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Background. Accurate identification of ovarian tumors as benign or malignant is highly crucial. Radiomics is a new branch of
imaging that has emerged in recent years to replace the traditional naked eye qualitative diagnosis. Objective. This study is
aimed at exploring the difference in the application potential of two- (2D) and three-dimensional (3D) radiomics models based
on CT plain scan in differentiating benign from malignant ovarian tumors. Method. A retrospective analysis was performed on
140 patients with ovarian tumors confirmed by surgery and pathology in our hospital from July 2017 to August 2020. These
140 patients were divided into benign group and malignant group according to the pathological results. The ITK-SNAP
software was used to outline the regions-of-interest (ROI) of 2D or 3D tumors on the CT plain scan image of each patient; the
texture features were extracted through analysis kit (AK), and the cases were randomly divided into training groups (n = 99)
and validation group (n = 41) in a ratio of 7 : 3. The least absolute shrinkage and selection operator (LASSO) algorithm was
used to perform dimensionality reduction, followed by the construction of the radiomics nomogram model using the logistic
regression method. The receiver operating characteristic (ROC) curve was drawn, and the calibration curve and decision curve
analysis (DCA) were used to evaluate and verify the results of the radiomics nomogram and compare the differences between
2D and 3D diagnostic performance. Results. There were 396 quantitative radiomics feature parameters extracted from 2D
group and the 3D group, respectively. The area under the curve (AUC) of the radiomics nomogram of the 2D training group
and the validation group were 0.96 and 0.97, respectively. The accuracy, specificity, and sensitivity of the training set were
92.9%, 88.9%, and 96.3%, respectively, and those of the validation set were 90.2%, 82.6%, and 100.0%, respectively. The AUCs
of the radiomics nomogram of the 3D training group and validation group were 0.96% and 0.99%, respectively. The accuracy,
sensitivity, and specificity of the training set were 92.9%, 96.3%, and 88.9%, respectively, and those of the validation set were
97.6%, 95.7%, and 100.0%, respectively. DeLong’s test indicated that there was no statistical significance between the two sets
(P > 0:05). Conclusions. For the differential diagnosis of benign and malignant ovarian tumors, the 2D and 3D radiomics
nomogram models exhibited comparable diagnostic performance. Considering that the 2D model was cost-effective and time-
efficient, it was more recommended to use 2D features in future research.
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1. Background

Ovarian cancer is the second most common cause of death
from gynecological cancer worldwide [1]. The prognosis of
ovarian cancer depends on early diagnosis, surgical treat-
ment, and postoperative systemic treatment. Despite signifi-
cant progress in the development of treatment methods, the
5-year survival rate after diagnosis of ovarian cancer is only
47%, the 5-year survival rate of patients with stage I ovarian
cancer is >70%, and the 5-year survival rate of patients with
stage III and IV is <30% [2]. A timely diagnosis of ovarian
cancer can improve the survival rate of patients. Ovarian
tumor is located in the hidden deep part of the pelvic cavity,
without specific clinical symptoms. Ovarian lesions are often
detected on CT scans [3].

Radiomics is a new branch of imaging that has emerged
in recent years to replace the traditional naked eye qualita-
tive diagnosis. In radiomics, the quantification of imaging
data is assisted by various advanced image processing
methods [ 4, 5]. Qualitative imaging diagnosis methods are
transformed into machine digital quantitative methods [5].
Several studies have shown that CT-based radiomics can
efficiently differentiate benign from malignant lesions of kid-
ney, lung, and liver [6]. Thus, it has been hypothesized that
the radiomic features of CT images can be used to differen-
tiate benign from malignant lesions of ovarian tumors.

The selection of ROI is critical in the research of radio-
mics and is directly related to the results of texture feature
extraction. The tumor lesions on CT images are displayed
in multiple layers, and we can use a single layer (two-dimen-
sional, 2D) of the largest cross-sectional diameter of the
tumor or a multilayer (three-dimensional, 3D) of the entire
tumor volume to extract the features [6]. Compared with
the 3D area-of-interest, the outline of 2D area-of-interest
consumes less time and manpower and is simple and fast
in the calculation. Compared with the 2D single level, the
full level of 3D texture features could provide comprehensive
information about the entire tumor [7]. Previous studies
have used both 2D and 3D ROI; however, the performance
differences between 2D and 3D features show inconsistent
results [8, 9]. Additionally, how 2D and 3D features affect
the research results as well as their pros and cons are
unclear.

The purpose of this study was to explore the perfor-
mance of radiomics in differentiating benign from malignant
ovarian incidental lesions, as well as to compare the perfor-
mances of 2D and 3D texture features.

2. Data and Method

2.1. General Information. A retrospective analysis was per-
formed on the clinical and imaging data of 178 patients with
suspected ovarian tumors in our hospital from 2017 to 2020.
The inclusion criteria were as follows: (a) patients with ovar-
ian tumor confirmed by histopathology; (b) no history of
malignant tumors other than ovarian tumor; (c) patients
who were undergoing pelvic CT examination within half a
month before surgery. Among the patients meeting these
criteria, 38 patients were excluded: [1] those who had

received radiotherapy, chemotherapy, or radiotherapy-
chemotherapy before CT examination (n = 20). [2] patients
diagnosed with inflammatory diseases (n = 11); [3] patients
with low image quality (n = 7). Finally, our study included
140 patients.

2.2. Collection of CT Images. CT images were obtained by
dual-source CT (SOMATOM Definition, Siemens) using
automatically modulated scanning parameters: tube voltage
120 kV, tube current 150mA, slice thickness 5mm, recon-
struction interval 1mm, and slice internal 1mm.

2.3. Segmentation of Area-of-Interest. ITK-SNAP (Version
3.6.0) was used to segment all area-of-interests from the
baseline DICOM image. The 2D group manually segmented
the ROI from the slice with the largest lesion diameter, and
the 3D group segmented the full-level ROI of the lesion
(Figure 1) [7], which were performed independently by
two imaging doctors (A and B, with 5 and 15 years of expe-
rience in abdominal imaging, respectively).

2.4. Feature Extraction.We used the artificial intelligence life
science toolkit (3.0.1.A, GE Healthcare) to extract the texture
features of 134 ROIs (62 benign and 72 malignant). For each
ROI, 396 features were calculated, including texture, histo-
gram, shape factor, Gray-Level Co-Occurrence Matrix
(GLCM), Gray-Level Run-Length Matrix (GLRLM), and
Gray-Level Size Zone Matrix (GLSZM). We calculated
GLCM and RLM in four directions (0°, 45°, 90°, and 135°)
and at three displacements [1, 4, 7] to describe the pattern
or spatial distribution of voxel intensity.

2.5. Feature Preprocessing. Before feature selection, the fea-
tures were preprocessed in three steps: [1] the outliers were
replaced with the median of the same feature; [2] the control
group and the patient group were divided into training
group (n = 95) and testing group (n = 39); [3] Z-score nor-
malization was performed on the training dataset to elimi-
nate the difference in the scale of the extracted feature
values. The training dataset and test dataset both used the
mean and standard deviation calculated using the training
dataset alone for normalization. (In the normalization pro-
cess, the mean was subtracted from the original feature
value, and the difference value was divided by the standard
deviation).

2.6. Feature Selection and Model Establishment. Feature
selection and model establishment were performed accord-
ing to the feature selection and model of the training dataset.
First, the robustness and reproducibility of the image fea-
tures were tested. Since the features were extracted based
on the ROI manually segmented by the radiologist, only
the most stable features in manual segmentation between
different radiologists were used [10]. Using the Spearman
rank correlation test, the correlation coefficient of the seg-
mented lesion feature between physician A and physician
B was calculated. The features with a correlation coefficient
> 0:8 were considered to be robust features. Next, the
Max-Relevance and Min-Redundancy (mRMR) algorithm
was used, which maximized the relevance between selected
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features to distinguish between benign and malignant
tumors and eliminated redundancy between the features to
select features. Second, the least absolute shrinkage and
selection operator (LASSO) algorithm was used to adjust λ
through the penalty parameter to further filter the most use-
ful features. Through ten-fold cross-validation, the optimal λ
was selected based on the minimum criterion. Then, the
radiomic features (Radscore) were calculated for each case,
and the selected features were linearly combined and
weighted by their respective coefficient factors.

2.7. Establishment and Evaluation of Radiomics Nomogram.
Univariate logistic regression was used to find independent
prediction factors of ovarian tumors. Clinical candidate pre-
diction factors included clinical factors (age, ascites, solidity,

and border of tumor cystic), biomarker expression (CA125)
[11, 12], and Radscore [13]. Multivariate logistic regression
was used to combine these individual prediction factors to
develop a more robust malignant prediction model of ovar-
ian tumors and build a radiomics nomogram model [14].
The calibration curve was used for performance evaluation,
and the Hosmer-Lemeshow test [15] was used to test the
applicability of the model. The receiver operating character-
istic (ROC) curve was used to evaluate the diagnostic perfor-
mance based on the nomogram. The radiomics probabilistic
malignancy score of ovarian cancer tumors adopted the
nomogram method. According to the ROC curve cutting
value, all patients were divided into low probability groups
and high probability groups. The ovarian tumor cases of dif-
ferent malignancies were analyzed by nomogram, and its

(a) (b)

Figure 1: (a) Manual outline of the maximum diameter level of ovarian lesions. (b) Manual outline of the full-level ovarian lesions.

Table 1: Case distribution in the training set and validation set.

Training group (n = 99) Validation group (n = 41)
P value

Benign Malignant P value Benign Malignant P value

Quantity 45 54 19 22

Age (year) 0.0164 0.0015 0.3032

<18 4 (8.9%) 1 (1.9%) 1 (5.3%) 0 (0.0%)

>18, ≤30 7 (15.6%) 2 (3.7%) 8 (42.1%) 0 (0.0%)

>30, ≤50 20 (44.4%) 20 (37.0%) 6 (31.6%) 7 (31.8%)

>50 14 (31.1%) 31 (57.4%) 4 (21.1%) 15 (68.2%)

CA125 (U/mL) <0.0001 0.0009 0.8859

<35 22 (48.9%) 4 (7.4%) 9 (47.4%) 4 (18.2%)

>35, ≤200 20 (44.4%) 16 (29.6%) 10 (52.6%) 5 (22.7%)

>200, ≤500 2 (4.4%) 11 (20.4%) 0 (0.0%) 4 (18.2%)

>500 1 (2.2%) 23 (42.6%) 0 (0.0%) 9 (40.9%)

Ascites <0.0001 0.0004 0.4627

None 26 (57.8%) 10 (18.5%) 15 (78.9%) 4 (18.2%)

Small 17 (37.8%) 12 (22.2%) 3 (15.8%) 4 (18.2%)

Moderate 0 (0.0%) 13 (24.1%) 1 (5.3%) 4 (18.2%)

Large 2 (4.4%) 19 (35.2%) 0 (0.0%) 10 (45.5%)

Cystic-solid tumor <0.0001 0.0044 0.6431

Cystic 17 (37.8%) 2 (3.7%) 7 (36.8%) 0 (0.0%)

Cystic-solid 26 (57.8%) 45 (83.3%) 12 (63.2%) 20 (90.9%)

Solid 2 (4.4%) 7 (13%) 0 (0.0%) 2 (9.1%)

Boundary <0.0001 0.4082 0.3399

Clear 41 (91.1%) 24 (44.4%) 16 (84.2%) 15 (68.2%)

Blur 4 (8.9%) 30 (55.6%) 3 (15.8%) 7 (31.8%)

Radscore median [iqr] -0.6 [-1.1, 0.6] 0.8 [0.6, 1.1] <0.0001 -0.6 [-1.0, -0.1] 0.8 [0.4, 1.0] 0.0005 0.7503
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clinical significance was discussed. Additionally, DCA was
performed to test the feasibility of the nomogram [16].

2.8. Statistical Analysis. Kolmogorov-Smirnov test was used
for data normalization. SPSS 19.0 software, and R statisti-
cal tools (v3.4.4) were used. The t-test (normally distrib-
uted data) and Mann–Whitney U test (skewed
distribution data) were used to count the probability
scores of radiomics of benign and malignant samples,
where the scores were expressed as mean ± standard
deviation (x ± s). The χ2 test was used to compare the
two sets of count data. The predictive effect of each model
was evaluated using typical diagnostic indicators, such as
accuracy, sensitivity, specificity, and area under the curve
(AUC) [17].

3. Results

3.1. Case Characteristics. The factors such as age, ascites,
boundary, cystic-solid tumor, or biomarker expression (i.e.,
CA125) were included in the multivariate logistic regression
analysis (Table 1). In the training set, age, ascites, cystic-solid
tumor, and CA125 were found to be independent clinical
prediction factors (Table 2).

3.2. Establishment and Evaluation of Clinical Prediction
Model. The constructed clinical prediction model for differ-
entiating benign from malignant ovarian tumor found the
following performance indicators. In the 2D training set,
the AUC was 0.87 (95% CI: 0.80-0.94), and the sensitivity,
specificity, and accuracy were 70.4%, 75.6%, and 81.8%,
respectively. The AUC of the validation set was 0.85 (95%
CI: 0.71-0.98), and the sensitivity, specificity, and accuracy
were 72.7%, 94.7%, and 82.1%, respectively. The AUC of
the 3D training group and the validation group were 0.86
(95% CI: 0.78-0.94) and 0.84 (95% CI: 0.70-0.99), and the
sensitivity, specificity, and accuracy in the two groups were
70.4% and 77.2%, 90.3% and 84.2%, and 80.8% and 80.5%
(Figure 2, Table 3).

3.3. Establishment and Evaluation of Radiomics Prediction
Model. The 2D selected 6 features, 3D selected 5 features,
and these features were used to construct 2D and 3D radio-
mics models (Figure 3). The AUC of 2D training group and
2D validation group was 0.83 (95% CI: 0.75-0.92) and 0.82
(95% CI: 0.67-0.96); the accuracy, specificity, and sensitivity
of 2D training group and 2D validation group were 80.8%
and 80.5%, 71.1% and 78.9%, and 88.9% and 81.8%; the
AUC of 3D training group was 0.83 (95% CI: 0.75-0.92);

the sensitivity, specificity, and accuracy were 90.7%, 66.7%,
and 79.8%, respectively; the AUC of 3D validation group
was 0.86 (95% CI: 0.68-0.95); the sensitivity, specificity,
and accuracy were 81.8%, 73.7%, and 78.0%, respectively
(Figure 2, Table 3).

3.4. Establishment and Evaluation of Radiomics Nomogram
Models. The results of univariate logistic regression analysis
showed that age, ascites, cystic-solid, CA125, and radiologi-
cal signs could independently predict and diagnose ovarian
tumors (Table 2). These prediction factors could construct
a more stable radiomics nomogram prediction model
through multivariate logistic regression analysis (Figure 4).

The patient calibration curve showed that the predicted
ovarian tumor types were consistent with the actual types
of ovarian tumors. The 2D radiomics nomogram predicted
the AUC of benign and malignant ovarian occupancy in
the training group and the validation group to be 0.96%
(95% CI: 0.91-1.00) and 0.97% (95% CI: 0.93-1.00), respec-
tively. The accuracy, specificity, and sensitivity of the training
set were 92.9%, 88.9%, and 96.3%, respectively, and those of
the validation set were 90.2%, 82.6%, and 100.0%, respec-
tively. The 3D radiomics nomogram predicted the AUC of
benign and malignant ovarian occupancy in the training
group and the validation group to be 0.96% (95% CI: 0.91-
1.00) and 0.99% (95% CI: 0.98-1.00), respectively. The accu-
racy, sensitivity, and specificity of the training set were 92.9%,
96.3%, and 88.9%, respectively, while those of the validation
set were 97.6%, 95.7%, and 100.0% (Figure 2, Table 3).

DeLong’s test revealed that in the 2D and 3D training and
test sets, the AUC of the clinical information-based model
was significantly different from that of the nomogram-
based model. The differences between the clinical informa-
tion model and the pure radiomics model were not statisti-
cally different, and there is no statistically significant
difference in the differential diagnostic performances
between the 2D and 3D nomogram model. Hence, 2D and
3D nomogram models exhibited good performances
(Table 4). Additionally, the Hosmer-Lemeshow test demon-
strated that there was no statistically significant difference
between the training and test subsets (P > 0:05). This verified
the superiority of the nomogram diagnosis. The nomogram
was also used to estimate the probability score of ovarian
tumors. According to Youden index 19 (2D cut-off value
was 0.415, and 3D cut-off value was -0.107), patients were
divided into low probability group and high probability
group, and the index was defined according to the nomogram
of the training set. The high probability group and the low

Table 2: Univariate and multifactor logistic regression analysis of benign and malignant prediction factor of ovarian tumor.

Univariate regression analysis Multifactor regression analysis
Variables OR (95% CI) P value OR (95% CI) P value

Age 2.340 [1.331; 4.112] <0.001 2.48 [1.07; 5.74] 0.034

CA125 5.225 [2.701; 10.110] <0.001 3.53 [1.61; 7.73] 0.002

Boundary 12.813 [4.023; 40.810] <0.001
Cystic-solid 7.262 [2.423; 21.762] <0.001 6.37 [1.75; 23.22] 0.005

Ascites 3.558 [2.091; 6.054] <0.001 2.29 [1.21; 4.34] 0.011
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Figure 2: Continued.
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probability group had significant differences in the number
of benign and malignant samples (P < 0:0001). Figure 5
depicts the DCA of 2D and 3D radiomics nomograms. The
radiomics and nomogram methods were superior to the clin-
ical models of the “no treatment” and “treatment all” strate-
gies. The 2D and 3D models had treatment probability
thresholds ranging from 0 to 0.7 (Figure 5).

4. Comment

4.1. Principal Findings of the Study. In this study, the 3D
radiomics model and radiomics nomogram model of
patients with ovarian tumors were constructed and com-
pared with the 2D model. In the training group and the val-
idation group of the 3D model, the AUC of the radiomics

nomogram model was 0.96% (95% CI: 0.91-1.00) and
0.99% (95% CI: 0.98-1.00); the radiomics nomogram model
had extremely high sensitivity and specificity. Compared
with the other two models, the difference was statistically
significant. The radiomics model had high sensitivity, and
the clinical model had high sensitivity. The results were con-
sistent with the evaluation results of the 2D model. In the
horizontal comparison, the 2D and 3D models had the same
diagnostic efficiency for the evaluation of benign and malig-
nant ovarian incidental tumors, and the difference was not
statistically significant.

ROI is sometimes performed on a single section with the
largest cross-sectional diameter (2D) of the tumor and
sometimes on multiple sections or the entire tumor volume
(3D). A 3D model based on the full volume includes the
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Figure 2: (a) ROC of 2D clinical, radiomics, and nomogram models to differentiate benign from malignant ovarian tumors. (b) ROC of 3D
clinical, radiomics, and nomogram models to differentiate benign from malignant ovarian tumors. (c) AUC of 2D and 3D nomogram
models to differentiate benign from malignant ovarian tumors (P < 0:05).

Table 3: Predictive performances of a clinical model, radiomics model, and radiomics nomogram model.

Group Model Accuracy 95% CI Sensitivity Specificity

Training group (2D)

Clinical 0.818 [0.728; 0.889] 0.704 0.956

Radiomics 0.808 [0.717; 0.880] 0.889 0.711

Nomogram 0.929 [0.860; 0.971] 0.963 0.889

Validation group (2D)

Clinical 0.829 [0.679; 0.928] 0.727 0.947

Radiomics 0.805 [0.651; 0.912] 0.818 0.789

Nomogram 0.902 [0.769; 0.973] 1.000 0.826

Training group (3D)

Clinical 0.808 [0.717; 0.880] 0.704 0.933

Radiomics 0.798 [0.705; 0.872] 0.907 0.667

Nomogram 0.929 [0.860; 0.971] 0.963 0.889

Validation group (3D)

Clinical 0.805 [0.651; 0.912] 0.772 0.842

Radiomics 0.780 [0.624; 0.894] 0.818 0.737

Nomogram 0.976 [0.871; 0.999] 0.957 1.000
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entire tumor lesion and can extract more meaningful fea-
tures for research and analysis compared with the 2D model
that includes only studies the largest cross-sectional area.
Machado et al. [9] found that radiomics could predict the
recurrence of nonfunctional pituitary adenomas after the
first operation. Compared with 2D radiomic features, 3D
radiomics has a better discriminative ability. Ng et al. [18]
explored whether there was a difference between the maxi-

mum cross-sectional area enhanced CT texture feature and
the whole tumor enhanced CT texture feature and its predic-
tive effect on the clinical prognosis. The results showed that
the whole tumor analysis could effectively reflect tumor
heterogeneity.

4.2. Clinical Implications. Since radiomic features were
extracted from the ROI, manual outline required the
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Figure 3: The feature selection process, selected radiomic features, and corresponding coefficients of radiomics model: (a) 2D model and (b)
3D model.
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researcher to have relevant professional knowledge and
spend a considerable amount of time, and the calculation
of features needed extensive calculations [17]. This was par-
ticularly prominent in the research based on 3D images,
which restricted the development of related fields. However,
the research showed that it was not clear whether the extra
time and labor related to capacity evaluation was necessary
[19]. Hence, as another trade-off, the time-saving 2D model
was also used in some research, which was performed at a
single axial level, usually the largest cross-section of the
lesion, rather than the entire tumor. Whether this is repre-
sentative of the entire tumor is still unknown. In some
research, the 2D model has shown better performance, and
this seems quite counter-intuitive. Meng et al. [20] found
that the model built with 2D radiomic features showed com-
parable performance to the model built with 3D features in
terms of characterization of the prediction of lymphatic
and vascular metastasis of gastric cancer and believed that
the time-saving 2D model would be a better choice for
studying gastric cancer. Shen et al. [21] compared the differ-
ence between 2D and 3D image features of CT images and
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Figure 4: Radiomics nomogram ((a) 2D model and (b) 3D model).

Table 4: DeLong’s test of a clinical model, radiomics model, and
nomogram model.

Group Model 1 Model 2 P value

Training group (2D)

Clinical Radiomics 0.538

Radiomics Nomogram 0.001

Nomogram Clinical 0.007

Validation group (2D)

Clinical Radiomics 0.779

Radiomics Nomogram 0.020

Nomogram Clinical 0.042

Training group (3D)

Clinical Radiomics 0.629

Radiomics Nomogram 0.002

Nomogram Clinical 0.006

Validation group (3D)

Clinical Radiomics 0.811

Radiomics Nomogram 0.010

Nomogram Clinical 0.039
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prognostic performance of nonsmall cell lung cancer and
found that image features had a certain predictive effect on
the prognosis of nonsmall cell lung cancer; however, the
2D features showed better performance. Thus, based on
the calculation cost of radiomic features, the use of 2D fea-
tures was recommended.

In the feature selection, among the final features
extracted by the 3D model, there were two features that were
the same as those extracted by the 2D model, namely, the
inverse different moment and the advantage of the low-
intensity small area. The feature with the largest negative
coefficient value was also the inverse different moment, indi-
cating that the element values of benign ovarian tumors were
more uniform than those of malignant tumors. The radio-

mic features were very stable and well represented the tex-
ture of the tumor, which had a good reference value for
the differentiation of benign from malignant ovarian tumors.
The feature with the largest positive coefficient value was the
GLCM inertia, which belonged to the GLCM feature. It
reflected the clarity of the image and the depth of the texture
groove. Contrast was directly proportional to texture
grooves; the larger the value of the groove, the clearer the
image. On the contrary, the smaller the value of the groove,
the smaller the image contrast and the more blurred the
image [22]. GLN measured the similarity of the gray-level
intensity values in the ROI. The larger the feature value,
the higher was the repetition frequency of a gray-level value
in the matrix, which indicated that the distribution of gray
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Figure 5: DCA of (a) 2D and (b) 3D radiomics models and clinicopathological features (green, blue, and dark red lines correspond to
clinical, radiomics, and nomogram model, respectively). Light gray lines show that all radiomics models, and clinicopathological features
were related to hypotheses related to malignant ovarian tumors. Additionally, the dark red lines show that all radiomics models and
clinicopathological features were related to hypotheses not related to malignant ovarian tumors.
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value was more uniform [23]. SRE measured the distribution
of short run-length in the image matrix. The larger the fea-
ture value, the shorter was the run-length, with a finer image
texture [24]. These two reflected the judgment value of het-
erogeneity of ovarian tumors in the differential diagnosis of
benign and malignant tumors. Unlike the 2D model, the
first-order statistical features (maximum intensity and statis-
tical parameters) were screened out in the 3D model that
was related to the attributes of a single pixel, and the distri-
bution of voxel intensity in CT images was described by
common basic metrics [25]. However, 2D and 3D models
had not screened out the morphological features, which
mainly described the 3D size of ROI, spatial geometric shape
characteristics and did not reflect the heterogeneity within
the image. The results of the study showed that the nature
of the ovarian tumor was not closely related to the size and
shape of tumors. Vos et al. [26] proposed that all tumor
lesions were small tumors at the beginning, showing short
and stable growth, and the size of the tumor depended on
the measurement time. Hence, small or medium tumors
were not reliable biomarkers.

4.3. Strengths and Limitations. In this study, 2D and 3D
image features had comparable predictive performance on
the nature of the ovarian tumor. Analysis suggested that
the 3D model brought more noise in the delineation of
ROI and feature selection, drowning out effective informa-
tion and disturbing research results [20]. There were two
main sources of noise. First, the delineation of the ROI of
the target lesion was a subjective and subtle process. Differ-
ent doctors might have different opinion in judging whether
there was a disease and determining the location of the
boundary of the disease. Even if it passed the consistency
analysis, it still could not avoid the limitations of naked
eye observation and the interference of personal subjectivity.
Compared with the 2D mode, the 3D mode was more sus-
ceptible to influence because its multilevel outline magnified
the influence of factors. Second, the noise was related to the
thickness of the scan layer. For different images, different CT
scanners had different reconstruction schemes, and their
thickness was also different. Since multilayer or 3D ROI
had multiple blurred lesion boundaries at different layers
and high sensitivity to different thicknesses, its signal-to-
noise ratio could have been lower than that of single-layer
2D ROI.

4.4. Conclusions. The proposed 2D and 3D radiomics
models had the same diagnostic efficiency for the differenti-
ation of benign and malignant ovarian tumors. However,
considering better clinical applicability and lower cost of
manpower and material resources, the 2D model was recom-
mended for follow-up research.

Abbreviations

CT: Computed tomography
AUC: Area under the curve
ROC: Receiver operating characteristic
AK: Analysis kit

LASSO: The least absolute shrinkage and selection operator
DCA: Decision curve analysis.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Ethical Approval

This study is officially approved and accepted by the Ethics
Committee of Jiangxi Provincial People’s Hospital.

Consent

Informed consent was obtained from all individual partici-
pants included in the study.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Shiyun Li carried out the data collection, literature review,
and drafting of the manuscript. Jiaqi Liu and Yongzhi Han
contributed to the drafting of the manuscript and aided in
the literature review. Puying Luo and Bing Fan participated
in the data collection and the drafting of the manuscript.
Bing Fan helped to design the work and revised the final ver-
sion of the manuscript. All authors read and approved the
final manuscript. These authors contributed equally: Shiyun
Li, Jiaqi Liu, and Yuanhuan Xiong.

Acknowledgments

This study was supported by the Funding of Jiangxi Province
Department of Science and Technology (Grant no.
20202BABL206112) and the Funding of Health Commission
of Jiangxi Province (Grant nos. 20203036 and 202110004).

References

[1] X. Hu, D. Li, Z. Liang et al., “Indirect comparison of the diag-
nostic performance of 18F-FDG PET/CT and MRI in differen-
tiating benign and malignant ovarian or adnexal tumors: a
systematic review and meta-analysis,” BMC Cancer, vol. 21,
no. 1, p. 1080, 2021.

[2] S. Banerjee and S. B. Kaye, “New strategies in the treatment of
ovarian cancer: current clinical perspectives and future poten-
tial,” Clinical Cancer Research, vol. 19, no. 5, pp. 961–968,
2013.

[3] J. A. Spencer and R. M. Gore, “The adnexal incidentaloma: a
practical approach to management,” Cancer Imaging, vol. 11,
no. 1, pp. 48–51, 2011.

[4] D. Dong, M. Fang, L. Tang et al., “Deep learning radiomic
nomogram can predict the number of lymph node metastasis
in locally advanced gastric cancer: an international multicenter
study,” Annals of Oncology, vol. 31, no. 7, pp. 912–920, 2020.

[5] D. Dong, L. Tang, Z. Li et al., “Development and validation of
an individualized nomogram to identify occult peritoneal

10 BioMed Research International



metastasis in patients with advanced gastric cancer,” Annals of
Oncology, vol. 30, no. 3, pp. 431–438, 2019.

[6] S. Wang, J. Shi, Z. Ye et al., “Predicting EGFR mutation status
in lung adenocarcinoma on computed tomography image
using deep learning,” European Respiratory Journal, vol. 53,
no. 3, p. 1800986, 2019.

[7] G. Yang, P. Nie, L. Zhao et al., “2D and 3D texture analysis to
predict lymphovascular invasion in lung adenocarcinoma,”
European Journal of Radiology, vol. 129, article 109111, 2020.

[8] L. Yang, J. Yang, X. Zhou et al., “Development of a radiomics
nomogram based on the 2D and 3D CT features to predict
the survival of non-small cell lung cancer patients,” European
Radiology, vol. 29, no. 5, pp. 2196–2206, 2019.

[9] L. F. Machado, P. C. L. Elias, A. C. Moreira, A. C. Dos Santos,
and L. O. Murta Junior, “MRI radiomics for the prediction of
recurrence in patients with clinically non-functioning pituitary
macroadenomas,” Computers in Biology and Medicine,
vol. 124, article 103966, 2020.

[10] J. Wu, T. Aguilera, D. Shultz et al., “Early-stage non-small cell
lung cancer: quantitative imaging characteristics of (18) F flu-
orodeoxyglucose PET/CT allow prediction of distant metasta-
sis,” Radiology, vol. 281, no. 1, pp. 270–278, 2016.

[11] V. Dochez, H. Caillon, E. Vaucel, J. Dimet, N. Winer, and
G. Ducarme, “Biomarkers and algorithms for diagnosis of
ovarian cancer: CA125, HE4, RMI and ROMA, a review,”
Journal of ovarian research, vol. 12, no. 1, p. 28, 2019.

[12] Y. Guo, T. Jiang, L. Ouyang et al., “A novel diagnostic nomo-
gram based on serological and ultrasound findings for preop-
erative prediction of malignancy in patients with ovarian
masses,” Gynecologic Oncology, vol. 160, no. 3, pp. 704–712,
2021.

[13] I. Isupov, M. D. McInnes, S. J. Hamstra et al., “Development of
RAD-score: a tool to assess the procedural competence of diag-
nostic radiology residents,” AJR. American Journal of Roent-
genology, vol. 208, no. 4, pp. 820–826, 2017.

[14] Z. Liu, S. Wang, D. Dong et al., “The applications of radiomics
in precision diagnosis and treatment of oncology: opportuni-
ties and challenges,” Theranostics, vol. 9, no. 5, pp. 1303–
1322, 2019.

[15] P. Paul, M. L. Pennell, and S. Lemeshow, “Standardizing the
power of the Hosmer–Lemeshow goodness of fit test in large
data sets,” Statistics in Medicine, vol. 32, no. 1, pp. 67–80, 2013.

[16] A. J. Vickers and E. B. Elkin, “Decision curve analysis: a novel
method for evaluating prediction models,” Medical Decision
Making, vol. 26, no. 6, pp. 565–574, 2006.

[17] P. Lambin, E. Rios-Velazquez, R. Leijenaar et al., “Radiomics:
extracting more information from medical images using
advanced feature analysis,” European journal of cancer,
vol. 48, no. 4, pp. 441–446, 2012.

[18] F. Ng, R. Kozarski, B. Ganeshan, and V. Goh, “Assessment of
tumor heterogeneity by CT texture analysis: can the largest
cross-sectional area be used as an alternative to whole tumor
analysis?,” European Journal of Radiology, vol. 82, no. 2,
pp. 342–348, 2013.

[19] M. G. Lubner, N. Stabo, S. J. Lubner et al., “CT textural analysis
of hepatic metastatic colorectal cancer: pre-treatment tumor
heterogeneity correlates with pathology and clinical out-
comes,” Abdominal Imaging, vol. 40, no. 7, pp. 2331–2337,
2015.

[20] L. Meng, D. Dong, X. Chen et al., “2D and 3DCT radiomic fea-
tures performance comparison in characterization of gastric

cancer: a multi-center study,” IEEE Journal of Biomedical
and Health Informatics, vol. 25, no. 3, pp. 755–763, 2021.

[21] C. Shen, Z. Liu, M. Guan et al., “2D and 3D CT radiomics fea-
tures prognostic performance comparison in non-small cell
lung cancer,” Translational Oncology, vol. 10, no. 6, pp. 886–
894, 2017.

[22] Y. Liu, Q. Li, B. Du, and M. Farzaneh, “Feature extraction and
classification of surface discharges on an ice- covered insulator
string during AC flashover using gray-level co-occurrence
matrix,” Scientific Reports, vol. 11, no. 1, p. 2542, 2021.

[23] H. Yoon, S. Ha, S. J. Kwon et al., “Prognostic value of tumor
metabolic imaging phenotype by FDG PET radiomics in
HNSCC,” Annals of Nuclear Medicine, vol. 35, no. 3,
pp. 370–377, 2021.

[24] M. Yan and W. Wang, “A non-invasive method to diagnose
lung adenocarcinoma,” Frontiers in Oncology, vol. 10, p. 602,
2020.

[25] R. T. Leijenaar, S. Carvalho, E. R. Velazquez et al., “Stability of
FDG-PET Radiomics features: an integrated analysis of test-
retest and inter-observer variability,” Acta Oncologica,
vol. 52, no. 7, pp. 1391–1397, 2013.

[26] M. Vos, M. P. A. Starmans, M. J. M. Timbergen et al., “Radio-
mics approach to distinguish between well differentiated lipo-
sarcomas and lipomas onMRI,” The British Journal of Surgery,
vol. 106, no. 13, pp. 1800–1809, 2019.

11BioMed Research International


	Application Values of 2D and 3D Radiomics Models Based on CT Plain Scan in Differentiating Benign from Malignant Ovarian Tumors
	1. Background
	2. Data and Method
	2.1. General Information
	2.2. Collection of CT Images
	2.3. Segmentation of Area-of-Interest
	2.4. Feature Extraction
	2.5. Feature Preprocessing
	2.6. Feature Selection and Model Establishment
	2.7. Establishment and Evaluation of Radiomics Nomogram
	2.8. Statistical Analysis

	3. Results
	3.1. Case Characteristics
	3.2. Establishment and Evaluation of Clinical Prediction Model
	3.3. Establishment and Evaluation of Radiomics Prediction Model
	3.4. Establishment and Evaluation of Radiomics Nomogram Models

	4. Comment
	4.1. Principal Findings of the Study
	4.2. Clinical Implications
	4.3. Strengths and Limitations
	4.4. Conclusions

	Abbreviations
	Data Availability
	Ethical Approval
	Consent
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

