N94- 71127
2nd NASA SERC Symposium on VLSI Design 1990 8.1.1

Application Specific
Serial Arithmetic Arrays

K. Winters, D. Mathews and T. Thompson
Department of Electrical Engineering
Montana State University
Bozeman, Montana

Abstract- High performance systolic arrays of serial- parallel multiplier elements
may be rapidly constructed for specific applications by applying hardware de-
scription language techniques to a library of full-custom CMOS building blocks.
Single clock precharged circuits have been implemented for these arrays at
clock rates in excess of 100Mhz using economical 2-micron (minimum feature
size) CMOS processes, which may be quickly configured for a variety of appli-
cations. A number of application-specific arrays are presented, including a 2-D
convolver for image processing, an integer polynomial solver, and a finite-field
polynomial solver.

1 Introduction

Parallel arrays of serial arithmetic processor modules have been proposed since the late
1950s [13] for high performance signal and information processing. Only since the devel-
opment of very large scale integrated (VLSI) circuit technologies nearly 20 years later, has
it been possible to fully exploit the speed and modularity of this architecture type. This
paper presents an approach to the design of special-purpose systolic arrays that attempts
to maximize performance and cost effectiveness and minimize design time. A family of
high-speed CMOS circuits has been tailored to take advantage of the inherent locality of
connection of serial processor arrays, while modern hardware description language (HDL)
and logic synthesis techniques are employed to enable very rapid development of sim-
ulation models, standard-cell prototype components, and high-performance full custom
CMOS implementations.

A design methodology has been adopted for the development of these arrays that com-
bines bottom-up and top-down approaches. First, a hardware description language (HDL)
model is written that reflects the structure of the array to the cell level and functional
behavior at the cell level. This model is simulated and debugged, becoming the defined
specification of the array. At this point, a standard-cell semi-custom implementation may
be quickly generated using logic synthesis tools. Standard-cell realizations may be suf-
ficient in performance for many applications, or optionally may serve as prototypes for
full-custom components developed later.

Finally, full-custom CMOS versions of the datapath cells are designed to the HPL
specification, verified with SPICE, and laid out with a physical artwork editor. The artwork
is checked for design rule violations, and extracted for simulation using the same test

8.1.2

vectors used to verify the HDL models. Parasitic capacitances are also extracted, and
SPICE timing models annotated. Once the datapath cell dimensions are known, the HDL
models used to define the topology of the array can, with very little modification, be used to
construct the tiled datapath artwork. Composite artwork layout, padring generation, and
module place-and-route are performed automatically, using the same tools as for standard-
cell prototypes.

It is crucial that there be a close coupling between the array architecture and the CMOS
circuit design if clock speed is to be maximized. A family of dynamic logic circuits was
developed that avoids precharge race conditions, clock skew, and hold time considerations,
and minimizes series fet and static inverter stage delays. The resulting differential syn-
chronous logic elements are clocked by a single uncomplemented signal. Conversely, array
architectures are constrained to highly systolic configurations with very local connectivity
between synchronous elements. '

The OCT toolset from the University of California, Berkeley, is used for top-down
behavioral and structural HDL modeling, logic and switch simulation, CMOS standard-
cell prototype synthesis, and custom layout. The toolset is an integrated system for VLSI
design, including tools and libraries for multi-level logic synthesis, standard cell placement
and routing, programmable logic array and gate matrix module generation, custom cell
design, and utility programs for managing design data. Most tools are integrated with the
OCT data-base manager and the X-based VEM graphical user interface.

Yn-1 Yn-2 K1 Yo

a —&H 2D (&H 2D (& 2D (&4 2D|

product
out

Figure 1: Fully Systolic Serial-Parallel Multiplier

2 Single-Clock Serial-Parallel Multipliers

A single-clock dynamic multiplier circuit has been developed in 2 micron CMOS technology
using differential single-clock NORA techniques. This multiplier, shown in Figure 1,1is a

-

2nd NASA SERC Symposium on VLSI Design 1990 8.1.3

B Full — Sum
C.. Adder Coue

Clk—p>

Figure 2: Bit Serial Adder

systolic adaptation of the serial-parallel multiplier introduced by Yaohan Chu in 1962 (3]
and later by Daniel Hampel [7]. The boxes labeled with ampersands represent bit-serial
adders, shown in Figure 2. “D”s represent delay flip-flops.

This multiplier requires 2n clock cycles to multiply two n-bit operands. Essentially, the
parallel multiplicand, y, is multiplied by the serial multiplier, x, on each clock cycle and
accumulated in the product pipeline. The multiplier input is pipelined through n stages,
which reduces the maximum fanout of the multiplier input to 2 gate inputs. Commensurate
delay elements are added to the product pipeline, totaling two delay elements per bit-slice.
A primary advantage of this systolic multiplier circuit is that is has the proper ratio of
operand to product storage. That is, it contains n bits of storage in the multiplier pipeline,
and 2n bits of storage in the product pipeline [15].

In operation, the multiplier is shifted into the module in n cycles, followed by n cycles
of zeroes. In some applications, it is desirable to utilize the full bandwidth of the multiplier
pipeline during these “dead” cycles. This is accomplished by ANDing the multiplicand, y,
with the output of an n-bit Johnson-Ring or Mobius [12] counter, as illustrated later.

The product pipeline can accumulate external addends with its partial products without
additional adder logic. The external addend is shifted serially in the a input and must
be pre-shifted n bits into the product pipeline before the LSB of the multiplier is entered.
Thus, the lower n bits of the addend occupy the high n bits of the product pipeline at the
beginning of a multiply sequence. Then, n multiplier bits are shifted into the multiplier
pipeline, leaving the LSB of the accumulated product in the LSB of the product pipeline.
During the next n clock cycles, the multiplier is shifted out (replaced by zeroes), the low n
bits of the product are shifted out of the product pipeline, the high n bits of the product
are left in the low half of the product pipeline, while the low n bits of the next addend are
pre-shifted into the high product pipeline half.

This multiplier configuration operates on positive integers. For signed two’s comple-
ment operands, the sign bit of the multiplier operand, MSB, must be repeated, or sign
extended, and shifted into the multiplier pipeline during the second n cycles of the mul-

Figure 3: Single Clock Multiplier Cell Schematic

tiply. This can be implemented simply with a sign hold flip-flop preceding the multiplier
pipeline that is load-disabled during the second n cycles of the multiply [7,11].

A circuit diagram for the systolic multiplier bit-slice is shown in Figure 3. This circuit
was designed using a single-phase, noncomplemented clocking scheme, capable of higher
clock rates than conventional dual-clock or complemented-clock techniques, since clock
skew is less of a problem [8], [9], [1]. Here, synchronous systems may be constructed from
alternating precharged P-fet and N-fet logic stages separated by clocked inverters. This
scheme, like its predecessors NORA [4] and Domino [10] logic, is free of precharge race

failures, yet eliminates the need for a complemented clock and associated skewing problems
at very high clock rates.

The P-logic stages of the circuit at left precharge low during clock high and evaluate
during clock low, while the N- logic stages in the center precharge high during clock low
and evaluate during clock high. These two stages provide the product of the operands,
and also one of the bits of storage in the product pipeline. The product of the operands
is generated in the following manner. The product logic is a P-logic AND gate, which
multipliers mr and md to produce p. The addend a is an input from the previous stage
of the multiplier, and is XORed with ¢ in the P-logic XOR. The Carry logic generates the
carry which will be used in the succeeding clock cycle’s multiplication. The accumulated
product is generated in the N Logic by XORing a-XOR-c and p. This product is used as
the addend for the next cell.

The two flip-flop circuits at the far right complete the pipelines. The mr flip-flop

2nd NASA SERC Symposium on VLSI Design 1990 ' 8.1.5

; o iR 7
L& ;
T WS S B
Figure 4: Single clock multiplier cell artwork

provides the storage in the multiplier pipeline, and the sumbar flipflop provides the second
bit of storage in the product pipeline.

The following constraints are imposed to maximize clock rate in array architectures
with very high locality of connection. A maximum of two series logic fets are used in any
dynamic stage. Differential logic configurations are used wherever there are two logic fets in
series and complemented outputs are required, such as the P-logic and N-logic differential
XOR stages. Discrete output inverters are allowed only where one series logic fet exists in
a dynamic stage, such as the md-AND-mr P-logic stage. N-logic stages are used to drive
the cell outputs to take advantage of higher N mobility.

In state machines built from differential or dual-rail logic, there exist possible lockup
states where differential outputs are stuck both ones or both zeroes. To address lockup
states in the multiplier cell, the additional term pbar-AND-cbar is added to the logic
equation for coutbar. This ensures that after a clock cycle the circuit will break out of
the case where cout and coutbar both are stuck at zero. The case where cout and coutbar
are stuck at one corrects itself when p becomes a one. This suggests that a power-up
procedure should be run to ensure that the circuit has broken out of the stuck cases and
also to initialize the pipelines.

The layout of the systolic multiplier cell is shown in Figure 4. This cell is 130 by 183
microns in size. The multiplier was simulated ! at clock rates greater than 100 MHz using
MOSIS 2-micron design rules, assuming that the output load of the cell was an identical
cell.

1Using Tektronix, Inc. Tekspice, Tektronix MFET Level 2 device models, and slow speed device param-
eters for a MOSIS 2-micron (drawn gate length) SCMOS process, Revision 6 design rules, at T=100 degrees
C and Vdd = 4.5V.

8.1.6

In , . n, Out
7

Figure 5: Babbage polynomial solver

3 Babbage Polynomial Solver

The Difference Engine, proposed by Charles Babbage in 1822, can be easily adapted to
serial arithmetic, providing a simple example of the proposed design methodology and cir-
cuit implementation. Once initialized for a known value of polynomial p(X), the Babbage
polynomial solver evaluates p(X+1), p(X+2), and so on, requiring only one clock cycle
per evaluation. This method of finite differences is based on the binomial theorem, which
guarantees that a polynomial p(X), when evaluated at p(X+1), will yield a new polynomial
of X: the sum of p(X) and a remainder polynomial, r(X). Thus, polynomials evaluated at
successive values may be decomposed recursively.

The general form of the Babbage Difference Engine is shown in Figure 5. It consists of
only adders and pipeline registers.

Since the Babbage machine is systolic by column, the performance bottleneck is in
the adder carry propagation logic. This can be reduced by pipelining each adder bit by
row, replacing each parallel adder stage with a bit-serial adder. The resulting datapath
architecture, shown in Figure 6, consists of a single cell.

The first step is to define the behavior and structure of the Babbage array cell, called
babit. This is done in the Berkeley OCT environment using an HDL called BDS to define
behavior, Table 1, and BDNET to define structure as in Table 2.

Next, a BDNET description of the datapath topology is constructed,

The general form of the Babbage Difference Engine is shown in Figure 5. It consists of
only adders and pipeline registers.

Since the Babbage machine is systolic by column, the performance bottleneck is in
the adder carry propagation logic. This can be reduced by pipelining each adder bit by
row, replacing each parallel adder stage with a bit-serial adder. The resulting datapath
architecture, shown in Figure 6, consists of a single cell.

The first step is to define the behavior and structure of the Babbage array cell, called
babit. This is done in the Berkeley OCT environment using an HDL called BDS to define
behavior, Table 1, and BDNET to define structure as in Table 2.

Next, a BDNET description of the datapath topology is constructed, configured here
for a degree-3 by 4-bit engine in Table 3. This process required less than one afternoon,
excluding simulation test vector generation.

After simulation and optional mask release of the standard-cell prototype IC, custom
versions of the bit cell are designed employing the single-clock dynamic circuits described

2nd NASA SERC Symposium on VLSI Design 1990 8.1.7

Cin0 Cinl Cin2
B B -
_ | { |
In0 l ‘ \ l
Solve ; (H—D] (H—D}— (HD—D}—1+ outo
ve
D | D D]
In1 ‘9 D D] lﬁ D}—L> out1

Solve 1 D] / D] D]
In2 l@ D] _ Ig)’ D] — ‘Q D ——» Out2

Solve2 m E] E

In3 D +—D| ‘QE > Qut3
B D] D)

Solve3 ' Sotve4 Solveb
Cout0 Coutl Cout?2

Figure 6: Systolic Babbage polynomial solver

8.1.8

! BABIT difference engine bit module BDS description
! FILE: babit.bds

! Kel Winters

! Rev: 5-22-90

'Vars: in -addend input, solve - add enable
! cin - carry in, f - feedback input, p - solve AND {
! sum - sum output, ¢ - carry out

model babit sum <0 >,c<0>=1n <0 >,s0lve <0>,f <0 >,cin <0 >;
routine cycle;

state p < 0 >;

p = solve AND f;

sum = in XOR p XOR cin;

¢ = (in AND p) OR (inAND cin)OR (pANDecin);

ENDROUTINE;

ENDMODEL;

Table 1: Babit Behavioral Description

earlier. Starting with a basic set of CMOS “building blocks” for constructing serial adder
cells with delay elements, full custom babit realization required about two engineer-weeks.
The same BDNET description used to construct the standard cell datapath is then con-
figured to build the tiled custom version, Figure 7.

4 Two-Dimensional Integer Convolver

The two-dimensional convolver discussed in this section is essentially a digital filter for
two-dimensional integer-valued image data. The purpose of the convolver is to filter out
specific information, or data patterns, which are defined by the convolution mask at high
speeds. The use of the convolver assumes that the processed data will be subtracted from
the image so that the desired data is the only information which is retained. This module
is intended for configuration for applications such as LaPlacian pyramid image compaction
[2], [6], feature extraction, and enhancement/restoration.

The organization of the convolver is now row parallel, so that a column of image data
enters the convolver at the same time. The structure is basically an array of serial-parallel
multiplier/accumulators with a few modifications to the circuit discussed previously.

A block diagram of the convolver module is shown in Figure 8. The convolver moves
the raw data through its registers, accumulating the convolved result as it travels. The
input is multiplied by the first values in the positive-valued convolution mask, and is
piped to the next multiplier/accumulator register (column) as the addend for its operation.
The partially accumulated result, for a given location in the data, is piped through the

2nd NASA SERC Symposium on VLSI Design 1990 8.1.9

! BABIT difference engine bit cell BDNET description
! File: babit.bdnet
! Kel Winters

! Rev: 5-23-90
11 Variables: in - addend input, solve - add enable
! cin - carry in, cout - carry out delayed
! out - sum output delayed
!
MODEL babit:unplaced;

TECHNOLOGY scmos;
VIEWTYPE SYMBOLIC;
EDITSTYLE SYMBOLIC;

INPUT clk,in < 0 >,s0lve <0 >,cin < 0 >;
OUTPUT cout < 0 >,out <0 >;

SUPPLY Vdd;

GROUND GND;

INSTANCE babit:logic PROMOTE;
' f<0>:0ut <0 >; ‘
INSTANCE “~ Jocttools/lib/technology/scmos/msu/stdcell2_0/dfnf311”:physical
DATAl:sum < 0 >;
CLK3:clk;
Q:out < 0 >;
Qb:UNCONNECTED:;
“Vdd!”:Vdd;
“GND'":GND;

INSTANCE “~ [octtools/lib/technology/scmos/msu/stdcell2.0/dfnf311”:physical
DATAl:ic< 0 >;
CLK3:clk;
Q:cout < 0 >;
Qb:UNCONNECTED;
“Vdd"”:Vdd;
“GND!.GND;

ENDMODEL;

Table 2: Babit Structural Description

8.1.10

! BABAR3x4, difference engine array BDNET description
! File: babar.bdnet

! Kel Winters

! Rev: 5-24-90
!

! Variables: same as Babit

MODEL
TECHNOLOGY
VIEWTYPE
EDITSTYLE

INPUT
OUTPUT
OUTPUT
SUPPLY
GROUND

ARRAY
ARRAY

INSTANCE

ENDMODEL;

NOTE: this file is written to be extensible in array height,
4, and width, 3. Copy this file into the actual bdnet
bdnet file and substitute the desired values for 4 and
3 before running bdnet

babar3x4:unplaced;
scImos;
SYMBOLIC;
SYMBOLIC;

ckyin < (4—-1):0>,cin < (3-1):0 >,s0lve < (4+3—2):0 >;
out <(4—-1):0>:in < ((3+1)*4—1):(4x3)>;

OUTPUT cout < (3—1):0>:cin<(3*(44+1)—1):(3*4) >;
Vdd;

GND;

%x FROM 0 to (3-1) OF
%y FROM 0 to (4-1) OF

babit:unplaced
clk : clk;
in <0>:1n < %z x4+ %y >;
out <0 >:in < (%z +1) x4+ %y >;
cin < 0>:cin < %y * 3+ %z >;
cout < 0 >: cin < (%oy + 1) * 3 + %z >;
solve < 0 >: solve < %z + %y >;
Vdd: Vdd,;
GND : GND;

Table 3: BABAR 3 x 4 Structural Description

2nd NASA SERC Symposium on VLSI Design 1990 8.1.11

Figure 7: Custom single clock polynomial solver module

array in parallel with data at vertical neighbor locations. It is piped to the multiplication
operation with which it must be added next (this includes diagonal/vertical routing.) The
last register operation produces a convolved value for each point in one column of the
two-dimensional input data.

Three modifications have been made on the systolic multiplier circuit to build the
convolver circuit. A second multiplier (mr) pipeline has been added, along with a Johnson
ring counter and a control cell which routes data through the multiplier/accumulator
registers.

The multiplier storage line, or pipeline, consists of two flip-flops per bit slice (multi-
plier/accumulator cell.) This serves to provide a pipeline path for the multiplier (image)
data that is matched in length to the product accumulator pipe so that the product sums
from neighboring rows can be synchronized then combined.

This array configuration calculates a convolution matrix for every odd column of the
input matrix. Therefore, each systolic multiplier stage receives an n-bit serial operand,
then ignores the next as it completes the second n clock cycles of the multiply sequence.
This second operand must not be lost, however, as it will be used be the next multiplier
stage downstream in the succeeding n cycles. Therefore, an n-bit Johnson Ring counter,
described previously, shifted through the multiplier pipeline.

The Johnson ring counter is effectively an n-bit shift register with its output fed back,
inverted to its input. A serial reset is provided to initialize the ring. Again, the ring
counter serves to allow a second set of n-bit words to share the mr pipeline, disabling the

. mrsort
mrsin —»1 2n-bit Shift Register |[——>
mefad 77 safout
mrfin L —» mrin mrout
‘“’“1]:'.[n-bit Systolic
awsel_ Multiplier
. dout
awin 1 a y prod| _ PTOQQ
n
A n
t \
rese D_ »| n-bit Shift Register _"l
A n
multiplicand

Figure 8: Two dimensional systolic convolver register

unused odd words from affecting the multiplier logic. For the twos-complement capability,
the odd words in the mr pipeline should be filled with sign-extension bits. The Johnson
ring counter would then be replaced with a second mr pipeline. Naturally, overflows from
the sign-extension field must be cleared between multiply-accumulate operations.

The complete convolver bit cell contains 119 fets and is 150 by 160 microns in size,
using 2-micron MOSIS CMOS design rules. Artwork is shown in Figure 9.

The control cell includes four pass gates, the reset for the Johnson ring counter, and
the power, ground and clock routing. Two of the pass gates switch the addend input
from the west or the northwest neighbors upstream. The other two pass gates determine
whether the incoming multiplier is processed through the multiplier pipeline or detoured
through the slow (twice delayed) multiplier pipeline. This allows adjacent row products
to be summed, with the multiplier pipelines matched to the product pipelines. Power,
ground and control signals are routed vertically, by column.

2nd NASA SERC Symposium on VLSI Design 1990

i 3 ? o p ; R U

20/ % 5 s ; ///// 0
//// A @ R E 7 //////

N
N
N
™
D

Figure 9: Two dimensional convolver bit cell

8.1.13

Figure 10: Finite field constant multiplier

5 Two-Dimensional Systolic State Machines

Two-dimensional systolic state machines are defined here as automata where the present-
state feedback is organized as a set of n row pipelines and next-state equations organized as
n column pipelines, where n is the width of the state variable vector. Rows and columns
must be ordered so that all loops from a state-variable to itself contain n delays. The
intent here is to maximize clock speed independently of the state vector width or functional
complexity.

For example, a finite-field constant multiplier-accumulator consists of a synchronous
register to store the present-state and an array of exclusive-or (XOR) gates, representing
modulo-2 adders. Next-state equations are sum-of-product functions of the present-state
vector. In its simplest organization [14], the present-state register outputs are fed back as
row lines, and the next-state equations are organized as columns of XOR gates or crossovers
as needed, Figure 10. Here, XOR gate sites are represented by “+,” and flip-flops by “D.”
Note that the XOR gate outputs to the bottom; the row input is passed through the row.
The critical timing path in this organization is the fanout of the state register, up to n
XOR gates across n columns, and up to n XOR gate delays routed through n rows.

A 2-D systolic finite-field multiplier is shown in Figure 11. Here, the present-state
feedback is through n n-stage shift registers, one per row. Column XOR gates are also
pipelined, one stage per row. Again, rows and columns are organized so that all loops
from feedback (present-state) signals to themselves contain n delays. This configuration

2nd NASA SERC Symposium on VLSI Design 1990 8.1.15

0 0 0 0
D /L\ D +—{D +
4’% T
D D D D
Sotoiad
D D D D
>f|+\ D A D ——D—CD
b T
D. D D D
><—B D /-l-K D A—D D +
T 2T |
D D D D
|

Figure 11: Systolic finite field multiplier

Configuration | Flip- | XOR | n-mult | Fanout | Series
Flops | Sites | cycles | Max. Delays

n Conventional | n? nd 1 n n

Systolic 2n? | n? n 1 1

Table 4: Finite-Field Constant Multiplier Time-Area Considerations

performs the function of n conventional multipliers operating in parallel. The time-area
considerations for n conventional multipliers and the proposed systolic array are compared
in Table 4. The fourth column gives the number of clock cycles required to perform n
multiplications of n bits.
- If the ratio of flip-flop area to XOR gate area is assumed to be 1:3, an area figure of
merit for the n conventional constant multipliers is given by n + n?/3 compared to 7n/3

for the systolic case. This implies that the area is comparable at n = 4. At n = 8,
common to Reed-Solomon error correction codes, the n conventional constant multipliers
would be about 50% larger than the systolic version. Thus, the systolic version would
have to operate at about five times the clock rate of the n conventional multipliers to
reach time-area parity (not difficult given the difference in fanout and series delays).

This thumbnail sketch is an oversimplification, given that each technique tends to favor
different circuit realizations, but serves to illustrate the potential of 2-D systolic state
machines. Practical applications in finite field constant multipliers would likely involve an
optimal compromise: a systolic array of non-systolic sub-arrays.

The advantages of this technique are more apparent in applications where the value of
n grows large. One such application under investigation is the simulation of Hopfield-type
neural networks [5], where the next-state of n neurons is a function of the present-state
of n neurons described by an n-by-n matrix. Here, neurons would be realized by systolic
columns in the state machine array, dendrites by row pipelines, and synaptic connections
by systolic serial-parallel multipliers (described previously) at the intersection of each row
and column. This array would emulate n neural networks operating in parallel.

6 Conclusions and Future Directions

A technique for designing high-performance systolic serial VLSI arithmetic arrays has been
presented, combining a new variation of differential single-clock dynamic CMOS circuits, a
systolic adaptation of Chu’s serial-parallel multiplier, and a structured design methodology
that combines recent advances in hardware description language synthesis and modeling
with full-custom IC design.

For the class of applications that can be decomposed into a regular array of arith-
metic modules, it is proposed that HDL models may be developed in hours, standard-cell
prototype ICs using logic synthesis techniques implemented to mask release in days, and
high-speed full-custom implementations to mask release in weeks.

A standard-cell implementation of the Babbage style polynomial solver has been re-

2nd NASA SERC Symposium on VLSI Design 1990 8.1.17

leased for fabrication in a 2 micron (drawn gate length) CMOS process through the Na-
tional Science Foundation MOSIS silicon brokerage service. VLSI Technology, Inc. will
provide the fabrication. A full-custom prototype of the same polynomial solver has been
designed and will be released shortly in the same process.

Standard-cell and full-custom implementations of the two-dimensional convolver are in
development for release in a 2 micron process from the Massachusetts Micro-electronics
Center and a 1.2 micron process from the Hewlett-Packard Co. through the MOSIS ser-
vice. These convolver arrays are configured for hierarchical or Laplacian pyramid image
compression, a technique proposed for the Mars Rover Sample Return mission [6]. Other
configurations for space telescope correction/enhancement and digital signal processing are
also under investigation.

Preliminary work on a finite-field polynomial solver based on 2-D systolic constant
multipliers has recently begun. It is anticipated that rapid development of custom high-
speed arithmetic arrays will provide practical solutions for a wide array of image, signal,
and data processing applications.

Acknowledgement

This work was supported by grants from the NASA Space Engineering Research Center at
the University of Idaho, Moscow, and the Montana State University Engineering Experi-
ment Station as well as equipment donations from the Helwett-Packard Co. and Tektronix,
Inc. The authors would especially like to thank the following people for their valuable as-
sistance to this work: Gary Maki and Jon Gibson of the NASA SERC at the University
of Idaho, Jaye Mathisen and Sanjay Mitra of Montana State University, Rick Spickelmier
of UC Berkeley, Paul Cohen of the Massachusetts Microelectronics Center, and Fred Huck
of the NASA Langley Research Center.

References

[1] M. Afghahi and C. Svensson, “A Unified Single-Phase Clocking Scheme for VLSI
Systems,” IEEE J. Solid-State Circuits, Vol. 25, no. 1, Feb. 1990, pp. 225-233.

[2] P. Burt and E. Adelson, “The Laplacian Pyramid as a Compact Image Code,” IEEE
Trans. on Communications, Vol. COM-31, No. 4, April 1983.

[3] Y. Chu, Digital Computer Design Fundamentals, McGraw-Hill, 1962.
[4] N. Goncalves and H. De Man, “NORA: A Racefree Dynamic CMOS Technique for

8.1.18

Pipelined Logic Structures,” IEEE J. Solid-State Circuits, Vol. SC-18, no. 3, June
1983, pp. 261-266. .

[5] J. Hopfield and D. Tand, “Computing with Neural Circuits: A Model,” Science, Vol.
233, pp. 625-633, August 1986.

[6] F. Huck, “Rover Imaging Systems for the Mars Rover/Sample Return Mission,”
Proposal to the NASA Planetary Instrument Definition and Development Program,
NASA Langley Research Center, Hampton, VA, March, 1989.

[7] D. Hampel, K McGuire, and K. Prost, “CMOS/SOS Serial-Parallel Multiplier,” IEEE
J. on Solid-State Circuits, Vol. SC-10, No. 5, October 1975.

(8] Y.Ji-Ren, I. Kaarlson, and C. Svensson, “A True Single- Phase-Clock Dynamic CMOS
Circuit Technique,” IEEE J. Solid-State Circuits, Vol. SC-22, no. 5, October 1987,
pp. 899-901.

[9] Y. Ji-Ren and C. Svensson, “High-Speed CMOS Circuit Technique,” IEEE J. Solid-
State Circuits, Vol. 24, no. 1, Feb. 1989, pp. 62-70.

[10] R. Krambeck, C. Lee, and H. Law, “High-Speed Compact Circuits with CMOS,”
IEEE J. Solid-State Circuits, Vol. SC-17, June 1982, pp. 614-619.

(11] R. Lyon, “Two’s Complement Pipeline Multipliers,” IEEE Trans. on Communica-
tions, COM-24, April, 1976, pp. 418-425. 97-107.

(12] H. Taub and D. Schilling, Digital Integrated Electronics, McGraw-Hill Inc., New York,
1977, pp. 349-355.

[13] S. Unger, “A Computer Oriented Toward Spatial Problems,” Proceedings of the IRE,
Vol. 46, no. 10, pp. 1744-1750, October, 1958.

[14] K. Winters, “A VLSI Error Location Processor for a High Performance Reed-Solomon
Decoder,” Master’s Thesis, University of Idaho, Moscow, ID, June, 1984.

(15] K. Winters, “Serial Multiplier Arrays for Parallel Computation,” NASA SERC Sym-
posium on VLSI Design, Moscow, ID, Jan. 1990.

