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Dimensionality reduction techniques are a key component of most microbiome studies,
providing both the ability to tractably visualize complex microbiome datasets and the
starting point for additional, more formal, statistical analyses. In this review, we discuss the
motivation for applying dimensionality reduction techniques, the special characteristics of
microbiome data such as sparsity and compositionality that make this difficult, the different
categories of strategies that are available for dimensionality reduction, and examples from
the literature of how they have been successfully applied (together with pitfalls to avoid). We
conclude by describing the need for further development in the field, in particular
combining the power of phylogenetic analysis with the ability to handle sparsity,
compositionality, and non-normality, as well as discussing current techniques that
should be applied more widely in future analyses.
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INTRODUCTION: WHAT IS DIMENSIONALITY REDUCTION AND
WHY DO WE DO IT?

To a first approximation, life on Earth consists of complex microbial communities, with
“familiar” multicellular organisms such as plants and animals being rounding errors in
terms of cell count and biomass. The genetic repertoire of such a community is called a
“microbiome” (Turnbaugh et al., 2007), although the term “microbiome” is often also loosely
applied to the collection of microbes that make up the community. In either sense, microbiomes
are typically incredibly complex, containing vast numbers of species and genes, and how samples
relate, even in well-studied contexts, are not predetermined. For example, in the Earth
Microbiome Project (EMP) (Thompson et al., 2017) and the work leading up to it
(Lozupone and Knight, 2007; Ley et al., 2008; Caporaso et al., 2011), an ontology
constructed from the microbe’s perspective based on community similarities and differences
revealed many surprises, such as a deep separation between free-living and host-associated
samples, and between saline and non-saline samples. Accordingly, to truly understand the
microbial perspective, we must get acquainted with the structure of the data in human-
interpretable formats. This is especially important when we need to separate new biological
discoveries from technical artifacts, such as distinguishing clusters related to different habitats
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on the human body from artifacts caused by different
sequencing methodologies such as PCR primers (The
Human Microbiome Project Consortium, 2012).

When microbiome sequencing data (Figure 1A) are arranged
into count tables (Figure 1B), such as those that count 16S
amplicon sequence variants (ASVs) or the microbial genes
present in a sample, the number of features being counted
across all of the samples often vastly outnumbers the number
of samples observed. This phenomenon of having many features,
and particularly having far more features than samples, is a
hallmark of high-dimensionality. For example, the EMP
(Thompson et al., 2017) contained 23,828 samples and
represented 307,572 ASVs, where each of these ASVs is
considered a dimension of the resulting count table. This
degree of high feature dimensionality creates difficulties for
interpreting data and calculating meaningful statistics, since
humans cannot visualize more than 3 dimensions, many of
the features are noisy or redundant, the number of hypotheses
that explain the data is far greater than the number of
observations, and the number of features can cause run-time
issues for downstream analysis. These are all common
consequences of the “curse of dimensionality”. Dimensionality
reduction transforms a high-dimensional dataset into a
representation with fewer dimensions, while retaining the key
relationships among samples from the full dataset, making
analysis tractable. Accordingly, dimensionality reduction is a
core step in microbiome analyses, both for creating human-
understandable visualizations of the data and as the basis for
further analysis. The EMP used dimensionality reduction to
produce plots of the 23,828 samples using 3 coordinates (in
contrast to the 307,572 ASVs) that demonstrate the large
difference between host-associated and non-host-associated
microbiomes, and between saline and non-saline free-living
microbiomes (Figure 1C). These differences in microbial
communities were subsequently statistically validated. This

example is particularly salient because it shows the value of
preserving the structure of the data while using much less
information to represent it. Owing to its importance,
dimensionality reduction methods are included in many
analysis packages, including QIIME 2 (Bolyen et al., 2019),
mothur (Schloss et al., 2009), and phyloseq (McMurdie and
Holmes, 2013), as well as online software such as Qiita
(Gonzalez et al., 2018) and MG-RAST (Keegan et al., 2016).

In this review, we describe how the characteristics of
microbiome data complicate dimensionality reduction. We
then discuss common strategies for dimensionality reduction
(Table 1), examining in detail whether and how they address
each of the aspects that, in conjunction, confound microbiome
analysis. Tried-and-true techniques, although useful, often have
conceptual and practical problems that limit their utility in the
microbiome, due to the inability to handle the data’s most salient
traits simultaneously (Table 2). In this light, we then focus on
examples of how dimensionality reduction techniques have been
used in the literature, highlighting biological findings that have
been revealed by each, while also discussing what may have been
obscured. We then discuss common artifacts of widely used
dimensionality reduction techniques, including specific pitfalls
that users of these techniques must avoid in order to draw
conclusions that are robust, reproducible, and well-supported
by their data. We end with guidance on how dimensionality
reduction should be used responsibly by practitioners in the field,
and with an outlook describing how additional techniques that
are seldom used today might provide valuable advances.

Specific Features of Microbiome Data That
Complicate Dimensionality Reduction
“Microbiome data” most often refers to sequencing results from
two primary methodologies. The first class of microbiome
sequencing is known as “amplicon sequencing” where a

FIGURE 1 |Overview of dimensionality reduction pipeline. Nucleotide sequences (A) from a biological experiment are organized in a feature table (B) containing the
abundance of each feature (e.g., OTU, ASV, MAG) in each sample. (C)Beta diversity plots showing unweighted UniFrac coordinates of EMP annotated by EMPO levels 2
and 3. (C) is a derivative of Figure 2C from “A communal catalogue reveals Earth’s multiscale microbial diversity” by Thompson et al. (2017) used under CC BY 4.0.
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specific gene or region of a gene is targeted in each sample. 16S,
18S, and ITS sequencing approaches all fall under this class of
methods. Variants of the targeted nucleotide sequences are used
as a proxy for discrete microbial taxa. These unique sequences
can be clustered by sequence similarity into “operational
taxonomic units” (OTUs) or used by themselves as individual
units after denoisers, such as DADA2 and Deblur, resolve the
individual sequence variants from error-prone sequences
(Callahan et al., 2017; Amir et al., 2017). These filtered
sequences are often called amplicon sequence variants

(ASVs) (Callahan et al., 2017) or sub-OTUs (sOTUs). The
second class of microbiome sequencing is shotgun or whole
metagenome sequencing. In this method, the DNA from a
sample is collected and sequenced broadly. The reads are
then mapped to a reference database to determine the
corresponding units, which can range from taxonomic
identities to gene families or genes from a specific reference
genome or metagenome-assembled genomes (MAG).

The result of these sequence analysis pipelines is typically a
“feature table” that counts the microbial “units” or features

TABLE 1 | Common characteristics of strategies for dimensionality reduction address different aspects of the data.

Table 1

Term Definition

Compositionally aware Transforms data to account for non-independence of features in sequence count data
Pseudo-counts or imputation Requires no/minimal zeroes in the feature table due to numerical issues (such as logarithm

transform being undefined on zeroes)
Able to incorporate phylogeny Method is calculated with awareness of how each sampled microbial community is evolutionarily

represented relative to other samples
Operates on beta-diversity dissimilarities Dimensionality reduction step is performed on pairwise dissimilarities (arbitrary metric) between

samples, rather than the feature table itself
Linear Lower dimensional coordinates are computed via linear transform of features
Repeated measures Subjects are sampled multiple times. Commonly sampled longitudinally
Feature relationships are interpretable The method indicates the relevance of input microbial features with regard to its output coordinates
Supervised component Method takes explanatory sample variables as an additional input

TABLE 2 | Dimensionality reduction methods each have their own characteristics. x indicates that the characteristic applies to the method. Examples of software capable of
performing each method are included in the last column.

Table 2

Compositionally
aware

Avoids
pseud-
counts

or
imputation

Able
to

incorporate
phylogeny

Operates
on beta-
diversity

dissimilarities

Linear Repeated
measures

Feature
relationships

are
interpretable

Supervised
component

Software

PCoA — x x x x — — — QIIME 2, CRAN
phyloseq, mothur

PCA — x — — x — x — scikit-learn, R built-in,
mothur

UMAP — x x x — — — — umap-learn, CRAN
umap, QIIME 2

t-SNE — x x x — — — — scikit-learn, CRAN
tsne

nMDS — x x x — — — — scikit-learn, CRAN
vegan, mothur, CRAN
phyloseq

CCA — — — — x — x x scikit-bio, CRAN
vegan, CRAN
phyloseq

PLS-DA — — — — x — x x CRAN mixOmics

Aitchison
PCA

x — — — x — x — scikit-bio, QIIME 2

RPCA x x — — x — x — gemelli, QIIME 2,
vegan

CTF x x — — x x x — gemelli, QIIME 2
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(OTU, ASV, MAG, etc., (Figure 1B)) associated with each
sample. Additionally, information about the relationship
between features, such as taxonomic identity or gene family,
can optionally be used to “collapse” the feature table to a lower
resolution sum of its units. At this point, the data are generally
ready to pursue exploratory analysis with dimensionality
reduction.

However, there are several features common to microbiome
data that can make standard dimensionality reduction techniques
difficult to apply or to interpret. Each method must therefore
handle each of these key issues or be benchmarked carefully to
determine that these issues do not strongly affect the results in
ways that are problematic for biological interpretation. We
demonstrate various dimension reduction techniques on two
datasets: Lauber et al., 2009 (Figures 2A–D) and Shalapour et
al., 2017 (Figures 2E–H) looking at soil pH and antibiotic-diet
axis respectively.

High dimensionality. In this context, “dimensionality” refers to
the number of features in a feature table. Microbiome data
typically have far more features than samples. Across studies
ranging from tens of samples to tens of thousands of samples, the
number of features for taxonomic data typically exceeds the
number of samples by 20-fold or more. With gene-oriented
data, the number of genes represented in a metagenomic study
typically exceeds samples by several orders of magnitude. This
can lead many statistical methods to overfit or to produce
artifactual results.

Sparsity. Most microbes are not found in most samples, even
of the same biospecimen type, for example, most human stool
specimens from the same population have relatively low shared
taxa (Allaband et al., 2019). As a result, a feature table containing
counts of each microbe in each sample often has many zeros
corresponding to unobserved microbes. Most 16S microbiome
datasets do not have even as many as 10% of the possible entries
observed in most of the specimens. Feature tables with this over-
abundance of unobserved counts are said to be “sparse”, posing
problems for statistical analysis. Moreover, the proportion of
observed values tends to decrease as additional samples are
sequenced, often leading to tables with density well below 1%
(Hamady and Knight, 2009; McDonald et al., 2012).

Compositionality. In any high-throughput sequencing
experiment, we impose an implicit limitation and randomness
to the number of reads from a given sample due to many factors,
including the random sub-sampling occurring in the process of
collecting samples as well as uncontrolled variation in how
efficiently each sample is amplified and incorporated into
molecular libraries for sequencing. This limitation, termed
“compositionality”, should always be kept in mind when
performing any microbiome analysis on abundance data
(Gloor et al., 2017). The total number of sequences per sample
can affect the distances between samples (Weiss et al., 2017).
Strategies such as rarefaction and relative abundance
normalization are common for normalizing differences in
sequencing depth. However, the relative amount of one feature
in the sample is not independent from the counts of the other
features. A difference in just one feature of the original sample can
induce an observation that many other features are also changing

(Morton et al., 2019) and neither rarefaction nor relative
abundance sampling solve this issue. Due to this effect, many
dimensionality reduction methods, such as PCA, will emphasize
false correlations in the data.

Repeated measures. One of the most challenging experimental
aspects to account for in dimensionality reduction is repeated
measures data, e.g., multiple timepoints from the same subject
where the variation between subjects may be greater than the
variation between timepoints (Wu et al., 2011). In the context of
dimensionality reduction, subjects or sites with multiple samples
represented (such as in longitudinal studies or replicate analysis)
provide an additional source of variation that can inhibit
interpretation of the experimental effect of interest; the
samples from a single subject can be highly correlated,
resulting in between-subject differences dominating the
ordination [e.g., (Song et al., 2016)].

Feature interpretation. Analysis of high-dimensional
microbiome data is often motivated to find microbial
biomarkers associated with observed differences in sample
communities (Fedarko et al., 2020). This line of inquiry is of
interest for diagnosis and/or prognosis of disease status, dysbiosis,
and a host of other biological questions. Although this task is
often addressed with differential abundance methods, those
methods make specific statistical assumptions and may not
correspond to the group separation observed in an exploratory
analysis performed with any dimensionality reduction method
(Lin and Peddada, 2020). Thus, methods that offer a quantitative
justification of their representation in terms of the microbial
features are often desirable. However, methods with feature
importance that are not specifically designed for the
microbiome often fail to account for compositionality, which
can include many false positives due to the induced correlation of
features, and sparsity, where important but infrequently observed
features will not be detected (false negatives).

Complex patterns. Microbiome data are often assumed to
contain clusters or gradients (Kuczynski et al., 2010). For
example, multiple samples swabbed from one’s own keyboard
are more likely to be similar to each other than samples from
another individual’s keyboard (Fierer et al., 2010), and the
microbial composition of soils is expected to vary
continuously with soil pH (Lauber et al., 2009). However, with
larger and larger datasets with many covariates and metadata on
these being collected, more complex patterns can be detected
(Debelius et al., 2016), such as grouping by both biological and
technical factors in the case of the Human Microbiome Project
(The Human Microbiome Project Consortium, 2012).
Furthermore, many conventional dimensionality reduction
methods, such as principal component analysis (PCA), assume
the data lie in a linear subspace, and this assumption is violated by
microbiome data (Ginter and Thorndike, 1979; Greig-Smith,
1980; Potvin and Roff, 1993; Tabachnick and Fidell, 2013).

Strategies for Dimensionality Reduction in
the Microbiome
The problems that complicate dimensionality reduction in
microbiome data are scattered throughout the analysis
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pipeline. Difficulties can arise immediately from the raw sequence
count data. Many can be corrected before the dimensionality
reduction step, with careful preprocessing, though this can raise
other issues. Furthermore, beta-diversity analysis, which seeks to
quantify the pairwise differences in microbial communities
among all samples with dissimilarity metrics (tailored to
microbiome data), is often helpful for addressing many of the
aforementioned circumstances (Pielou, 1966). Algorithms that
are able to incorporate these metrics are particularly valuable, and
this can be done in a variety of ways. Finally, additional
constraints can be placed on dimensionality reduction
algorithms to account for study design or provide additional
information about the correspondence between the features and
the reduced dimensions. In this section, we discuss each of these
strategies in depth.

Compositionally Aware: Comparisons between and among
samples must consider how sampling and sequencing depth
can affect projection into low-dimensional space. Traditionally,
compositionality has been addressed using logarithmic
transformations of feature ratios. Transformations such as the
additive log-ratio (ALR), centered log-ratio (CLR), and isometric
log-ratio (ILR) can convert abundance data to the space of real
numbers such that analysis and interpretation are less skewed by
false positives (Aitchison and Greenacre, 2002; Pawlowsky-Glahn
and Buccianti, 2011). After transformation, the Euclidean
distance can be taken directly on the log-ratio transformed
data (referred to as Aitchison distance) (Aitchison and
Greenacre, 2002). Dimensionality reduction methods that
incorporate log-ratio transformations attempt to preserve
high-dimensional dissimilarities while taking into account the
latent non-independence of microbial counts.

Pseudocounts and Imputation: High-dimensional
microbiome data is almost always plagued by problems of
“sparsity”, or an overabundance of zeroes. The data
transformations to address compositionality (as outlined
above) are often based on logarithmic functions which are
undefined at zero. The simplest solution is to add a small
positive pseudocount to each entry of the feature table so that
logarithmic functions can be applied. However, downstream
analyses based on this approach are sensitive to the choice of
pseudocount (Kumar et al., 2018) and there does not exist a
standardized way to choose such a value. Other options
include imputation of zeros (Martín-Fernández et al., 2003)
through inference of the latent vector space. Fundamentally,
zero handling is complicated by the inherent unknowability of
the zero generating processes for each zero instance. In
Silverman et al. (2020), they characterize the three different
types of zero-generating processes (ZGP) as sampling,
biological, and technical and demonstrate how the results of
different zero-handling processes are affected by the
(unknowable) mix of ZGPs in a given dataset. Recently
Martino et al. (2019) introduced a version of the CLR
transform that only computes the geometric mean on the
non-zero components of a given sample. This avoids the
problem of logarithms being undefined at 0 and thus
dimensionality reduction through this method is robust to
the high levels of sparsity in microbiome data.

Incorporating Phylogeny: Organisms identified using
microbiome data can be related to one another through
hierarchical structures that describe their evolutionary
relationships. Typically, these structures take the form of
either a taxonomy or a phylogeny. A taxonomy is a
description of the organism relationships, generally derived
subjectively using multiple biological criteria. A phylogeny, in
contrast, is an inference of a tree, commonly with branch lengths,
derived from quantitative algorithms that are typically applied to
microbial, nucleic acid, or protein sequence data. Taxonomies
have the advantage of being more directly interpretable because
hierarchical structures correspond to a defined organization and
classification pattern curated by experts in the field. However,
these assignments and hierarchies are often putative and subject
to change as more information about microbial taxa emerges. In
contrast, phylogenies are derived from quantitative measures of
sequence similarity from sample reads. These data structures are
more easily incorporated into statistical analyses but often at the
cost of less interpretability as the hierarchical structures do not
necessarily map to pre-defined microbial relationships. These
evolutionary relationships, particularly phylogenies, add
information to microbiome analysis, because related organisms
are more likely to exhibit similar phenotypes (although
counterexamples do exist, especially closely related taxa such
as Escherichia and Shigella, which are very similar genetically but
produce different clinical phenotypes).

When comparing the similarity of pairs of microbial
communities, it is possible to utilize these hierarchical
structures, and derive a metric that computes a dissimilarity as
a function of shared evolutionary history (Lozupone and Knight,
2005). Specifically, communities that are very similar will share
most of their evolutionary history, whereas those that are very
dissimilar will have relatively little in common. A popular form of
phylogenetically-aware distances is the suite of UniFrac metrics,
which includes both quantitative (Lozupone et al., 2007) and
qualitative (Lozupone and Knight, 2005) forms. Numerous
extensions to UniFrac have been developed (Chang et al.,
2011; Chen et al., 2012), including variants that account
explicitly for the compositional nature of microbiome data
(Wong et al., 2016). Because these metrics all utilize not only
exactly observed features, but also the relationships among
features, they can better account for the sparsity of
microbiome data which manifests at the tips of a phylogenetic
tree (because most microbes are not observed in most
environments). In contrast, a metric like the Euclidean
distance is limited to only the information at the tips of these
hierarchies, and, worse, assumes that all features at the tips are
equally related to one another (so that in a tree consisting of a
mouse, a rat, and a squid, there is no allowance for the fact that
the two rodents are muchmore similar to each other than they are
to the squid). Neither phylogenetic nor non-phylogenetic beta-
diversity measures explicitly model differences in sequencing
depth per sample, although these differences in depth can be
standardized through rarefaction (Weiss et al., 2017).

Operates on Generalized Beta-Diversity Matrix: Many of the
issues outlined above can be easily addressed at the sample
dissimilarity level rather than directly through dimensionality
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reduction algorithms. A number of dissimilarity/distance metrics
have been developed to account for factors such as phylogenetic
data incorporation, compositionality, or sparsity that output a
sample by sample matrix estimating high-dimensional
dissimilarity. These dissimilarity matrices represent the overall
community differences between pairwise samples calculated by a
chosen beta-diversity metric. Dimensionality reduction methods
that operate on arbitrary dissimilarity metrics are attractive
options because the complex handling of the various feature
table issues can be split into the choice of dissimilarity metric and
the choice of dimensionality reduction algorithm. This adds a
layer of flexibility for researchers to analyze their data depending
on their needs. Methods based on multidimensional scaling
approaches such as PCoA (Kruskal and Wish, 1978) and
nMDS (Kruskal, 1964) attempt to preserve as much as
possible the pairwise dissimilarities between subjects. Other
methods such as t-distributed stochastic neighbor embedding
(t-SNE) (van der Maaten and Hinton, 2008) and Uniform
Manifold Approximation and Projection (UMAP) (McInnes
et al., 2018) are non-linear dimensionality reduction
techniques that aim to find a low-dimensional representation
such that similar data points are placed closed together and
dissimilar points are pushed apart. A caveat of these methods
is that they can be very sensitive to the choice of dissimilarity
used. Patterns that may appear from one measure of dissimilarity
may not be as apparent in a different measure. As an example,
phylogenetic metrics such as UniFrac may differ from non-
phylogenetic metrics such as Bray-Curtis depending on the
strength of phylogenetic contribution (Shankar et al., 2017).
The choice of dissimilarity metric should therefore be
considered carefully, as different dimensionality reduction
techniques yield visually and statistically very different results
on the same data (Kuczynski et al., 2011).

Linear vs Non-Linear Methods: Principal coordinates analysis
(PCoA) and PCA are popular dimensionality reduction
techniques that fall under the “linear” category. Linear
techniques attempt to reduce or transform the data such that
an approximation of the original data can be reconstructed by a
weighted sum of the resulting coordinates. These methods
typically involve computing decompositions/factorizations of
the data that are highly computationally efficient and work
well on data that is naturally linear. Various other techniques,
such as robust Aitchison PCA (RPCA) (Martino et al., 2019), and
nonnegative matrix factorization (NMF) (Lee and Seung, 1999)
also fall under this class of techniques.

Other methods fall under the “non-linear” category, which
perform more complex transformations that often excel at
preserving different patterns that may not be linear. This
category includes methods such as the non-metric
multidimensional scaling (nMDS), t-SNE, and UMAP. These
methods can more succinctly represent complex patterns, but
possibly at the expense of additional computation. Furthermore,
these models tend to have randomness (such as from
initialization) and more hyperparameters that the output can
be highly sensitive to, so it is usually necessary to run these
algorithms multiple times to ensure the conclusions are
reproducible. Other non-linear methods that have seen less

frequent use in microbiome data (and bioinformatics
generally) include kernel PCA (Scholkopf et al., 1999), locally
linear embeddings (Roweis and Saul, 2000), Laplacian eigenmaps
(Belkin and Niyogi, 2001), and ISOMAP (Tenenbaum et al.,
2000).

Unlike its close, linear counterpart PCoA, nMDS performs the
ordination onto a pre-specified number of dimensions and
operates on the ranks of the dissimilarities, rather than the
dissimilarities themselves. This rank-based approach can be
beneficial for representing data that departs from the
assumptions of linearity. Other non-linear methods, such as
t-SNE and UMAP, also transform the data onto a pre-
specified number of dimensions and operate by assuming the
high-dimensional data follow a non-linear structure that can be
represented with fewer dimensions.

Repeated Measures: If the biological variable of interest
occurs at the subject level, repeated samples (such as through
a longitudinal study design) can artificially inflate how tight a
cluster appears in low-dimensional space. Dimensionality
reduction methods for microbiome need to be designed for
the purpose of handling this kind of data, with the intent to
represent the relationships between explanatory variables while
accounting for the inherent similarity between samples from the
same subject. Methods to account for repeated measures can
incorporate the relationship between individual samples and
subjects by subject-aware decomposition of the data (Martino
et al., 2021). There has also been discussion about incorporating
prior sample relationship information into ordinations through
Bayesian methods (Ren et al., 2017). Nevertheless, methods that
incorporate repeated measures remain an underexplored area in
dimensionality reduction literature.

Feature Importance: When the lower-dimensional
representation of microbial communities shows separation
between sample groups, a natural next question is what
microbes or groups of microbes are driving such a separation.
Dimensionality reduction methods that return a quantitative
relationship between individual microbial features and the
latent lower-dimensional space are a powerful class of
methods that can demystify the construction of the lower-
dimensional axes. However, certain methods that attempt to
find high-dimensional patterns, such as non-linear methods,
do not have an explicit interpretable correspondence between
the output coordinates and the input features.

The most relevant category of methods for visualizing
feature importance is the biplot ordination family of
approaches. Biplots display both the samples and the driving
variable vectors in reduced dimension space (Figures
2A,D,E,H). For example, PCA naturally quantifies the
contribution of each microbe to the principal component
axes through matrix factorization into linear combinations of
features. RPCA modifies this approach to account for
compositionality and sparsity while retaining interpretable
feature loadings (Martino et al., 2019). Another set of
ecologically motivated matrix factorization methods is the
correspondence analysis (CA) family. The general CA
method can be thought of as an implementation of PCA that
operates on count data. It is also possible to explicitly
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incorporate sample metadata into these dimensionality
reduction methods. Researchers are often interested in the
explanatory power of their sample metadata (site, pH,
subject, etc.). Certain dimensionality reduction methods can
take as input both a feature table and a table of sample metadata
to jointly estimate the low-dimensional representation of
samples as well as the relative contribution of the provided
metadata vectors. The general goal of these methods is to
determine whether and/or which explanatory variables may
be driving the differences in microbial communities among
samples. Canonical correspondence analysis (CCA) is an
extension of CA that incorporates sample variables of
interest to determine which covariates are associated with
the placement of samples and feature vectors in low-
dimensional space (ter Braak, 1986). The results of CCA can
be visualized as a “tri-plot” where samples are simultaneously
visualized with the relative contribution of features and
explanatory variables near related samples (Paliy and
Shankar, 2016). Partial least squares discriminant analysis
(PLS-DA) is a similar approach that uses only categorical
sample metadata (classification) in the construction of lower-
dimensional axes (Barker and Rayens, 2003; Ruiz-Perez et al.,
2020). In each of these cases, the feature contributions can

motivate subsequent statistical analysis of associations between
sample metadata and specific microbial taxa.

Uses of Dimensionality Reduction for
Microbiome Data
Over the past decade, PCoA has seen an increase in use in
microbiome analyses, and it is the primary ordination method
for beta-diversity included by default in workflows such as
QIIME2 (Bolyen et al., 2019). It is typically used for
exploratory visualization, as it excels at rendering biologically
relevant patterns, such as clusters and gradients (Kuczynski et al.,
2010). When used as an exploratory tool, observed patterns are
often followed with statistical analysis on the original feature
tables or dissimilarity matrices (Galloway-Peña and Hanson,
2020), such as ANOSIM (Clarke and Ainsworth, 1993),
PERMANOVA (aka Adonis) (Anderson, 2017), ANCOM
(Mandal et al., 2015), or bioenv (Clarke and Ainsworth, 1993).
It should also be noted that some of these statistical techniques
use the full table or dissimilarity matrix, not the reduced
dimension matrix as visualized (at least by default) and may
therefore introduce incongruent results between the statistics and
the visualization.

FIGURE 2 | Examples of dimensionality reduction techniques applied to publicly available microbiome data. (Top) Beta-diversity plots of soil samples colored by pH
from (Lauber et al., 2009). (Bottom) Beta-diversity plots of murine fecal samples colored by diet and antibiotics usage from (Shalapour et al., 2017). (HFD = high-fat diet,
NC = normal chow, ABX = antibiotics). PCA plots (A,E) show extremely high sample overlap due to outliers and characteristic “spike” artifacts. The top three taxa driving
variation also overlap as shown by arrow superposition. (B) “Horseshoe” pattern emerges for samples following ecological gradients such as pH. RPCA plots (D,H)
show the top three taxa driving separation of groups. (F) and (G) show strong overlap of HFD + ABX samples resolved by (H).
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Exploratory visualizations have revealed microbial-associated
patterns in applications ranging from host-associated gut
microbiomes to soil, ocean, and other environmental
microbiome contexts. For example, studies have applied PCoA
to demonstrate differences between host groups, such as
differences between humans’, chimpanzees’, and gorillas’ gut
microbial taxa (Campbell et al., 2020), or the correspondence
between human gut microbiomes and westernization
(Yatsunenko et al., 2012; Campbell et al., 2020). Host
microbiome-disease associations have also been identified
using PCoA, such as in the case of colorectal cancer (Young
et al., 2021) in humans and metritis in cows (Galvão et al., 2019).
Uses also extend to host-environment relationships, such as
demonstrating the differences between oyster digestive glands,
oyster shells, and their surrounding soils (Arfken et al., 2017). The
microbiome-shaping roles of environmental factors such as
salinity in shaping free-living environments (Lozupone and
Knight, 2007), pH in arctic soils (Malard et al., 2019) and
depth in the ocean (Sunagawa et al., 2015) have also been
elucidated with PCoA. In many of these cases, the PCoA
visualizations demonstrated a separation between groups that
was subsequently followed by statistical validation with
PERMANOVA or ANOSIM.

In numerous other instances, PCoA has also been used to
make claims that extend beyond exploratory group differences
followed by statistical analysis. For example, Halfvarson et al.
(2017) fit a plane to the healthy subjects in the first three
coordinates of a PCoA and then used the distance to this
plane to associate dissimilarities in the microbiome with the
severity of irritable bowel disease (IBD) (Halfvarson et al.,
2017); this approach has subsequently been replicated
(Gonzalez et al., 2018). Others have used regression of
participant and microbiome characteristics (e.g., age and alpha
diversity, respectively) on PCoA coordinates to determine
whether the given factors have a significant relationship with
microbial community composition in the context of dietary
interventions (Lang et al., 2018). In one case, while providing
visualization with PCoA and statistical confirmation with
ANOSIM, Vangay et al. (2018) additionally plotted ellipses for
visualizing cluster centers/spread in their PCoA coordinates
(Vangay et al., 2018). In another instance, Metcalf et al. (2017)
showed the correspondence of dissimilarities between the 16S
rRNA profiles and chloroplast marker profiles by performing a
Procrustes analysis on the separate ordinations of the different
data types (Metcalf et al., 2017).

We note that the choice of dissimilarity metric can have a
significant impact on the low-rank embedding depending on the
dataset. Shi et al. (2022) review the effect of high and low-
abundance operational taxonomic units have on unsupervised
clustering of Bray-Curtis and unweighted UniFrac (Shi et al.,
2022). Marshall et al. (2019) compare Bray-Curtis ordination
with weighted UniFrac on marine sediment samples and note
that the most relevant clustering variable differed depending on
the dissimilarity used (Marshall et al., 2019). These results imply
that interpretation of low-dimensional embeddings and the
putative driving variables must be performed in the context of
the choice of dissimilarity. Metrics such as Bray-Curtis and

weighted UniFrac take into consideration the abundance of
individual microbes in each sample which can be important
for datasets with many rare taxa. In contrast, some
dissimilarity metrics such as Jaccard and unweighted UniFrac
are only defined on binarized data, which may mask this
property. Furthermore, phylogenetic metrics such as the
UniFrac suite of metrics are best when the evolutionary
relationships among microbial features is of interest in the
context of sample communities. These metrics may also be
more appropriate than other methods for datasets with
particularly high sparsity.

PCA is arguably the most widely used and popular form of
dimensionality reduction, which does not allow generalized
beta-diversity dissimilarities (e.g., PCoA or UMAP), but does
allow for the direct interpretation of feature importances
relative to sample separations in the ordination. However,
due to compositionality and sparsity, PCA often leads to
spurious results on microbiome data (Hamady and Knight,
2009; Morton et al., 2017). Aitchison PCA attempts to fix these
issues by using log transformation, but imputation is required
(because the log of zero is undefined). Therefore, (Martino
et al., 2019) proposed the adoption of RPCA for
dimensionality reduction. This method has been shown to
discriminate between sample groups in a wide array of
biological contexts, including fecal microbiota transplants
(Goloshchapov et al., 2019), cancer (Bali et al., 2021), and
HIV (Parbie et al., 2021). Moreover, the generalized version of
this technique accounts for repeated measures, allowing for
large improvements in the ability to discriminate subjects by
phenotypes across time or space (Martino et al., 2021). This
advantage has been crucial in the statistical analysis of
complicated longitudinal experimental designs such as early
infant development models (Song et al., 2021). Feature
loadings from these PCA-based methods can be used to
inform selection of microbial features for log-ratio analysis
(Morton et al., 2019; Fedarko et al., 2020), leading to novel
biomarker discovery.

For feature interpretation, CCA is the most commonly used
CA-based method for analyzing high dimensional microbiome
data, due to its ability to incorporate sample metadata into the
low-rank embeddings. This strategy has shown success in
differentiating clinical outcomes following stem cell
transplantation (Ingham et al., 2019) as well as diarrhea status
in children (Dinleyici et al., 2018). CCA has also shown success in
projecting environmental samples into lower-dimensional space
such as in rhizosphere microbial communities (Benitez et al.,
2017; Pérez-Jaramillo et al., 2017), and aerosol samples (Souza
et al., 2021). Another approach designed for microbial feature
interpretation has been posed by (Xu et al., 2021), explicitly
modeling the ZGP through a zero-inflation model. This method
attempts to optimize a statistical model for jointly estimating the
“true” zero-generating probability as well as the Poisson rate of
each microbial count.

Of non-linear methods, nMDS has historically been more
widely used in microbiome data analysis, in part because it can
incorporate an arbitrary dissimilarity measure. Furthermore,
since nMDS is a rank-based approach, it is less likely than
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linear methods to be highly influenced by outliers in beta-
diversity dissimilarities. Recent uses have involved using
nMDS to show differences in the gastric microbiome between
samples from patients with gastric cancer cases against the
control of gastric dyspepsia (recurrent indigestion without
apparent cause) (Castaño-Rodríguez et al., 2017) and
demonstrating differences in the gut microbiome based on
diabetes status (Das et al., 2021). In both of these cases, the
visual distinction between groups was supported by
PERMANOVA.

Other non-linear methods have been increasingly used for
analyzing other types of sequencing data, especially in the single-
cell genomics field, but have not yet been widely deployed in the
microbiome. The most popular of these methods for
visualization, t-SNE and UMAP, are starting to see more use
in the microbiome field. (Xu et al., 2020) developed a method to
classify microbiome samples using t-SNE embeddings. We
recently reviewed the usage and provided recommendations
for implementing UMAP for microbiome data (Armstrong
et al., 2021). UMAP with an input beta-diversity dissimilarity
matrix can reveal biological signals that may be difficult to see
with traditional methods such as PCoA.

Artifacts and Cautionary Tales in
Dimensionality Reduction
Dimensionality reduction is incredibly useful and has led to many
interesting biological conclusions. However, when using
dimensionality reduction techniques, one must be careful how
results are interpreted. There are known examples of patterns that
are induced by the properties of the data alone (rather than the
relationships among specific samples or groups of samples), and
others that are a product of the method itself. Here, we discuss
several known issues, as well as insights into evaluating the degree
to which an ordination represents the actual data.

One of the most well-known artifacts in microbial ecology is
the horseshoe effect (Podani and Miklós, 2002), wherein the
ordination has a curvilinear pattern along what otherwise
appears to be a linear gradient. This pattern can occur
when a variable, such as soil pH (Lauber et al., 2009) or
length of time of corpse decay (Metcalf et al., 2016)
corresponds with drastic changes in microbiome
composition on a continuous scale. Since the characteristic
“bend” in the horseshoe typically occurs along the second
coordinate of a PCoA (Figure 2B), it can obfuscate additional
gradients/associations along that axis. Recent research in the
topic has also identified that indeed, it is unlikely the horseshoe
appears from a real effect, and instead it is a product of the
limitations of many dissimilarity metrics to capture distance
along a gradient when no features are shared between many of
the samples (i.e., saturation) (Morton et al., 2017), which can
be an issue with many common metrics, such as Euclidean,
Jaccard, and Bray-Curtis dissimilarities (Morton et al., 2017).
As a result, a possible remedy for the artifact is to use a
dissimilarity metric that considers the relationships between
features, such that two samples that share no features do not
necessarily have the same dissimilarity as two different

samples that share no features, e. g, UniFrac or weighted
UniFrac. If a change in metric does not resolve the issue, it
may be possible to avoid the horseshoe artifact by using RPCA
or a non-linear method (e.g., UMAP). “Spikes” are another
artifact, more prevalent on cluster-structured data, where
outliers dominate the embedding and it fails to separate
into clusters in the visualization (Vázquez-Baeza et al.,
2017). Spikes also appear to be mitigated with an
appropriate choice in dissimilarity metric, such as UniFrac
(Hamady and Knight, 2009). In both cases, since the issues are
with representing the distances between distant or extreme
samples, non-linear methods (such as UMAP or nMDS) that
dampen the effect of outliers provide a potential workaround
to reveal secondary gradients or the obfuscated cluster
structures (Armstrong et al., 2021). Though it is possible
that the benefits offered by non-linear methods for the
horseshoe effect are limited by the aspect ratio of the
gradient (Kohli et al., 2021), and potentially the parameters
of the algorithms.

Dimensionality reduction is also commonly used in other
bioinformatic disciplines. Particularly, single-cell transcriptomics
has used dimensionality reduction prolifically, with many
publications using PCA, t-SNE, or UMAP visualizations.
Furthermore, single-cell RNA-seq data shares many properties
with microbiome data, including sparsity/zero-inflation,
sequencing depth differences, and even phylogenetic
relationships (Lähnemann et al., 2020). This connection is
further strengthened by the fact that researchers in both
disciplines investigate similar types of questions, albeit with
different underlying data. Microbiome researchers often ask
whether there is a difference between different treatments or
disease-statuses (David et al., 2013; Lloréns-Rico et al., 2021), and
which microbes contribute to those differences (i.e., differential
abundance analysis). Similarly, transcriptomics may investigate
parallel scenarios (Ocasio et al., 2019; Taavitsainen et al., 2021),
where the goal is to discover transcripts whose expression
stratifies the desired groups (i.e., differential expression).

Despite these similarities, the most popular methods for
dimensionality reduction in microbiome and single-cell
publications differ significantly, with PCoA being more
prevalent among microbiome publications, and t-SNE (or
variants (Linderman et al., 2019)) and UMAP more prevalent
in single-cell publications (Kobak and Berens, 2019). Given the
similarities in hypotheses and the properties of the data, but use of
different methods, it is reasonable to suppose that methods such
as t-SNE and UMAP have potential utility in the microbiome.
However, global distances are not necessarily preserved in these
methods, therefore distances between different clusters should
not be interpreted as demonstrating similarity or dissimilarity.
Consequently, recent research concerning the representation of
single-cell RNA-seq data should also be taken into account when
applying these methods to microbiome data.

First, t-SNE and UMAP are fairly complex algorithms that
have many hyperparameters that can be adjusted, so it is
important to be able to evaluate the faithfulness of the
embeddings they produce. The evaluation of dimensionality
reduction has been performed with many different measures,
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each of which has its own characteristics. Some measures
reward embeddings that adequately preserve the local-scale
structures in the embedding but do not necessarily penalize
inaccurate representations of large distances in the original
high-dimensional data, like the KNN evaluation measure
(Kobak and Berens, 2019), which takes the average accuracy
of the k = 10 nearest neighbors in the reduced dimensions
compared to the original space. Others, such as the correlation
(either Pearson or Spearman) between distances in the original
space and reduced dimensions have been used (Becht et al.,
2019; Kobak and Berens, 2019; Kobak and Linderman, 2021).
The correlation measure generalizes whether the two
representations overall are similar, i.e. close points in the
original space are close in the low-dimensional space, and
similar for far points. However, high correlation does not
guarantee that the fine-scale structures have been preserved.
Additionally, measures that use sample metadata about known
classes can be used, such as the KNC measure (Kobak and
Berens, 2019), which measures whether the closest class/
category centers to a given category are preserved in the
embedding. KNC emphasizes the preservation of
relationships between classes, but not necessarily structures
within the classes or between distant classes. These measures
have been used to evaluate the quality of several
dimensionality reduction methods across a variety of
parameter settings on complex datasets. Notably, Kobak and
Berens (2019) demonstrated on several single-cell
transcriptomics datasets, that t-SNE with the default value
for “perplexity” performed well at representing the
relationships between nearby points (KNN), but poorly at
representing the large-scale patterns (KNC and correlation).
However, when they increased the perplexity parameter, they
achieved improved KNC and correlation at the expense of a
decreased KNN score. Kobak and Linderman (2021) observed
with correlation that the best method (between t-SNE and
UMAP) can vary by dataset. So, in practice, it may be necessary
to compare multiple dimensionality reduction methods (and
parameter settings) on a dataset using the measure that best
suits the question, e.g., use the correlation measure when
seeking a visualization of earth microbiomes by
environment to show which environments are similar to
each other.

Furthermore, since UMAP and t-SNE are algorithms that
require configurable (possibly random) initializations, particular
attention has been paid to their reproducibility. A metric to
evaluate reproducibility comes from (Becht et al., 2019), which
measures the preservation of pairwise distances in the
embeddings by comparing an embedding on a subset of the
points to the location of those points in the embedding of the
entire dataset. In its original application, the reproducibility
measure was used to demonstrate UMAP providing more
reproducible results than t-SNE and variants of t-SNE.
However, (Kobak and Linderman, 2021) showed that with
appropriate (spectral) initialization, t-SNE can perform just as
well by this metric as UMAP. While reproducibility is important,
this metric should be applied carefully, because it fails to account
for rotations in the embedding. Another important concern

related to reproducibility is whether even random noise will
yield apparent clusters. This phenomenon has been observed
with t-SNE (Wattenberg et al., 2016), and whether other
dimensionality reduction techniques are also susceptible to this
effect warrants further systematic investigation. However,
because these benchmarks are all performed within
transcriptomics, further validation is needed to determine
whether the conclusions generalize to microbiome data. These
measures provide a starting point for evaluating the application of
non-linear dimensionality reduction techniques on
microbiome data.

Finally, literature from mathematics and computer science
that has not been as widely applied to dimensionality reduction in
bioinformatics may also be relevant. Of particular interest is the
study of distortion, which is applicable when the goal of the
embedding is to preserve distances, like one might expect for an
exploratory analysis. Similar to the previously described
correlation measure, distortion measures summarize the extent
to which the distances in high dimensions match the distances in
low-dimensions, however, distortion is defined in terms of the
expansions and contractions of distances between points.
Furthermore, there are many ways to summarize the
expansions and contractions, including the worst-case,
average-case and local-case, which are all detailed more in
(Vankadara and von Luxburg, 2018).

DISCUSSION

The above examples illustrate that dimensionality reduction is an
extremely powerful technique that has enhanced a wide range of
microbiome studies. However, with great power comes great
responsibility. It is unlikely that any one method will excel at
representing all datasets, so responsible users of dimensionality
reduction should try out several techniques, ideally guided by
characteristics of the data rather than as a fishing expedition to
see whether any one of many techniques produce results that
“look good” (which may even happen in random data for some
techniques and parameters) or that fulfill pre-conceived
hypotheses and biases. We need standard protocols and
software interfaces for choosing the algorithm that suits your
data best, rather than the algorithm that shows what you want to
see if you squint at it correctly. Methods are needed both for
diagnosing the issues that may be most prevalent in your data and
affecting your representation, and for rationally choosing among
different methods that could be applied to a given dataset.
Developing these methods is a key priority for the field.

Dimensionality reduction for the purposes of visualization has
somewhat different goals from dimensionality reduction for other
purposes and developing a better appreciation of this distinction
is important for practice in the field. The goal of dimensionality
reduction for visualization is primarily for exploratory overview
by human observers (do groups differ from one another, is there
overall structure such as gradients in the data). As such,
visualization is usually done with three dimensions (more can
be examined through parallel plots), while the intrinsic
dimensionality of the data may be higher. Visualization is
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typically only the first step in the data analysis pipeline, and is
followed by downstream analysis, such as multivariate analysis/
regression (PERMANOVA, ANOSIM, PERMDISP) either on the
original distances or on a dimensionality-reduced version of the
data (which can be higher than three dimensions). These results
can also be used to motivate supervised differential abundance
modeling, such as to determine which groups separate and then
determine which microbes are driving these separations.

Dimensionality reduction is thus often an early step in a
multi-step pipeline. What downstream analyses is
dimensionality reduction a step towards, and how are these
accomplished? Feature loadings (i.e. the importance of
particular taxa or genes) can be interpreted using log ratios
from tools such as DEICODE (Martino et al., 2019), which can
then be visualized in Qurro (Fedarko et al., 2020). Classification
can be accomplished using machine learning techniques such as
random forests, allowing estimates of classifier accuracy and
group stability, and also allowing tests of the reusability of these
models, e.g. applying a model of human inflammatory bowel
disease to dogs (Vázquez-Baeza et al., 2016) or models of aging
between different human populations (Huang et al., 2020). A
popular strategy is to use a lower-dimensional embedding for
traditional statistical analysis, such as using PCA or PCoA
coordinates as inputs for regression, classification, clustering,
and other analyses. However, as we have seen, many
dimensionality reduction methods induce various kinds of
artifacts or distortions, and cannot generalize well beyond
the data on which the model was initially optimized on,
including PCoA, nMDS, RPCA/CTF, and UMAP/t-SNE.
Consequently, analyses on these coordinates should be
performed with caution. Furthermore, since the parameters
and software versions used with these methods have the
potential to be highly influential to their results, we
recommend that these always be reported for dimensionality
reduction methods.

Given the large number of publications that have used
dimensionality reduction on microbiome data, we can start to
draw conclusions about which dimensionality reduction
strategies should be more widely used, and which less widely
used. On larger, sparser, compositional datasets, we recommend
against the use of conventional PCA, Bray-Curtis and Jaccard
dissimilarities, and pseudocounts. Conventional PCA presents
the clearest case of a method that should not be used on
microbiome data due the sparsity and compositional nature of
the data. UniFrac and weighted UniFrac are essentially
phylogenetically informed versions of Jaccard and Bray-Curtis
beta-diversity metrics respectively. Due to the current default
generation of a phylogeny in most 16S and shotgun analyses,
there is no reason not to use the phylogenetic counterparts, which
have been shown to have better discriminatory power.
Pseudocounts should not be used because the choice of
pseudocount impacts the lower-dimensional embedding, and
there is no clear method for determining which pseudocount
value is best.

In contrast, CTF and non-linear methods should be used more
in microbiome contexts. As the cost of acquiring microbiome
data continues to decrease, experimental designs are getting
increasingly complex, and include repeated measures,
longitudinal studies, batch effects, etc. We therefore need
methods that can determine which biological signals are
relevant among all these confounding factors. Additionally, we
are increasingly recognizing that many relationships between/
among samples are non-linear. Using non-linear methods can
potentially explain more of such datasets with fewer dimensions,
although additional benchmarking is required to understand the
performance of these methods.

Our analyses suggest some important gaps in the field that
could be important areas for future development. There are no
dimensionality reduction methods yet that are both able to
incorporate phylogeny and are compositionally aware. Several
methods, such as Robust PCA and CTF, control for the
sparsity, non-normality, compositionality, and are
adaptable to specific study-designs of microbiome data but
do not incorporate phylogenetic information. In contrast,
phylogenetic techniques do not account for sparsity and
compositionality, and some also perform poorly with non-
normality. A unified method that is appropriate for any
microbiome study is therefore still in the future, despite
many important recent advances. The ability to perform
this task using a generalizable dissimilarity measure would
be particularly useful, because it would allow for full
utilization of PCoA and non-linear methods including
nMDS and UMAP.

Taken together, we conclude that dimensionality reduction is
a key part of many, if not most, of the highest-impact microbiome
studies performed to date. We can expect this situation to
continue into the future, especially as larger study designs and
datasets continue to accumulate, and additional method
development advances increase the speed and range of
applicability of these techniques.
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