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ABSTRACT 

The Goursat normal form theorem gives conditions 
under which an Pfaffian exterior differential system is 
equivalent to a certain normal form. This paper details 
how the Goursat normal form and its extensions provide 
a unified framework for understanding feedback lineariza- 
tion, chained form, and differential flatness. 

1. INTRODUCTION 

Traditionally, geometric nonlinear control theory has 
relied on the vector field interpretation of affine nonlinear 
control systems to provide a set of tools for studying the 
structural properties of nonlinear systems. In particular, 
properties such as accessibility, observability, and feed- 
back linearizability can be formulated in terms of invo- 
lutivity or rank conditions on certain distributions which 
are constructed from the description of the system. An 
overview of these tools can be found in Isidori [9] and 
other texts. 

Recently, there has been an increased interest in al- 
ternative formulations of the control problem, where con- 
trol systems are modelled using one-forms instead of vec- 
tor fields. Systems which are described using one-forms 
are a subset of a class of systems known as exterior dif- 
ferential systems. Although one-forms and vector fields 
are dual to one another, there are tools available in the- 
ory of exterior differential systems which have no simple 
counterpart in the traditional geometric framework. 

One of the main theorems which links many of the re- 
sults available in the study of control systems via exterior 
differential forms is the Goursat Normal Form theorem. It 
gives a set of explicit conditions under which a codistribu- 
tion on a manifold admits a local basis in a certain normal 
form. As we shall show in the sequel, this theorem can be 
applied to wide variety of problems in nonlinear control 
theory, including problems in determining a nilpotent ba- 
sis for a given distribution, converting nonholonomic con- 
trol systems into chained form, and feedback linearization 
using static state feedback. In this paper we present a 
survey of these various results and establish some connec- 
tions between work in control of nonholonomic systems, 
feedback linearizability, and differential flatness. 

2. MATHEMATICAL PRELIMINARIES 

2.1. Pfaffian Systems. The results in this paper make 
extensive use of tools from the theory of exterior Meren- 
tial systems. We present a brief overview of the relevant 

concepts here. A detailed description can be found in 
the monograph by Bryant et al. [Z] or the dissertation by 
Sluis [15]. 

Let M be a manifold of dimension n with cotangent 
bundle T'M; let O p ( M )  denote the set of smooth exte- 
rior pforms on M. Define O * ( M )  as the set of smooth 
exterior differential forms of all orders on a manifold M, 
O ' ( M )  = @ O p ( M ) .  An ezterior diflerential system is 
given by an ideal Z c O'(M) that is closed under exte- 
rior differentiation. 

A Pfafian system is an exterior differential system 
which is generated by a set of linearly independent one- 
forms 

I = {e', . . . ,2}. 

z =  {U A O :  w € 1,O € O * ( M ) }  

The associated ideal has the form 

We call s the dimension of the system (assumed constant). 
The exterior derivative induces a mapping 6 : I + 

o ~ ( M ) / I :  
6 : X I-+ dX mod I E nz((M). 

The mapping 6 is a linear mapping over the ring of smooth 
functions on M, C " ( M ) :  

6 ( f a  +gp) = df A a  + f d a  + dg A p + f@ mod I 
= fda + g a p  mod I 
= f 6 ( a )  + g 4 P ) .  

It follows that the kernel of 6 is a subbundle of O(M) (i.e., 
at each point p E M ,  the kernel of 6 is a linear subspace 
of q;ldf). We call this subbundle I ( ' ) ,  the first derived 
system of I: 

1''' = ker 6 = { A  E I : dX mod I E 0 ) .  

We represent I ( ' )  using a basis of one-forms and hence 
I ( ' )  also generates a Pfaffian system. 

Since I ( ' )  is itself a codistribution on ldl, we can con- 
tinue this construction and generate a filtration 

If the dimension of each I ( i )  is constant, then this con- 
struction terminates for some finite integer N .  In this 
case, we call equation (1) the derivedflag of I and N the 
derived length. 

The derived flag describes the integrability properties 
of the ideal generated by I. If I is completely integrable, 
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then by F'robenius's theorem we have fi') = I('), i.e. the 
derived length of the flag is zero. In fact, f i N )  is always 
integrable since by definition dfiN) mod I ( N )  5 0. f i N )  
is the largest integrable subsystem contained in I. Thus 
if f i N )  is not empty, then there exist functions h i , .  , . , h,  
such that { d h i }  c {I}. In the context of control theory, 
this means that the system is not controllable since there 
exist algebraic functions which provide a foliation of the 
state space and it is impossible to move from one leaf of 
the foliation to another. The converse of this controllabil- 
ity result is provided by the following version of Chow's 
Theorem: 

Theorem 1 (Chow). Let I = {a', . . . ,a"} represent a 
set of constraints and assume that the deriued flag of the 
system ezist.9. Then, there ezists a path z ( t )  between any 
two points satisfying a'(2)i = 0 for all i if and only if 
there e i s t s  an  N such that f i N )  = 0 .  

When doing computations with exterior differential 
systems, it is convenient to choose a basis of one-forms 
whose structure matches that of the derived flag. We say 
that a basis {a'} is adapted to the derived flag if 

I(i) = {a',. . . ,ad'}, 
where si is a strictly decreasing sequence of integers. In 
other words, an adapted baais is one in which the de- 
rived systems are calculated by dropping elements from 
the end of the basis. An adapted basis can be calculated 
by computing the derived h g  and then choosing the basis 
elements starting with a basis for I(N-') and proceeding 
backwards. 

2.2. Goursat normal form. The main results of this 
paper are a direct consequence of the following theorem, 
whose proof can be found in Bryant et al. [2, pp. 54-57]. 

Theorem 2. Goureat normal form 
Let U be an  open subset of W" and I = {QI, . . . ,a,} be a 
collection of smooth, linearly independent one- forms de- 
fined on U. If there exists a one-form A # 0 mod I such 
that 

d a i  -Qi+l A z mod ai, .  . . ,ai i = 1,. . . , s - 1 
(2) 

dru, # 0 mod I 

then there ezists a set of coordinates z such that 

I = {dz" - Zn-idzi, .,. , d ~ 3  - 22d~1). 

A few comments on the statement of this theorem 
are in order. The conditions .of the theorem require the 
existence of a special basis {a'} and a s p e M  one-form r. 
A quick calculation shows that the basis {a'} is adapted 
to the derived flag of the system and hence if we start with 
an adapted basis, the real requirement is the existence of a 
one-form r which satisfies the congruences. Determining 
r can involve a further scaling of the adapted basis which 
preserves the adapted structure. For most examples, x 
can be determined by a combination of physical insight 
and repeated guessing. 

The Goursat congruences are somewhat unsatisfying 
since they require the existence of a one-form r. Necessary 
and sufficient conditions for the existence of such a A, 

and hence for converting a set of constraints into Goursat 
normal form, were presented in [ll]. We summarize the 
main result here. 

Let I = span{w', . . . ,U"} be a codistribution on R" 
and write A = IL for the distribution which spans the 
null space of the codistribution. We define two nested 
sets of distributions: 

Fo = A 
Fi = Fo + [Fo,Fo] 
F2 = Fi + [Fi,J'o] 

Eo = A 
E1 = Eo + [Eo, Eo] 
E2 = E1 -I- [El, E11 

(3) 

Ei+l = Ei + [Ei, Ei] Fi+l = Fi + [Pi, Fo]. 
Under the assumption that each distribution is constant 
rank, the two sequences have finite length (possibly dif- 
ferent). 

The filtration {F;} is the the one which usually ap- 
pears in the context of nonlinear controllability and feed- 
back linearization. In particular, Fi consists of all brackets 
up to order i .  The distribution Ei also contains all brack- 
ets of order i, but may contain additional Lie products of 
higher order. This is due to the recursive construction of 
Ei, as opposed to the iterative construction of Fi. The fil- 
tration Ei is precisely the sequence of distributions which 
is perpendicular to the derived flag of I = A'. 

Theorem 3 ([ll]). Given a 2-dimensional distribution 
A = I' such that 

dim& = dim Fi = i + 2 i = 0 , .  . . , n - 2, 

in a neighborhood of the origin, there exists a one-form r 
and a basis {a', . . . ,a*} for I which satisfy the Goursat 
congruences in that same neighborhood. 

This theorem allows us to completely characterize all 
exterior differential systems of codimension 2 are locally 
equivalent to a system in Goursat form. 

The fact that the dimension of the derived flag (or 
equivalently the filtration { E i } )  is not sufficient to gnar- 
antee equivalence to the Goursat normal form has been 
pointed out by Giaro, Kumpera, and Ruiz [7], who con- 
structed a counterexample in 5 dimensions. They also 
note that if dimEi = i + 2 then the Goursat conditions 
hold on an open dense set. This result has also been 
pointed out by Martin and Rouchon [IO] in the context 
of linearization of driftless systems. For the applications 
considered here, we desire a transformations which hold 
on a neighborhood and hence the stronger result of The- 
orem 3 is needed. 

3. APPLICATIONS OF THE GOURSAT NORMAL FORM 
THEOREM 

3.1. Nonholonomic control problems. Consider the 
problem of controlling a mechanical system with n- 
dimensional configuration space Q subject to a set of in- 
dependent kinematic constraints having the form: 

(4) < wi(q ) ,  >= 0 i = 1 , .  . . , k. 
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The ut’s are a basis for a codistribution on Q which re- 
stricts the velocity of the system to be zero in certain 
directions. This class of constraints often arises in me- 
chanical systems in which rolling is present. Examples 
include mobile robots, whose wheels are allowed to roll 
and spin but not slide sideways, and multi-fingered robot 
hands, where two surfaces (the fingertip and the object) 
roll against each other without slipping. The basic con- 
trol problem associated with this class of systems is to 
find a path connecting two given points such that the 
constraints (4) are satisfied at  d times. We refer to this 
as the trajectory generation problem. 

The set of kinematic constraints (4) is holonomic if 
the constraints restrict the motion of the system to a man- 
ifold of dimension n - k. In this case, the constraints on 
the system can be rewritten as a set of algebraic con- 
straints on the configuration variables q. The constraints 
are nonholonomic if they do not constrain the system to 
lie on a submanifold of the dimension n - k. In particular, 
we are most interested in constraints which are completely 
nonholonomic: any point in the configuration space can 
be reached via an admissible trajectory. If the constraints 
are not completely nonholonomic, the system can still be 
analyzed by restricting the initial and final configurations 
to lie on the same integrable submanifold. 

The use of exterior differential systems, and in partic- 
ular Phffian systems, to study nonholonomic problems is 
quite natural. By Chow’s theorem, a set of nonholonomic 
constraints is completely nonholonomic if and only if the 
bottom derived system satisfies f i N )  = (0). Although 
this answers the problem of whether a path between any 
two points exist, it does not help us find that that path. 

In terms of vector fields, one can formulate the tra- 
jectory generation problem using a set of vector fields 
{ g l ,  . . . , gm}, m = n - k, which form a basis for the distri- 
bution annihilated by the constraints. The construction 
of a path satisfying the constraints is then equivalent to 
finding an input u ( t )  E R” such that the system 

Proposition 4. There exists a feedback transformation 
whzch puts a two-input nonholonomic system into chained 
form ( 5 )  if and only :f 

dimEi = d i m F i = i + 2  i = O ,  . . . ,  n - 2 .  

Thus, the class of two-input systems which can be 
converted into chained form (with a single chain) is com- 
pletely characterized by an algebraic test. It is interesting 
to note that although chained systems are not generic, 
they occur frequently in applications. For example, all 
controllable, two-input, regular nonholonomic systems in 
3 and 4 dimensions are locally feedback equivalent to a 
system in chained form. This follows from Darboux’s the- 
orem and Engel’s theorem, respectively, and is a special 
case of the results presented above (see [ 2 ,  pp. 50-511 for 
a proof of Engel’s theorem). These special cases have also 
pointed out by Hermes [SI. Other systems, such as a car 
with 1 or 2 trailers also satisfy the conditions necessary 
to put them into chained form. In fact, it has recently 
been show that a car with N trailers can be converted 
into chained form [16, 14, 171. 

3.2. Feedback linearization. Systems in chained form 
are closely related to systems in Brunovsky canonical 
form. If we ignore the first line of equation (5) and set 
91 = 1, we get a chain of integrators driven by u2. Based 
on this, one might expect that the conditions for con- 
verting a system into chained form could be rewritten in 
terms of involutivity of certain distributions, correspond- 
ing to the feedback linearizability conditions. Sufficient 
conditions for converting a system into chained form us- 
ing precisely this idea were presented in [13] and [4]. 

A natural question is whether the Goursat conditions 
can be used to characterize systems which are feedback 
linearizable via static state feedback. As a first attempt, 
one might do the following: Let f and g be vector fields on 
a manifold M which describe an affine nonlinear system. 
Construct an associated system on W x M with the vector 
fields 

4. = 91 (q)ul+ . . . g m ( q ) u m  

is steered from q(0) = qo to q(T) = ql for some T > 0. 91 = [;] g2 = E]. (6) 

One tool which has proved useful in the study of 
nonholonomic control problems is a certain normal form 
called “chained form” [13]. The simplest case of system 
in chained form is given by 

If the original system is feedback linearizable then g1 and 
g2 can be converted into chained form. However, the con- 
verse is not true, as the following example shows. 

(5) 

Zn = Zn-1211 

A simple calculation shows that this set of vector fields 
is perpendicular to the one-forms of the Goursat normal 
form, and hence the Goursat normal form can be used to 
give conditions under which a system is feedback trans- 
formable to a system in chained form. The following 
proposition follows immediately by application of The- 
orems 2 and 3. 

Example 1, (contributed by Michiel van Nieuwstadt) 
Consider the affine cont,rol system 

1 

1 + 23 

21 = -21 + U 

22 = 2 2 1  

2 3  = 2 3 u  

-*- f =  El], g = ~ + z 2 ]  

It is easy to verify that this system is accessible but not 
not feedback linearizable (its linearizat,ion is not control- 
lable). It, can also be verified that the augmented system 

satisfies the rank conditions of Theorem 3 and hence can 
be converted into chained form. This involves switching 
the roles of g1 and gz. 
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The proper application of the Goursat theorem to 
study feedback linearization was developed by Gardner 
and Shadwick for the case of MIMO feedback linearization 
via static state feedback [6]. For the single input, single 
output case, there criterion can be stated as follows. Let 
I be a codistribution on R" x R x Rt  given by 

Proof. Apply the standard Frobenius theorem (forms ver- 
sion) to the codistribution ( ~ 1 , .  . . , wp,dfi,. . . , dfm}. 0 

Theorem 7. Extended Goursat normal form 
If there exists a single one-form x # 0 such that for all j 

d a i  E -aJ :+I A x mod i = 1,. . . , s j  - 1 

(8) 
(Y; = dzi - fi(z)dt -gi(z)udt i = 1,. . . , n. (7) daf,j # O  mod I 

This defines a Pfaffian system with codimension 2. 

Theorem 5. An @ne nonlinear control system is feed- 
back 1inearit.uble via static state feedback sf and onlv if 
there exists a basis for the associated Pfufian system (7) 
which satisfies the Goursat congruences with T = dt. 

The difference between the necessary and s&- 
dent conditions for converting a nonholonomic system to 
chained form and those for feedback linearization are in 
the extra freedom 9f chooeing r in the nonholonomic case. 
A further complication which arises in the proof of Theo- 
rem 5 is the possibility that the feedback transformation 
which converts the system into Goursat form might de- 
pend on time or depend nonlinearly on the inputs. How- 
ever, the fact that the original system is autonomous and 
&ne allows one to show that tbie does not occur (see [6] 
for details). 

The lack of freedom in choosing x implies that, al- 
though they are very similar, chained (or Goursat) form 
and Brunovsky form are not completely equivalent. Thus, 
the lack of necessary and sufficient conditions for convert- 
ing a system into chained form using involutivity of cer- 
tain distributions is perhaps not snrprising. 3owever, the 
se=& for such conditions remains an interesting problem. 

4. EXTENDED GOWAT NORMAL FORM 

It is possible to extend the Goursat normal form the- 
orem to handle cases other than codimension 2. This was 
done by Gardner and Shadwick in the context of feed- 
back linearization [6]. We present here a modified version 
of their results and discuss its applications. 

Let U be an open subset ofR" and I = {ai, . . . ,ai j  : 
j = 1,. . . , m - 1) be a collection of smooth, linearly inde- 
pendent one-forms deiined on U. Let I(') denote the i th 
derived system of I which we take as 

, 

I"' = jaJ; : j = I ,..., m -1, 12 = 1 ,..., s j  - i), 

where si 2 sz 2 . . . 2 sm-1 > 0. 

theorem [6]: 

Theorem 6. Let w1,. . . ,up be a set of linearly indepen- 
dent 1-forms and let f1,. . . , fm be functions whose dif- 
ferentids are linearZy independent of each other and the 
I-forms {wi}. If w and f satisfy the relative h b e n i u s  
condition 

We make use of the following version of Frobenius's 

then there exists a set of coordinates z E W81t ."tgm-l tm 
such that 

. .  
I = { d z ; - z ; d z o  ,...( dzJ,j-zf,j+,dzo : j =  1 ,..., m-1).  

Sketch of proof. To simplify the exposition, it will be con- 
venient to use slightly different notation and consider only 
the case where m = 3. We assume that the exterior sys- 
tem consists of the forms 

a a l - a ,  Pi 

a n I - s 8  paz-as  71 

a81 p a 2  78r 

Without loss of generality we take this basis to be adapted 
to the derived flag and hence I(') consists of all forms ex- 
cept those on the bottom row, fi2) consists of al l  forms ex- 
cept those on the bottom two rows, etc. We wish to show 
that there exists a choice of coordinates q = (z ,y ,z , t )  
such that 

ai = dzi - zi+idt i = 1,. . - 81 

pi = dyi - yi+ldt i = 1,. . . ,s2 
7; = d t ;  - z;+ldt i = 1,. . . , 8 3  

Here tis not necessarily the variable associated with time, 
although in certain cases (e.g. feedback linearization) it 
does play this role. 

We consider first the case where 81 > 82 > s3 and 
hence the length of each chain is distinct. Define 912 = 
SI - 92. The coordinates for t and 21 through z,,,+l are 
guaranteed exactly as in the proof of the standard Goursat 
form. It also follows from this construction that A can be 
taken to be dt.  The next level of congruences gives 

mod ai,. . . , a s l a ,  pi. 1 d a g , ,  E (Yg, ,+i  A dt 
dpl 3 p2 A at 

Since aalz = dzc12 - z,,,+ldt we have that 

a8,,+1 A dt A dz8,,+i E 0 mod [ Y l , .  . . ,CY,,,, pi 
and, after redefining agl,+l to convert the congruence to 
an equality, it follows that 

a a l a + i  = O d Z s , , + i  + bdt. 

The coefficient a cannot be equal to zero and hence we 
can scale ag12+i and define 2 a l a + 2  = -b/0. 

then there exist coordinate functions z1, . . . , zp and coefi- 
cient functions a;j and bij  such that 

wi = aijdzj + bijdfj. 
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In the other tower, we have that 

d/31 A pi A d t  = 0 

and it follows from the relative Frobenius theorem that 
there elcist coordinates such that 

= ady ,  + bdt. 

Setting yz = -b /a  and scaling 01 gives the desired form. 
The rest of the y coordinates follow exactly as in the Gour- 
sat case. The z coordinates are computed in exactly the 
same way using yi .  

In the case that s2 = 53 we have two towers entering 
the calculation a t  the same time. However, it is still true 
that 

dyl  A /31 A 71 A dt = 0 

and so by Frobenius’s theorem we can find and z1 such 
that 

where A ( q )  E Rzx2 and B ( q )  E W2. By taking linear com- 
binations of the constraints we can eliminate the factor of 
A to obtain 

The remainder of the coordinates follow algebraically. 0 

This version of the theorem has direct relevance to 
converting nonholonomic systems with more than two in- 
puts into chained form. For example, it shows that a 
mobile robot consisting of a steerable car and a steerable 
trailer can be converted into a 3-input version of chained 
form. An algorithmic description of how this theorem can 
used for such problems is given in [3]. 

For feedback linearization problems, one must again 
set x = d t  and verify that although U E W” and t E R 
are allowed in the diffeomorphisms to convert to Goursat 
form, the final transformation is a static state feedback 
transformation depending affinely on U .  These details are 
verified in [SI. 

5. DISCUSSION 

5.1. Single generator systems. One of the main lim- 
itations of the use of Goursat normal form, and its exten- 
sions, is the reliance on a single one-form x in the Goursat 
congruences. This limitation implies that the only control 
systems which can be studied using the Goursat normal 
form are those in which controllability is generated by a 
single vector field. In other words, the control Lie algebra 
for Goursat systems is spanned by the input vector fields 
along with vector fields of the form ad: g ; ,  or ad:, g; in 
the case of nonholonomic systems. We refer to systems 
in which controllability can be generated by a single vec- 
tor field as single generator systems. In the case of affine 
nonlinear systems, f is predetermined, as is x .  For non- 
holonomic systems, the Goursat theorem helps determine 
the A and through it the generator 91, which may be a 
pointwise linear combination of the original vector fields. 

While this class of systems plays a important role in 
such areas as feedback linearization and mobile robotics 
(where the forward motion of the vehicle corresponds to 
the generator), in many problems a single generator does 
not necessarily exist. One example is given by the kine- 
matic equations of a ball rolling on a plate [12, 11, which 
can locally be modelled by the differential equation 

21 = U 1  

2 2  = U2 

2 3  = x 1 u 2  - x 2 u l  

X4 = X3U1 

2 5  = 2 3 8 2 .  

(9) 

This system is in chained form (in the general sense de- 
fined in [13]), but does not satisfy the rank conditions for 
converting it into chained form with a single generator. 
More general conditions which capture examples such as 
these are still needed. 

5.2. Differentially flat systems. Fliess and coworkers 
have recently introduced the notion of a differentially flat 
nonlinear system [5, 141. Roughly speaking, a nonlinear 
system with m, inputs is said to be differentially flat if 
there exist m “output” functions such that the state of the 
system and the inputs to the system depend algebraically 
on these output functions and a finite number of deriva- 
tives. This class of systems is very attractive because the 
differentially flat outputs can be used to generate feasible 
trajectories for the system, potentially allowing simple al- 
gorithms for nonlinear plant inversion. 

Using a result of Cartan, Martin and Rouchon [lo] 
have shown that a necessary and sufficient condition for 
a 2 input nonholonomic system on R“  to be differentially 
flat on an open and dense set is that it satisfy the rank 
conditions 

dim f i i )  = n - 2 or equivalently dim Ei = i + 2. 

(10) 

Thus a necessary and sufficient condition for a tow-input, 
nonholonomic system to be differentially flat is that it be 
convertible to chained form in an open and dense set. The 
extent to which stronger conditions given by Theorem 3 
are necessary to ext,end this result to an open neighbor- 
hood are currently unknown. 

More generally, one sees readily that all syst,ems 
which satisfy the Goursat congruences are differentially 
flat by choosing as flat outputs the coordinates at, the top 
of each of the towers, z;, j = 1,. . . ,m  - 1, and 20, the 
function whose differential plays the role of ir in the Gour- 
sat normal form. It follows that, all feedback linearizable 
systems are differentially flat and that all systems which 
can be converted into chained form with a single genera- 
tor are differentially flat. Some additional special cases of 
this type are given in [lo]. 

The single generator nature of the Goursat form once 
again limits its usefulness in characterizing differentially 
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flst systems. For example, the system 

2 1  = U1 

ir = 22u1 
22 = 2 4  

2 4  = 0 2  

is differentially flat (using ZJ and 2 1  as outputs), but does 
not satisfy the Goursat congruences with a single gener- 
ator r. This example is characteristic of nonholonomic 
systems in which torques are used as the inputs instead 
of velocities. 

For problems with multiple generators, such as the 
example given in equation (9), the use of differential i a t -  
ness appears to be limited. Since the system in (9) does 
not satisfy the rank condition in equation (IO), it is not 
differentially flat. However, it is in chained form and can 
be easily be steered between any two configurations, as 
shown in [13]. 

5.3. Conclusions. The use of exterior differential sys- 
tems for studying problems in control has given new in- 
sight into the use of differential geometry as a tool for 
understanding the atructure of nonlinear systems. While 
many of the results available using codistributions and 
derived flags are already available wing vector fields and 
distributions, there are many problems which appear to 
be more natural when viewed as exterior differential sys- 
tems. In particular, many recent results in control of non- 
holonomic systems and differential flatness have relied on 
these tools and the renewed interest in this area will un- 
doubtedly generate new insights and new approaches in 
nonlinear control theory. 
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