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ABSTRACT 

So far C++ has made few inroads into the realm of scientific computing, which is still 

largely dominated by Fortran. Of the few attempts that have been made to apply C++ 

to numerically intensive codes, the results have often suffered from severe performance 

problems. A careful examination of these problems indicates that they are unlikely to be 

solved by incremental improvements in compiler optimization technology. The flow of 

this article will: motivate the discussion by describing a common efficiency problem that 

arises when numerical codes are programmed inC++; discuss some potential solution 

strategies that we believe are viable in the near term, but not over the long term; 

introduce a mechanism by which a compiler can load domain-specific and class-spe

cific optimizations on an as needed basis. A simple interface that will enable this feature 

will be presented. Although our immediate motivation is that of numerically intensive 

codes, our approach is applicable to all application domains. © 1994 by John Wiley & 

Sons, Inc. 

1 INTRODUCTION 

There are programming commumtles in which 

C++ has had little or no impact. One such com

munity consists of researchers and programmers 

who write numerical codes, typically in Fortran, 

for use in applications such as computational 

fluid dynamics (CFD). Many of these applications 

are built on a succinct mathematical structure 

that suggests that these applications would be 

good candidates for being programmed in C++. 

To achieve greater performance a few of these 

Received April 1993 
Revised June 199:3 

© 1994 by John Wiley & Sons, Inc. 

Scientific Programming, Vol. 2, pp. 123-131 (1993) 

CCC 1058-9244/94/040123-09 

applications are now being migrated to distributed 

memory parallel computers. The complexity and 

cost of this task have caused some researchers [ 1-

7] to investigate whether coding applications in 

C++ would make the management of parallelism 

(and the applications) easier. All have been favor

ably impressed with the software engineering as

pects of C++, and they unanimously believe it did 

help to manage the parallelism. Others [4, 8-10] 

have investigated the applicability of C++ to sci

entific computing, also with encouraging results. 

Unfortunately, in many cases performance 

problems of varying difficulty have been encoun

tered with the C++ implementations [1-4, 11]. 

Because the nature of these applications pushes 

the envelope of what can be computed, the ob

served degradations in performance (which are 

modest by many standards) are often deemed to 

be unacceptable. 
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2 SCIENTIFIC APPLICATIONS 

The author's experience is derived from a CFD 

application that solved for the fluid flow around 

an aircraft [1, 11] and an image processing appli

cation [ 5]. These problems can be characterized 

as having relatively few large objects. Large in this 

context means each object contains upward of 

tens of thousands of floating point values. 

For the purpose of this article we will use the 

humble vector class (stripped of all detail that we 

do not need and depicted in Fig. 1) as a familiar 

example. We ask the reader to remember that the 

vector is a greatly simplified representation of the 

structures that are used in real CFD codes. This 

example is meant to be instructive, and not repre

sentative: it omits many of the complexities of real 

numerical applications. 

3 RELATIVE SPACE/TIME EFFICIENCY 

The observed performance degradations exhibit 

the following characteristics: 

1. They are nonlocal, i.e., using the usual per

formance monitoring tools such as prof does 

not give much insight into what is happen

ing. The benchmarking of individual com

ponents of the code may not reveal the po

tential for problems. 

2. The timing differences between C++ and C 

are strongly machine dependent. The C++ 

class Vector { 

public: 

}; 

Vector(); 

Vector& operator=( const Vector&); 

Vector& operator+=( const Vector&); 

friend Vector operator+(const Vector&,const Vector&); 

Vector A, B, C, D; 

I I ... 
A = B + C + D; I I Fragment 1 

I I ... 
A= B; A+= C; A+= D; II Fragment 2 

I I ... 

I I Fragment 3 

I I Functionally equivalent C version 

I I which violates C++ encapsulation! 

{ 
for ( int i = 0 ; i < N ; i++ ) { 

A[i] = B[i] + C[i] + D[i]; 

} 

I I N = Vector size 

FIGURE 1 C++ vector code fragments. 

to C ratio ranged from 1.5 at best, to 3 and 

worse[11]. 

3. The relative memory consumption of C++ 

code is often greater than a C code with the 

equivalent functionality. For the CFD code 

described [1], we estimate that the excess 

memory consumption was about a factor of 

50%. 

For many of the numerically intensive prob

lems, inefficiency in memory usage can be as, or 

more, damaging than an execution time penalty. 

3.1 The Usual C + + Suspects? 

Before pointing fingers, consider the possible role 

of the usual suspects. 

1. Virtual functions: The CFD code [ 1: made 

very little use of C++ inheritance-it just 

did not need it. Optimizing virtual dispatch, 

and methods such as customization [12] 

will not help. 

2. Memory allocation: The objects we found 

useful contained very large amounts of 

data. The overhead of allocating the mem

ory was negligible compared to the work 

done in a typical method. 

These issues must not be ignored; however, they 

are not the only sources of trouble and were not 

relevant to our applications. 

3.2 Source of the Numerical 
Efficiency Problem 

The inefficient use of memory occurs because the 

mathematical abstractions force the use of some 

temporary variables that are very big [ 11 J. The 

inefficiencies in time occur because of the memorv 

usage, and because the abstraction boundaries 

force a particular access pattern on the data. This 

pattern happens to be quite different from that of 

a C or Fortran code of similar functionality [2, 

11]. 

Effectively, the pattern of traversal precludes 

effective use of either the cache (the objects are 

too big to fit into it) or the registers. Hence, the 

code runs at memory access speed. Depending on 

the hardware used; this may or may not be a 

problem. It could be a disaster. 

The types of optimizations that the C++ com

piler has precluded (compared with C and For

tran) are those that act by grouping terms from 



different statements or parts of an individual ex

pression. In Fortran and C codes the program is 

(often) written so as to enable the compiler to ex

ploit the registers and cache effectively. The result 

of these optimizations being implemented directly 

by the programmer is that the program often be

comes harder to understand. One of the reasons 

for using C++ in the first place is to separate con

cems of the problem the program solves from de

tails of implementation (and optimization). 

4 SOLUTIONS? 

The reason for the poor efficiency of C++ relative 

to the competing languages is that the abstrac

tions, which were so useful in aiding the writing of 

an application, hamper the optimizer. The pro

cess of optimizing code proceeds by the compiler 

recognizing enough of the semantics of the code to 

be able to apply transformations (the optimiza

tions) that are known to produce a resultant code 

that is mathematically equivalent to the original. 

For the case of C++ the optimization process is 

thwarted by the presence of user-defined data 

types for which the compiler has no semantic un

derstanding. The compiler's only option is to use 

function inlining in an attempt to reduce the code 

to a set of (lower level) abstractions that it might 

understand. 

4.1 Must We go Beyond lnlining 
Functions? 

It is valid to ask if our efficiency problems were 

just a consequence of function inlining (and the 

related process of interprocedural analysis) mech

anisms being rather primitive. Although we would 

be happy to see greatly improved capabilities in 

this area we are skeptical that it is a long-term 

solution. 

In Figure 1 we depict a tiny portion of a vector 

class. The two operators shown are presumed to 

be implemented with semantics analogous to inte

ger operations. The two code fragments represent 

different performance characteristics. The first 

uses more memory (because of temporaries) than 

the second, but suffers less loop overhead. 

For maximum efficiencv we would like to trans

form the first code fragm~nt into the form of the 

second fragment, unfold the operations, and fuse 

the loops to deliver the equivalent of the third 

fragment. Note that the third fragment violates en-
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capsulation and so cannot be effected by a C++ 

programmer. 

Although this approach may be theoretically 

possible, it is beyond the current state of the art 

(as witnessed by the absence of any C++ compil

ers that could effect the transformations above -

today). Hence, other possibilities will be consid

ered. 

4.2 Short-Term Solutions 

To retain the expressive syntax, there are two 

strategies that can be fruitfully applied in the short 

term: 

1. Design libraries that employ lazy evaluation 

and method combination [13]. Effectively, 

the vector operations of Figure 1 are not ac

tually executed as they appear; instead the 

library behaves as though it is a specialized 

compiler. The library builds a parse tree 

that it will attempt to evaluate. This ap

proach appears promising for some special

ized codes. If it works, it can be imple

mented now. 

2. Hard code the knowledge of certain critical 

classes into the compiler. The critical ques

tion is: Which classes do I build in to the 

compiler? Even if agreement could be 

reached, this solution is only viable for com

piler vendors, those who have a lot of lever

age with their compiler vendor, or those who 

have both the access and the expertise to 

modify a compiler themselves. 

If we can achieve the desired efficiencies v1a 

clever implementations of libraries then the library 

approach is preferable. Deferred evaluation is an 

appealing strategy; hence, we will devote some 

time to pointing out its strengths and weaknesses 

vis a vis a compiler. 

1. Building and compiling a parse tree at run

time will not be cheap in time and possibly 

memory. Hence, we would like to amortize 

this effort over multiple invocations of the 

same code. This requires library to tag 

where the tree was called from, i.e., some 

external context must be captured at run

time. The method used to do this is unlikely 

to be portable. 

2. For short vectors, the library would need to 

use a more "traditional approach" to elimi

nate the cost of the runtime compiling. The 
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compiler does not suffer from this problem, 

it will be able to generate optimal code (of 

the same structure) for all sizes of vector. 

(We could demand that the user use differ

ent flavors of vector to denote this differ

ence-we reject that approach). 

Note that these problems are all specific to the 

vector (and similar) example. 

There are disadvantages with putting these op

timizations in the compiler as well; however, they 

will be discussed later once our proposal has been 

introduced. 

4.3 Pragma 

One approach to communicating optimizations to 

the compiler is with pragmas. Pragma suffers 

from one serious deficiencv: It amounts to a com

piler and library implementation-dependent ex

tension to the language. Our thesis is that if it is 

compiler or library implementation dependent, 

the programmer should not see it. In addition, for 

pragmas to be of general use they need to be 

standardized, otherwise chaos will eventually rule. 

4.4 Class Optimization Specifications 

Another approach would be to extend the C++ 

language to allow legal optimizations to be speci

fied as a part of the class definition. Aside from 

our natural aversion to extending the language, we 

believe that this approach is flawed for two rea

sons: 

1. No language general enough to specify all 

possible optimizations is known. Such a 

language may be impossible to design! 

2. The transformations with the biggest payoff 

(at least for vectors) violate the abstraction 

boundaries imposed by the C++ classes. 

These optimizations are dependent on im

plementation knowledge which we do not 

want to embed in the class bodv. 

We take the point of view that optimization is a 

matter of implementation and not interface. 

5 A GENERAL SOLUTION 

The methods described in Section 4.2 represent 

extremes; leave the compiler alone, or, put every

thing in the compiler by embedding specific li

braries inside the compiler. We will propose a so-

lution that subsumes the second approach, is 

much more flexible, and does not foreclose upon 

the first. 

The critical problem is that the number of user

defined data types is potentially unbounded, so 

we need to be able to handle a potentially un

bounded number of useful transformations. 

The recommended solution is as follows: 

1. For each class type that demands special 

optimizations, encapsulate the allowed 

transformations (defined as transformations 

on the compiler's parse tree) inside an "op

timization module." 

2. Define an interface so that the compiler can 

dynamically link the optimization modules 

when needed. During compilation when the 

compiler encounters the use (rather than 

just the definition) of a class object it 

searches a database for any optimization 

modules that correspond to that class. If 

found, they are dynamically linked into the 

compiler. 

3. The compiler then proceeds to apply the 

loaded transformations against the internal 

representation of the user's program. 

6 WHAT MUST WE ADD TO THE 
COMPILER? 

Figure 2 shows the basic phases of the compiler/ 

linker with the components we are proposing to 

add (shown as shaded). The link phase is in

cluded for completeness. The basic "compo

nents" of a library (include headers and binary 

code) are also shown along with two components 

that we will introduce. The phases of the com

piler/linker that access the library are also de

noted. 

There are a number of basic architectural fea

tures that deserve mention: 

1. The "new compiler phase" is not activated 

until after the program has been read in and 

completely typechecked. 

2. The class-specific optimizations are then 

applied before standard C++ optimizations 

such as function inlining and return value 

optimization are applied. We postpone 

function inlining because we want to at

tempt to apply the higher level (we hope) 

class-specific optimizations first. We expect 

to iterating with these steps altemating, and 

Figure 2 denotes this. 
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FIGURE 2 Compiler architecture. 

3. Our approach is reliant upon local analysis. 

This assumption is to allow for tractability. 

In addition, we want to retain the separate 

compilation model to the same degree that 

C++ admits this model. 

7 DESIGN AND IMPLEMENTATION 
APPROACH 

Our approach (the compiler itself being written in 

C++) follows the structure of Dewhurst [ 14]. To 

reduce the implementation effort a first imple

mentation would transform the user's C++ code 

to a new C++ program that has had the optimiza

tion module transformations applied to it. An im

plementation at this level would be sufficient to 

test the concept. 

The important features are: 

1. The type lattice implemented within the 

compiler has an interface that is exported to 

the outside world. Part of this interface for 
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the (C++ class) ·'ClassType" nodes is 

shown in Figure 3; we will ignore the (few) 

optimizations that can be applied to all 

class types for this discussion. 

2. The author of an optimization module in

herits from this interface as is shown in Fig

ure 3. The optimizer module defines a ver

sion of the Optimize function. Through this 

function, which is applied to an expression 

(which could be a list of statements), the 

class-specific transformations are applied 

(see Fig. 4). We have assumed here that 

whatever language is used to write the opti

mization module, it can be "compiled" to 

C++. Note that the transformations may 

involve more than one class type even 

though one particular class is used to label 

the module. 

3. This use of inheritance enables the compiler 

to dynamically link [ 15] the optimization 

module and known that it is type-safe with 

respect to its internals. 

4. The space of all transformations that could 

be applied to an expression is determined 

by the type of that expression, or the "near

est" nonvoid type if such a type can be 

found. 

7.1 Form of the Optimization Modules 

Typically C++ has been used to write both the 

libraries and the user's application; however, this 

class Expr { I I Expression node 

I I ... 
protected: 

canst Type 

}; 

•type_p; 

class ClassType : public ... { 

public: 

virtual Expr •Optimize(Expr •e_p) 

{ return e_p; } I I Do nothing 

}; 

class Vector_Type : public ClassType { 

I I ... 
public: 

virtual Expr •Optimize{Expr> ); 

}; 

Expr •Yector_Type::Optimize(Expr •e_p) 

{ 
Expr •new_e_p; 

I I Implement optimizations that are specific 

// to vectors, build a new expression 

I I tree rooted with new_e_p 

return new_e_p; 

} 

FIGURE 3 Class type and vector_ type C++ interface. 



128 ANGUS 

Vector_Type specific 
transformations 

FIGURE 4 The expression tree. 

is not appropriate for the part of a library that is 

implemented as an optimization module .. Optimi

zation modules can be thought of as libraries that 

are loaded into the compiler; rather than being 

loaded by the linker (as for traditional libraries). 

The contents of an optimization module would be 

a set of patterns that we hope to match and asso

ciated transformations that would be applied 

whenever a match is found. We expect that some 

form of "tree transformation" language would be 

used instead of C++, and that this code would be 

compiled to C++ to permit dynamic linking to 

work. 

7.2 Choice of Transformations 

In this scheme, envisage the class-specific optimi

zations being applied to sequences of operations. 

The operations are individual invocations of oper

ators or functions and not statements. The base 

class for these nodes is represented as Expr in 

Figure 3. In real applications we should expect 

operations, as written, to be presented in an order 

~hat could confuse an optimizer using this group

mg strategy. The simplest example would be that 

of two unrelated statements being in the reverse 

order. To solve this problem we propose that the 

compiler do sufficient dependencv analysis to ef

fectively group operators by data dependency. 

We will then apply the transformations follow

ing the branches of the data dependency graph. 

7.2.1 Data Dependency Analysis 

The optimization approach proposed requires 

that expressions that can be profitably grouped 

have to be adjacent so that the optimization func

tions will recognize the groupings. As a concrete 

example, the code of Figure 5 would occur if we 

simply inline expanded one level of abstraction of 

the numerical interpolation and divergence opera

tors such as existed in Angus and Thompkins [ 1]. 
The important point of this example is that the 

resulting ordering of the operations is the least effi

cient in memory consumption. If we could inter

change the second and third statements we could 

reduce the memory consumption considerably. 

We know that we can interchange Expressions .2 

and 3, but does the compiler? In general the an

swer is no. To enable the compiler to effect this 

interchange, it has to know that there are no data 

dependencies relating the two functions. The 

compiler will have to deduce this because there is 

no language feature for describing all potential 

side effects to the caller of a function. We require 

that the compiler does a better job of dependency 

avera.ge_flux_x = avera.ge_x(flux); 

a.vera.ge_flux_y = avera.ge_y(flux); 
II 1 

II 2 

delta_density = grid->div_x(average_flux_x);/ / 3 

delta_density += grid->div_y(average_flux_y);l I 4 

FIGURE 5 C++ code fragments. 



analysis than just assuming that functions can de

pend on everything. We need a facility that will 

propagate this information (which is a summary of 

what might be obtained via interprocedural analy

sis) to the caller and the compiler. This facility is 

called the implementation interface. 

7.2.2 The Implementation Interlace 

The implementation interface is a summary of the 

implementation details of the function. It is a ver

sion of interprocedural analysis. The summary in

formation for a function is generated either by the 

compiler when the function is compiled, or by the 

hand of the author of the function. The summarv 

information is passed surreptitiously by the envi

ronment to the compiler for use when this function 

is called. 

This interface allows the compiler to import a 

description of all side effects the function could 

cause. A first implementation of this would in

clude (at least) a list of all external variables that 

the function accesses, and whether those accesses 

are reads, writes, or both. For the purpose of this 

discussion all we need is more refined information 

that enables us to eliminate (most) false depen

dency constraints. 

With this information the compiler is able to 

determine whether or not statement 3 (in Fig. 5) 

has any dependencies upon statement 2. 

There are a number of problems with this ap

proach*: 

1. If the function has not yet been compiled, 

then the worst has to be assumed. We do 

not believe this to be bad because we view 

these functions as being existing library 

functions. 

2. A program that rearranged code is vulnera

ble if the assumptions under which the cli

ent code are violated, for example, a new 

version of the library implements a new ver

sion with a wider set of side effects. 

There is no guaranteed approach to preventing 

this kind of error. The only defense is checking of 

version information of the hidden interface, and 

care on the part of the library programmer that he 

or she has not expanded the effect of the function. 

A tool to do this at this level could easily be built. 

This is one area in which the library's only ap-

* 1\Jote that checking the correctness of template usage in

vokes a similar set of concerns, and perhaps solutions. 
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proach has an advantage. Provided that no as

sumptions about how to write efficient code are 

propagated to the user, the library writer is solely 

responsible. 

7.2.3 Application of the Optimizations 

Once the best data dependency graph has been 

created, the type-based optimizations are applied 

by grouping statements along the edges of the 

graph. This process starts from the node of the 

graph that represents the function entry point. 

The stopping condition for applying some optimi

zations will be class specific. 

7.2.4 Ambiguous Cases 

A simple case that the approach up to now would 

be confused by would be two or more statements 

that were completely independent. A simple ex

ample is shown in Figure 6. In this case, there are 

multiple branches emanating from the root node. 

In this case we would propose that the depen

dency graph be augmented with a graph that 

tends to group items of the same type together. 

This allows for our optimizations being selected 

based on types. 

The detection criterion here is that given a 

starting node, there are two (or more) branches 

from the graph that have the same types used 

along both arms until those paths merge (which 

they must when the function returns. The com

piler would group together, as a single branch, the 

branches that have the same (or related by inheri

tance) types. 

7.2.5 Gravity 

One interesting case would be to define message

passing function calls as a pair consisting of a "re

quest" and a "request completed" message. It 

might be advantageous to push the request as 

early as possible, and the corresponding check on 

completion as late as possible. We have not de-

Vector A, B, C, D, E, F; 

int i; 

A = B + C; 

i = 10; 

D = E + F; 

FIGURE 6 Independent statements. 
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vised a mechanism to implement this, but we ex

pect it to be possible. In essence, we envisage a 

gravity-like mechanism, which causes functions to 

want to be executed as early, or as late, as possi

ble. 

7.3 Advantages 

This scheme has several notable advantages: 

1. The C++ language is not modified in any 

way. In particular, on one platform a class 

library could be implemented in the usual 

manner, while on another platform, the op

timizer modules would be used exclusively. 

2. The compiler is provided easy access to the 

high level transformations such as were de

scribed in Section 4. 1. 

3. That the use of these transformations might 

depend on the target machine will not be 

reflected in the programmer's application 

code. 

4. The possibility of configuring the optimiza

tion process is greatly enhanced. A configu

ration system can now be envisaged, analo

gous to the X-resource database, that would 

be equivalent to setting compiler switches at 

the granularity of individual classes, or 

groups of classes. This would give fine grain 

control over the speed-memory demands of 

particular classes depending on the context 

in which they were used. 

5. Library designers will now have access to 

the compiler in ways that they do not have 

today. In particular, the designers of li

braries would know that performance-criti

cal application domain-specific transfor

mations could be supported independent of 

how cooperative their compiler vendor is. 

They will always provide a set of libraries so 

as to cover the case of compilers that do not 

support optimization modules. 

7.4 Potential Disadvantages 

At this stage one can only speculate about all of 

the things that might undermine the utility of this 

approach. Possible problems include: 

1. If the compiler has loaded multiple optimi

zation modules the likelihood of conflicts 

between the applicable transformations is 

high. Some mechanism will be needed to 

deal with this. 

2. The applications considered did not make 

much use of inheritance and polymor

phism. The applicability of the optimization 

scheme presented to code that uses these 

features heavily is unknown. 

3. There may be some transformations that 

cannot be effected within the confines of the 

interface introduced here. 

4. This approach allows for executable code to 

be loaded into the address space of the 

compiler. Assignment of blame for compiler 

crashes and/ or the generation of incorrect 

code willlikelv be difficult. 

5. The time is takes the compiler to search for 

good (rather than the absolute best) trans

formations may be prohibitive. 

7.5 Is this a Language Extension? 

The mechanism described could be used to ex

tend the C++ language in ways that are unpre

dictable. Even worse, it could be used to silently 

change the meaning of a program. If used well, 

this should not be a problem. In particular, the 

intent of this tool is to do nothing more than what 

optimizers do already-apply mathematically 

correct transformations that do not alter the 

meaning of the program. Unfortunately, we do not 

believe that we could enforce correct use. 

7.6 Who Would use this Capability? 

Our approach presumes that applications pro

grammers will never attempt to use this facility; 

rather, it will only be used by library designers. We 

are making some severe assumptions about the 

capability of the programmers who would actually 

use this compiler "back door." 

7.7 Environmental Requirements 

Our approach does not rely upon environment 

support above or beyond that which C++ re

quires. At the most basic level, it does not need to 

be any more sophisticated than the search paths 

that are currently used by the C preprocessor. 

It has been assumed that the build procedures 

for this environment are slightly better than would 

typically be implemented with make. This is to 

ensure that the hidden interfaces that might be 

generated by the compiler would be up to date 



with respect to all clients. Sadly, this restnctwn 

forbids the use of this scheme with anv form of 

recursion. Recursion has not been a factor in sci

entific contexts that we are familiar with; however, 

somewhere it will cause somebody some trouble. 

As a final point, nothing in this proposal re

quires source code to be shipped rather than bi

nary code representations of libraries. 

8 COMPARISON WITH OTHER WORK 

None of the individual ideas expressed here are 

particularly new; however, we believe that the 

composition of them within a C++ compiler is. 

We note that many compilers today recognize 

certain names (which are otherwise just undistin

guished identifiers) and then generate special 

code for them. Gee uses modules (compiled into 

gee) to specify peephole optimizations. Our ap

proach is largely made possible by the ability of 

C++ to link in derived classes (the optimization 

modules) in a type safe fashion [ 15], while the 

compiler is executing. 

Work on program transformation system [16] is 

also relevant to the discussion here-in particular 

to the way in which the optimization modules may 

be programmed. In addition interesting tech

niques have been developed for optimizing object

oriented languages other than C++ [ 1 T. 

9 FUTURE DIRECTIONS 

The final goal of this work will be to define an 

interface between the compiler proper and the op

timization modules. Should this prove successful, 

the next step would likely be the development of 

"little languages" that facilitate the succinct spec

ification of allowed transformations that would 

then be compiled into optimization modules. 

10 CONCLUSION 

There are applications for which the efficiency of 

the executable derived from C++ code can be un

acceptable. 

We have described a method by which groups 

of potential optimizations may be designed, im

plemented, and archived external to the compiler. 

When required, the compiler dynamically loads 

the needed optimizations through a type-safe in-
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terface so as to make the transformations avail

able. 

The gains will be twofold; it will be possible now 

for C++ compilers to invoke transformations 

powerful enough to make it competitive with For

tran and C, and domain-specific optimizations 

could now be developed in tandem with the li

braries and independent of the compiler, and the 

C++ language itself. 
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