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ABSTRACT. Let R be a ring and let G be a soluble group. In this situation we
shall give necessary and sufficient conditions for RG to have a right Artinian
right quotient ring. In the course of this work, we shall also consider the Goldie
rank problem for soluble groups and record an affirmative answer to the zero
divisor conjecture for soluble groups.

1. Introduction. We shall start by describing the theorem referred to in the
title. Let fibea ring (all rings in this paper will have a one), let G be a group, and
let R * G denote a crossed product (see [11]). Thus R*G may be viewed as a free
i?-module with basis {g\g 6 G} where each g is a unit in R * G, and ring structure
satisfying RgRh = Rgh. Of course, R * G is not uniquely determined by R and
G. However if H < G, then R * H is defined to be (&heH Rh, a subring of R * G.
Another way of describing R * G is that it is a G-graded ring (or group-graded ring)
with a unit in each degree [5, §5].

For a right Noetherian ring S, let Go{S) denote the Grothendieck group as-
sociated with the category of all finitely generated right S-modules. If R is right
Noetherian and G is polycyclic-by-finite, then R*G is also right Noetherian. More-
over if H < G, then the functor M i—> M <8>r*h R * G preserves exact sequences
and hence induces a natural group homomorphism G0(R * H) —► Go(R * G) which
is called the induction map. The following theorem was proved by the third author
in his thesis [7] and described in [8] (see [9] for full details).

THEOREM l. I. Let R be a right Noetherian ring, let G be a polycyclic-by-finite
group, and let &~(G) denote the set of finite subgroups of G. Then the natural
(induction) map ©F&y-(G\ Go(R * F) —+ Go(R * G) is surjective.

It is well known that such a theorem would have important consequences in
algebra, and the purpose of this paper is to consider a few of these in the theory of
group rings of soluble groups.

Ever since the papers of Brown [2] and Farkas and Snider [6], it has been folklore
that the zero divisor conjecture for soluble-by-finite groups (cf. Theorem 1.4) would
follow from Theorem 1.1, but this fact has never been published because it was never
expected that such a theorem would be proved.  An indication of how to deduce
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the zero divisor conjecture for soluble-by-finite groups from Theorem 1.1 is given
in [8].

It was first recorded by Rosset [12] that the special case of Theorem 1.1 when
R * G is an ordinary group algebra with coefficients in a commutative field ( "strong
conjecture (B)" in the terminology of [12]) is already sufficient to establish the
Goldie rank conjecture for polycyclic-by-finite groups (see further on in the intro-
duction for a description of this problem). This consequence is described in [7 and
8].

To describe the results of this paper precisely, we need to establish some notation.
Let 5 Ç Q be rings. Following pp. 19-20 of [1], we say that Q is a right quotient
ring for S provided that every regular element (i.e. nonzero divisor) of S is a unit
in Q, and every element of Q is of the form oc-1 for some elements a and c of S
with c regular. In general S need not possess a right quotient ring. However when
such a Q exists, it is uniquely determined by S. Also, we shall let W denote the
class of elementary amenable groups (see [4]). This is the smallest class of groups
which

(i) contains all abelian and all finite groups,
(ii) is extension closed,

(iii) is closed under directed unions.
Clearly W contains all soluble-by-finite groups.

A problem closely related to the Goldie rank conjecture is that of when a group
ring has a right Artinian right quotient ring. Progress on this (without the aid of
Theorem 1.1) has been made in [3]. The main result of this paper is

THEOREM 1.2. Let R be a ring and let Gë?. Then RG has a right Artinian
right quotient ring if and only if R has a right Artinian right quotient ring and the
finite subgroups of G have bounded order.

The reader will find that the proof of this theorem cannot be significantly short-
ened by restricting attention to soluble-by-finite groups.

Now suppose k is a division ring, G eW, A+(G) = 1 (i.e. G has no nontrivial
finite normal subgroup), and the finite subgroups of G have bounded order. Then
kG has a right Artinian right quotient ring by Theorem 1.2 and kG is prime by
Theorem 2 on p. 37 of [11]. It follows that kG has a right quotient ring which is
an / x / matrix ring over a division ring for some integer /. In the special case that
G is polycyclic-by-finite, the Goldie rank conjecture states that I is the I.e.m of the
orders of the finite subgroups of G; see pp. 19-21 of [11] for further information
concerning this problem. As a by-product of the proof of Theorem 1.2, we obtain
the following result.

THEOREM 1.3. Let k be a division ring, let Ge?, and assume that A+(G) =
1. Suppose the finite subgroups of G have bounded order, and write I for the I.cm.
of the orders of the finite subgroups of G. Then kG has a right quotient ring which
is an I x I matrix ring over a division ring.

For completeness, we record the following immediate consequence.

THEOREM 1.4. Let k be a division ring and let Ge?. If G is torsion-free,
then kG is a domain.

We do not know whether Theorem 1.4 remains true for arbitrary domains k.
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We conclude this paper with a brief discussion on how to extend Theorem 1.3
to some semiprime crossed products.

Part of this work was done while the second author was at Stuttgart University.
He is deeply grateful to Klaus Roggenkamp and the other mathematicians there for
their warm hospitality. He would also like to thank the Alexander von Humboldt-
Stiftung for financial support.

2. Notation and assumed results. As usual, Q will denote the rational
numbers, C the complex numbers, and P the positive integers {1,2,3,...}. For
any group G and Y Ç G, the subgroup generated by the finite normal subgroups
of G will be denoted by A+(G) (see p. 2 of [11] or p. 81 of [10]), the set of finite
subgroups of G will be denoted by ¿?~(G), and (Y) will indicate the subgroup
generated by Y. If <?i,..., qn e Q\{0} and / G P, then I = l.c.m.{gi,..., qn} means
(1/Z) = (l/<7i, • • •, l/<7n); in the special case when the qt are nonzero integers, this
coincides with the usual definition of l.c.m. Let R be a ring, X Ç R, A < G,
B S ^(G), and g 6 G. Then we write rR(X) = {y e R\xy = 0 for all x € X},
A9 = g~lAg, and |jB| for the order of B. If S is a multiplicatively closed subset of
R and R satisfies the right Ore condition with respect to S (see p. 21 of [1]), then
we can form the ring RS^1, which consists of elements rs_1 with r 6 R and s € S.
When A has finite index in G, then G : A will indicate this index. If %? and J^ are
classes of groups, then G € LSf will mean that every finite subset of G is contained
in some ^-subgroup of G, and G €E a^ will mean that there exists H <G such
that H G 3? and G ¡H G J^. The following three results are well known.

LEMMA 2.1. Let R be a ring and let G be a finitely generated abelian-by-finite
group. If R*G is prime and R has a right Artinian right quotient ring, then R*G
has a simple Artinian right quotient ring.

PROOF. Let T be the set of regular elements of R, so that RT~X is a right
Artinian ring. Then the rings RT~l * G and (R * G)T_1 exist, are prime, and
are isomorphic. Since AT-1 * G is a prime right Noetherian ring, it follows from
Goldie's theorem (Theorem 1.28 of [1]) that it has a simple Artinian right quotient
ring, as required.

LEMMA 2.2. Let R be a right Noetherian ring and let S be a multiplicatively
closed subset of R such that the ring RS_1 exists. Then the natural (induction)
map Go(R) -* Go(RS_1) is surjective.

PROOF. This is because every finitely generated i?S_1-module is of the form
A (gift RS~l for some finitely generated i?-module N.

Suppose R has a simple Artinian right quotient ring Q = Mn(D) for some
n e P and division ring D. If M is a finitely generated i?-module, then we define
Pr[M] = dim£>[M ®r Q]/n2 and when R is right Noetherian, then pR induces a
homomorphism pR\ Gq(R) —> Q. Note that the image of pR is (1/n). Evidently
if xjj: Gq(Q) —► Q is a homomorphism such that tp[Q] = 1, then V = Pq- The
following lemma is elementary.

LEMMA 2.3.   Let R ÇT be rings and let H < G be groups.
(i) Suppose R and T have simple Artinian right quotient rings U and V respec-

tively such that U ÇV. If M is a finitely generated R-module, then Pt[M<S>r T\ =
Pr[M}.
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(ii) Suppose H has finite index in G, and R * H and R * G have simple
Artinian right quotient rings. If M is a finitely generated R * G-module, then
(G:H)pr.g[M) = pr.h{M\.

PROOF, (i) We may assume that R and T are simple Artinian rings. If M is
a finitely generated Jî-module, then the map M >—► pT[M ®r T] induces a map
ip: G0(R) -» Q. But pT[R ®R T] = pT[T] = 1, hence V = PR and the result
follows.

(ii) Let Q and W be the simple Artinian right quotient rings of R * H and
R* G respectively, and let S be the set of nonzero divisors of R * H. Since Q =
(R*H)S~l, we see that (R * G)S~1 is Artinian, hence W = (R * G)S~1 and we
deduce that W is a free Q-module of rank G : H. Therefore the map ip : Go(W) —> Q
defined by tp[N] = Pq[N]/G : H satisfies ip(W) = 1, hence ip = pw and we conclude
that Pr*h[M] — (G : H)pr+g[M), as required.

We can extend p to more general rings as follows. Let R be a ring, let N be
the nilradical of R, let s € P and let M be an iü-module. Suppose As = 0 and
R/N is right Goldie [1, p. 8]. Then R/N has a semisimple Artinian right quotient
ring Q [1, Theorem 1.27]. Thus if L is an Ä/A-module, we can define Pr(L) to
be the length of L <&r Q as a right Q-module (in the case L is finitely generated,
A = 0 and Q is simple, this coincides with the definition of p just before Lemma
2.3). Then p can be extended to all iî-modules by defining

Pr(m) = J2pr(mn*-1/mní).
i = l

The same proof as that of Theorem 2.2 of [1] shows

LEMMA 2.4.   (&)IfK is a submodule of M, then pR(M) = pR(K) + pR(M/K).
(b) Pr(M) = 0 if and only if for each m G M, there exists a € R such that its

image in R/N is a nonzero divisor and ma = 0.

By following the proof of Theorem 2.3 of [1] we now have (we would like to
thank K. A. Brown for pointing out that our original formulation of this lemma
was incorrect)

LEMMA 2.5. Assume that whenever a S R is such that its image in R/N is
a nonzero divisor, then a is a nonzero divisor. If Pr(R) < oo, then R has a right
Artinian right quotient rinq.

3. Group theoretic results. Our first task is to give an alternative description
for the class of groups W. Let 38 denote the class of all finitely generated abelian-
by-finite groups and for each ordinal a, define Sfa inductively as follows:

¿To = {1},
alfa = (Lê)?a-\)3§ if a is a successor ordinal,

3?a = M ¿Fq if a is a limit ordinal.

Setting 3? = [Ja>03fa, we can now state the following lemma.
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LEMMA  3.1.   (i) 3f = <g.
(ii) Each 3fa is subgroup closed.

PROOF. Clearly 3f Ç W, 3f contains every abelian group and every finite group,
and 3f is closed under directed unions. Also it is easy to show by induction on a
that each 3fa is subgroup closed. Therefore we need to prove that 3? is extension
closed.

We show by induction on ß that 3fa3f$ Ç 3fa+ß; the case ß — 0 is obvious. If
ß = 7 + 1 for some ordinal 7, then

3fa3f0 = 3fa((L3f1)^) ç (3fa(L3fJ)â§ ç (L(3fa3fJ)^
Ç (L3?a+J&    (by induction)
_    OX?

On the other hand if ß is a limit ordinal, then $fß = U7</?^y an(i

¿¿^¿¿Cß — <£Cq   I J ¿%-**i   I   ==   I  J áCct<^^
\-y</3 / -,</?

Q M ^«-i-t    (by induction)
i<ß

Ç ¿Ca+ß

as required.
Lemma 3.1 allows us to associate to each group G G W, the least ordinal a

such that G Ç:3fa. Our results are proved by transfinite induction on this ordinal.
Note that every soluble-by-finite group belongs to 3f^ (where w is the least infinite
ordinal), thus if one is only interested in results for soluble-by-finite groups, then
transfinite induction could be replaced by ordinary induction. However this would
not simplify any of the arguments, so we prove the results in the general case.

LEMMA 3.2. If G is a group with no infinite locally finite subgroup, then A+(G)
is finite.

PROOF. Since A+(G) is locally finite (use Lemma 7(i) on p. 9 of [11]), the result
is clear.

LEMMA 3.3. Let G be a group with no infinite locally finite subgroup. If
A+(G) = 1, then G has a finitely generated subgroup P such that whenever P <
B <G, then A+(B) = 1.

PROOF. Let F be a maximal finite subgroup of G and for each 1 < H < F,
choose gH G G\NG(H). Then P = (F,gH\l < H < F) clearly has the required
properties.

4. Proof of Theorems 1.2 and 1.3.

LEMMA 4.1. Let H <G € fë, let n € P and let R be a simple Artinian ring.
Suppose \G/H\ < 00, the orders of the finite subgroups of G are bounded and
A+(H) = 1.  Then

(i) R* H has a simple Artinian right quotient ring (R *H)S_1 where S is the
set of nonzero divisors of R* H.
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(ii) The natural map ®Fe,^-iG) Go(R * F) —> Gç,(R * GS  1) is surjective.
(iii) If F £ ^(H) and M is a finitely generated R * F-module, then

\F\pr*h[M ®b.f R*H}= pr[M}.

(iv) Ifm = l.c.m. {\F\/pR[M]\F € &(H), M ¿0 is a finitely generated R*F-
module}, then (R * H)S~* is an m x m matrix ring over a division ring.

PROOF. The result will be proved by transfinite induction, so by Lemma 3.1
choose the least ordinal a such that H € 3fa, and assume that the result is true
whenever H e 3fß and ß < a. Let F € SF(H), let M be a finitely generated
R * F-module, and let I be the l.c.m. of {\E\/pR[N]\E 6 &(H), N ± 0 is a finitely
generated R * ^-module}.

Now a cannot be a limit ordinal, and the result is clearly true if a = 0. Therefore
we may assume that a — 7 -I- 1 for some ordinal 7. First suppose H 6 L3f^. By
Lemma 3.3, there exists a finitely generated subgroup P of H such that whenever
P <P\<H, then A+(Pi) = 1. Let {Gi\i e J*} be the family of finitely generated
subgroups of G containing P and for each t € ^, let Hi = H n G¿, and let
Si — S n (R * Hi), the set of nonzero divisors of R * Hi. Then A+(i7¿) = 1 and
since Hi 6 3?^ by Lemma 3.1(h), we can form the simple Artinian right quotient
ring Qi = (R* Hi)S~x for all i € J, and it follows that we can form the ring Q =
(R*H)S~1. Using (iv), we see that Qi is a d¿ x d¿ matrix ring over a division ring
for some di < I. Since Q = \Ji€¡y Qi, we see that if Jo > h > • • • > In is a strictly
descending sequence of right ideals in Q, then I0 n Qi > h n Qi > ■ ■ ■ > In H Qi is a
strictly descending sequence of right ideals in Qi for some i € ^, hence n < / and we
deduce that Q is Artinian. This proves (i). Since (R*G)S~1 = \Ji€Jr(R*Gi)S~1,
we see that G0(R * GS-1) = LimG0(iî * G¿5t_1) and (ii) follows easily.   Next
choose i such that F < Hi. Then Pr*Hí[A] = pr*h[A<S>r*h, R*H] for all finitely
generated R* //¿-modules A by Lemma 2.3(i), and (iii) is clear. Finally (iv) follows
from (i), (ii), and (iii).

Now suppose there exists A < H such that H/A e 3§ and A G L3f^. Write
B = f\geG A9 and T — S D (R * B), the set of nonzero divisors of R * B. Note that
B < G and G/B e 3S. Since B e L3Z, by Lemma 3.1(h) and A+(S) = 1, we see
from the previous paragraph that the ring K = (R * B)T~X exists and is simple
Artinian. Observing that R * H Sí (R * B) * H/B (see pp. 29-30 of [11]) and that
R * H is prime (see Theorem 2 on p. 37 of [11]), application of Lemma 2.1 now
yields (i). By Theorem 1.1, the natural map

0      G0(K * E) - G0(K * G/B)
Ee.9-(G/B)

is surjective. But

G0(K * G/B) = G0((R * G)T-') - G0((R * G)5"x)

is also surjective by Lemma 2.2, and (ii) is verified. Finally let C/B be a torsion-
free normal abelian subgroup of finite index in H/B. Since A+(H) = 1, we see
that A+(G) ss 1 and hence R *C has a simple Artinian right quotient ring by (i).
If D = F n G, then M <S>r»f R * CF = M ®n*b R * C as R * G-modules and
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D Ç B. Therefore

Pr*h[M ®fi,F R * H] = Pr»cf[M ®r*f R * CF]    by Lemma 2.3(i)

= CF , cPr*c[M ®r*f R * CF]    by Lemma 2.3(H)

Pr*c[M®r*d R*C\F:D
1

Pr*b[M <g)R*D R* B]    by Lemma 2.3(i)F:D'
= ^pR[M]    by (iii) for R

This establishes (iii), and (iv) now follows from (i), (ii) and (iii).

PROPOSITION 4.2. Let R be a ring, let G e W and let R* G be a crossed
product. If R has a right Artinian right quotient ring and the finite subgroups of G
have bounded order, then R* G has a right Artinian right quotient ring.

PROOF. Clearly we may assume that R is right Artinian. Let H = A+(G).
Since H is finite by Lemma 3.2 and R * G = (R * H) * G/H (see pp. 29-30 of
[11]), we may assume that A+(G) = 1. Now R has only finitely many maximal
two-sided ideals and the conjugation action of G on R permutes these ideals, hence
a normal subgroup S of finite index stabilizes these ideals. If R * S has a right
Artinian right quotient ring and T is the set of regular elements of R * S, then we
can form the rings (R*S)T~1 and (R*G)T~1. Since (R*S)T~1 is right Artinian,
we see that (R * G)T_1 is right Artinian and hence R * G has a right Artinian right
quotient ring. Moreover A+(S) = 1 so by replacing G with 5, we may assume
that G stabilizes the maximal ideals of R. Let A be the radical of R and write
R/N = Ri © iü2 © • • • © Rn where the Ri are simple Artinian rings. Then

R * G/NR * G = (R/N) *G = R1*G®R2*G®-®Rn*G

and therefore has a semisimple Artinian right quotient ring by Lemma 4.1(i). Fur-
thermore NR * G is nilpotent, and N%_1R * G/NlR * G is a finitely generated
R * G/NR * G-module for ¿eP because N'_1/N' is a finitely generated Ä-module,
so Pr*g(R * G) < oo by Lemma 2.4(a). Thus in view of Lemma 2.5, it remains to
prove that if a e R * G is such that its image in R/N * G is a nonzero divisor, then
a is a nonzero divisor in R * G.

Suppose 0 t¿ ß e R * G. Then there exists r € P such that ß G
JV-^Ä * G)\Nr(R * G). Choose J <¡ R such that Nr c J ç AT"1, J/Nr is
finitely generated as a left ñ-module and ß € (R * G)J. Then J/NT is a finitely
generated left Ä/A-module, hence there exists I <i R such that Ar Ç J c J, I is
maximal in J and ß £ (R * G)I. Since J/I is isomorphic to a minimal left ideal of
R/N, it follows that (R * G)J/(R * G)I is isomorphic to an R/N * G-submodule
of R/N * G and hence aß ^ 0. A similar but slightly easier argument shows that
ßa ^ 0 and so a is a nonzero divisor as required.

LEMMA 4.3.   Let R be a ring and let H <G be groups with H finite. If RG has
a right Artinian right quotient ring, then so does R[G/H].
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PROOF. Let Q be the right Artinian right quotient ring of RG, let / be the
augmentation ideal of RH, and suppose a G IQ n RG. Write

n

e = YJ h   and    a = Yj a¿<¿
/i€/í 1=1

where a, € Aií, ti G G and i/í¿ / i/fj for i ^ j. Then ea = 0, henee ect¿ = 0 and
it follows that a,G I for i — 1,2,..., n. Therefore 7Q n ÄG = JAG and since IQ
is a two-sided ideal of Q by Theorem 1.31 of [1], we deduce that Q/IQ is a right
Artinian right quotient ring for R[G/H\.

LEMMA 4.4. Let R be a ring, let G be a group and let Q be a right Artinian
ring containing RG. Then G has no infinite locally finite subgroup.

PROOF. If G has an infinite locally finite subgroup, then there exists a strictly
ascending sequence of finite subgroups of G, H\ < Hi < H3 < ■ ■ ■. For i G P
let e¿ = YlheH- h anc* iet Ii be the augmentation ideal of RHi. Then rg(/i) ¡5
tq(I2) 2 ■ ■ • and e¿ € TQ(Ii)\rQ(Ii+i) for all i, which contradicts the hypothesis
that Q is right Artinian.

PROPOSITION 4.5. Let R be a ring and let G be a group. If RG has a right
Artinian right quotient ring, then so does R.

PROOF. Using Lemmas 3.2 and 4.4, we see that A+(G) is finite so in view of
Lemma 4.3, we may assume that A+ (G) = 1. Let A be the nilradical of R and let Q
be the right Artinian right quotient ring of RG. Since RG is right Goldie (see p. 8 of
[1]), so is R and hence A is nilpotent by Theorem 1.35 of [1]. Therefore if J = NQ,
then J is a nilpotent ideal of Q (use Theorem 1.31 of [1]) and hence J fl RG is a
nilpotent ideal of RG. Since (R/N)G = RG/NRG, it follows from Theorem 2 on
p. 37 of [11] that JnRG = NRG and we deduce that Q/J is a right Artinian right
quotient ring for (R/N)G. This shows that R/N is right Goldie. If Pr(R) = oo
then pR(Nt~1 /N') = oo for some i G P by Lemma 2.4(a), and it follows easily that
PrgÍN^RG/WRG) = oo. Therefore pRG(RG) = oo by Lemma 2.4(a). On the
other hand Prg(J1~1 n RG/J1 n RG) < oo for all / G P, hence pRG(RG) < oo by
Lemma 2.4(a) and we have a contradiction. Thus Pr(R) < oo, so by Lemma 2.5 it
will be sufficient to prove that if a G R is such that its image ä in R/N is a nonzero
divisor, then a is a nonzero divisor. But

á is a nonzero divisor in R/N
=>• ¿v is a nonzero divisor in (R/N)G
=> ¿v is invertible in Q/J
=> a is invertible in Q because J is nilpotent
=> a is a nonzero divisor in R

as required.

LEMMA 4.6. Let R be a simple Artinian ring and let G G W with A+(G) = 1.
// RG has a right Artinian right quotient ring, then the finite subgroups of G have
bounded order.

PROOF. Since A+(G) = 1, we see that RG is prime by Theorem 2 on p. 37 of
[11], so if Q is the right Artinian right quotient ring of RG, then Q = Mn(D) for
some n G P and division ring D.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPLICATIONS OF A NEW K-THEORETIC THEOREM 683

The result will be proved by transfinite induction, so by Lemma 3.1 choose the
least ordinal a such that G G 3fa, and assume that the result is true whenever
G G 3f0 and ß < a. Let F G F (G) and write e = £/€F /.

Now a cannot be a limit ordinal, and the result is clearly true if a — 0. Therefore
we may assume that a = 7 + 1 for some ordinal 7. First suppose G G L3f^. Since
RG is a subring of the right Artinian ring Q, we see from Lemma 4.4 that G has
no infinite locally finite subgroup and so we can use Lemma 3.3. Thus there exists
P <G such that P D F, P G 3f~, and A+(P) = 1. We now apply Lemma 4.1 to
deduce that RP has a simple Artinian right quotient ring W, and that (eW)lF' = W.
Therefore (eQ)'F' = Q and hence |F| < n as required.

Now suppose there exists H <G such that H G L3f1 ands G/H G 38 ■ By the
previous paragraph, the finite subgroups of H have bounded order and it follows
that the finite subgroups of G have bounded order.

PROPOSITION 4.7. Let R be a ring and let G G W. If RG has a right Artinian
right quotient ring, then the finite subgroups of G have bounded order.

PROOF. Since A+(G) is finite by Lemmas 4.4 and 3.2, application of Lemma
4.3 shows that we may assume that A+(G) = 1. In view of Proposition 4.5, we
may also assume that R is right Artinian. Let Q be a right Artinian right quotient
ring for RG, let J be the radical of Q, and let A be the radical of R. Since
RG/NRG = (R/N)G, it follows from Theorem 2 on p. 37 of [11] that A.RG is
the nilradical of RG. Using Theorem 1.31 of [1], we see that NQ is a nilpotent
ideal of Q, hence NQ ç J and we deduce that J n RG = A.RG. Therefore Q/J
is an Artinian right quotient ring for (R/N)G. Furthermore, R/N is a direct sum
of simple Artinian rings, thus we may assume that R is a simple Artinian ring and
now the result follows from Lemma 4.6.

Theorem 1.2 now follows from Propositions 4.2, 4.5, and 4.7, and Theorem 1.3
from Lemma 4.1(iv).

5. Semiprime crossed products. Suppose G G W, R is a semisimple Artinian
ring, R * G is a crossed product, A+(G) = 1 and the finite subgroups of G have
bounded order. Then R = Ri@- ■ ■®Rm where the Ri are simple Artinian rings, and
G permutes the Ri by conjugation. By renumbering if necessary, we may assume
that {i?i,... ,Rt} is a set of orbit representatives for this action. Let G¿ be the
stabilizer of Ri, and write ni — G : Gi. By Clifford's theorem,

t
iü*G = 0Mn,(Ä,*GI).

j=i
Since A+(G¿) = 1 and Ri is simple Artinian, it follows from Lemma 4.1 that R¿*Gi
has a right quotient ring M¡t(Di) where £>, is a division ring and

h = l.c.m.{|F|//9ñ,[M]|F G &(Gi) and M j¿ 0 is a finitely generated
Ri * F-module}.

Therefore R*G has a quotient ring isomorphic to ©¿=1 Aínt;,(.D¿).
Suppose H G W, the finite subgroups of H have bounded order, and k is a

division ring of characteristic zero. Then we can apply the above discussion to
k * H because if A — A+(H), then k * N is semisimple Artinian (Theorem 5 on p.
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31 of [11] and Lemma 3.2), A+(H/N) = 1 and k * H St (k * N) * H/N (pp. 29-30
of [11]).

NOTE ADDED IN PROOF. An explicit reference for Lemma 2.5 is Theorem (4) of
J. A. Beachy, Rings with finite reduced rank, Comm. Algebra 10 (1982), 1517-1536.
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