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Abstract—Wireless microphone networks or so-called wireless acoustic

sensor networks (WASNs) are a next-generation technology for audio

acquisition and processing. As opposed to traditional microphone arrays

that sample a sound field only locally, often at large distances from the

relevant sound sources, WASNs allow to use many more microphones

to cover a large area of interest. However, the design of such WASNs

is very challenging, especially for real-time audio acquisition and signal

enhancement due to the significant data traffic in the network. There

is a need for scalable solutions, both on the signal processing level and

on the network-communication level. In this paper, we give an overview

of applications and trends in the field of WASNs, and we address the

core challenges that need to be tackled. We mainly focus on the signal

processing level, and we explain how advances in the area of signal

processing can relax the high-demanding constraints on the network layer

design. Furthermore, we address the interaction between the application

layer and the network layer, and we explain why cross-layer design can

be important to improve the performance of WASN applications.

I. INTRODUCTION

Microphone arrays (see Fig. 1) become more and more popular

for audio acquisition, since multi-microphone recordings enable to

exploit spatial diversity, allowing to localize target sound sources

and/or to cancel out interfering sound sources coming from certain

directions [1]–[4]. Microphone arrays are used in several applications,

e.g., hearing aids, teleconferencing systems, hands-free telephony,

automatic speech recognition, computer games, etc. [1].

Despite the obvious advantages over single-microphone systems,

traditional microphone arrays still have their limitations and are often

not sufficiently performant. Since a microphone array only samples

the sound field locally, often at a relatively large distance from the

target source(s), the recorded signals often have a low signal-to-

noise ratio (SNR). Furthermore, due to obvious space and power

constraints, especially in portable devices, the array is limited in

physical size and in processing power. For example, only two or

three microphones fit in a hearing aid, and the available power is

limited due to the small batteries, which also limits the number of

audio channels that can be processed by the device. However, it

is common knowledge that the performance of microphone arrays

improves when using more microphones, preferably at large inter-

microphone distances.

To overcome these limitations, wireless microphone nodes, con-

taining a single microphone or a small microphone array, can be
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Fig. 1. Schematic example of a
localized regularly arranged micro-
phone array.

Fig. 2. Schematic example of a ran-
domly distributed microphone array
(WASN).

Fusion Center

Fig. 3. Schematic example of cen-
tralized processing by means of a
fusion center.

Fig. 4. Schematic example of dis-
tributed processing in a WASN with
an ad hoc topology.

distributed randomly over the environment (see Fig. 2). This results

in a wireless network of microphones or a so-called wireless acoustic

sensor network (WASN). Due to the wireless communication, the

array-size limitations disappear and the microphones can be placed

at positions where it is difficult to place wired microphones. Fur-

thermore, the microphone nodes physically cover a much larger area,

which increases the probability to have a subset of microphones close

to a sound source, yielding higher quality recordings. Because of

these advantages, and since small microphones can now be produced

at low cost, it is believed that WASNs will become very popular for

audio acquisition and audio processing in the near future.

In some applications, the nodes of a WASN can transmit their

recorded microphone signal(s) to a dedicated device (the fusion

center or FC) where all signals are processed, resulting in a network

with a centralized or star topology (see Fig. 3). However, in many

applications such an FC is either unavailable, too far away from



certain nodes, or the total number of microphone signals is too large

to process in a single device. In-network processing can then be a

solution, i.e., the nodes can locally process data and share the result

with their neighboring nodes, rather than with an FC (see Fig. 4).

Such a distributed approach is often preferred, especially so when it

is scalable in terms of communication bandwidth requirements and

computational complexity. However, the algorithm design for such

distributed settings is much more challenging, i.a., because each node

only has access to a subset of the available data.

In general, all WASN applications, problem statements or algo-

rithms can be classified into either signal estimation or parameter

estimation techniques [5]. In the case of signal estimation (also

referred to as signal enhancement), the goal is to estimate a desired

signal (e.g., a speech signal), while suppressing background noise

and/or removing reverberant components. This usually relies on

fusion of the recorded signals at different nodes (see Fig. 5), requiring

transmission of audio signals. In the case of parameter estimation, the

goal is to extract certain parameters from the recorded audio signal(s),

such as the location or identity of speakers, the acoustic properties of

a room, or speech features. In this case, the nodes may only exchange

parameter vectors or energy measurements at a slow time-scale

compared to the sampling rate of the microphones. In this paper, we

mainly focus on the former class (signal estimation), where the nodes

actually transmit audio signals, rather than parameters1. The real-time

processing and streaming of audio data imposes challenging demands

on the network layer with respect to data rate, synchronization, input-

output (IO) delay and quality of service (QoS). These are typical

requirements in the general class of so-called wireless multimedia

sensor networks [6] (which also covers WASNs).

This paper gives an overview of the state of the art, the current

trends, and future directions in digital signal processing (DSP)

algorithms for WASNs. We focus both on the applications and on

the enabling DSP techniques, without going into too much detail on

the algorithms. We will identify the core challenges with respect to

the algorithm design for such WASNs. Although we approach these

challenges from a signal processing perspective (i.e., the application

layer), most of them also apply to the network layer design. We

explain how advances in the area of signal processing can relax

the high-demanding specifications at the network layer. Furthermore,

we explain why cross-layer design can be important to improve the

performance of WASN applications.

II. EXAMPLE APPLICATIONS

In this section, we briefly address some example applications that

could benefit from using WASNs.

1) Hearing aids: Reduction of acoustic background noise is

crucial in hearing aids (HAs) to provide intelligible speech

signals in noisy environments [7]. This noise reduction is

usually obtained by using a local microphone arrays in the

HA itself [1]. If a HA is worn at both ears, these can be

connected with each other through a wireless link, yielding

a so-called binaural HA [8], [9], which is essentially a 2-node

WASN. By exchanging microphone signals between HAs, the

noise reduction can be greatly improved since more (and well-

separated) microphones can be used by each HA. Furthermore,

systems exist where a remote wireless microphone is connected

to a HA [7]. Since microphones become smaller and cheaper,

1It is noted that some parameter estimation algorithms also require exchange
of full-rate audio signals between nodes, e.g., for localization based on time
difference of arrival.
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Fig. 5. Schematic illustration of signal estimation in node k, based on
fusion of its microphone signal yk with the signals zl and zm obtained from
neighboring nodes l and m.

it is expected that this will evolve towards more complex

WASNs with many more microphones, e.g., incorporated in

clothing, furniture, or strategically placed by the user [5], [10].

Furthermore, since we are nowadays surrounded by wireless

devices that are equipped with microphones (e.g. smartphones,

laptops, hands-free kits, etc.), these can also be incorporated in

the network to improve noise reduction in HAs.

2) Hands-free telephony: Noise reduction with microphone ar-

rays is common in hands-free telephony, e.g., in cars or video

conferencing. The use of additional microphone nodes (e.g.

from tablets, smartphones, or dedicated devices) allows a signif-

icant improvement in the enhancement of the recorded speech

signals [5], [11]–[14]. Furthermore, WASNs are an enabling

technology for speech communication in noisy and dynamic

environments such as airports, factories, stock markets, etc.

The deployment of a WASN over the entire building allows

people to walk freely through the building while talking on the

phone, and benefit from the microphones in their neighborhood

to enhance the recorded speech signal.

3) Acoustic monitoring: Currently, most literature on WASNs

is in the context of acoustic monitoring of an environment,

e.g., for vehicle tracking or classification, surveillance, etc. (see

[2], [15], [16], and references therein). Compared to cameras,

microphones are cheaper, and have the important advantage that

they have no line-of-sight constraints. Video-based surveillance

can also be integrated with a WASN [15].

4) Ambient intelligence: The term ‘ambient intelligence’ [17]

refers to an intelligent environment that is aware of the presence

of a user and that is responsive to its needs. The sensors and

processors are wirelessly connected with each other and as-

sumed to be inconspicuously incorporated in the environment.

Active communication between the user and the environment

will likely be based on automatic speech recognition (ASR),

where signal enhancement is very important, since background

noise and reverberation are known to significantly affect the

recognition performance. A WASN with signal enhancement

technology is able to acquire intelligible speech, wherever

the speaker is positioned in the room. WASNs for ambient

intelligence also use acoustic monitoring techniques for event

detection, sound classification, localization, and speaker iden-

tification.

III. CORE CHALLENGES

In the design of signal processing algorithms for WASNs, we can

define some core challenges that are absent in traditional (wired) mi-

crophone arrays. It is noted that energy awareness is not incorporated



in this list, since it is perceived here as a general goal to which many

of the below challenges contribute.

1) Unknown Array geometry: In many cases, the positions of

the microphone nodes in a WASN are not known a priori, due

to the random deployment. For some tasks, such as localization

or speech enhancement based on spatial separation (beam-

forming), supporting algorithms may be required to estimate

node and/or source positions. In the context of WASNs, blind

algorithms that do not require this extra information are usually

preferred (see, e.g., [3], [4], [18]).

2) Distributed processing: In applications where an FC is absent,

or where a large number of microphones signals need to be pro-

cessed/transmitted simultaneously, it is desired to distribute the

computational burden over the nodes of the WASN. In-network

processing is often more energy efficient since the number of

signals to be processed is small in each node2. Furthermore, in-

network processing can rely on nearest-neighbor transmissions,

rather than long-distance transmissions to an FC.

3) Bandwidth usage: Because bandwidth is a scarce resource,

it is important to use it as efficient as possible. If nodes only

share data with their nearest neighbors (in a distributed setting),

less transmission power is required and spatial reuse of the

frequency spectrum is possible. Furthermore, to reduce the

required communication bandwidth, compression of the data to

be transmitted is of great importance to relax the requirements

for the network layer. Compression and estimation are often

jointly attacked in a WASN context, instead of treating them

as independent problems (see Subsection IV-C).

4) Scalability: In the design of distributed algorithms for WASNs

with many microphones, the goal is also to obtain a scalable

algorithm in terms of communication bandwidth and/or local

processing power. Basically, this means that adding an extra

microphone has no (or limited) impact on the computational

load or data traffic at the nodes that are not directly connected

to this extra node. Distributed algorithms that allow simply

connected networks are usually scalable [11], [14], [20], [21].

5) Microphone subset selection: In large-scale WASNs, sufficient

performance can often be obtained by only using a subset of

microphones (e.g., microphones that are close to a desired

sound source). The less useful microphone nodes can then

be put to sleep to save energy. The selection of a subset of

useful microphones is a difficult problem on its own, and it

is best tackled jointly with the estimation problem itself (see

Subsection IV-D).

6) Minimizing input-output delay: The minimization of IO delay

is an important challenge in real-time audio streaming WASNs,

e.g., in hearing aids or telephony. An IO delay is introduced

both at the DSP level [12] and at the network layer [22].

7) Synchronization aspects: Since each node of a WASN has

its own clock, and since each clock’s oscillator has imper-

fections, there is an inevitable clock skew3 and offset. Clock

synchronization protocols and algorithms [23] are crucial for

the data transmission in the communication layer, but also

for multi-microphone audio processing algorithms, since their

2For most multi-microphone signal enhancement algorithms, the required
computational power does not scale well with the number of microphone
signals processed at a single device (e.g., quadratically [10], [19]).

3As a reference: the value for the (worst-case) clock skew, based on a
32kHz oscillator commonly used for sensor networks (i.a. in the Tmote Sky),
is a difference of 40 ppm, i.e., approximately 40 µs per second or 0.144 s in
an hour [23], [24].

performance significantly degrades when the analog-to-digital

converters (ADCs) of the different microphones sample at

(slightly) different sampling rates [25]. In the case of signal

enhancement, only clock skew has a negative effect on the

performance, since this results in signal drift. A time-invariant

clock offset is usually not that harmful; it is either inherently

taken care of by the signal enhancement algorithm (e.g., in

blind beamforming [3], [4], [18]–[20]), or it can be roughly

estimated and compensated at start-up (e.g., based on cross-

correlation techniques). However, clock offset may be harmful

in other tasks, such as source localization.

In a WASN with dedicated and uniform hardware, synchro-

nization of the sampling rates of ADCs is usually manageable

[23] and sometimes even unnecessary if the oscillators are of

sufficient quality4. On the other hand, in non-uniform ad-hoc

WASNs with different devices from different manufacturers,

synchronization of the ADCs may be hard (or impossible), and

the resulting signal drift must then be taken into account by

the signal processing algorithms.

Finally, it is noted that audio algorithms, that are not based on

microphone signal coherence, can usually cope with significant

ADC mismatch (e.g., energy-based methods [13], [26]).

8) Routing and topology selection: Intelligent routing decisions

and topology selection are crucial in data-intensive WASNs.

This is because of the strict timing requirements and the many

different aspects that are involved in the decision making. The

topology may be optimized in terms of transmission power,

end-to-end delay, or QoS in general. Cross-layer interaction

between the application layer and the network layer should

ideally be incorporated in the decision making (more on this

in Section V).

IV. DISTRIBUTED SIGNAL ENHANCEMENT FOR REAL-TIME

AUDIO ACQUISITION WITH WASNS

One of the most difficult challenges for WASNs is real-time audio

acquisition, including signal enhancement, e.g., for intelligible voice

recording. By combining multiple microphone signals, an enhanced

output signal can be obtained, where background noise is significantly

reduced [1]. In these type of signal fusion applications lie the true

challenges for the network layer design, since they produce a lot

of data traffic, and they require reliable links with low packet loss,

accurate synchronization, topology selection, small IO delay, etc. At

the same time, there is a significant challenge on the signal processing

level too, i.e., how to design suitable algorithms that relax these high-

demanding requirements on the network layer design.

A. Suboptimal in-network fusion

There is a significant amount of literature on how to optimally

fuse multiple microphone signals to exploit temporal and spatial

correlation to reduce background noise, a.k.a. beamforming [1]. So-

called ‘blind’ beamformers [1], [3], [4], [18], where the microphone

and source positions are not assumed to be known, are particularly

interesting for the WASN case, and can directly be applied if an FC

is available (assuming that sufficient bandwidth is available, and that

the clocks of the different microphones are synchronized). However,

it is not obvious how these blind techniques can be applied to

4This only holds for adaptive audio processing algorithms. Furthermore,
even if the application layer can handle (limited) mismatch in the ADC
sampling frequencies, synchronization protocols are usually still required for
the communication layer.
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Fig. 7. Example of a node hierarchy for signal fusion.

decentralized topologies without a dedicated device that acts as an

FC, i.e., where in-network processing is required.

A straightforward but naive approach to tackle this problem is to

relay all the microphone signals to an arbitrary node in the network

that then acts as an FC (see Fig. 6(a)). However, this does not scale

well in terms of communication bandwidth and processing power,

since the number of transmitted audio signals grows along the signal

path, and the entire computational burden is borne by a single node.

Furthermore, only in the node that was chosen as FC, an enhanced

signal is available. A better approach is to let each node fuse its

microphone signal(s) with the signal(s) obtained from neighboring

node(s) into a single audio signal, and only transmit this fused signal

to another node (see Fig. 5 and Fig. 6(b)). This approach obviously

scales much better in terms of data traffic, and the computational

burden is distributed over all the nodes in the network. Furthermore,

many nodes then have access to an (at least partially) enhanced signal.

There are many ways to organize this distributed in-network fusion

scheme. The most common approach is to construct a hierarchy of

(local) centralized beamformers [11], [14], [21], i.e., the network is

divided in clusters of nodes, and the nodes that form a cluster transmit

their microphone signal(s) to a higher-level node, referred to as the

cluster head (CH). The CH then basically has the role of a local FC

for the nodes in the cluster, i.e., it fuses the received signals into a

single enhanced audio signal. These locally enhanced signals at the

different CHs are then fused together at the highest-level node (the

data sink) to obtain the final output signal (see Fig. 7). This approach

can easily be extended to deeper levels of hierarchy, which naturally

leads to WASNs with a tree topology, where data flows from the

lowest-level nodes (leaf nodes) to the highest-level node (root node),

fusing all the intermediate microphone signals.

This hierarchical architecture is elegant and perfectly scalable, but

it has some major drawbacks. Even if every node is able to compute a

locally optimal signal estimate based on the locally available signals

(e.g., based on blind beamforming techniques [1], [3], [4], [18]), the

final estimate at the data sink will still be suboptimal. For a given

topology, computing the optimal set of fusion rules requires global

information on the cross-correlation between all microphone signal

pairs, which is usually not available5, especially in adaptive scenarios

where these statistics must be estimated on the fly.

Furthermore, even if we would be able to compute the optimal

set of fusion rules for a given topology, other topologies may exist

that provide a better signal estimate. This results in a combinatorial

problem, which is usually solved based on (suboptimal) heuristics

[11], [14], [21].

B. Optimal in-network fusion

It is clear that the hierarchical fusion method described in the pre-

vious subsection is suboptimal due to the lack of global information,

the many heuristics, and the dependence on the chosen topology. In

particular in adaptive scenarios, the nodes must update their fusion

rules based only on partial information, i.e. ,the local data to which

they have access. However, there exist distributed adaptive speech

enhancement techniques with in-network fusion that can generate

an optimal signal estimate, independent of the chosen tree topology

(assuming two-way data traffic between nodes) [20]. Furthermore,

each node can enhance its own local microphone signal in an optimal

way, as if all signals in the entire WASN were available to each

node. This seems impossible, since information is inevitably thrown

away after each fusion step. However, it can be shown that this

is indeed possible in certain scenarios, i.e.,where the number of

desired speakers that need to be retained at the output is small [10],

[12], [19], [20], [27], [28]. This class of algorithms is referred to

as ‘distributed adaptive node-specific signal estimation’ (DANSE)

algorithms. DANSE algorithms can operate in networks with a tree

topology [20] or in a 2-level hierarchical network where the CHs

(i.e., the grey nodes in Fig. 7) are fully connected with each other

[12], [19].

The node-specific aspect of DANSE refers to the fact that each

node may be interested in a different signal. For example, a binaural

HA user wants to hear the sound as it impinges on his/her ears,

and therefore the left HA will estimate a different signal than the

right HA [8]–[10], [29]. This is important for directional hearing.

Another example is sound source localization with a prior signal

enhancement step to reduce noise in the recordings. In this case, the

signal enhancement algorithm must preserve the node-specific target

signal(s) as they are locally observed by the different microphone

nodes.

The efficiency and optimality of DANSE relies on the assumption

that the total number of desired speakers is much smaller than the

number of available microphones. This is because the number of

audio signals that each node needs to transmit is directly proportional

to the number of desired source signals that need to be retained [10],

[12], [19], [20], [28] (otherwise, optimality cannot be guaranteed). It

is noted that, if the node-specific aspect of DANSE is relaxed, i.e.,

each node is interested in exactly the same signal, then the nodes only

need to transmit a single audio signal, independent of the number of

desired speakers.

5E.g., in Fig.6(b), the cross-correlation between the signals z1 and z4

cannot be computed since the nodes that generate them are not connected.
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C. Distributed compression

The techniques addressed in the previous subsections aimed to

estimate a signal in a distributed fashion, by fusing multiple audio

channels into a single audio channel that is transmitted to neighboring

nodes. To further reduce the bandwidth, and to match specific rate

constraints in the wireless links, the transmitted signals must be

encoded with efficient source coding techniques, and reconstructed

at the the receiving node. The goal is then to transmit a signal as

efficient as possible, without adding too much distortion between the

original and the decoded signal.

A typical distributed source coding scenario is depicted in Fig. 8.

The receiving node on the right collects encoded versions of three

different signals (z1, z2 and z3) from three different nodes. The

decoder at the receiving node needs to decode all three original

signals and provide the reconstructed signals (ẑ1, ẑ2 and ẑ3) to

the local fusion algorithm (e.g., DANSE). For node 1, the goal is

thus to transmit the signal z1 with the smallest possible distortion,

given a certain available bit rate in the wireless link. Here, signal

enhancement and coding can be viewed as cascaded techniques, but

there also exist approaches where both are jointly tackled in a WASN

context [30], [31]. It is obvious that such an integrated approach can

yield better performance, since (lossy) compression inevitably has a

negative effect on the signal enhancement algorithm (see, e.g., [32],

which analyzes the effect of compression on DANSE).

The encoders in the distributed source coding scenario in Fig.

8 can be designed in two different ways. The simplest way is to

merely encode the signal z1 by removing the inherent redundancy

in the signal z1 itself. This is often referred to as ‘side information

unaware’ (SIU) coding, since it ignores the mutual information in

the signals of other nodes. However, since the receiving node also

has access to encoded versions of z2 and z3, and since these signals

are usually highly correlated with z1, the latter can be transmitted

with significantly less bits while keeping the same level of distortion.

This is referred to as ‘side information aware’ (SIA) coding, i.e., the

encoders are designed to jointly remove the mutual redundancy in

all the signals z1, z2 and z3 [33], [34]. Obviously, SIA performs

better than SIU, but an SIA encoder cannot be designed without

prior knowledge on the mutual information in z1, z2 and z3, which

is often not available. However, in a WASN with 2-way data traffic

(e.g., in DANSE-like algorithms), some SIA coding is possible, since

a transmitting node then has access to (fused) data that is also

available in the receiving node. Since the received signal and the

signal to be transmitted will often have significant correlation, this

can be exploited to significantly compress the transmitted signal.

Furthermore, if a node transmits more than one audio signal to

another node (as in DANSE with multiple desired speakers), the

transmitted signals can be jointly encoded by exploiting the cross-

correlation between them.

D. Microphone subset selection

Another important aspect to facilitate the network layer design,

and to relax the communication bandwidth and power constraints,

is the selection of a subset of most useful microphone nodes. The

other (less useful) nodes can then be switched off to reduce power

consumption and data traffic in the WASN. An important question

is on what basis this subset is selected. For example, in [35], the

microphones with highest SNR are chosen, and in [36], a set of

microphones is chosen that have a strong cross-correlation with each

other, which is an important feature in the design of a beamformer.

Other possible utility measures may be the direct-to-reverberant ratio,

the microphone or speaker proximity, etc.

However, all these selection methods make abstraction of the

signal enhancement algorithm that is used, which may be suboptimal.

For example, a microphone that is close to an interfering source

(e.g., a radio) has low SNR but may indeed be very useful for

signal enhancement, i.e., as a noise reference to cancel this interferer

in another microphone signal. Therefore, it is often advantageous

to design the utility measure jointly with the signal enhancement

algorithm, as in [37], [38]. Furthermore, the utility measures in

[37], [38] can be computed efficiently from the available signal

enhancement fusion rules at hardly any additional computational cost.

V. CROSS-LAYER DESIGN IN WASNS

In most WASNs, there is an important interaction between the

application layer (DSP) and the network layer. Therefore, a joint

design may significantly improve the performance of the WASN. A

couple of the interactions between both layers are addressed below.

• The audio processing algorithm that is used often puts strict

constraints on the topology of the network [11], [14], [19]–[21].

• The selected microphone subset also affects the choice of the

topology since useless nodes (from a signal enhancement per-

spective) are removed from the network. Vice versa, the topology

selection may also influence the subset selection algorithm,

since certain nodes can be useful from a routing perspective.

Furthermore, the ‘usefulness’ of a node also depends on the

delay in the signal path from that node to other nodes (if the

end-to-end delay is too large, the microphone signal may become

useless in real-time applications).

• In large areas with long inter-microphone distances, many mi-

crophones will not be acoustically coupled due to the significant

attenuation of sound over long distances. Such acoustical cou-

pling can be easily detected by the audio processing algorithm

(e.g. using cross-correlation techniques [36], or microphone

utility [37], [38]). It is obvious that microphone nodes that are

not acoustically coupled should not share data.

• The establishment of a wireless link between certain node pairs

may require a large transmission power, e.g., due to shadow

effects. However, this link may be very important from a

signal enhancement perspective. This trade-off requires careful

consideration. Another example is the design of a node hierarchy

(see Subsection IV-A), which can be based on nearest neighbors

to reduce transmission power, but this may yield suboptimal

results in terms of signal enhancement performance.

• The network graph should depend on the quality of the mi-

crophone recordings at the different nodes. For example, a

high-SNR node should ideally be positioned in the center of

the network and/or close to data sinks, and it should have



many connections, such that this high-SNR signal can rapidly

propagate through the network or to the end user, with a

minimum number of hops.

VI. CONCLUSIONS

In this paper, we have addressed some possible applications that

can benefit significantly from using WASNs, and we have listed the

core challenges that need to be tackled in WASN design. We have

given a general overview of distributed signal processing techniques

for signal enhancement, and we have explained how these techniques

can relax the high-demanding constraints on the network layer

design. Finally, we have pointed out some interactions between the

application layer and the network layer, which is a motivation for

cross-layer design in WASN applications.
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