
Applications Demand Class-Specific

Optimizations: The C + + Compiler
Can Do More

IAN G. ANGUS

Boeing Computer Services, Seattle, WA 98124-0346

ABSTRACT

So far C++ has made few inroads into the realm of scientific computing, which is still

largely dominated by Fortran. Of the few attempts that have been made to apply C++

to numerically intensive codes, the results have often suffered from severe performance

problems. A careful examination of these problems indicates that they are unlikely to be

solved by incremental improvements in compiler optimization technology. The flow of

this article will: motivate the discussion by describing a common efficiency problem that

arises when numerical codes are programmed inC++; discuss some potential solution

strategies that we believe are viable in the near term, but not over the long term;

introduce a mechanism by which a compiler can load domain-specific and class-spe

cific optimizations on an as needed basis. A simple interface that will enable this feature

will be presented. Although our immediate motivation is that of numerically intensive

codes, our approach is applicable to all application domains. © 1994 by John Wiley &

Sons, Inc.

1 INTRODUCTION

There are programming commumtles in which

C++ has had little or no impact. One such com

munity consists of researchers and programmers

who write numerical codes, typically in Fortran,

for use in applications such as computational

fluid dynamics (CFD). Many of these applications

are built on a succinct mathematical structure

that suggests that these applications would be

good candidates for being programmed in C++.

To achieve greater performance a few of these

Received April 1993
Revised June 199:3

© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 2, pp. 123-131 (1993)

CCC 1058-9244/94/040123-09

applications are now being migrated to distributed

memory parallel computers. The complexity and

cost of this task have caused some researchers [1-

7] to investigate whether coding applications in

C++ would make the management of parallelism

(and the applications) easier. All have been favor

ably impressed with the software engineering as

pects of C++, and they unanimously believe it did

help to manage the parallelism. Others [4, 8-10]

have investigated the applicability of C++ to sci

entific computing, also with encouraging results.

Unfortunately, in many cases performance

problems of varying difficulty have been encoun

tered with the C++ implementations [1-4, 11].

Because the nature of these applications pushes

the envelope of what can be computed, the ob

served degradations in performance (which are

modest by many standards) are often deemed to

be unacceptable.

123

124 ANGUS

2 SCIENTIFIC APPLICATIONS

The author's experience is derived from a CFD

application that solved for the fluid flow around

an aircraft [1, 11] and an image processing appli

cation [5]. These problems can be characterized

as having relatively few large objects. Large in this

context means each object contains upward of

tens of thousands of floating point values.

For the purpose of this article we will use the

humble vector class (stripped of all detail that we

do not need and depicted in Fig. 1) as a familiar

example. We ask the reader to remember that the

vector is a greatly simplified representation of the

structures that are used in real CFD codes. This

example is meant to be instructive, and not repre

sentative: it omits many of the complexities of real

numerical applications.

3 RELATIVE SPACE/TIME EFFICIENCY

The observed performance degradations exhibit

the following characteristics:

1. They are nonlocal, i.e., using the usual per

formance monitoring tools such as prof does

not give much insight into what is happen

ing. The benchmarking of individual com

ponents of the code may not reveal the po

tential for problems.

2. The timing differences between C++ and C

are strongly machine dependent. The C++

class Vector {

public:

};

Vector();

Vector& operator=(const Vector&);

Vector& operator+=(const Vector&);

friend Vector operator+(const Vector&,const Vector&);

Vector A, B, C, D;

I I ...
A = B + C + D; I I Fragment 1

I I ...
A= B; A+= C; A+= D; II Fragment 2

I I ...

I I Fragment 3

I I Functionally equivalent C version

I I which violates C++ encapsulation!

{
for (int i = 0 ; i < N ; i++) {

A[i] = B[i] + C[i] + D[i];

}

I I N = Vector size

FIGURE 1 C++ vector code fragments.

to C ratio ranged from 1.5 at best, to 3 and

worse[11].

3. The relative memory consumption of C++

code is often greater than a C code with the

equivalent functionality. For the CFD code

described [1], we estimate that the excess

memory consumption was about a factor of

50%.

For many of the numerically intensive prob

lems, inefficiency in memory usage can be as, or

more, damaging than an execution time penalty.

3.1 The Usual C + + Suspects?

Before pointing fingers, consider the possible role

of the usual suspects.

1. Virtual functions: The CFD code [1: made

very little use of C++ inheritance-it just

did not need it. Optimizing virtual dispatch,

and methods such as customization [12]

will not help.

2. Memory allocation: The objects we found

useful contained very large amounts of

data. The overhead of allocating the mem

ory was negligible compared to the work

done in a typical method.

These issues must not be ignored; however, they

are not the only sources of trouble and were not

relevant to our applications.

3.2 Source of the Numerical
Efficiency Problem

The inefficient use of memory occurs because the

mathematical abstractions force the use of some

temporary variables that are very big [11 J. The

inefficiencies in time occur because of the memorv

usage, and because the abstraction boundaries

force a particular access pattern on the data. This

pattern happens to be quite different from that of

a C or Fortran code of similar functionality [2,

11].

Effectively, the pattern of traversal precludes

effective use of either the cache (the objects are

too big to fit into it) or the registers. Hence, the

code runs at memory access speed. Depending on

the hardware used; this may or may not be a

problem. It could be a disaster.

The types of optimizations that the C++ com

piler has precluded (compared with C and For

tran) are those that act by grouping terms from

different statements or parts of an individual ex

pression. In Fortran and C codes the program is

(often) written so as to enable the compiler to ex

ploit the registers and cache effectively. The result

of these optimizations being implemented directly

by the programmer is that the program often be

comes harder to understand. One of the reasons

for using C++ in the first place is to separate con

cems of the problem the program solves from de

tails of implementation (and optimization).

4 SOLUTIONS?

The reason for the poor efficiency of C++ relative

to the competing languages is that the abstrac

tions, which were so useful in aiding the writing of

an application, hamper the optimizer. The pro

cess of optimizing code proceeds by the compiler

recognizing enough of the semantics of the code to

be able to apply transformations (the optimiza

tions) that are known to produce a resultant code

that is mathematically equivalent to the original.

For the case of C++ the optimization process is

thwarted by the presence of user-defined data

types for which the compiler has no semantic un

derstanding. The compiler's only option is to use

function inlining in an attempt to reduce the code

to a set of (lower level) abstractions that it might

understand.

4.1 Must We go Beyond lnlining
Functions?

It is valid to ask if our efficiency problems were

just a consequence of function inlining (and the

related process of interprocedural analysis) mech

anisms being rather primitive. Although we would

be happy to see greatly improved capabilities in

this area we are skeptical that it is a long-term

solution.

In Figure 1 we depict a tiny portion of a vector

class. The two operators shown are presumed to

be implemented with semantics analogous to inte

ger operations. The two code fragments represent

different performance characteristics. The first

uses more memory (because of temporaries) than

the second, but suffers less loop overhead.

For maximum efficiencv we would like to trans

form the first code fragm~nt into the form of the

second fragment, unfold the operations, and fuse

the loops to deliver the equivalent of the third

fragment. Note that the third fragment violates en-

THE C++ COMPILER 125

capsulation and so cannot be effected by a C++

programmer.

Although this approach may be theoretically

possible, it is beyond the current state of the art

(as witnessed by the absence of any C++ compil

ers that could effect the transformations above -

today). Hence, other possibilities will be consid

ered.

4.2 Short-Term Solutions

To retain the expressive syntax, there are two

strategies that can be fruitfully applied in the short

term:

1. Design libraries that employ lazy evaluation

and method combination [13]. Effectively,

the vector operations of Figure 1 are not ac

tually executed as they appear; instead the

library behaves as though it is a specialized

compiler. The library builds a parse tree

that it will attempt to evaluate. This ap

proach appears promising for some special

ized codes. If it works, it can be imple

mented now.

2. Hard code the knowledge of certain critical

classes into the compiler. The critical ques

tion is: Which classes do I build in to the

compiler? Even if agreement could be

reached, this solution is only viable for com

piler vendors, those who have a lot of lever

age with their compiler vendor, or those who

have both the access and the expertise to

modify a compiler themselves.

If we can achieve the desired efficiencies v1a

clever implementations of libraries then the library

approach is preferable. Deferred evaluation is an

appealing strategy; hence, we will devote some

time to pointing out its strengths and weaknesses

vis a vis a compiler.

1. Building and compiling a parse tree at run

time will not be cheap in time and possibly

memory. Hence, we would like to amortize

this effort over multiple invocations of the

same code. This requires library to tag

where the tree was called from, i.e., some

external context must be captured at run

time. The method used to do this is unlikely

to be portable.

2. For short vectors, the library would need to

use a more "traditional approach" to elimi

nate the cost of the runtime compiling. The

126 A:"o/GUS

compiler does not suffer from this problem,

it will be able to generate optimal code (of

the same structure) for all sizes of vector.

(We could demand that the user use differ

ent flavors of vector to denote this differ

ence-we reject that approach).

Note that these problems are all specific to the

vector (and similar) example.

There are disadvantages with putting these op

timizations in the compiler as well; however, they

will be discussed later once our proposal has been

introduced.

4.3 Pragma

One approach to communicating optimizations to

the compiler is with pragmas. Pragma suffers

from one serious deficiencv: It amounts to a com

piler and library implementation-dependent ex

tension to the language. Our thesis is that if it is

compiler or library implementation dependent,

the programmer should not see it. In addition, for

pragmas to be of general use they need to be

standardized, otherwise chaos will eventually rule.

4.4 Class Optimization Specifications

Another approach would be to extend the C++

language to allow legal optimizations to be speci

fied as a part of the class definition. Aside from

our natural aversion to extending the language, we

believe that this approach is flawed for two rea

sons:

1. No language general enough to specify all

possible optimizations is known. Such a

language may be impossible to design!

2. The transformations with the biggest payoff

(at least for vectors) violate the abstraction

boundaries imposed by the C++ classes.

These optimizations are dependent on im

plementation knowledge which we do not

want to embed in the class bodv.

We take the point of view that optimization is a

matter of implementation and not interface.

5 A GENERAL SOLUTION

The methods described in Section 4.2 represent

extremes; leave the compiler alone, or, put every

thing in the compiler by embedding specific li

braries inside the compiler. We will propose a so-

lution that subsumes the second approach, is

much more flexible, and does not foreclose upon

the first.

The critical problem is that the number of user

defined data types is potentially unbounded, so

we need to be able to handle a potentially un

bounded number of useful transformations.

The recommended solution is as follows:

1. For each class type that demands special

optimizations, encapsulate the allowed

transformations (defined as transformations

on the compiler's parse tree) inside an "op

timization module."

2. Define an interface so that the compiler can

dynamically link the optimization modules

when needed. During compilation when the

compiler encounters the use (rather than

just the definition) of a class object it

searches a database for any optimization

modules that correspond to that class. If

found, they are dynamically linked into the

compiler.

3. The compiler then proceeds to apply the

loaded transformations against the internal

representation of the user's program.

6 WHAT MUST WE ADD TO THE
COMPILER?

Figure 2 shows the basic phases of the compiler/

linker with the components we are proposing to

add (shown as shaded). The link phase is in

cluded for completeness. The basic "compo

nents" of a library (include headers and binary

code) are also shown along with two components

that we will introduce. The phases of the com

piler/linker that access the library are also de

noted.

There are a number of basic architectural fea

tures that deserve mention:

1. The "new compiler phase" is not activated

until after the program has been read in and

completely typechecked.

2. The class-specific optimizations are then

applied before standard C++ optimizations

such as function inlining and return value

optimization are applied. We postpone

function inlining because we want to at

tempt to apply the higher level (we hope)

class-specific optimizations first. We expect

to iterating with these steps altemating, and

Figure 2 denotes this.

D Existing

[l] Proposed

Class

Header

Binary Code

Libraries

FIGURE 2 Compiler architecture.

3. Our approach is reliant upon local analysis.

This assumption is to allow for tractability.

In addition, we want to retain the separate

compilation model to the same degree that

C++ admits this model.

7 DESIGN AND IMPLEMENTATION
APPROACH

Our approach (the compiler itself being written in

C++) follows the structure of Dewhurst [14]. To

reduce the implementation effort a first imple

mentation would transform the user's C++ code

to a new C++ program that has had the optimiza

tion module transformations applied to it. An im

plementation at this level would be sufficient to

test the concept.

The important features are:

1. The type lattice implemented within the

compiler has an interface that is exported to

the outside world. Part of this interface for

THE C++ COMPILER 127

the (C++ class) ·'ClassType" nodes is

shown in Figure 3; we will ignore the (few)

optimizations that can be applied to all

class types for this discussion.

2. The author of an optimization module in

herits from this interface as is shown in Fig

ure 3. The optimizer module defines a ver

sion of the Optimize function. Through this

function, which is applied to an expression

(which could be a list of statements), the

class-specific transformations are applied

(see Fig. 4). We have assumed here that

whatever language is used to write the opti

mization module, it can be "compiled" to

C++. Note that the transformations may

involve more than one class type even

though one particular class is used to label

the module.

3. This use of inheritance enables the compiler

to dynamically link [15] the optimization

module and known that it is type-safe with

respect to its internals.

4. The space of all transformations that could

be applied to an expression is determined

by the type of that expression, or the "near

est" nonvoid type if such a type can be

found.

7.1 Form of the Optimization Modules

Typically C++ has been used to write both the

libraries and the user's application; however, this

class Expr { I I Expression node

I I ...
protected:

canst Type

};

•type_p;

class ClassType : public ... {

public:

virtual Expr •Optimize(Expr •e_p)

{ return e_p; } I I Do nothing

};

class Vector_Type : public ClassType {

I I ...
public:

virtual Expr •Optimize{Expr>);

};

Expr •Yector_Type::Optimize(Expr •e_p)

{
Expr •new_e_p;

I I Implement optimizations that are specific

// to vectors, build a new expression

I I tree rooted with new_e_p

return new_e_p;

}

FIGURE 3 Class type and vector_ type C++ interface.

128 ANGUS

Vector_Type specific
transformations

FIGURE 4 The expression tree.

is not appropriate for the part of a library that is

implemented as an optimization module .. Optimi

zation modules can be thought of as libraries that

are loaded into the compiler; rather than being

loaded by the linker (as for traditional libraries).

The contents of an optimization module would be

a set of patterns that we hope to match and asso

ciated transformations that would be applied

whenever a match is found. We expect that some

form of "tree transformation" language would be

used instead of C++, and that this code would be

compiled to C++ to permit dynamic linking to

work.

7.2 Choice of Transformations

In this scheme, envisage the class-specific optimi

zations being applied to sequences of operations.

The operations are individual invocations of oper

ators or functions and not statements. The base

class for these nodes is represented as Expr in

Figure 3. In real applications we should expect

operations, as written, to be presented in an order

~hat could confuse an optimizer using this group

mg strategy. The simplest example would be that

of two unrelated statements being in the reverse

order. To solve this problem we propose that the

compiler do sufficient dependencv analysis to ef

fectively group operators by data dependency.

We will then apply the transformations follow

ing the branches of the data dependency graph.

7.2.1 Data Dependency Analysis

The optimization approach proposed requires

that expressions that can be profitably grouped

have to be adjacent so that the optimization func

tions will recognize the groupings. As a concrete

example, the code of Figure 5 would occur if we

simply inline expanded one level of abstraction of

the numerical interpolation and divergence opera

tors such as existed in Angus and Thompkins [1].
The important point of this example is that the

resulting ordering of the operations is the least effi

cient in memory consumption. If we could inter

change the second and third statements we could

reduce the memory consumption considerably.

We know that we can interchange Expressions .2

and 3, but does the compiler? In general the an

swer is no. To enable the compiler to effect this

interchange, it has to know that there are no data

dependencies relating the two functions. The

compiler will have to deduce this because there is

no language feature for describing all potential

side effects to the caller of a function. We require

that the compiler does a better job of dependency

avera.ge_flux_x = avera.ge_x(flux);

a.vera.ge_flux_y = avera.ge_y(flux);
II 1

II 2

delta_density = grid->div_x(average_flux_x);/ / 3

delta_density += grid->div_y(average_flux_y);l I 4

FIGURE 5 C++ code fragments.

analysis than just assuming that functions can de

pend on everything. We need a facility that will

propagate this information (which is a summary of

what might be obtained via interprocedural analy

sis) to the caller and the compiler. This facility is

called the implementation interface.

7.2.2 The Implementation Interlace

The implementation interface is a summary of the

implementation details of the function. It is a ver

sion of interprocedural analysis. The summary in

formation for a function is generated either by the

compiler when the function is compiled, or by the

hand of the author of the function. The summarv

information is passed surreptitiously by the envi

ronment to the compiler for use when this function

is called.

This interface allows the compiler to import a

description of all side effects the function could

cause. A first implementation of this would in

clude (at least) a list of all external variables that

the function accesses, and whether those accesses

are reads, writes, or both. For the purpose of this

discussion all we need is more refined information

that enables us to eliminate (most) false depen

dency constraints.

With this information the compiler is able to

determine whether or not statement 3 (in Fig. 5)

has any dependencies upon statement 2.

There are a number of problems with this ap

proach*:

1. If the function has not yet been compiled,

then the worst has to be assumed. We do

not believe this to be bad because we view

these functions as being existing library

functions.

2. A program that rearranged code is vulnera

ble if the assumptions under which the cli

ent code are violated, for example, a new

version of the library implements a new ver

sion with a wider set of side effects.

There is no guaranteed approach to preventing

this kind of error. The only defense is checking of

version information of the hidden interface, and

care on the part of the library programmer that he

or she has not expanded the effect of the function.

A tool to do this at this level could easily be built.

This is one area in which the library's only ap-

* 1\Jote that checking the correctness of template usage in

vokes a similar set of concerns, and perhaps solutions.

THE C++ COMPILER 129

proach has an advantage. Provided that no as

sumptions about how to write efficient code are

propagated to the user, the library writer is solely

responsible.

7.2.3 Application of the Optimizations

Once the best data dependency graph has been

created, the type-based optimizations are applied

by grouping statements along the edges of the

graph. This process starts from the node of the

graph that represents the function entry point.

The stopping condition for applying some optimi

zations will be class specific.

7.2.4 Ambiguous Cases

A simple case that the approach up to now would

be confused by would be two or more statements

that were completely independent. A simple ex

ample is shown in Figure 6. In this case, there are

multiple branches emanating from the root node.

In this case we would propose that the depen

dency graph be augmented with a graph that

tends to group items of the same type together.

This allows for our optimizations being selected

based on types.

The detection criterion here is that given a

starting node, there are two (or more) branches

from the graph that have the same types used

along both arms until those paths merge (which

they must when the function returns. The com

piler would group together, as a single branch, the

branches that have the same (or related by inheri

tance) types.

7.2.5 Gravity

One interesting case would be to define message

passing function calls as a pair consisting of a "re

quest" and a "request completed" message. It

might be advantageous to push the request as

early as possible, and the corresponding check on

completion as late as possible. We have not de-

Vector A, B, C, D, E, F;

int i;

A = B + C;

i = 10;

D = E + F;

FIGURE 6 Independent statements.

130 A~GCS

vised a mechanism to implement this, but we ex

pect it to be possible. In essence, we envisage a

gravity-like mechanism, which causes functions to

want to be executed as early, or as late, as possi

ble.

7.3 Advantages

This scheme has several notable advantages:

1. The C++ language is not modified in any

way. In particular, on one platform a class

library could be implemented in the usual

manner, while on another platform, the op

timizer modules would be used exclusively.

2. The compiler is provided easy access to the

high level transformations such as were de

scribed in Section 4. 1.

3. That the use of these transformations might

depend on the target machine will not be

reflected in the programmer's application

code.

4. The possibility of configuring the optimiza

tion process is greatly enhanced. A configu

ration system can now be envisaged, analo

gous to the X-resource database, that would

be equivalent to setting compiler switches at

the granularity of individual classes, or

groups of classes. This would give fine grain

control over the speed-memory demands of

particular classes depending on the context

in which they were used.

5. Library designers will now have access to

the compiler in ways that they do not have

today. In particular, the designers of li

braries would know that performance-criti

cal application domain-specific transfor

mations could be supported independent of

how cooperative their compiler vendor is.

They will always provide a set of libraries so

as to cover the case of compilers that do not

support optimization modules.

7.4 Potential Disadvantages

At this stage one can only speculate about all of

the things that might undermine the utility of this

approach. Possible problems include:

1. If the compiler has loaded multiple optimi

zation modules the likelihood of conflicts

between the applicable transformations is

high. Some mechanism will be needed to

deal with this.

2. The applications considered did not make

much use of inheritance and polymor

phism. The applicability of the optimization

scheme presented to code that uses these

features heavily is unknown.

3. There may be some transformations that

cannot be effected within the confines of the

interface introduced here.

4. This approach allows for executable code to

be loaded into the address space of the

compiler. Assignment of blame for compiler

crashes and/ or the generation of incorrect

code willlikelv be difficult.

5. The time is takes the compiler to search for

good (rather than the absolute best) trans

formations may be prohibitive.

7.5 Is this a Language Extension?

The mechanism described could be used to ex

tend the C++ language in ways that are unpre

dictable. Even worse, it could be used to silently

change the meaning of a program. If used well,

this should not be a problem. In particular, the

intent of this tool is to do nothing more than what

optimizers do already-apply mathematically

correct transformations that do not alter the

meaning of the program. Unfortunately, we do not

believe that we could enforce correct use.

7.6 Who Would use this Capability?

Our approach presumes that applications pro

grammers will never attempt to use this facility;

rather, it will only be used by library designers. We

are making some severe assumptions about the

capability of the programmers who would actually

use this compiler "back door."

7.7 Environmental Requirements

Our approach does not rely upon environment

support above or beyond that which C++ re

quires. At the most basic level, it does not need to

be any more sophisticated than the search paths

that are currently used by the C preprocessor.

It has been assumed that the build procedures

for this environment are slightly better than would

typically be implemented with make. This is to

ensure that the hidden interfaces that might be

generated by the compiler would be up to date

with respect to all clients. Sadly, this restnctwn

forbids the use of this scheme with anv form of

recursion. Recursion has not been a factor in sci

entific contexts that we are familiar with; however,

somewhere it will cause somebody some trouble.

As a final point, nothing in this proposal re

quires source code to be shipped rather than bi

nary code representations of libraries.

8 COMPARISON WITH OTHER WORK

None of the individual ideas expressed here are

particularly new; however, we believe that the

composition of them within a C++ compiler is.

We note that many compilers today recognize

certain names (which are otherwise just undistin

guished identifiers) and then generate special

code for them. Gee uses modules (compiled into

gee) to specify peephole optimizations. Our ap

proach is largely made possible by the ability of

C++ to link in derived classes (the optimization

modules) in a type safe fashion [15], while the

compiler is executing.

Work on program transformation system [16] is

also relevant to the discussion here-in particular

to the way in which the optimization modules may

be programmed. In addition interesting tech

niques have been developed for optimizing object

oriented languages other than C++ [1 T.

9 FUTURE DIRECTIONS

The final goal of this work will be to define an

interface between the compiler proper and the op

timization modules. Should this prove successful,

the next step would likely be the development of

"little languages" that facilitate the succinct spec

ification of allowed transformations that would

then be compiled into optimization modules.

10 CONCLUSION

There are applications for which the efficiency of

the executable derived from C++ code can be un

acceptable.

We have described a method by which groups

of potential optimizations may be designed, im

plemented, and archived external to the compiler.

When required, the compiler dynamically loads

the needed optimizations through a type-safe in-

THE C++ COMPILER 131

terface so as to make the transformations avail

able.

The gains will be twofold; it will be possible now

for C++ compilers to invoke transformations

powerful enough to make it competitive with For

tran and C, and domain-specific optimizations

could now be developed in tandem with the li

braries and independent of the compiler, and the

C++ language itself.

REFERENCES

[1] I. G. Angus and W. T. Thompkins, Fourth Con

ference on Hypercubes. Concurrent Computers,

and Applications . .'VIonterey, CA, 1989.

[2] D. W. Forslund, et aL USE:ViX C++ Conference.

San Francisco: lJSEI\IX, 1990.

~3] A. C. Robinson, K. G. Budge. and J. S. Peery.

USENiX C++ Conference. Portland: USEl'IX.

1992.

[4~ T. Wicks, D. Curtis, and K. Pennick, An Assess

ment of the Suitability of C++ for Finite Element

Class Design. Technical Report. Boeing Com

puter Services, 1991.

[5] I. G. Angus, Scalable High Performance Comput

ing Conference. Williamsburg, VA, 1992.

[6] S. Bhatt et aL Scalable High Performance Com

puting Conference. Williamsburg, VA, 1992.

[7: D. Quinlan, D. Balsara, and M. Lemke, A,\1R++.

A C++ Object Oriented Class Library for Parallel

Adaptive Mesh Refinement Applications. 1992.

[8] T. J. Ross. eta!., Computing in Civil Engineering.

Dallas. 1992.

[9] T. Keffer, ''Object oriented numerics, Part 1:

Vectors, matrices, and all that stuff, C++] .. vol.

1. 1991.

[10] T. Keffer, "Object oriented numerics, Part 2: vir

tual algorithms," C++]., vol. 2, 1992.

[11; I. G. Angus and Janice L. Stolzy, C++ at Work

Conference. San Jose, 1991.

f12] D. Lea, CSENIX C++ Conference. San Fran

cisco: CSENIX, 1990.

[13] R. B. Davies, The iVewmat Class Library (avail

able by ftp). 1992.

[14] S. C. Dewhurst. CSENiX C++ Workshop.

CSEI\IX, 1987.

[151 J. E. Shopiro. S . .\1. Dorward, and R. Sethi,

USES/X C++ Conference. San Francisco:

USEI'•.'IX, 1990.

~16] D. R. Smith, '·KIDS- a semi automatic program

development system," iEEE Transac. Software

Eng. Special issue Formal Methods Software

Eng., 1990.

[17] D. Lngar et a!., "Object. message and perfor

mance: How they coexist in self,'' IEEE Comput.,

1992.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

