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Abstract. We present several applications of a recent space-partitioning technique 

of Chazelle, Sharir, and Welzl (Proceedings of the 6th Annual ACM Symposium on 

Computational Geometry, 1990, pp. 23-33). Our results include efficient algorithms 

for output-sensitive hidden surface removal, for ray shooting in two and three 

dimensions, and for constructing spanning trees with low stabbing number. 

1. Introduction 

In a recent paper ,  Chazelle et al. [16] have given a new quas i -op t imal  technique for 

simplex range searching in any dimension.  The technique is based on a new 

hierarchical space-par t i t ion ing  scheme, which we briefly review below. As it turns  

out, this par t i t ion ing  scheme has several useful proper t ies  that  make  it appl icable  

to a variety of o ther  problems.  Briefly, these proper t ies  are:  

(i) It yields quas i -op t imal  query  t ime for s implex range searching, which 
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matches Chazelle's lower bound up to a factor of O(n ~) for arbitrarily small 

e > 0 . 1  

(ii) It works in any fixed dimension. 

(iii) It admits tradeoff between storage and query time. 

(iv) Its preprocessing cost is low--within a factor O(n ~) of the storage used. 

Properties (i)-(iv) are noted in [16]. 

(v) It facilitates the use of multilevel data structures. This allows us to process 

queries that are expressed as a conjunction of constraints, so that each 

constraint is handled by accessing a different level in the structure. Similar 

ideas have been applied by Dobkin and Edelsbrunner [22] and by Guibas 

et al. [26] to an inferior partitioning scheme (in the plane). Chazelle et al. 

[16] do exploit this multilevel property, but not to full generality. 

(vi) It can be efficiently dynamized. This property is newly developed here. 

In this paper we study several of these applications and derive efficient solutions 

for them using the "CSW scheme." The results that we obtain are: 

Efficient Construction o f  a Spanning Tree with Low Stabbing Number. Given a 

set S of n points in R d, a (straight-edge) spanning tree T on S is said to have 

stabbing number K if no hyperplane crosses more than x edges of T. It has been 

shown in [17] that there always exists a spanning tree on S with stabbing number 

= O(n 1-1/n). Such spanning trees have been applied to simplex range searching 

[17], [44], computing a single face in arrangements of lines [25], and ray shooting 

in a collection of segments [1], [19]. In the planar case the fastest known 

(deterministic) algorithm for the construction of such a tree runs in time 

O(n 3/2 log 2 n) [27] (see also [2], [17], [27], [28], and [44]). No efficient algorithm is 

known for computing spanning trees of low stabbing number in higher dimensions. 

Using the CSW scheme, we derive an improved (deterministic) algorithm that 

computes a spanning tree with stabbing number O(n 1 - 1/d+~) in time O(n log n) for 

d = 2, 3. Thus, although the stabbing number that we get is slightly suboptimal, 

the time needed to construct the spanning tree is greatly reduced. Moreover, our 

algorithm allows us to update the tree in amortized time O(log z n), as we insert 

or delete a point. This is a significant improvement over the previous algorithm 

by Cheng and Janardan [19] that requires roughly ~ amortized time to update 

the spanning tree. 

Ray Shooting Amidst Segments in the Plane. In this basic probem we wish to 

preprocess such a collection into a data structure that supports fast ray-shootin9 

queries, in which we need to determine the first segment, if any, to be hit by a 

query ray. 
Chazelle and Guibas gave an optimal algorithm for the special case where the 

segments form the boundary of a simple polygon [15]. A considerably simpler 

algorithm for the same case has recently been proposed by Chazelle et al. [12]. If 

1 Throughout this paper e denotes a positive constant which can be chosen arbitrarily small with 
an appropriate choice of other constants in the algorithms. We use the notion of quasi.optimality to 
refer to a bound that is slightly inferior to an optimal bound, usually worse by a factor of at most 
O(n*). Similar terms, such as quasi-linearity, are defined in an analogous manner. 
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the segments do not form a simple polygon, the problem becomes much harder 

and no algorithm is known that answers a query in polylogarithmic time using 

roughly linear space. 

In this paper we present a solution that requires O(n log 2 n) preprocessing and 

storage, and answers queries in time O(nl/2+~). Solutions that match (and even 

slightly improve) the storage and query time are known (see, for instance, [1], [8], 

and [19]), but a preprocessing as fast as ours appears to be new--previous bounds 
on the preprocessing cost are close to 0(n3/2). We can also obtain a whole range 

of resource bounds, in which we tradeoff storage (and preprocessing) for query 

time, as in [16]. In particular, we can answer a query in O(n I ÷~/v/s) time, using 

O(s t ÷~) preprocessing, if we are allowed to use s units of storage. 

Our algorithm can also be modified to report all k segments intersected by a 

query segment in time O(n t +*/~fs + k), or to count the number of such segments 

in time O(n I ÷'/x~ss). Another advantage of our algorithm is that, unlike previous 

algorithms, we can efficiently maintain the structure dynamically as we insert or 

delete segments. 

Improved Output-Sensitive Hidden Surface Removal Given n horizontal triangles 

in R 3, we wish to compute their visibility map, as viewed from a point at z = - oo 

(this is a representative case of a more general situation, where the viewed 

objects have a known depth order with respect to the viewing point). Overmars 

and Sharir [36] have given two output-sensitive algorithms--the first algorithm 

is very simple and runs in time O(nx/~ log n), where k is the number of vertices 

in the visibility map; the second algorithm is quite complicated but runs in time 
O(n 4/3 log 2/3 n + ka/Sn*/S+~). We first show that the running time of this latter 

algorithm can be improved using our ray-shooting algorithms, and then describe 
a simpler algorithm that computes the visibility map in time O(n 2/3 +*k 2/3 + n I +'). 

This algorithm is based on the dynamic version of our ray-shooting technique. 

Ray Shooting in 3-Space. Here we are given a collection of n triangles in R 3 and 

wish to preprocess it into a data structure that supports fast ray-shooting queries, 

defined in complete analogy with the planar case. This is a central problem in 

computer graphics, and, unfortunately, is considerably more difficult than its 

planar counterpart. We obtain a solution that requires O(n 16/15 +,/s4/15) query time 

with s storage, so it yields O(n 4/5 +~) query time with roughly linear storage. We 

also note that other solutions have been given earlier for several special cases of 

the general problem. For example, Schmitt et al. [40] discuss the case of axis 

parallel rectangles. Agarwal [3] (see also [37]) discusses the case of vertical ray 

shooting. Cote and Sharir [21] and later Chazelle et al. [14] have given efficient 

algorithms for ray shooting in polyhedral terrains. Recently and independently, 

de Berg et al. [10] derived an alternative technique that yields similar bounds for 

the general ray-shooting case, as well as efficient algorithms for seve(al special 

cases. Some related problems (e.g., reporting the set of triangles intersected by a 

query line, counting the number of such triangles, etc.) have been considered by 

Pellegrini [39], but his approach fails to give an efficient algorithm for the 
ray-shooting problem. 
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This paper is organized as follows. In Section 2 we briefly review the CSW 

partitioning scheme, and in Section 3 we explain how to dynamize it. Section 4 

describes an efficient construction of spanning trees with low stabbing number. 

Section 5 presents the application of the CSW scheme to planar ray shooting 

amidst a collection of line segments. This in turn is applied in Section 6 to obtain 

two improved output-sensitive hidden surface removal algorithms. Section 7 

presents applications of the scheme to ray shooting in three dimensions and related 

problems. 

2. The CSW Partitioning Scheme An Overview 

In this section we briefly review the space-partitioning scheme of Chazelle et al. 
1-16]. This scheme produces a multilevel data structure, but we describe here only 

its primary (top-level) structure, which is rather similar to a geometric partition 

tree. In the following sections we exploit the multilevel characteristic of the data 

structure, which allows us to attach to its nodes substructures that will generally 

be different from those used in [16]. 
Let S be a set of n points in R a that we wish to preprocess for efficient half-space 

range queries. The CSW structure has two types of nodes, "simplex nodes" and 

"triangulation nodes," which alternate in depth. Each simplex node v of the 

structure is associated with a subset So ~- S of nv points in (some simplex in) 

d-space. We fix some sufficiently large constant parameter r. We start at the root 

node of the structure with the entire set S. Using a recent algorithm of Matou~ek 

[29], we construct O(log 1") different triangulations of d-space, each consisting of 

O(r d) simplices, so that the following property holds: for any hyperptane h there 

exists at least one triangulation such that h crosses only O(r ~- 1) simplices of the 

triangulation and that only O((n/r) log r) points of S lie in those simplices. We say 

that such a triangulation is sparse for h. We now create O(log r) children of the 

root; they are triangulation nodes, and each corresponds to one of these triangula- 

tions. For each such child t, and for each simplex z in the triangulation that t 

represents, we create a child of t that corresponds to z; this is a simplex node that 

has the subset z c~ S associated with it. 
Here is a brief review of how these triangulations are constructed. We first pass 

to dual space, where the given points are mapped into n dual hyperplanes. We 

apply Matou~ek's partitioning algorithm [29], with the same parameter r chosen 

above, to obtain a decomposition E of the dual space into O(r a) simplices, each 

meeting only O(n/r) dual hyperplanes. Taking the vertices of these simplices, with 

the appropriate multiplicity, and mapping them back to the primal space, we 

obtain a multiset H of m = O(r d) "representative" hyperplanes that "approximate" 

welt any other hyperplane, where the distance between two hyperplanes is the 

number of points of S that separate them. That is, for any hyperplane ho there is 

a hyperplane h e H so that only O(n/r) points of S separate ho from h. Using 

Matou~ek's algorithm, we choose r hyperplanes from H and triangulate the 

arrangement of these hyperplanes, so that each simplex intersects only 

O((m/r) log r) hyperplanes of H. A simple counting argument shows that the 
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average number of points of S in the zone of (i.e., the collection of cells crossed by) a 

representative hyperplane is O((n/r) log r). We call a hyperplane h ~ H, whose dual 

vertex h* is associated with some simplex ~ of E, a "good" hyperplane if the 

triangulation is sparse for all the hyperplanes corresponding to the vertices of ~. 

Another simple counting argument shows that at least a fraction of the hyperplanes 

of H are good. We remove these good hyperplanes, and repeat the sampling 

process on the remaining hyperplanes of H. We repeat this process a logarithmic 

number of times until we are left with O(r) hyperplanes. We then choose all these 

hyperplanes and triangulate their arrangement. 

We now recurse with this partitioning scheme in each simplex T of each 

triangulation (with the set of points contained in the simplex), unless either 

(a) 3 contains more than (cn/r) log r points of S, for some appropriate constant 

C, or  

(b) the number of points within 3 is less than some parameter •, chosen as a 

function of the storage s that we allow for the structure. 

We refer to the structure resulting from this recursive process as the top part of 

the whole structure. 

In case (a) the simplex becomes a so-called "fat leaf," and the (current level of 

the) structure is not expanded there any further. In case (b) we expand the structure 

at ~ using the following different scheme. The points of S within 3 are dualized to 

hyperplanes, and we continue the construction in dual space. Applying Matou~ek's 

algorithm [29], we choose a sample of • hyperplanes in dual space and triangulate 

their arrangement so that each simplex intersects only O((tr/r) log r) dual hyper- 

planes. There are O(r d) simplices in the triangulated arrangement. We associate 

with each resulting simplex 3 the set H(3) of hyperplanes that lie strictly above 3 

(and a similar set of hyperplanes that lie strictly below it). We continue recursively 

to process, for each simplex 3, the subset of hyperplanes crossing z, in the same 

manner. The total storage (and preprocessing cost) required for this procedure is 

easily seen to be O(tr d÷~) (see 1-16]). We refer to this structure, constructed for 

"leaf-simplices" of the top part, having fewer than tr points each, as the bottom 
part of the structure. 

In two and three dimensions the structure can be somewhat simplified, as 

follows. As earlier, we choose a sample of r hyperplanes (since d = 2, 3, hyperplanes 

are either lines or planes), but instead of triangulating their arrangement, we now 

compute its vertical decomposition, as defined in [13] (see also [20]). We then find 

"good" hyperplanes, defined as above, with respect to this map, throw them away, 

and repeat this step with the remaining hyperplanes. We thus obtain a family of 

O(log r) maps. We superimpose these O(log r) vertical decompositions to obtain a 

single partitioning ~¢¢ of d-space. For each cell z of Jt', we create a child of the 

current node of the structure, and associate with it the subset S c~ 3, in complete 

analogy with the original scheme. We recurse with this partitioning scheme on 

each child as above. (Note that each cell of the map contains only O((n/r) log r) 

points of S, therefore in this case a cell can never be a fat leaf.) Since each 

hyperplane in H is good for at least one vertical decomposition, it follows easily 

that all hyperplanes of H are good for ,¢/, in the same sense as above. Moreover, 
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Chazelle et al. [16] have proved that, in R 2, ~¢¢ has O(r 2 log r) cells and each line 

intersects O(r log t") cells of ~¢/, and that, in R 3, J / h a s  O(r 3 log 6 r) cells and each 

plane intersects O(r 2 log 5 r) cells of Jr'. At present we do not have sharp bounds 

for the complexity of the superimposed map Jr', and of zones of hyperplanes in 

J t ,  in higher dimensions; even for d = 3 the above complexity bounds are derived 

only for a special variant of the vertical decomposition scheme. This is why we 

have to maintain O(log r) different maps for d > 4. The advantages of using this 

improved scheme are discussed below. This improvement is not given in [16], 

and is newly observed here. 

As explained in [16], a half-space query--reporting the points lying above (or 

below) a query hyperplane h--can be answered as follows. We find a sparse 

triangulation for h at the root of the structure. We then determine all cells of this 

triangulation that lie fully above h and those that are crossed by h. 2 Simplices of 

the former type are fully within the query range, whereas simplices of the second 

type are processed further recursively. (Note that, since the triangulation is sparse 

for h, no simplex of the second type is a fat leaf, so the query will never be stuck 

at such a leaf.) If the number of points within a simplex is less than tr, we switch 

to the second kind (i.e., bottom part) of the data structure. We locate the simplex 

that contains the point h*, dual to the query hyperplane h, and retrieve the 

associated set H(z). We next recurse in the substructure for r. In total, we obtain 

a compact representation of the set of points that lie in our range, as the disjoint 

union of "canonical" prestored subsets. 

There are several issues to observe about the scheme. The first is the storage s 

(and preprocessing cost) needed for the structure. Actually, this can be set to any 

desired value between n 1 +~ and n d÷~. The larger s is, the more "efficient" a query 

becomes, where query efficiency is measured as the number of canonical subsets 

whose union constitutes the query output. Roughly speaking, to achieve storage 

s, we need to choose tr to be about (s/n) 1/td- 1~; the precise analysis is given in [t6]. 

The next issue is the potential of the resulting structure to support multilevel 

substructures. We note that the output to a half-space query is given as the disjoint 

union of "canonical" subsets, where each subset is either the set of points of S 

within a simplex in one of the triangulations used in the top part of the structure, 

or is the primal version of a subset of the dual hyperplanes that pass above (or 

below) a simplex in the bottom part of the structure. In either case, we can take 

each such subset, process it further to obtain a second-level data structure, and 

attach it to the corresponding primary node. We note that the technique in [16] 

does just that, where the secondary structures are of the same kind as the primary 

structure; in fact, the structure produced in [16] is d + 1 levels deep. In some of 

the applications given in this paper, we first apply the CSW partitioning scheme 

recursively for a constant number of levels and then, at each cell, we construct an 

entirely different structure tailored to the specific problem that we are trying to 

solve. In our applications the lower-level structures will usually be on a set of 

2 For d = 2, 3, there is only one triangulation stored at the root, and we find the cells of this map 
that lie above h and those that intersect h. 
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different objects that stand in 1-1 correspondence with the original points of S--see 

below for examples. 

Another issue is the "efficiency" of a query, as defined above. As argued in 

[16], the total number of canonical subsets that a query collects is O(nl+~/sl/d). 
Moreover, the analysis in [16] also shows that even if we perform a second-level 

query (or the same type as the top-level query) at each of these subsets (actually 

going down any constant number of levels) the total number of subsets, of any 

level, that arise is still O(n 1+ ~/s TM) (with a larger constant of proportionality). Our 

multilevel structures will have a similar property, as will be observed below. 

Remark 2.1. In two and three dimensions, if tr = O(1), that is, if only the top part 

of the structure is being created, then superimposing the O(log r) vertical decompo- 

sitions at each node has two additional advantages: 

(i) The space complexity of a k-level structure becomes O(n log k- 1 n) assuming 

that the structure at any fixed level requires only linear space. Similarly, 

the preprocessing time in this case becomes O(n log k n) assuming that the 

kth level structure can be constructed in O(n log n) time. In this case a single 

level of the partitioning is usually called a geometric partition tree [32]. 
(ii) A simplex range query can be answered using only a single-level structure: 

We simply find all the cells crossed by the d + 1 hyperplanes defining the 

query simplex, and the cells that are fully contained in the simplex. We 

report all cells of the latter kind and recurse on the cells of the former kind. 

The bound on the query time is established in the same manner as in [16]. 

The preprocessing time and storage required for the simplex range searching 

structure are now O(n log n) and O(n), respectively. 

3. Dynamizing the CSW Partitioning Scheme 

In this section we show that the CSW partitioning structure can be maintained 

dynamically as we insert or delete points. This is a new feature of the partitioning 

scheme, though the method that we use is similar to older techniques for 

dynamizing data structures, such as those in [9] and [34]. We show that if the 

structure is storing n points and is using n I +~ < s _<_ n d+~ space, then a point can 

be inserted to or deleted from it in O(s/n 1 -~) amortized time. (We believe that the 

amortized bounds can be turned into worst-case bounds using the standard partial 

reconstruction techniques [34]. However, we feel that the goal is not worth the 

effort at this point.) 

Suppose we want to insert a point p into S (deletions are completely symmetric). 

We search through the CSW partition tree in a top down fashion. At each node 

v visited, we perform one of the following two operations: 

(i) Reconstruct the subtree rooted at v from scratch, including the lower-level 

structures stored at v. Suppose m~ is the number of points in So, the set of 

points associated with v, when v was reconstructed last time. We perform 

this step again if Sv has been visited during m Jr updates since that last 
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reconstruction (r is the same constant parameter that controls the construc- 

tion of the structure). 

(ii) Insert p into the secondary structure stored at v, and into some of the 

children of v if v is not a leaf. If v is a leaf and there are no secondary 

structures, simply add p to So. 

If the secondary structure is again a CSW partitioning tree, p is inserted 

there in a recursive manner. Otherwise we assume that there is an efficient 

procedure for inserting p into the secondary structure. As mentioned earlier, 

in some applications the secondary structure is constructed on a different 

set of objects, in which case we add the object corresponding to p to the 

secondary structure, instead of p itself. This will become clearer when we 

consider a concrete example (e.g., see Section 5.2). 

Next, if v is not a leaf, p is inserted into some of the children of v. If v 

is in the bottom part of the structure, we dualize p to the hyperplane p* 

and descend to the children of v corresponding to the simplices (of v) that 

intersect p*; there are O(r d- 1) such cells. Otherwise, if v is a simplex node 

in the top part of the structure, for each of the O(log r) triangulations stored 

at v, we determine the simplex z containing the point p and descend to the 

child corresponding to ~; in this case p is inserted into O(log r) "simplex 

grandchildren" of v. 

A point can be deleted from S using the same approach. We now analyze the 

time spent in inserting or deleting a point. Let J-o denote the primary structure 

stored at v (i.e., the subtree rooted at v) and let rn o be the number of points in Sv 

when 3- 0 was constructed last time. Since we reconstruct 3"- 0 after mo/r update 

operations that visit v, the number no of points currently in So satisfies the following 

inequality: 

m o ( 1 - ~ ) < n o < r n v ( l + ! ) .  (3.1, 

Moreover, 5o (including the secondary substructures) can be reconstructed in time 

O(s~+'), where so is the storage allocated to v, so we can charge O(rs~ +'/mo)= 
O(s~+~/no) time to each update operation that visits v to account for the time 

spent in reconstructing ~ .  

We bound the update time in two steps. First we consider the case where v 

is in the bottom part of the structure, i.e., m o < a. In this case so = O(n~ ÷~) 
and we visit at most Cl rd- 1 children of v for some fixed constant c~, Moreover, 

the time charged to each update operation for reconstructing the structure is 

O(s~+'/no) = O(n~-~+~). Let U(no) be the amortized time spent in updating Jo, 

including the secondary structure; then 

Ct~ -1 

v(n ) _< 2 
i = l  

tl(n,) + V,(no) + o(n  - + 

where U,(no) is the time spent in updating the secondary structure and ni is the 

number of points in the ith child of v. The last term accounts for the time spent in 
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finding the children of v that we need to visit. Since the number of points at any 

child of v after the last construction of ~q~ is at most  (cmJr) log r and we add at 

most m Jr  points before reconstructing J-~, n~ < ((c + 1)m~ r) log r. If  we assume 

inductively that U,(n~)= O(n~ - I  ÷~), then the solution of the above recurrence is 

easily seen to be U(n~,) = O(n~ -1+~) = O(n~oZ-1), because n~ <_ (1 + 1/r)a. 

We next consider a simplex node that is in the top part  of the structure. Recall 

that if v is in the top part  of the structure, then, for each triangulation child of v, 

we descend to just one of its children. In this case the time charged to each update 

operation is O(rs~ +~/m~). It is easy to check that sv = O(n~a d- 1 ÷~), hence the above 

charge is O(n~'a d- 1), where e' = e'(r) > 0 is another positive constant that tends to 

0 as r increases. Let U(n~), U~(n~) denote the same amortized times as above; then 

we have 
C2~ gr 

U(nv) < U(n~) + U~(n~) + O(n~'o ~-  1) + O(r d log r), 
i=1 

where c 2 is some constant and n, < ((c + l)n/r) tog r is the number of points in 

the simplex node in which we recurse in the ith triangulation child of v. Assuming 

that U,(nv) = O(n~'o ~- 1), we can easily show that U(n~) = O(n~'a d- 1). Since o ~- 1 is 

about sin, it easily follows that U(n) = O(s/n 1-'') for another constant e" = e"(r) 

that can also be made arbitrarily small. 

As for the query time, our update algorithm ensures that the number of points 

associated with any node of the structure does not deviate too much from what 

it should be in the static case. In particular, at every node v at the top part of the 

structure, for each hyperplane h there is at least one triangulation such that the 

number of points in the cells of that triangulation intersected by h is still 

O((nv/r ) log r). Similarly, at the bot tom part of the structure, the cell containing 

the point dual to h intersects only O(nv/r)log r) hyperplanes. Thus, repeating the 

analysis of [16], we can verify that the query time is still O(n 1 +~/sl/~). In summary, 

we have 

Theorem 3.1. Given a set of  n points in ~a and a parameter n t +~ <<_ s < n d+~, we 

can maintain the CSWparti t ioning structure, in O(s/n I -~) amortized time per update, 

as we insert or delete points, and can answer a half-space (or simplex, or general 

multilevel) range query, in time O(n 1 +~/st/d). 

An immediate corollary of this theorem is 

Corollary 3.2. Simplex range searching, in any dimension d, can be performed 

dynamically, using quasi-optimal resources: allowing storage n I +~ <_ s < n a+~, pre- 

processing cost is O(s 1 +~), query time is O(n 1 +'/Sl/d), and insertion and deletion of  

points costs O(s/n I -~) amortized time per update. 

4. Spanning Trees with Low Stabbing Number 

Let S be a set of n points in R a. Let T be a straight-edge spanning tree on S. The 

stabbing number of T is the maximum number of edges of T crossed by a 
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hyperplane. It has been show in [17] and [44] that any such set S has a spanning 
tree with stabbing number O(n ~ - t/d), and that in the worst case this bound is tight. 

Such spanning trees have been used in several applications, including range 

searching [17], implicit representation of faces in arrangements [252, and ray 

shooting amidst arbitrary collections of segments [12. Several algorithms have 

been given for constructing spanning trees with low stabbing number [32, [17], 

[252, [28], [44], but their time complexity is not very efficient. In the planar case 

the best (deterministic) algorithm obtained so far is due to Matou]ek [27], and 
runs in time O(n 3/2 log 2 n). 

In this section we adapt the CSW scheme to obtain an O(n log n)-time algorithm 

for constructing spanning trees with low stabbing number for points in R d, d = 2, 3. 

We pay a small price for this significant reduction in time--the stabbing number 
of the resulting tree is O(n ~- ~/d+~) instead of the optimal bound O(n t -  t/d). For the 

sake of simplicity we describe the algorithm for d = 2; with a few straightforward 

modifications, the same approach also works for d = 3. As in [32 and [28], the 

tree produced by our algorithm is actually a spanning path. 
The algorithm follows the approach of the CSW scheme, but constructs the 

spanning path directly instead of the data structure produced in [162. We begin 

as in [16] with a taken to be some constant. We choose some appropriate constant 

parameter r, construct a set of O(r 2) representative lines, and construct O(log r) 

planar subdivisions, of O(r 2) cells each, with the property that for each line 1 there 

is at least one sparse subdivision, that is, l crosses only O(r) cells of the map and 

only O((n/r) log r) points of S lie in those cells. As mentioned in Section 2, each 

map is the vertical decomposition of the arrangement of some r lines. We now 

take these O(log r) triangulations, and superimpose them on each other. This yields 

one common convex subdivision, ~¢, of the plane with the property that the 

number of points of S in the cells crossed by any line is O((n/r) log r). Moreover, 

the arguments of [16] imply that the overall complexity of J¢ is O(r 2 log r), and 

that the number of cells of ~//crossed by a line is O(r log r). 
We now construct our desired spanning path T as follows. For each cell z of 

~// let  n, = IS c~ zl. We recurse within each z to construct a spanning path T~ of 

S c~ z with low stabbing number. (If this set is empty, there is nothing to be done, 

and if n, is less than some constant, we take T~ to be any spanning path of S c~ z.) 

Now we connect all the paths T~ into the full spanning path T in any convenient 

manner, adding O(r 2 log r) new edges. 
Let K(n) denote the maximum stabbing number that can arise in our construc- 

tion for a spanning path on a set of n points. Then we have K(O(1)) = O(I), and 

a r  log • 

K(n) < ~, K(n i) + br 21og r, 
i=1 

so that ~ i  n~ < (cn/r) log r, for appropriate constants a, b, c. It is easily verified 

that the solution of this recurrence is K(n) < A,n 1/2+~ (the constant r is chosen as 

a function of e, and the constant of proportionality A~ depends on r, thus also on e). 

As for the running time, we spend O(n) time to construct the convex subdivision 
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J¢, to distribute the points of S among its cells, and to connect all paths T~ into 

the full path. Since each subproblem has size O((n/r) log r), the total time spent is 

easily seen to be O(n log n). 
Finally, using the dynamization technique of the CSW scheme, we can also 

update the spanning path in O(log 2 n) amortized time as we insert or delete a 

point. For the sake of completeness, we describe the algorithm in more detail. 

Apart from maintaining the spanning path, we now also maintain the CSW 

partition tree, 3", that we use to construct the spanning path. At each node v ~ ~'-, 

we implicitly maintain a spanning path II~ of the points of S~, whose stabbing 

number is O(n~/2+'). Suppose we want to insert a point p to S (deletions are 

symmetric). We follow the path rr of J ,  consisting of nodes whose cells contain 

p, in a bottom-up fashion and process each node v of this path as follows: 

(i) If v is a leaf, add p to S~ and reconstruct the spanning path of Sv in any 

convenient manner. 
(ii) Otherwise, let w be the child of v whose cell contains p. We add p to Sw 

recursively, and obtain a modified path 1-I w that includes p too. We update 

FIo by connecting the (possibly new) endpoints of I-lw to the former 

neighbors of this subpath in I-I v. 
(iii) Finally, let my be the number of points in S~, when 3-~ was reconstructed 

last time. If S~ has been visited during mv/r updates since that last 

construction, we reconstruct from scratch the subtree rooted at v and also 

the spanning path Fly for S~. 

Our update algorithm guarantees that if a node v had mo points when it was 

constructed last time, then the number of points in the cells intersected by a line 

is at most ((c + 1)m~/r) log r. As a result, the stabbing number of the spanning path 

is always O(nl/2+~). As for the time spent in updating the tree, we reconstruct the 

spanning path of S o after mo/r update operations on So, and spend O(m o log m~) 

time in reconstructing it. Therefore, using the same argument as in Section 3, we 

get the following recurrence for the amortized update time U(n~): 

U(no) <_ U(  (c +r 1)n~ - -  log r) + O(log nv) + O(r 2 log r), 

whose solution is O(log 2 nv). Hence, the spanning tree can be updated in O(log 2 n) 

amortized time per insert/delete. 

A similar technique applies in three dimensions, using the bounds established 

in [16] on the complexity of the partition obtained by superimposing vertically 

decomposed arrangements of planes in 3-space. We omit the details, which are 

rather straightforward. In summary, we have shown 

Theorem 4.1. Given a set S of n points in R ~, for d = 2, 3, we can construct, in 
time O(n log n), a spanning path Ton S with stabbing number O(n 1- l/d+~). Moreover, 

the path can be updated, as points are being inserted into or deleted from S, in 
O(log 2 n) amortized time per update. 
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Remarks 4.2. (i) The recurrence on K(n) also applies to the time needed to find 
all the edges of Tcrossed by a query line or plane, hence this time is also O(n I - Itd÷~) 

for d = 2, 3. 
(ii) If we choose r = n ' in the above algorithm, the stabbing number K(n) 

improves to O(n 1 - l/a(log n)C~l°~l°gn), where c~ is a constant depending on the value 

of e. However, the running time now becomes O(n 1 +~). 

(iii) This algorithm does not extend to d > 3 because it crucially depends on 

each node of the structure storing only a single partition, which is obtained by 
superimposing O(log r) different partitions. As already mentioned, in higher 
dimensions we do not have sharp bounds for the complexity of the map resulting 

by such a superposition. This is the only missing ingredient for extending our 

algorithm to higher dimensions. 

5. Ray Shooting in the Plane 

The problem studied in this section is one of the basic problems in computational 
geometry. Let (~ = {e 1 . . . . .  en} be a collection of n line segments in the plane. We 

wish to preprocess (~ so that, given any query ray p, we can efficiently compute 
the first inersection, if any, of p with the segments in f#. The problem has been 

studied by Chazelle and Guibas [15] for the special case where the segments of 
f9 form the boundary of a simple polygon (see also 1,12]). A solution for the general 
case has been given by Agarwal [1]; it uses O(r/3/2 log 4"33 n) preprocessing, 

O(n log 4 n) storage, and O ( ~  log 2 n) query time. This has been slightly 

improved by Bar Yehuda and Fogel I-8]; their solution takes O((n~(n)) 3/2) pre- 

processing, O(n log 2 n) storage, and O ( ~  log n) query time (the bounds can 

be slightly improved if the segments are nonintersecting). The recent results of 

Matou~ek 1,27] and of Cheng and Janardan 1,19] also lead to improved perfor- 

mance. 
Although no similar lower bounds are known for the problem, it is conjectured 

that the above technique is quasi-optimal in terms of query time, assuming 
quasi-linear storage. Nevertheless, the preprocessing cost is rather high. Using 
alternative techniques, Guibas et al. [26] have obtained a solution that requires 

only close to linear preprocessing time and storage, but the bound obtained for 
the query time is worse--only about O(n 2/3) (the technique of Dobkin and 

Edelsbrunner [22] mentioned above can also be adapted to yield similar results). 
An alternative technique, which also gives suboptimal query time, has been given 
by Overmars et al. 1"35]. It is based on storing the given segments in a partition 

tree constructed on their endpoints. 
In this section we combine the better of the two worlds, obtaining a solution 

that is efficient both in terms of preprocessing cost and of query time--it uses 
O(n log 2 n) preprocessing time and storage, and O(n ~/2÷~) query time. As in the 

previous section, we lose slightly in terms of query time, but gain considerably in 
terms of preprocessing. In addition, our technique allows space/query-time tradeoff 

and can be dynamized efficiently. 
We first present an algorithm for ray shooting amidst a collection of lines. We 
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need it as a subroutine to the general algorithm which is given next. In Section 

5.2 we consider ray shooting among segments and finally, in Section 5.3, we explain 

how to modify our algorithm to report or to count the segments intersected by a 

query segment. We also discuss the issues of space/query-time tradeoff and of 

dynamization. 

5.1. Ray  Shooting Among Lines 

In this section we assume that the elements of (~ are full lines. Dualize each line 

of ~ to a point, resulting in a set f#* of n points. Construct a single level CSW 

partitioning structure on fa* with cr = O(1), as described in Section 2. For a node 

v of the tree, let f9~ be the set of lines corresponding to the points of fa*. We 

construct, as a secondary structure, the lower and the upper envelopes of f9~, that 

is, the faces in the arrangement of fay that lie respectively above and below all the 

lines of f#v. If we have already computed the lower and upper envelopes at all the 

children of a node v, then the lower and upper envelopes of f#~. can be computed 

in O(Ifavl) time, so the overall preprocessing time and the space required are 

O(n log n). 

Given a query ray p, let s be its origin point and let l be the line supporting 

p. To answer the ray-shooting query, we query the primary structure with the 

half-plane lying above s*, the line dual to s. Let fa* be a canonical subset in the 

output of the query, then s lies below all the lines dual to the points of (9*. As a 

result, the first intersection point of p and the lines of fav lies on the lower envelope 

of f#,~. Since the lower envelope is a convex polygon, the first intersection point 

can be computed, in logarithmic time, by a binary search. By repeating this step 

for all canonical subsets, we can find the first intersection point of p and the lines 

of fa that lie above s. We now repeat the same procedure but query with the 

half-plane lying below s*, and choose the intersection point that lies nearest to s. 

The correctness of the algorithm is obvious. As for the query time, we spend 

logarithmic time at each canonical subset, and, since the query output consists of 

O(n 112 ÷ ~) canonical subsets, the query time is O(n 1/2 ÷ ~). 

Theorem 5.1. Given a collection o f  n lines, we can preprocess it, in time O(n log n), 

into a data structure o f  size O(n tog n), so that a ray-shooting query can be answered 

in O(n 1/2 +~) time. 

Remark 5.2. The above technique can also be used to compute efficiently the 

face in the arrangement off9 that contains a query point; see [25] for more details. 

Since the CSW scheme admits space/query-time tradeoff, we can reduce the 

query time by allowing more space, as follows: We choose an appropriate value 

of a and construct the corresponding CSW structure. If a node v is in the bottom 

part of the structure, then, for each child w of v (corresponding to a triangle ~ of 

the subdivision stored at v), we store the lower envelope of the lines (dual to the 

points of S*) lying above z and the upper envelope of the lines lying below z. 
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Answering a query is done as above. Following the analysis of the CSW scheme, 

we conclude that if we allow s storage, we can preprocess the lines in O(sl + ~) time 

so that a ray-shooting query can be answered in O(n I +~/s ~/z) time. 

Finally, since the upper and lower envelopes of a set of n lines can be maintained 

dynamically in O(log 2 n) time per insert/delete [33], Theorem 3.1 implies 

Theorem 5.3. Given a collection f~ of n lines and a storage parameter nX+~ < 

s _< n 2+', we can preprocess f~, in time O(sl+'), into a data structure of size s, so 

that a ray-shooting query can be answered in time O(n 1 +'/xfs). Moreover, lines can 

be inserted to or deleted from the structure in amortized time O(s/n t "~) per update. 

5.2. Ray Shooting Among Segments 

In this section we present two algorithms for ray shooting among a collection of 

(possibly intersecting) segments. The first algorithm constructs a standard multi- 

level CSW structure, while the second algorithm applies the CSW scheme in a 

somewhat different manner. In particular, the segments on which the secondary 

structure is constructed at each node v are not necessarily in 1-1 correspondence 

with the points of the primary structure associated with v; see below for details. 

Moreover, although both algorithms reduce the problem to ray shooting among 

lines, the basic difference is the way in which the reduction works. The first 

algorithm uses the observation that if the left and right endpoints of a segment e 

lie on opposite sides of the line containing the ray p, then p intersects e if and 

only if it intersects the line containing e. The second algorithm, on the other hand, 

is based on the fact that if the starting point of p is in a triangle ~, then p hits a 

segment e, whose endpoints lie outside z, at a point inside z, if and only if p 

hits the line containing the segment e at such an interior point. The advantage of 

the second algorithm is that if we choose tr = O(1), its preprocessing time and 

space requirements are better than those of the first algorithm by a factor of log n. 

Another advantage of the second algorithm is that it can be extended to a 

collection of nonintersecting Jordan arcs (see [4]). 

5.2.1. First Solution. Let L be the set of the left endpoints of the segments in (~. 

Preprocess L for half-plane range queries, as described in Section 2, allowing 

quasi-linear storage. We next take each of the canonical subsets of L that are 

produced in the primary data structure and process it further as follows: Let L' 

be such a subset, and let R' be the set of right endpoints of the segments whose 

left endpoints are in L'. We preprocess R' for half-plane range queries, and attach 

the resulting data structure to U as a secondary structure. This is not the end yet: 

We next take each secondary canonical subset R", extend its corresponding 

segments to full lines, and process them for ray shooting using the technique 

described in the preceding section. Note that, altogether, we have constructed a 

4-level structure. By Theorem 5.1, the auxiliary structure of a second-level 

canonical subset of m points requires O(m log m) space and preprocessing. The 

overall storage and preprocessing are thus O(n log 3 n) (see Remark 2.1(i)). 
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Given a ray p, let l be the line supporting p, and let s be the origin of p. We 

first query the primary data structure with the half-plane lying above l, then query 

the secondary data structure of each canonical subset of the output with the 

half-plane lying below I. We next query again the first-level structure with the 

half-plane lying below l, and the secondary structures with the half-plane lying 

above/. Let f#" be a secondary canonical subset in the output of the query so far. 

We know that 1 hits all segments in fg" because their endpoints lie on different 

sides of 1. Thus extending these segments to full lines will not change the first one 

to be hit by p. We thus continue at this level with the ray-shooting procedure 

described in the preceding section, applied to each of these subsets (#". We collect 

the outputs of all these "subqueries," and choose the one nearest to s as the final 

output. 
Concerning complexity, we pay logarithmic time at each fourth-level structure, 

and the number of such structures that are retrieved during the query processing 

is O(n 1/2 +~), as follows from the discussion in Section 2. The resulting query time 

is thus O(n 1/2 +~). Hence, we can conclude 

Theorem 5.4. Given a set of n arbitrary segments in the plane, we can preprocess 

it, in time O(n log 3 n), into a data structure of size O(n log 3 n), so that, for any query 

ray p, the first segment that p hits can be found in time O(n 1/2 +~). 

5.2.2. Second Solution. We now describe the second algorithm for ray shooting 

among segments. Let S be the set of endpoints of segments of (#. We construct a 

one-level quasi-linear CSW structure on S. Recall that each of its nodes v is 

associated with a subset S v ~_ S and a cell A v. We also associate with v a set of 

segments f#v- A segment e belongs to fay if at least one of its endpoints is in Sw, 

where w is the parent of v, and A v intersects e but does not contain any of its 

endpoints. We extend the segments of ~v to full lines and preprocess them for ray 

shooting as described in Section 5.1. It can be checked that ~o~a-I~¢~l  = O(n log n). 

Since the secondary structure of v requires O(1 (a~l log l f#~l) space and preprocessing, 

the overall storage and preprocessing time are O(n log s n). 

To answer a ray-shooting query we trace the query ray p through the 

subdivision, M, stored at the root, as follows. Let Av be the cell of M containing 

the origin point of p. We use the substructure stored at the child v to determine 

whether p intersects a segment of f~ inside A~, and, if the answer is positive, we 

compute the first intersection point and return it as the output. If not, we visit the 

next cell A z of M intersected by p and move the origin point to the first intersection 
point of p and Az. 

The first intersection point of p and f9 lying inside A~ is computed in two steps. 

The segments of f# that intersect A~ can be classified as either 

(i) "long" segments whose endpoints lie outside A~, or 

(ii) "short" segments, one of whose endpoints lies in A~. 

We compute the first segment of each class hit by p and then choose the one that 
lies nearer to the origin of p. 

The first short segment hit by p inside Av is computed by searching through 
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the structure of t, recursively. To compute the first long segment hit by p, we 

exploit the following observation: p hits a long segment e inside A~ if and only if 

it intersects the line containing e inside A,,. Thus, using the secondary structure 

stored at v, we can determine the first long segment hit by p inside A~. (The 

secondary structure stores only segments that have at least one endpoint in the 

cell of the parent of v; nevertheless, at the root all long segments in A,, have this 

property, and the property continues to hold, by construction, at all other nodes 

as well.) Since we spend O(n~/z÷~) time for finding the first long segment hit by p 

and visit O(r log r) cells of the subdivision stored at the root, we get the following 

recurrence for the query time 

c r  log r 

Q(n) <_ Y, 
i=1 

Q(nl) + O(nl/2+er log r), 

where c is some constant and ni is the number of short segments in the ith cell 

crossed by p. It follows that ~i=lv~'l°g" ni = O((n/r) log r). Hence, the solution of the 

above recurrence is easily shown to be 0(nl/2÷~). We thus obtain 

Theorem 5.5. Given a collection of n segments in the plane, we can preprocess it, 

in time O(n log 2 n), into a data structure of size O(n log 2 n), so that a ray-shooting 

query can be answered in O(n 1/2+~) time. 

Remark 5.6. If ~ is a collection of nonintersecting segments, then we can slightly 

improve the structure, as follows. At each node v we store the following secondary 

structure. We clip the segments of f#o to within A~ and process their arrangement 

for fast point location. The first segment of f#~ hit by p inside Av can then be 

computed in O(log n~) time by locating the origin of p among the clipped segments 

and then by testing a constant number of segments for possible intersection with 

p; see [35] for details. Since the secondary structure requires only O(n~) storage 

and O(n~ log n~) preprocessing, the overall storage and preprocessing in this case 

become O(n log n) and O(n log 2 n), respectively. 

5.2.3. Space~Query-Time Tradeoff. Since the first solution basically follows the 

CSW scheme at each level, Theorem 5.3 implies that, if we allow s storage for the 

structure, the query time can be improved to O(nl+~/~ss). Furthermore, the 

structure supports insertions and deletions of segments in amortized time O(s/n ~ -~) 

per update. To achieve similar enhancements of the second solution, we have to 

construct the bottom part of the structure too in a somewhat different way. Let 

v be a node of the CSW structure such that tSvl < a. Let (~v denote the set of 

segments, one of whose endpoints is in Sv. We dualize the segments of ~v to double 

wedges; let f#* denote the set of resulting double wedges. Using the algorithm of 

[29], we choose a subset of r double wedges of f~* and triangulate their 

arrangement so that each triangle intersects the boundary of at most O((l~l/r) 

log r) double wedges. For each triangle z, we create a child w associated with 

and recursively construct the structure on the double wedges whose boundaries 

intersect z. We also take the segments dual to the double wedges of f~* that contain 
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z, and extend them to full lines; let Hw denote the set of these segments, and let 

Lw denote the set of resulting lines. We construct the arrangement .~¢(Lw) and 

store it at w as the secondary structure. 

A ray-shooting query is answered in the same way as earlier except that at 

each node v in the bot tom part of the structure we do the following: We dualize 

the line l containing p to the point l*, and locate it in the subdivision stored at 

v. Let w be the child corresponding to the cell containing l*. If a segment e e f#v 

intersects I, then the double wedge dual to e either intersects z or contains z. For 

the first type of segments, we recursively search through the primary structure of 

w. For the second type of segments, we locate the cell f e d(Lw) containing the 

origin point s of p. Since I intersects all segments ofHw, the first intersection point 

of p and the segments of f#w is the same as that o f f  and p. However, f is convex, 

so the first intersection point of f and p can be computed, in O(log n) time, by a 

straightforward binary search. 

Following the same analysis as in [16], the query time is easily seen to be 

O(nl+'/x~s). Finally, the arrangement of Lw carl be updated in O(]L~I loglLwl) 

time~ as we insert or delete a line, see [18]. Hence, the overall structure can be 

maintained dynamically in O(s/n t -~) amortized time per update. We therefore have 

Theorem 5.7. Given a collection of n segments and a storage parameter 

nl+~< s < n 2+~, we can preprocess the collection, in O(s 1+~) time, into a data 

structure of size s, so that a ray-shooting query can be answered in O(n 1 +~/x~ss) time. 

Moreover, the structure supports insertions and deletions of segments in amortized 

time O(s/n 1-~) per update. 

5.3. Intersection Queries 

Consider the following problem: "Given a set f# of n segments in the plane, 

preprocess it into a data structure, so that the segments of f# intersected by a query 

segment can be reported efficiently." We show that our ray-shooting structure can 

be modified to handle this problem. We only describe how to modify the first 

solution; the second solution can also be modified in a similar manner. 

We construct the first two levels of the structure as in Section 5.2.1; for each 

canonical subset of the second-level structure, we extend the corresponding set of 

segments to full lines. We dualize these lines to points and preprocess them for 

triangle range searching. We thus obtain a three-level structure. 

To answer a query, we proceed in the same way as for ray-shooting queries. 

Recall that a segment g of a secondary canonical subset if" in the output of the 

query intersects the query segment e if and only if the line I containing g intersects 

e. In dual setting it is the same as saying that the double wedge dual to e contains 

the point dual to I. Therefore, using the third-level structure, we can report (or 

count the number of) all segments of f~" intersecting e. Once again, we can derive 

space/query-time tradeoff, and we can maintain the structure dynamically. We 
thus obtain 
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Theorem 5.8. Given a collection c~ of n segments in the plane and a parameter 

n I *' _< s < n 2+~, we can preprocess (9 into a data structure of size s, in time O(s 1 +~), 

so that we can report all k segments of f~ intersecting a query segment in time 

O(n I +'/s 1/2 + k), or can count the number of such segments in time O(n t *~/sl/2). As 

above, insertions and deletions of  segments can be performed in amortized time 

O(s/n I -~) per update. 

6. Efficient Output-Sensitive Hidden Surface Removal 

In a recent series of papers, Overmars and Sharir [35]-1,38], 1,41] have studied 

the problem of output-sensitive hidded surface removal. In this problem we are 

given a collection A of n nonintersecting triangles in 3-space, and we want 

to compute the portions of these triangles that are visible from some viewing 

point z. In order to make our algorithms work, we have to assume that the 

triangles have a known depth order with respect to z (see [41] for more details). 

For simplicity, we assume that the triangles in A are all horizontal, and that the 

viewing point is at z = - oo. In this case the xy-projections of the visible portions 

form a planar map J¢, known as the visibility map of the triangles. If the 

combinatorial complexity (say, the number of vertices) of J¢ is k, the goal is to 

compute ~ in time that depends on k (and on n) so that when k is small the 

algorithm runs faster. Ideally, we would like the time complexity to be something 

like O(f (n )+  kg(n)), where f (n) is subquadratic and g(n) is small, say poly- 

logarithmic in n. This however appears to be difficult to achieve in general. 

Overmars and Sharir initially gave two output-sensitive solutions, the first 1,41] 

is very simple and its running time is O(nx//k log n). An improved algorithm is 

given in [37]. It is a fairly complicated algorithm but its time complexity, 

O(n 4/3 log 2/3 n + k3/~n4/5+~), is an improvement over the first algori thm) In this 

section we describe two algorithms for this problem. In our first algorithm we 

follow the general approach of the second algorithm of 1-37], and plug into it our 

ray-shooting technique described in the previous section. This results in a further 
improved algorithm whose running time is O(n2/3+2ek2/3-*+ n 4/3 log 2/3 n). We 

then present a different algorithm, based on the dynamic version of our ray- 

shooting technique, whose running time is O(n 2/a-*k 2/3 +~ + n 1 +*). This algorithm 

is significantly simpler than the previous algorithm. 

6.1. First Algorithm 

To explain our improvement we give a very brief sketch of the technique of [37], 

and refer the reader to that paper for more details. Let the given triangles be 

A~ . . . . .  A,, in the order of increasing height. 

a The bound just stated is a slight improvement over the bound given in [37], obtained by applying 
Matou~ek's partitioning algorithm [29]. 
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• We first find all the vertices of the triangles that are visible from z = - oo. 

This can be accomplished, for instance, by a batching technique of Agarwal 
[3] in time O(n 4/a log 2/3 n). 

• Project all triangles vertically on the xy plane to obtain a planar arrangement 

of overlapping triangles. 

• Choose some parameter r in an appropriate manner (detailed below), and 

apply the partitioning algorithm of Agarwal 12] or of Matou~ek [29] to 

obtain a decomposition of the plane into O(r 2) triangular cells, each of which 

meets only O(n/r) projected triangle edges. This can be done in time O(nr) 
[29]. 

• For each cell z we compute separately the portion of the map ¢¢/clipped to 

within z. We first find all triangles whose projections fully contain ~; the 

lowest of these triangles serves as a "background" triangle for z and all 

triangles lying higher than it can be ignored at r. 

• We next take the set K t~) of projected triangles that have an edge that crosses 

z (and lie lower than the background triangle), and represent it as a 

minimum-height binary tree B storing the triangles of that set in its leaves in 

the order of increasing height. For each node ~ of B we take the set K¢ of 

triangles stored at the leaves of the subtree rooted at ~, and preprocess the 

edges of their projections (clipped to within z) for fast ray shooting as in the 

preceding section. 

• Next we compute the visibility map over the edges of the cell z. This is an 

easy one-dimensional lower envelope calculation, that can be performed in 

time O((n/r) log(n/r)). 

• We now compute the "inner" vertices ofvh¢ over z by performing ray shooting 

along projections of visible edges in Jr', starting from the boundary of z, dz, 

and going inward. These shootings are somewhat involved (see [37] for 

detailsJ--a shooting along the projection of an edge e of some triangle A 

needs to be performed only either in the collection of the projections of the 

triangles that lie below A or in the collection of the projections of the triangles 

that lie between A and the triangle lying directly above e. However, each 

such collection is the disjoint union of O(log n) subtrees of our tree B, and 

each such subtree has been processed for fast ray shooting, so we perform 

these shootings separately, and the nearest of all the outputs is the answer 

to our query. 

• There are several additional technical issues that have to be addressed. For  

instance, there are "spurious" ray shootings that do not discover any vertex 

of ~¢/but shoot from one side of z to the other. Another issue is that the 

value of r is a function of the output size k, which is not known to us in 

advance. However, all these problems are handled efficiently in [37], and we 

tackle them in the same manner; we refer the reader to that paper for more 
details. 

Our improved solution follows the same overall approach just outlined. The 

only difference is that we use the planar ray-shooting technique described in the 

previous section--as noted, this is the only known technique that achieves both 
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quasi-linear preprocessing time and quasi-optimal query time, and both character- 

istics are useful in the above hidden surface removal algorithm. 

Following the analysis given in [371 and plugging the complexity bounds for 

our ray-shooting technique, the overall time used by the algorithm is easily seen 

to be 

0 n 4"/3 log 2/3 n + nl+'r 1-~ + k 

Hence, choosing l-r = k2/3/nl/3q (in the same manner as in [37]), we obtain 

Theorem 6.1. Hidden surface removal in a collection of n horizontal triangles in 

3-space, viewed from z = - go (or, more generally, of n nonintersecting triangles with 

a known depth order with respect to an arbitrary viewing point), can be performed in 

time O(n 4/3 10g2/3 n + n2/a+2~k2/3-~), where k is the size of the resulting visibility 

map of  the triangles. 

6.2. Second Algorithm 

We now present our second algorithm that is based on the dynamic ray-shooting 

technique developed in the preceding section. It constructs the visibility map 

incrementally by adding the triangles one by one in the nondecreasing order of 

their z-coordinates. Suppose we have computed J/el, the visibility map of A~ . . . . .  Ai 
and we are about to add A~ + 1. Since we are adding the triangles in the increasing 

order of their heights, A~+~ cannot obscure any portion of A 1 . . . . .  A~, so A~÷ 1 can 

appear only in •2 _ Ui, where U~ is the union of the projections of A1,..., A~. 

We refer to the boundary of U i as the contour of ~t'i, and denote it by C~. Let (~ 

denote the number of segments forming C~, and let ( = max~ (~. (Note that we 

always have ( < k.) For  the sake of convenience, we denote by A~ both the triangle 

and its xy-projection. 

The processing of Ai ÷ 1 consists of computing J l l  + 1 and C~ + 1 from .~'~ and Ci, 

respectively. The new vertices of-// i+ 1, that is, the ones that were not in ~¢/i, are 

either the vertices of Ai+ t or the intersection points of C~ and dA~÷ 1. Moreover, 

every intersection point of C~ and 9Ai+ 1 is a vertex of ~t'~+ 1- Once we know the 

new vertices of ~'~+ ~, its new edges can be computed in a straightforward manner. 

We maintain the following three data structures on C~: 

• We preprocess the edges of C~ for efficient (dynamic) ray-shooting queries as 

described in Section 5.2.1. 
• We preprocess the edges of C~, as described in Section 5.3, so that the 

intersections between the edges of Ci and a query segment can be reported 

quickly. 
• We preprocess the left endpoints of the edges of C~ for triangle range 

searching queries so that the left endpoints lying in A~ + 1 can be computed 

quickly. 

Remark 6.2. Recall that the first two data structures are almost the same except 

at the third level, so we can combine them into one structure by storing two 
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auxiliary structures at each node of the second level. Nevertheless, for the sake of 

clarity, we assume that we have two separate structures. 

The updating of Jr '  i and Ci consists of the following three steps: 

(i) Computing the new vertices of  ~/t',: For  each edge e of Ai+ t we compute 

the intersection points of e and C~ using the second data structure. These 

points partition e into subsegments that alternately lie inside and outside 

Ui. Thus if e intersects Ci, we can also easily decide which endpoints of e 

appear in ~'i+1. If e does not intersect C~, we shoot a ray p from one 

endpoint a of e along the line containing e in the direction of e. The 

ray-shooting query can be answered using the first data structure. If p does 

not intersect Ci, both endpoints of e appear in J/ i+ 1, otherwise we easily 

determine from the first hit of p and C~ whether both endpoints appear in 

d¢'~+ 1 or both do not appear. 

(ii) Deleting the edge of C i -  Ci+l: For  each edge e~Ci,  e c~Ai+l does not 

appear in Ci+l, so i fe  intersects A~+ 1, we replace e by e - A~+I; e - A~+l 

may consist of two connected components. We delete e from C~, insert the 

connected components of (the closure of) e - A~+ 1 back to C i, and update 

all structures accordingly. 

As for finding the edges e that intersect A~+ 1, e satisfies at least one of 

the following two conditions: (i) e intersects c~A~÷ 1 or (ii) the left endpoint 

of e lies in Ai÷ 1. The first type of edges have already been determined in 

step (i), and the second type of edges can be obtained using our third range 

searching data structure. 

(iii) Adding the edges ofCt+l - Ci: Let ab be an edge of Ai+ 1. If ab does not 

intersect C~ but a appears in J/~÷ i, then ab is a new edge of Ci+ r On the 

other hand, if ZI, Z2 . . . . .  Zm are the intersection points of C~ and ab, then 

either a~(1, X2X3, X4X5 . . . .  or XlX2, X3X4 . . . .  are new edges of Ci+ 1- We add 

these edges to Ci+ 1 and update the data structures accordingly. 

Repeating this procedure for all triangles in order, we obtain the final visibility 

map ~/. We now analyze the time spent in adding A~ + r Let ki + 1 be the number 

of new vertices in vg~+ 1, and let fl~+ 1 be the number of edges of C~ that are fully 

contained in A~+ 1. Obviously, the number of edges of C~ that intersect Ai+l is at 

most k i+ I + fll + 1" 

By Theorems 5.7 and 5.8, step (i) can be executed in time O((~i/tr) 1/2 +~ + ki+ 1), 

where a is the parameter that controls the storage size of the CSW scheme, whose 

value will be chosen later. In step (ii) at most k~+l + fl~+x edges are deleted and 

at most 2ki+ 1 edges are inserted, so the number of updates performed on each 

structure is at most fli+l + 3ki+l. As a result, step (ii) can be accomplished in 

(amortized) time O((fl~+l + ki+ 1)(~tr). Finally, we insert at most ki+l + 3 edges in 

step (iii), so this step requires O(k~+ ~(~a) (amortized) time. 

Hence C~÷ 1 can be computed, and the various structures can be updated after 
inserting Ai+ i, in time 

0 q- (fli+l -{- k i+ l ) (  err • 
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Observe that each intersection point of Ct and t~A~+~ creates at most one new 

edge along C~, that the edges of C~ lying completely inside A~+ ~ do not appear in 

Ci+~, and that at most k~+l + 3 edges of Ci+~ occur along dA~+I. Hence 

( i + l - - ( i < 2 k ~ + l - - f l i + l + 3  or flt+l < ( i - - ( i + l + 2 k / + l  + 3 .  

The total time spent in adding A~+ ~ is thus 

O ( ( ~ ) l / z  +~ + (ki+ l + (~ - (i+ l)(~a). 

Thus, T(n), the overall time spent in computing Jr', is 

T(n) = 
i=O 

o n + k , +  ~(~-~,+~) ~ o  
i=1 t=0 

// //(x~ I12 +~ k('o') 
ot.t : + 

because ~7= 1 ki = k. We now choose tr = Fn2/a(ua/kz/3"], so that 

T(n) = O(n2/a+~'kW3(l/3 + k(  ~ + nl+~'), (6.1) 

where e' is different from e but still arbitrarily small positive constant. Since ~ < k 
and k = O(n2), we obtain T(n) = O(n2/3+~'k2/3 + n 1 +~'). 

Choosing the value of ~r is somewhat tricky, since we do not know in advance 

the value of k. As in [37], we guess the value of k (and thus of a). We start with 

some appropriate value of k, say n ~/2. Let k¢,, be the current estimated value of 

k. We compute the value of tr using k~u,. If, at any stage, k becomes larger than 

k~,,, we double the value ofk  . . . .  recompute the value of a, and rerun the algorithm. 

The overall time complexity of the algorithm is easily seen to be asymptotically 

the same as in (6.1). We thus conclude generalizing as in Theorem 6.1: 

Theorem 6.3. Given a set of  n nonintersecting triangles in R a with a known depth 

order with respect to a given viewing point, their visibility map can be computed in 

time O(n2/3+~k2/3 + n 1 +e), where k is the output size. 

7. Ray Shooting in Three Dimensions 

Let ~- = { T 1 . . . . .  T,} be a collection of n triangles in •a. We wish to preprocess 

it into a data structure that supports fast ray-shootino queries, where each such 

query asks for the first triangle, if any, intersected by a query ray. Note that we 
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do not put any restriction on the query ray--i t  can emanate from any point in 

any direction; nor do we require any special structure of the given collection of 

triangles--our technique can even handle intersecting triangles. We show that, 

allowing s storage, we can preprocess ~" in time O(s I ÷') into a data structure of 
size s, so that a ray-shooting query can be answered in time O(n 16/ls+~/s 4/15). 

Let el . . . . .  e3n be the edges of the triangles in ~--, and let lj denote the line 

containing e~, for j  = 1 . . . . .  3n. Let p be a query ray, and let 2 be the line containing 

it. Let T be a triangle of o~ r ,  let e I, e 2, e a denote its edges, and suppose that they 

lie respectively on the lines ll, 12, and 13. We orient the lines Ii so that T lies to 

the right of each of them. The line 2 intersects T if and only if it has the same 

relative orientation with respect to the three lines I i. The relative orientation of 

two oriented lines l, 2 in 3-space is defined to be the orientation of the simplex 

abcd, where a, b ~ t, c, d e 4, 1 is oriented from a to b, and 2 is oriented from c to 

d. Equivalently, it is also the sign of the inner product between the two vectors 

in 6-space representing the Pliicker's coordinates of the two lines. More details 

concerning Pliicker's coordinates and relative orientations can be found in 1-14], 

[42], and 1,43]. 

These observations suggest the following approach. We describe a solution that 

uses quasi-linear storage; the general case can be handled using the tradeoff 

properties of the CSW scheme, but we derive below a somewhat improved tradeoff. 

We first take one edge from each triangle T e ~--, and form the collection &el of 

the lines containing these edges and oriented as above. We map each line I in ~ t  

to its Pliicker point r~(/) in projective 5-space (see [14] for more details). We apply 

the CSW partitioning scheme to the resulting collection, ~1, of points in 5-space. 

For each canonical subset of Pliicker points, or equivalently of lines in 3-space, 

we take the corresponding subset of triangles of J-,  pick a second edge in each, 

form the corresponding set of oriented lines containing these edges, transform 

them into Pliicker points, and apply the CSW scheme to these points. We attach 

the resulting data structure as a secondary substructure at the corresponding node 

of the primary structure. We then repeat the same process once more for each 

canonical subset in any secondary substructure, where now we use the third edge 

of each corresponding triangle of ~-'. 

We have thus obtained a 3-level structure, which uses O(n ~ ÷') space and takes 

O(n~ ÷~) time to construct. We use this structure to (partially) process a ray-shooting 

query as follows. We map the line 2 containing our query ray p into its PliJcker's 

hyperptane w(2) in projective 5-space (again, see [14] for details). We query with 

this hyperplane our structure to obtain all triples of lines in 3-space, each triple 

containing the edges of a single triangle in ~ ,  so that the three lines in a triple 

have the same relative orientation with respect to 4. As explained in 1,14], any 

such triple corresponds to a triple of Pliicker points all lying on the same side of 

t0(k); those triples are easily obtained using our structure. In other words, the 

query output consists of all triangles stabbed by 4. Since we are in 5-space, the 

properties of the CSW scheme imply that the query time is O(n 4/5 +~), and that the 

output of our query consists of O(n 4/5÷~) pairwise disjoint canonical subsets of 
triangles. 

We next have to shoot along p within each of these canonical subsets and 
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report the hit point nearest to the origin of p. Let 3-' be one of these canonical 

subsets. Extend each triangle in ~3-' to a full plane, and preprocess the resulting 

collection of planes for fast ray shooting. This can be done as follows. Dualize the 

collection of planes to obtain a set of points in 3-space. Apply the CSW partitioning 

scheme to this set. Take the origin point a of p, dualize it to a plane a*, and query 

the resulting data structure with a*. This gives us a collection of O(n 2/3 + e) canonical 

subsets of dual points, each lying either fully above or fully below a*. For each 

of these canonical subsets we go back to the primal space, and conclude that a 

lies either above all the corresponding planes, or below all of them. We can 

therefore precompute the upper and lower envelopes of this collection of planes, 

each being an unbounded convex polyhedron, and preprocess each of them for 

fast ray shooting, using the hierarchical representation of convex polyhedra given 

by Dobkin and Kirkpatrick [23], [24]. 
Using the properties of the CSW scheme, it is easy to verify that the overall 

time for processing a ray-shooting query is O(n 4/5 +~). The preprocessing time and 

storage are both O(n 1+~). 

The method just presented achieves quasi-linear storage (and preprocessing). 

In order to obtain space/query-time tradeoff, we use the recent result of [7], which 

implies that the overall combinatorial complexity of all the cells in an arrangement 

of r hyperplanes in 5-space, which are intersected by the Pli~cker surface (i.e., the 

quadratic surface is the image of the space of all lines in 3-space under the Pliicker 

transformation), is O(r 4 log r). 

Consider a node v in the bottom part of one of the first three levels of the CSW 

structure constructed above. Normally, we need to store at v a complete arrange- 
ment of r dual hyperplanes. However, since any query point, being the Pliicker 

image of some line in 3-space, lies on the Pliicker surface, it suffices to store at v 

only (the triangulation of) the cells crossed by that surface (see [39]). The total 

number of simplices in that portion of the arrangement is thus only O(r 4 log r). 

Recall that at the fourth level we apply the CSW scheme in 3-space, so a node in 

the bottom part of the fourth-level structure stores only O(r 3) simplices. The 

analysis of the space/query-time tradeoff of the CSW scheme implies that the 

parameter tr should be chosen to be about (s/n) l/a, rather than (sin) I/4, and 

the query time is still about (n/a) 4/5. Working out the details, we easily verify that 

the query time becomes O(n 16/15 +~/s4/lS). We summarize our results in 

Theorem 7.1. Given a collection of  n triangles in R 3 and storage size s 

that can vary between n 1+~ and n 4+~, we can preprocess the collection into a data 

structure of  size s, in time O(sl+~), which supports ray-shooting queries in time 

O(nl,~/l 5 +,/s4/~ 5). 

The above algorithm can be modified to report (or to count the number of) all 

triangles intersected by a query segment e as tollows. We construct the first three 

levels of the structure as in the ray-shooting structure. Recall that a triangle of a 

third-level canonical subset of the query output intersects the query segment e if 

and only if the plane containing the triangle intersects e. Therefore, for every 

third-level canonical subset, we extend its triangles to full planes, dualize them to 
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points, and process these points for simplex range searching (actually for double- 

wedge range searching). To answer a query, we dualize the segment e to the double 

wedge e* in R 3 and query the relevant fourth-level structures to report or count 

the points that lie in e*. Hence, we obtain 

Theorem 7.2. Given a collection of  n trian#les in R 3 and storage size s that can 

vary between n ~ +~ and n 4+~, we can preprocess the collection into a data structure 

of size s, in time O(s 1 +~), so that all k triangles intersected by a query segment can 

be reported in time O(n16/15+r/s4/15 + k), or the number o f  such triangles can be 

counted in time O(n 16/15 +e/S4~15). 

Remark 7.3. Recently and independently, de Berg et al. [10] have obtained a 

somewhat different algorithm, also based on the CSW scheme, for ray shooting 

in 3-space, that can answer a ray-shooting query among a set of n triangles in 

O(log n) time using O(n 4+ ~) space and preprocessing. 

8. Discussion 

The favorable properties of the CSW partition scheme makes it an ideal tool for 

various applications that are closely related to simplex range searching and that 

require the use of multilevel structures. This paper demonstrates the usefulness of 

the CSW scheme for obtaining improved solutions for several fundamental 

problems in computational geometry, such as constructing a spanning tree with 

low stabbing number, ray shooting in two and three dimensions, and output- 

sensitive hidden surface removal. We feel that these applications only "scratch the 

surface" of a large collection of problems of this sort that can benefit from the 

CSW scheme. 

Since the original submission of the paper, there has been progress in the design 

of more efficient range searching techniques, which can be used instead of the 

CSW scheme in some of our applications [11], [30], [31]. One such improved 

structure is a geometric partition tree due to Matou~ek [31] (see also [30]), which 

can answer a half-space range query in R d in time O(n 1- l/d) using O(n) space and 

O(n log n) preprocessing. Matou]ek has also shown that combining this structure 

along with Chazelle's recent cutting algorithm [11], a d-dimensional multilevel 

search structure can be constructed, for any n < m < n d, which uses O(m log*' m) 

storage, requires O(m I +~) preprocessing, and can answer a range query in time 

O((n/m I/d) log* 2 n), for appropriate constants Cl, c2 that depend on the number of 

levels in the multilevel structure. Using this scheme, instead of the CSW partition- 

ing scheme, we can slightly improve the performance of most of the algorithms 

described in this paper. For example, we can construct a spanning tree of stabbing 

number 0(n1-1/a) in time O(nl+~), or we can replace the n ~ factor with a 

polylogarithmic factor in the bounds on the query time and the storage require- 

ment of our ray-shooting algorithms. 

There are several open problems raised by the results in this paper. One problem 

is to prove that our two-dimensional ray-shooting algorithms are indeed close to 
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optimal. Another open problem is to improve further the ray-shooting technique 

in 3-space. Allowing only quasi-linear storage, can we bring the query time down 
to 0(n2/3+~), as in the case of planes? Recently, Agarwal and Matou~ek have 

developed a data structure that can answer a ray-shooting query among triangles 

in 3-space in time O(n a/4+~) [6-1. In another paper [5], they show that a ray- 

shooting query among half-planes can be answered in O(n 2/3÷~) time, but this 

improved technique does not extend to triangles. 

Since many of the applications (here and in [16]) are important in practice, 

there is the issue of obtaining simplified algorithms. The CSW scheme and the 

algorithms that we have developed here, based on that scheme, are still too 

complex to be useful in practice. Can alternative practical, but still quasi-optimal, 

partition schemes, or solutions based on totally different ideas be obtained? 
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