishment of generic timing methods and the demonstra-

tion of these concepts through SoC design and implementa-

tion [9], [10]. This has been based on the use of more conven-

tional arithmetic based processors. The generic approach de-

veloped has the attraction of allowing QR processor designs

with different specifications (i.e., matrix size, wordlengths) to

be created very rapidly through synthesis from a structured very

1057-7122/$20.00 © 2005 IEEE

756 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 4, APRIL 2005

high-speed integrated circuit (VHSIC) Hardware Description

Language (VHDL) description. However, if fabricated in an

ASIC technology, these implementations become fixed and are

not particularly flexible.

The purpose of this paper is to extend the research described

by combining various elements to create a new application-spe-

cific instruction set processor (ASIP) for implementing SoC

processor blocks that can be used to construct real-time sys-

tems for modern signal processing computations. This is much

more flexible than the generic approach previously described

[9], [10]. In doing so, and consistent with the work of Van Dijk

et al. [7], this exploits similarities in the QRD and SVD algo-

rithms, including the fact that both are based on Givens rotations

and uses a CORDIC approach to implement the internal compu-

tational unit. This combination, incorporating programmability,

provides a flexible alternative to more dedicated solutions. As

will be discussed, the processor presented incorporates facili-

ties for the issue of parallel instructions and a dual-bus architec-

ture designed to achieve high performance. In addition, a new

method for scale factor correction (SFC) within the CORDIC

module is introduced which needs only to be applied once at

the end of the SVD/QRD computation. This reduces computa-

tion time and enhances performance. Pipelining of the internal

recursive loop within the CORDIC arithmetic module is also ex-

ploited to allow two independent micro-rotations to be naturally

multiplexed onto a single piece of hardware, with ensuing ben-

efits in terms of higher performance for the same silicon area.

The paper also describes how well-known systolic struc-

tures for SVD/QRD can be constructed using arrays of these

ASIP processors, including mappings to reduced array sizes.

The paper also describes methods for the redistribution of

computations between neighboring processors to balance com-

putational load and also reduce computation time. RTL-based

silicon design studies have also been undertaken, which clearly

demonstrate the viability of the approach in terms of modern

SoC implementation.

The structure of the paper is as follows. Section II provides

a summary of SVD and QRD computations and the use of

floating-point CORDIC algorithms for implementing functions

such as Givens rotations. The new SFC method is presented

in Section III with details of the proposed ASIP architecture

created described in Section IV. Section V then shows how

SVD and QRD computations can be mapped onto arrays of

these ASIPs, including methods for balancing computational

load. The results of design studies are then given in Section VI,

with a discussion of the work and the conclusions that can be

drawn provided in Section VII.

II. CORDIC ALGORITHM FOR SVD AND QRD

It is well known that both SVD and QRD are related to Ja-

cobi-type methods for parallel computations. For SVD, the Kog-

betliantz method (involving two-sided rotation) is favored be-

cause it is highly suitable for mapping onto a regular rectan-

gular systolic array architecture [4], [5]. In the Kogbetliantz

method, the norm of the off-diagonal elements of the matrix is

successively reduced by a sequence of two-sided Givens trans-

formations; this requires the computation of a rotation angle

and subsequent operations. As with SVD, the QRD algorithm

uses a sequence of Givens rotations to transform the incoming

data matrix into an upper triangular matrix. The CORDIC algo-

rithm [11], [12] provides an attractive means for implementing

the arithmetic units required in typical SVD/QRD processing

elements (PEs) as these enable the efficient implementation of

plane rotation and phase computation [13]–[17].

Using the CORDIC algorithm allows a rotation to be decom-

posed into a sequence of micro-rotations over the angles ,

where is usually chosen as . The corresponding

micro-rotation, iterative equations [11] are then

(2.1a)

(2.1b)

(2.1c)

where .

The inverse tangent is a primitive operation in the CORDIC

algorithm. Therefore, the rotation angles can be solved ex-

plicitly in (2.1) by setting . Moreover, in the

CORDIC rotation mode (2.1) can be used to perform ma-

trix-vector multiplication (apart from the constant scale factor)

as shown in (2.2)

(2.2)

If and and are the final outputs from (2.2),

then the desired outputs and in (2.2) are given by

(2.3a)

(2.3b)

where scale factor is given by

(2.3c)

and is the word length.

In this paper, we consider the case of a hybrid system in

which and are floating-point values and is a fixed-point

number. This scheme can lead to a reduction in computation

time while maintaining the dynamic range; albeit at the expense

of floating-to-fixed point and fixed-to-floating point conversion

(see Fig. 1). This is due to the fact that the required number

of CORDIC iterations is dependent on the wordlength used,

and in this case the mantissa wordlength is typically signifi-

cantly less than the fixed-point equivalent. For example, a typ-

ical QRD-based beamformer used in an advanced RADAR ap-

plication requires a 26-bit wordlength to maintain the dynamic

range if fixed-point arithmetic is used. This compares with the

use of a 6-bit exponent and a 14-bit mantissa floating-point

system to achieve the same performance [18]. The latter values

have therefore been used as the basis for the case study described

later.

III. SCALE FACTOR CORRECTION

As shown by (2.3), an implicit feature of the CORDIC algo-

rithm is that rotations include a scale factor, which needs to be

LIU et al.: ASIP FOR SoC IMPLEMENTATION 757

Fig. 1. Floating-point CORDIC.

corrected in order to achieve “perfect” rotations. First, we de-

scribe a novel method to derive this for SVD and then extend it

to QRD.

A. SFC for SVD

Existing methods [6] carry out this SFC after each two-sided

rotation. The time required is in the region of , where

is the total time required to complete a CORDIC iteration. This

therefore can impede overall performance. The new method de-

scribed below postpones this until after the last sweep of the

SVD algorithm (a sweep is defined as each off-diagonal element

being eliminated once). This therefore achieves an important re-

duction in total computation time. This can be illustrated by an

example.

The basis of the Kogbetliantz method [19] is to apply a two-

sided Givens rotation to each 2 2 submatrix to nullify the two

off-diagonal elements i.e.,

(3.1)

This can also be written as

(3.2)

where is a 2 2 matrix and is the desired output, and

and are unitary matrices corresponding to and . The

rotation parameters and are obtained using the following:

(3.3)

If implemented using CORDIC rotations, then, (3.2) becomes

(3.4)

where is the scale factor given in (2.3c). Consider the ex-

ample of a 4 4 matrix, which can be partitioned into four 2

submatrices, of the form

(3.5)

After the rotation angles for and have been calculated,

i.e., and , respectively, then CORDIC rotations

can be applied to the four submatrices. This is shown in Fig. 2.

It is clear that all submatrices are scaled by the same value and

hence the SFC can be postponed so that it only needs to be

applied once at the end.

However, one issue that must be addressed when doing this

is that the magnitude of these values can grow significantly,

thus requiring very large wordlengths to represent them. For in-

stance, in the case of a 14-bit mantissa, . If we

Fig. 2. SVD of a 4 � 4 matrix using the CORDIC algorithm.

then consider a 20 20 matrix involving 5 SVD sweeps then

the accumulated scale factor is . This indicates that

the dynamic range of the data and thus the wordlength of the

exponent would need to be extended significantly to cope with

this.

This issue can be addressed by ensuring that the scale factor is

normalized to a value between 0.5 and 1.0 after each two-sided

rotation so as to maintain the dynamic range. It can be proven

(see Appendix) that for any n-bit mantissa, ,

and so , i.e., after each two-sided rotation, the

dynamic range can be maintained by dividing by either 2 or 4.

This can be implemented by subtracting the value (or 2)

from the (or) exponent value. The subtraction of this value

can be determined in advance, from the mantissa word length,

matrix dimensions, and number of sweeps.

This can be illustrated using the following example.

• After the first two-sided rotation the scale factor

i.e., is in the

range 0.5 to 1.0, with the multiplication by achieved

by subtracting 1 from the exponent.

• After the second two-sided rotation the scale factor

i.e.,

is again in the range 0.5 to 1.0, with 1 again subtracted

from the exponent.

• However, after the third two-sided rotation the scale factor

and thus in order to maintain within the range 0.5 to

1.0, the value 2 must be subtracted from the exponent.

The final SFC can then be performed as a series of shifts and

adds, at the last step of an SVD computation. The time required

to do this is generally negligible compared with the total com-

putation time.

B. SFC for QRD

QRD performs a set of Givens rotations on an incoming data

matrix transforming it into an equivalent upper triangular ma-

trix, i.e.,

(3.6)

In the case of QRD-RLS based adaptive beamforming, it is usu-

ally the case that the desired output is the posterior residual

(3.7)

758 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 4, APRIL 2005

where

(3.8)

and is the desired output of where is array size.

If the CORDIC algorithm is used for rotations, then

(3.9)

and due to an accumulation of the scale factor in the -matrix

over time, the input data vector must be appropriately scaled

before processing by , hence

(3.10)

where and are the outputs of the CORDIC rotations.

Thus, the posterior residual is

(3.11)

Setting

(3.12)

then can be corrected without any extra operations. How-

ever, to prevent the from growing in an unlimited fashion, it

is still necessary to subtract from the exponent value in order

to maintain the dynamic range. In this case, because QRD in-

volves one-sided rotations, the subtraction of the value (

or 2) from the exponent value can be executed every other set

of new sample data.

IV. PROCESSOR ARCHITECTURE

A. CORDIC Module Architecture

The floating-point CORDIC module we have developed com-

prises of a pre-processing unit (alignment of exponents), a post-

processing unit (re-normalization) and a fixed-point CORDIC

unit. To achieve a high throughput rate, this is pipelined, as

shown in Fig. 3. The fixed-point CORDIC unit is constructed

using a shift and add circuit.

Assuming a clock period and mantissa wordlength , then,

for SVD computation (ignoring the time for data preparation

i.e., and etc.), the total time required, within a single

CORDIC module, to compute the two-sided rotation in (3.1)

and the angle solving operation of (3.2) is . If higher per-

formance is required, the fixed-point CORDIC unit becomes a

bottleneck since it is based on iterations. However, performance

can be enhanced by also pipelining each micro-rotation using

two clock cycles. Since the th iteration is dependent on

the output of the th iteration, the introduction of two levels

of pipelining naturally allows two independent computations to

be directly multiplexed onto the same piece of hardware, thus

making it suitable for the parallel computation of two different

CORDIC rotations. For SVD, the left-sided rotation is

(4.1)

Fig. 3. Pipelined floating-point CORDIC module.

Fig. 4. Throughput rate achieved by pipelining.

which can be decomposed into two independent CORDIC rota-

tions that can be computed in parallel, i.e.,

(4.2)

and

(4.3)

The right-sided rotation can also be performed in a similar

manner, with the two rows and being computed in

parallel. Thus hardware sharing can be achieved in accordance

with the following data input schedule.

For left-multiplication

For right-multiplication

Here, the times required to compute both the left- and right-

multiplication are both , where is the clock cycle for

the case of pipelined micro-rotation. In a similar manner, the

angles and can also be calculated in parallel. The

total time required to perform the computation given by (3.1) is

therefore , which is the same for the architecture in Fig. 3.

However, because is nearly half of , the throughput rate

is nearly doubled. Thus, by exploiting this parallel approach a

higher performance can be achieved but using roughly the same

hardware. Fig. 4 illustrates the performance improvement.

In the case of QRD and can be rotated in parallel

in the same way. Hence, the method described applies to both

SVD and QRD.

Fig. 5 presents a high-level schematic of the CORDIC archi-

tecture developed, with each micro-rotation pipelined over two

clock cycles. Interaction of data between the blocks can also be

seen. The existence of the two angle registers (labeled ‘Reg Z1’

and ‘Reg Z2’) correspond to the two independent computations.

As mentioned in Section III-A, the final SFC can be per-

formed as a series of shifts and adds. Therefore, the CORDIC

architecture, which is based on shifts and adds, can be reused

to carry out this SFC. The subtraction of the value (or 2)

LIU et al.: ASIP FOR SoC IMPLEMENTATION 759

Fig. 5. CORDIC architecture.

Fig. 6. Programmable processor architecture.

from the exponent values required after each two-sided rotation

is carried out in the post-processing unit.

B. Programmable Processor

A programmable processor architecture, which can be used

for both QRD and SVD computations, which incorporates the

aforementioned techniques, is shown in Fig. 6. Here, each PE

contains a CORDIC module of the type described in Fig. 5 with

this used for angle solving and rotation. The overall operation

of the processor is controlled through a program. Program and

data memory are separated to provide parallel instruction and

data streams. The processor also incorporates two data-buses

and a dual-port register file (data memory) to allow concurrent

operations to be performed i.e., two operands can be fed to the

data stream in one cycle. The detailed operations performed

by the CORDIC module are controlled by using different op-

eration modes. These are defined by assembly code. Data is

exchanged between processors using the registers and buffers

(“Reg & Buf”) with details as illustrated. Here data is held in

the registers, ready to be accessed by a neighboring processor.

It is also input to the bus via the buffer.

One of the main challenges that had to be addressed with this

system is loop control. Usually, a jump instruction takes a single

clock cycle. This degrades processor efficiency because each

micro-rotation requires such a jump. However, it will be noted

that only one instruction needs to be looped and thus a specific

counter has been incorporated. This allows an instruction to be

executed in a predefined number of clock cycles, thus avoiding

redundant cycles. To illustrate this we use the following ex-

ample.

This implies moving the values and in the dual-port memory

into registers and via data buses and , whilst setting the

CORDIC module to vector mode with the loop number being

14 (in this case corresponding to a mantissa wordlength of 14).

This number, which also corresponds to the number of rotation

or vector mode iterations, is programmable allowing mantissa

wordlengths to be varied. This feature also provides the facility

760 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 4, APRIL 2005

for trading off speed and numerical accuracy. In some appli-

cations a short mantissa may be acceptable. For example, the

QRD-RLS algorithm remains stable for mantissa wordlengths

as low as 5 bits [20]. This is due to its high numerical stability.

As discussed above (Fig. 5), the CORDIC module incorpo-

rates three levels of pipelining to provide a high clock speed.

However, this makes assembly coding challenging because of

uncertainty in determining the cycle on which the output value

of the CORDIC unit becomes available. For example, this takes

cycles if running in vector or rotation mode but 4 cycles

for other operations. To deal with this the compiler firstly parses

the assembly code and determines which cycle the CORDIC

output is available on. A dedicated register is then set with this

value.

It will be noted that data scheduling and arithmetic opera-

tions can be separated. Due to the loop path in the CORDIC

unit, the data buses are not occupied for part of the time and so

data exchange can occur during these periods. Other operations

performed by the CORDIC unit include, for example

This statement implies moving the values and in the dual-

port memory into registers and via the data buses and

, with the calculation of and performed in parallel

in the X and Y blocks of the CORDIC unit, respectively. There-

fore by careful design and definition of the instructions sets it is

possible to perform most operations in parallel.

V. ASIP-BASED SVD/QRD

The relevance of the QRD and SVD algorithms as separate

entities has been discussed previously. However, many modern

signal processing algorithms use these in conjunction with one

another, a good example being SVD updating. In many real-time

applications, it is necessary to continuously update the SVD

as new input data is continuously added to the system. The

SVD updating algorithm described in [21], [22] achieves this

by combining QR updating with a Jacobi-type SVD algorithm.

Such a combined SVD/QRD system can be implemented using

a square processor array (Fig. 7) with each PE implemented as

a single ASIP. This type of application illustrates the flexibility

of the ASIP architecture described.

A. SVD Computation

In terms of implementation, each 2 2 matrix is mapped onto

an ASIP PE. Each sweep of an SVD computation then requires

the following schedule of operations.

1) Solve and .

2) Solve using the CORDIC module and then solve

and (diagonal cells only)

3) Solve the left- and right-rotation using the CORDIC

module.

4) Exchange data with neighboring processors.

5) If the pre-defined sweeps have been finished, perform the

final SFC (by shifts and adds), else go to step 1.

The values and can be calculated simultaneously in

the X- and Y-blocks. The derived angles, and , are stored

in the register-bank and the rotated data values are stored in

Fig. 7. Square array of ASIPs.

Fig. 8. Assembly code of the operation of a diagonal PE.

their original location within the register-bank. After each two-

sided rotation, data is exchanged with neighboring PEs using

“Reg & buf,” as shown in Fig. 6. The required register-bank

memory contains only eight cells: four cells to store the block

elements , , , , and four cells to store the temporal variable

and angle values. A 16-cell register-bank is sufficient if both

left- and right- singular vectors are required (i.e., an additional

eight cells needed).

Here, the angle solving (step 2) requires , and the left-

and right-rotation (step 3) requires , the data preparation

and data exchange (steps 1 and 4, respectively) require approx-

imately , so each two-sided rotation requires a computation

time of . A section of the assembly code describing

the operation of a diagonal PE is shown in Fig. 8.

In some applications, the implementation of full systolic ar-

rays offers data rates far in excess of those required [8], [9].

In these situations, a hardware reduction can be achieved by

mapping this to an array of reduced dimensions. In such a case,

where it is desirable to use fewer PEs, i.e., number of PEs less

than (for matrix), multiple 2 2 submatrices

can be mapped to a single PE, provided enough cells of the reg-

ister-bank exist. Fig. 9 gives an example where a 12 12 matrix

is mapped to a 3 3 PE array, where each PE contains four 2

2 submatrices. It will be noted that in the first two steps each

diagonal PE has to calculate two sets of , while the off-di-

agonal PEs are idle. Therefore, the computation of one of the

sets of in each PE can be offloaded to a neighbor PE. This

is shown in Fig. 10. The time for four two-sided rotations in each

PE is approximately .

LIU et al.: ASIP FOR SoC IMPLEMENTATION 761

Fig. 9. Mapping of a 12 � 12 matrix to a 3 � 3 PE array (Each A is a 2 �
2 submatrix).

Fig. 10. SVD calculation for the case of mapping four 2 � 2 submatrices to
one PE.

B. QRD Computation

A QRD computation then requires the following schedule of

operations.

1) is multiplied by the forgetting factor .

2) Solve the rotation angle which eliminates and

calculate (diagonal cell only).

3) Apply a left-rotation to .

Usually, the forgetting factor is close to unity and can be

written as , where is an integer. Thus, the mul-

tiplication by can be replaced by shift and add/subtract op-

erations. Therefore, the computation time is dominated by the

angle solving and rotation operations. In the case of QRD, the

typical triangular systolic architecture can then be mapped to

the rectangular processor array, as shown in Fig. 11.

From this, it will be observed that the computational load on

the diagonal PEs is high compared with the internal cells. For

example, has to compute the rotation angle and

as well as apply rotations to ,

and . In addition, has to derive the value

. Therefore, in Fig. 11, each internal

cell performs four rotations and each diagonal cell performs two

angle solving operations and five rotations i.e., the equivalent of

seven rotations.

One approach that can be used to reduce overall computation

time is to offload some of these computations to otherwise idle

PEs below the diagonal as illustrated in Fig. 12.

Fig. 11. QR array mapped to processor array.

Fig. 12. ASIP array mapping for QRD.

Fig. 13. Operations of P , P , P , and P .

Fig. 13 provides a summary of the operations carried out

in PEs , , , and . It will be noted that is

used to solve the angle and carry out the vector rotation

in parallel with the calculation of

. Effectively, then the operations of the lower di-

agonal cell in PE, are computed in the neighboring PE,

. Similarly, is used to perform the calculations

762 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 4, APRIL 2005

Fig. 14. Schedule of PEs P , P , P , and P .

Fig. 15. Section of assembly code for P .

and . Therefore, is

used to carry out computations that would have been carried out

in PEs and .

If the time for and data exchange is small compared

with the time for angle solving and rotation, then it follows that

each PE takes for angle solving and/or rotation operations.

This is because a pipelined CORDIC unit enables two rotation

operations to be carried out in parallel.

Let , where is the time for and data

exchanging operations. Then the schedule of operations for the

four cells is shown in Fig. 14, where only angle solving and

rotation operations are given for simplicity.

For other diagonal PEs, computations can be assigned and

distributed in a similar manner. Therefore, this mapping means

that each PE takes almost the same number of cycles for pro-

cessing, and most PEs are fully utilized, in effect balancing the

computational load across the hardware array.

The assembly code for is shown in Fig. 15, and has du-

ration of approximately , and so the data input rate

can be up to .

An alternative approach, which allows a higher data

throughput rate to be achieved, is presented below. In this

an ASIP based array can be configured as an “annihilation-re-

ordering look-ahead” RLS filter [23]. The block data processing

involved is illustrated schematically in Fig. 16 for a system in

which the look-ahead factor is four.

Fig. 16 shows that each block of four new inputs (e.g.,

) requires four angle solutions and

Fig. 16. Block-processing QR update with the annihilation reordering
(look-ahead factor is 4).

subsequent rotations. Since the pipelined CORDIC module

allows two angle solutions or rotations to be computed in

parallel, each PE can finish four such operations within

provided data is scheduled properly.

Fig. 16 also shows that although the first two rotations can be

applied in parallel, the remaining two rotations are dependent,

i.e., they cannot be calculated in parallel. However, they can be

calculated in parallel with the previous and subsequent input

block. This can be shown as follows.

1) Apply rotations and

in parallel.

2) Apply rotations and

in parallel.

3) Apply rotations and

in parallel.

The procedure for angle solving follows that described above.

In this case, the function of each internal cell can be mapped

to a single PE and the function of a boundary cell can be mapped

to two separate PEs, one for angle solving and another for per-

forming rotations. This is shown in Fig. 17. It will be noted that

each PE can support four data samples in cycles, and thus

the data throughput is (assuming the same time

for data preparation). This is almost four times the throughput

of Fig. 12. In this case, the maximum number of sensors that the

ASIP array can support is equal to the ASIP array size.

VI. RTL IMPLEMENTATION RESULTS

Initial design studies have been carried out based on a TSMC

0.13 micron, 1.2 V CMOS technology. Synthesized RTL re-

sults indicate that for a wordlength of (mantissa

LIU et al.: ASIP FOR SoC IMPLEMENTATION 763

Fig. 17. ASIP array mapping for block-processing QR update.

TABLE I
AREA OF EACH BLOCK IN A PE

and exponent), a clock rate of up to 300 MHz is achievable,

with each PE requiring around 17.5 K gates. Details of the area

requirements for each part of the PE are listed in Table I. There-

fore, a system comprising 20 20 CORDIC modules requires

around 7 M gates and can therefore be accommodated on a

modern System-on-Chip (SoC) device. If implemented as de-

scribed above then this can perform SVD on a matrix of di-

mensions up to 40 40 with the overall SVD computations

requiring less than 70 s (assuming five sweeps), or less than

512 s (assuming five sweeps) on a 80 80 matrix (employing

the mapping technique described). A QRD array of different

sizes (i.e., different number of input sensors) can also be con-

structed from such PEs. For QRD based adaptive beamforming,

the results obtained indicate that a sampling rate up to

MHz for 40 sensors can be supported. Alternatively,

if in “look ahead” mode, a 20-sensor array with a sampling rate

of up to 18 MHz can be supported.

The authors have been made aware of the work of Glokler and

Meyr [24] who have recently undertaken an ASIP case study for

eigenvalue decomposition (EVD) as part of a broader investi-

gation into ASIPs for embedded DSP applications with perfor-

mance and energy constraints. This specific design, referred to

as ICORE-II, has been developed to study the relative merits

of using a fixed instruction set processor with parameterized

units such as multiplier, adders and memories and an alternative

which uses a dedicated CORDIC datapath for hardware acceler-

ation. A detailed comparison with this is difficult as insufficient

detail is presented, for example on the level of pipelining used

and hence the number of clock cycles required to compute the

algorithm. In addition, as the authors themselves point out, mul-

tiple ICORE-II processors are required for high computational

requirements but this is not something they have addressed. This

requires extra data storage making direct area comparisons dif-

ficult. Other differences such as variations in target technology,

TABLE II
PERFORMANCE COMPARISON OF ICORE-II [24] AND PROPOSED

QRD/SVD ASIP

in wordlengths (which affects number of CORDIC iterations re-

quired and hence computation time) and matrix dimensions also

hinder a straightforward comparison. What comparisons can be

made are summarized in Table II.

VII. DISCUSSION AND SUMMARY

An ASIP suitable for real-time SVD, QRD, and combined

SVD/QRD computation has been described. This takes the form

of a programmable processor in which the arithmetic opera-

tions are performed using an internal CORDIC module. This

processor employs a novel SFC method, which reduces overall

computation time and incorporates pipelining with ensuing ben-

efits in terms of higher performance for the same silicon area. It

also incorporates mechanisms for parallel instruction issue and

uses dual data buses, which act in a similar manner. It has been

shown how, through careful scheduling and off-loading of com-

putations onto neighboring processors, the SVD array can be

mapped onto an ASIP array of reduced dimensions in an effi-

cient manner. The use of similar techniques have also been de-

scribed to balance the computational load across an ASIP array

configured as an annihilation-reordering look-ahead RLS filter,

hence supporting an increased throughput rate for QRD based

adaptive beamforming.

The ASIP described can also be used to implement a range

of other modern signal processing algorithms including ones

involving Jacobi rotations. Applications include, for example,

SVD updating for subspace tracking [21], [22]. In [25], an al-

gebraic transformation approach is used to eliminate the critical

loop path making the delay unrelated to the problem size. Here,

SVD updating is achieved by combining QR updating with a

single sweep of the SVD algorithm.

Many other similar examples also exist. For example, the

concept of algorithmic engineering, proposed by McWhirter

et al. [26], provides a framework for describing and manipu-

lating the type of building blocks commonly used to define a

wide range of parallel algorithms and associated architectures

for many modern digital signal processing applications. It is the

belief of the authors that the ASIP described can be used to

provide physical (i.e., silicon) instantiations for algorithms cap-

tured and developed in this way i.e., as a building block, suitable

for Jacobi rotation based matrix computation in modern signal

processing. It can of course also be used for more general pro-

cessors e.g., ones for performing matrix-by-matrix multiplica-

tion.

As discussed above, the results of design studies have shown

that with such processors, it is now possible to implement a

wide range of real-time systems SVD/QRD systems covering

764 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 4, APRIL 2005

different specifications on a single SoC device with these being

programmable in terms of the wordlengths used. It is also pos-

sible to use these to implement systems covering array sizes up

to thus allowing a single chip system to be created, which

is applicable across many applications and specification require-

ments.

APPENDIX

In order to compute the bounds of the scale factor (2.3c) is

considered as follows:

(A-1)

It can be seen that and , so for any

,

On the other hand, if applying logarithms to (A-1) then

(A-2)

It can be noted that can be substituted with Maclaurin’s

series

(A-3)

and it is clear that for , and then (A-2)

becomes

(A-4)

i.e., .

Therefore, the bounds of the scale factor are

.

REFERENCES

[1] W. M. Gentleman and H. T. Kung, “Matrix triangularization by systolic
arrays,” in Proc. SPIE Real-Time Signal Processing IV, vol. 298, 1981,
pp. 19–26.

[2] J. G. McWhirter, “Recursive least squares minimization using a systolic
array,” in Proc. SPIE Real-Time Signal Processing IV, vol. 431, 1983,
pp. 105–112.

[3] T. J. Shepherd and J. G. McWhirter, “Systolic adaptive beamforming,”
in Array Signal Processing, S. Haykin, J. Litva, and T. J. Shepherd,
Eds. New York: Springer-Verlag, 1993, ch. 5, pp. 153–243.

[4] R. P. Brent and F. T. Luk, “The solution of singular-value problems using
systolic arrays,” in Proc. SPIE Real-Time Signal Processing VII, vol.
495, 1984, pp. 7–12.

[5] R. P. Brent, F. T. Luk, and C. Van Loan, “Computation of the singular-
value decomposition using mesh-connected processors,” J. VLSI Comp.

Syst., vol. 1, no. 3, pp. 242–270, 1985.
[6] J. R. Cavallaro and F. T. Luk, “CORDIC arithmetic for an SVD pro-

cessor,” J. Parallel Distrib. Comput., vol. 5, no. 3, pp. 271–290, 1988.

[7] H. W. van Dijk, G. J. Hekstra, and E. F. Deprettere, “Scalable parallel
processor array for Jacobi-type matrix computations,” Integration, vol.
20, pp. 41–61, 1995.

[8] G. Lightbody, R. Walke, R. Woods, and J. McCanny, “Linear QR archi-
tecture for a single chip adaptive beamformer,” J. VLSI Signal Process.

Syst., vol. 24, pp. 67–81, 2000.
[9] G. Lightbody, R. Woods, and R. Walke, “Design of a parameterizable sil-

icon intellectual property core for QR-based RLS filtering,” IEEE Trans.

VLSI Syst., vol. 11, no. 4, pp. 659–678, 2003.
[10] Z. Liu, J. McCanny, G. Lightbody, and R. Walke, “Generic SoC QR

array processor for adaptive beamforming,” IEEE Trans. Circuits Syst.

II, Analog Digit. Signal Process., vol. 50, no. 4, pp. 169–175, 2003.
[11] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE

Trans. Electron. Comput., vol. EC-9, no. 3, pp. 330–334, 1959.
[12] J. S. Walther, “A unified algorithm for elementary functions,” in Proc

AFIPS Conf., vol. 38, 1971, pp. 379–385.
[13] K. Kota and J. R. Cavallaro, “Numerical accuracy and hardware trade-

offs for CORDIC arithmetic for special purpose processors,” IEEE

Trans. Comput., vol. 42, no. 7, pp. 769–779, Jul. 1993.
[14] S.-F. Hsiao and J. M. Delosme, “Parallel singular-value decomposition

of complex matrices using multidimensional CORDIC algorithms,”
IEEE Trans. Signal Process., vol. 44, no. 3, pp. 685–697, Mar. 1996.

[15] A. A. J. de Lange, A. van der Hoeven, E. F. Deprettere, and J. Bu, “An op-
timal floating-point pipeline CMOS CORDIC processor,” in Proc. IEEE

Int. Symp. Circuits and Systems, vol. 3, 1988, pp. 2043–2047.
[16] J. R. Cavallaro and F. T. Luk, “Floating-point CORDIC for matrix com-

putations,” in Proc. IEEE Int. Conf. Computer Design, 1988, pp. 40–42.
[17] G. J. Hekstra and E. F. Deprettere, “Floating point CORDIC,” in Proc.

11th IEEE Symp. Computer Arithmetic, 1993, pp. 130–137.
[18] R. L. Walke, R. W. M. Smith, and G. Lightbody, “Architectures for

adaptive weight calculation on ASIC and FPGA,” in Proc. IEEE 33rd

Asilomar Conf. Signals, Systems and Computers, vol. 2, 1999, pp.
1375–1380.

[19] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd
ed. Baltimore, MD: Johns Hopkins Univ. Press, 1989, pp. 444–459.

[20] B. Yang and J. F. Bohme, “Rotation-based RLS algorithms: unified
derivations, numerical properties, and parallel implementations,” IEEE

Trans. Signal Processing, vol. 40, no. 5, pp. 1151–1167, May 1992.
[21] M. Moonen, P. VanDooren, and J. Vanderwalle, “A SVD updating algo-

rithm for subspace tracking,” SIAM J. Matrix Anal. Appl., vol. 13, pp.
1015–1038, 1992.

[22] M. Moonen, E. Deprettere, I. Proudler, and J. McWhirter, “On the
derivation of parallel filter structures for adaptive eigenvalue and
singular-value decompositions,” in Proc. Int. Conf. Acoustics, Speech,

and Signal Processing, 1995, pp. 3247–3250.
[23] L. Gao and K. Parhi, “Hierarchical pipelining and folding of QRD-RLS

adaptive filters and its application to digital beamforming,” IEEE Trans.

Circuits Syst. II, Analog Digit. Signal Process., vol. 47, no. 12, pp.
1503–1519, Dec. 2000.

[24] T. Glokler and H. Meyr, Design of Energy-Efficient Application-Specific

Instruction Set Processors. Norwell, MA: Kluwer, 2004.
[25] J. Ma, K. K. Parhi, and E. F. Deprettere, “A unified algebraic transfor-

mation approach for parallel recursive and adaptive filtering and SVD
algorithms,” IEEE Trans. Signal Processing, vol. 49, no. 2, pp. 434–437,
Feb. 2001.

[26] J. McWhirter and I. Proudler, “Algorithmic engineering: a worked ex-
ample,” Signal Process. VI, pp. 5–12, 1992.

Zhaohui Liu received the B.Eng., M.Eng., and Ph.D.
degrees in electrical engineering from Beijing Insti-
tute of Technology, Beijing, China, in 1991, 1994,
and 1999, respectively.

From 1994 to 1996, he was a Software Engineer.
Currently he is a Research Fellow with the Institute
of Electronics, Communications and Information
Technology (ECIT), Queen’s University, Belfast,
Northern Ireland, U.K. His research interests include
the design of very large-scale integration architec-
tures and circuits for digital signal processing, with

emphasis on adaptive beamforming and subspace based signal analysis.

LIU et al.: ASIP FOR SoC IMPLEMENTATION 765

Kevin Dickson was born in Ballymoney, County
Antrim, Northern Ireland, U.K., in 1980. He received
the M.Eng. degree in electrical and electronic engi-
neering from Queen’s University, Belfast, Northern
Ireland, U.K., in 2002. He is currently working
toward the Ph.D. degree at Queen’s University,
Belfast, Northern Ireland, U.K.

His main research interests are in very large-scale
integration architectures and digital signal pro-
cessing.

John V. McCanny (M’86–SM’95–F’99) received
the Bachelor’s degree in physics from the University
of Manchester, Manchester, U.K., the Ph.D.degree
in physics from the University of Ulster, Ulster,
U.K., and the D.Sc. (higher doctorate) degree in
electrical and electronics engineering from Queen’s
University, Belfast, Northern Ireland, U.K., in 1973,
1978, and 1998, respectively.

He is an international authority in the design of sil-
icon integrated circuits for Digital Signal Processing;
having made many pioneering contributions to this

field. He has co-founded two successful high technology companies, Audio Pro-
cessing Technology Ltd., and Amphion Semiconductor Ltd. a leading supplier
of SoC cores for video compression. He is currently Director of the Institute of
Electronics, Communications and Information Technology at Queen’s Univer-
sity, Belfast. He has published 250 major journal and conference papers, holds
25 patents and has published five research books.

Prof. McCanny is a Fellow of the Royal Society, the Royal Academy of Engi-
neering, the Institution of Electrical Engineers ,and the Institute of Physics. He
has won numerous awards, including a Royal Academy of Engineering Silver
Medal for outstanding contributions to U.K. engineering leading to commercial
exploitation (1996), an IEEE Third Millennium medal and the Royal Dublin
Society/Irish Times Boyle Medal (2003). In 2002, he was awarded a CBE for
his contributions to engineering and higher education.

	toc
	Application-Specific Instruction Set Processor for SoC Implement
	Zhaohui Liu, Kevin Dickson, and John V. McCanny, Fellow, IEEE
	I. I NTRODUCTION
	II. CORDIC A LGORITHM FOR SVD AND QRD
	III. S CALE F ACTOR C ORRECTION

	Fig.€1. Floating-point CORDIC.
	A. SFC for SVD

	Fig.€2. SVD of a 4 \times 4 matrix using the CORDIC algorithm.
	B. SFC for QRD
	IV. P ROCESSOR A RCHITECTURE
	A. CORDIC Module Architecture

	Fig.€3. Pipelined floating-point CORDIC module.
	Fig.€4. Throughput rate achieved by pipelining.
	Fig.€5. CORDIC architecture.
	Fig.€6. Programmable processor architecture.
	B. Programmable Processor
	V. ASIP-B ASED SVD/QRD
	A. SVD Computation

	Fig.€7. Square array of ASIPs.
	Fig.€8. Assembly code of the operation of a diagonal PE.
	Fig.€9. Mapping of a 12 \times 12 matrix to a 3 \times 3 PE
	Fig.€10. SVD calculation for the case of mapping four 2 $% \times$
	B. QRD Computation

	Fig.€11. QR array mapped to processor array.
	Fig.€12. ASIP array mapping for QRD.
	Fig. 13. Operations of ${P}_{11}$, ${P}_{12}$, ${P}_{21}$, and $
	Fig. 14. Schedule of PEs ${P}_{11}$, ${P}_{12}$, ${P}_{21}$, and
	Fig. 15. Section of assembly code for ${P}_{11}$.
	Fig.€16. Block-processing QR update with the annihilation reorde
	VI. RTL I MPLEMENTATION R ESULTS

	Fig.€17. ASIP array mapping for block-processing QR update.
	TABLE€I A REA OF E ACH B LOCK IN A PE
	TABLE€II P ERFORMANCE C OMPARISON OF ICORE-II [24] AND P ROPO
	VII. D ISCUSSION AND S UMMARY
	W. M. Gentleman and H. T. Kung, Matrix triangularization by syst
	J. G. McWhirter, Recursive least squares minimization using a sy
	T. J. Shepherd and J. G. McWhirter, Systolic adaptive beamformin
	R. P. Brent and F. T. Luk, The solution of singular-value proble
	R. P. Brent, F. T. Luk, and C. Van Loan, Computation of the sing
	J. R. Cavallaro and F. T. Luk, CORDIC arithmetic for an SVD proc
	H. W. van Dijk, G. J. Hekstra, and E. F. Deprettere, Scalable pa
	G. Lightbody, R. Walke, R. Woods, and J. McCanny, Linear QR arch
	G. Lightbody, R. Woods, and R. Walke, Design of a parameterizabl
	Z. Liu, J. McCanny, G. Lightbody, and R. Walke, Generic SoC QR a
	J. E. Volder, The CORDIC trigonometric computing technique, IRE
	J. S. Walther, A unified algorithm for elementary functions, in
	K. Kota and J. R. Cavallaro, Numerical accuracy and hardware tra
	S.-F. Hsiao and J. M. Delosme, Parallel singular-value decomposi
	A. A. J. de Lange, A. van der Hoeven, E. F. Deprettere, and J. B
	J. R. Cavallaro and F. T. Luk, Floating-point CORDIC for matrix
	G. J. Hekstra and E. F. Deprettere, Floating point CORDIC, in Pr
	R. L. Walke, R. W. M. Smith, and G. Lightbody, Architectures for
	G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. Bal
	B. Yang and J. F. Bohme, Rotation-based RLS algorithms: unified
	M. Moonen, P. VanDooren, and J. Vanderwalle, A SVD updating algo
	M. Moonen, E. Deprettere, I. Proudler, and J. McWhirter, On the
	L. Gao and K. Parhi, Hierarchical pipelining and folding of QRD-
	T. Glokler and H. Meyr, Design of Energy-Efficient Application-S
	J. Ma, K. K. Parhi, and E. F. Deprettere, A unified algebraic tr
	J. McWhirter and I. Proudler, Algorithmic engineering: a worked

