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APPLICATIONS OF A THEORY OF FERROMAGNETIC HYSTERESIS
Marion L. Hodgdon

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

The differential equation B -~ a|H|[f(H) B|+ Hg(H) and a
set of restrictions on the material functions f and g yield a theory of
rate independent hysteresis for isoperm ferromagnetic materials. A
modification based on exchanging the positions of B and H in the dif-
ferential equation and on allowing for the dependence of the material
functions on H extends the theory to rate dependent, nonisoperm
materials. The theory and its extension exhibit all of the important
features of ferromagnetic hysteresis, including the existence and sta-
bility of minor loops. Both are well suited for use in numerical field
solving codes. Examples in which the material functions are sim-
ple combinations of analytic functions are vresented herc for Mn-Zn
ferrite, Permalloy, CMD5005, and CoCr thin film. Also presented
is a procedure for constructing a two dimensional vector model that
vields bell-shaped and M-shaped curves for graphs of the angular
variation of the coercive field.

INTRODUCTION

Work by Ccleman and Hodgdon [1,2] and by Bouc [3] shows
that the differential equation,

B ofH|[f(H) By Hg(H), (1)
rc uing the time rate of change of the flux density I3 te that of
the magnetic field /1, along with a set of constraints or o and on
the material functions f and g, yiclds a theory that is ir agreement
with the essential features of one dimensional, rate independent fer-
romagnetic hysteresis. These include the existence of a major loop
that encloses all of the states (I, I}) accessible from the demagne-
Lized state, the existence of stable minor loops, the convergence of
solution curves to the appropriate minor loop for fields that oseil-
[ate between two extreme points, nonnegative values for the energy
expended in the traversal of a minor loop, and agreement in sign
between 13 and . In this theory, the functions f and ¢ must meet,
the following restrictions:

1) [ muat be n piecewise smooth, monotone inereasing, odd
function of 2, with a derivative, f/) that obtaing a finite limit f/(o0)
for larpe I

1) ¢, mnst be a piecewise continmons, even function of 1 with
actinite linut satisfying g(ov)  f(v); and



ii) for all finite H, the functions f’' and g must satisfy the
inequalities

J'(H) > g(H) > ae™ f’ f (5) - gis)] e~ de.

As shown in [1] and [2], (1) can be written as the set of equations
a8 _ {a[f(l{) - Bl +g(H), for H>0; ()
dH ~ | —alf(H) - B +g(H), for H <0,

for the slopes of hystercsis curves in the il - B plane. These equations
are convenient forms of (1) for both numerical and analytic work.
When i > 0, the solutions B(H) obtained by integration of (2a)
give the ascending portions of hysteresis loops; when H < 0, the
solutions B(IH) of (2b) are the descending portions.

Functions f and g have been found that satisfy #-iti and yield
solution curves of (2) that are in good agreement with thuse of fer-
romagnetically soft, isoperm materials, such as the Mn-Zn ferrite
shown in Fig. 1.

By interchanging the positions of H and B in (1) and revising
the restrictions on the material functions, the theory can be extended
to include square loop materials. Under these modifications, the
differential equation is

H o o|BIf(B) H|1 Bg§B), (3)

or, in terms of the local magnetic perimeability,

dn {[n[i(”) H) v §(B) Y, for i >0, (4)

di || olf(B) M +§B)| ", for I <.

Tiie restrictions on f, §, and a are that
iv) [ be a piecewise smouth, odd function of /2, with a derivacdive
J' which obtains the finite limit f’(on);



v) §, a plecewise continnous, even function of B, with the limit
J(o0) = f'(00); and
v1) for all B, § must satisfy the inequality

3(8) > max {7, e [ " 17(0) = (51 ]}

The development of the restrictions and their implications for
the solutions of (1) are discussed in |1} and |2|. In this paper, I will
demonstrate the application of the theary, in the form of eqs. (3) and
(4), to a variety of materials and to two problems, one involving rate
dependence and the other, the anisotropy exhibited by thin films
used in magnetic recording.

SOLUTIONS AND APPLICATIONS

Representation of experimentally determined hysteresis loops by
the solutions of (3) and (4) requires a valuet for «, and functional
forms and values for f and §. When fand § are piecewise linear
functions with only two pieces, closed form solutions of (3) can be
obtained [1]. These solutions are useful in that they require only
function evaluation, rather than numerical integration. Solutions for
cases in which other material functions are used must be obtained by
numerical integration, For the functions described below, the simple
finite differenze form of (4)

BGCT) BE) Y [Lalf() 1 v (B e - 1), (5)

along with a specification of an initial state (Ho, By), the initial sign
of H, and a list of the turning points of If | appears sufficient.} The
curves rhown in Figs. 2, 4-5, and 7.9 were computed in thisa way.

t o« 1in all examples in this paper.

1 Although either I3 or H may be taken as the independent vari-
able in (3), solutions are presented here for cases in which I and H
are given and solution curves (1) are required.



Selection and construction of the material functions can be
guided by the results given in [1] and [2] that

a)the graph of the function f is the inverse of the anhysteretic or
ideal magnetization curve [4], which lies, at each H, approximately
half way between the ascending and descending portions of the major
loop; and

b) on intervals where §(13) = f'(B), the ascending and descend-
ing portions of the hysteresis loops coincide so that the loops degen-
erate into a single curve, as they do, fcr example, past the point
where the major loop closes. .

I have found the following forms for f and g useful in that they
scale well for a variety of materials and that the values of the con-
stants in them can be determined from ava.lable hysteresis data.
They are simple, however, and yicld approximations to measured
hysteresis curves. In cases where accuracy greater than that shown
here is required, the theory is agreeable to more complicated func-
tions, such as piecewise linear ones with many sections taken from
a sequence of mecasured points, and more complicated differencing
schemnes than (5). In this paper, all solutions are obtaiaed with

Artan Az I8, for |B| < Bg;
J(BY =< Aptan AL By t+ (BB - Ba)/pets for B > B; (6a)
~Aytan Ay By v (B v Ba)/pa, for B < - By,

aud

Z - . A B| A
i(n) / (13)[| A:ux[)([ [“{)], for |B| < By,

} rel (6b)
(), for |B] > B,
where, as shown in Fig. 2, I3, is the flux deasity at the point in the
first, quadrant of the 1 B plane where the major loop closes and
jto1 18 the slope beyond the closure point. The values for the oaterial
constants A, through A, ~an be obtained from the value of «, and
from values of the flux density ., the magnetic held £, and the
slope u, at the closure point of the major loop; the slope p,4 beyond



the closure point; the value of the flux density B, at full magnetic
remanence, and the slope u, of the major loop at remanence; the
coercive field H,, and the slope u. of the major loop at the coercive
point. Az is the solution of the equation ‘

2H us Az — sin(2B,A,) = 0. (7a)

Values for Ay, Aa, and A4 are calculated as follows:

Al = IIC( COt(/‘zBC[), (7b)
Ag=1- — H (7¢)
= — T arfl.],
® A1 Ay
and
B, - By 1 cos (aB )
A, = “n|-—— - = — t B.))t. (7d
t= 2 - SO (o an(4,)) . (1a)

The functions in (6) satisfy constraints 1v and v. However, not all
hysteresis data yield functions satisfying vi, and a numerical check is
required. For most materials with loop shapes similar to those showr
here, often only small adjustments in the slopes u. and u, bring f
and § into agreement with vi. Values for the material constants
for several materials are listed in Tables 1 and 2. For Permalloy,
hysteresis curves and the functions f and g are shown in Figs. 2-4.

A RATE DEPENDENT PROBLEM

Of interest to transformer designers is the response of ferrites to
pulses and sinusoidal variations of the applied field.t For fields which
vary so slowly that there is virtually no lag between the field and the
corresponding flux density, the rate independent theory in eqs. (3)-
(6) is sufficient. Descriptions of rate dependent material behavior

t The redistivity of these territes is often so large that cddy cur-
rents and their effect on the 1ag between changes in flux density and
applied field are negligible.



for rapidly varying fields are more complex and require ideas and
expressions in addition to those in (3)-(6).

There are two catagories of rate dependent responses. One is
the true pulse response in which the applied field changes instanta-
neously or almost instantaneously to a new value and then maintains
that value while the material seeks an equilibrium. From earlier stud-
ies [5], magnetic materials subjected to such pulses obey rate laws
through which the flux density B(t) approaches an equilibrium value
B, ast becomes large. The material time constants lie between two
extreme values 7; and 7, and B(t) can be represented as the sum,

B(t) = poH + / b(t, 7)dr. (8)

For each 7 between r; and 7y, the function b is the solution of the

rate law b |
3 = (b= ba), (9)

where the equilibrium value b is given by
boo(r) = (Boo — po H)[r In(ra/ry)] ™", (10)

In the studies given in [5], hysteresis is ignored, and B, is assumed
to be proportional to the pulse height H. A more complete descrip-
tion which includes hysteretic effects is obtained by using the rate
independent theory in (3)-(6) to provide values for the equilibrium
flux density By, ineqs. (8)-(10). For instance, for a material initially
in the state (/lo, By) subjected to a pulse of height Hy that is main-
tained until the state (Hy, By) is reached and then released, the rate
independent theory provides the equilibrium value, Bo,(Hy; Ho, Bo),
asscciated with the previous state (Ho, By), and then the, possibly
nonzero, remancent value, B, (0; H,y, By), associated with the state
(Hy, By). Solutions of (8)-(10) provide the time course of the flux
density as it varies from HBg to B; and then toward remanence. Nu-
raerical implementation of this type of rate effect involves summa-
tiong over the responses from previous pulses but is facilitated by



the result that the solutions of (8)-(10) can be written in terms of
incomplete gamma functions, which are included on many standard
numerical mathematics libraries.

In many practical situations, the second type of rate effect oc-
curs in which neither the rate of change of the applied field nor that
of the flux density are zero. The rise times of many pulses, for ex-
ample, are slow enough that some, if not all of the material response
occurs while the pulses are reaching their full height. Since sinu-
soidally varying applied fields also yield responses of this type, it is
sometimes called an ac response. I have found a modification cf (3)
useful for these cases. The modified differential equation is

H = o|B|[f(B) - H] + B§(B, H). (11)

As in the rate independent theory, f must obey iv, and its graph
coincides with the inverse of the anhysteretic curve. The function §
must be an even function of B and of I{ with

lim §(B, H) = f'(c), and lim §(B, H) = §(B);
B-—+o00 H-o0

g is a function of B alone and satisfies vand vi. The limits imposed on
¢ insure that, in agreement with experiments, the major loop closes,
and hysteretic behavior, with the attributes of the rate independent
model, is approached as the slow (or “dc”) limit uf the rate dependent
one.

Physical significance and evaluation of § can be obtained for the
simple form

§(B,11) - g{B)(1 +g(B)e(H)), (12)
where ¢ is an even function of 7, g 18 an even function of B, and

lim ¢(H)-:0, and lim §(B) = 0.
H -0 B 00

Substitution of (12) into (11) and division, where I3 does not change
sign, by I yields an expression for the inverse of the magnetic per-
meability, which here depends on the instantancous rate of change



of the magnetic field, H, as well as on the state (H, B):

O = xalf(B) - H| +§(B) +§(B)(B)e(R),  (13)
By (4), +a|f(B) — H] + §(B) are permeabilities along rate indepen-
dent curves. By the restrictions of §, such curves are produced by
slowly varying (or “dc”) magnetic ficlds. Substitution of this result
into (13) and rearrangement yields an expression for §(B)c(H) in
terms of the difference between the inverses of the perineability at
the point (H, B) along a curve corresponding to a slow, or in the
limit, “dc” (H = 0) magnetic field, and the permeability or slope at
the same point of a hysteresis curve corresponding to a more rapid
variation in H:

3010) = 5755 (55) iy~ (Bl 09

Here the triplet (H, B, H) denotes the point (H, B) and the rate H
at which the permeability is measured.

Graphs of the initial permeability u; vs. frequency v are often
supplied by experimenters along with dc hysteresis loops. In such
cases, f and g of the rate independent theory may be evaluated
using the dc data and functional forms such as those in (6). The
combination §(0)e(H(0)), with H(t) = Hpssin(2xvt) and H(0) =
2mvH g, may be calculated from (13) as

§(0)c(2nv i) = s:’%o—)[(‘—::)v -~ (I-lli)o]' (15)

of (dH
(;1;)., "*‘:__f (E)(o,o.zrvHM)'

In CMD5005, with the parameter values in Table 1, and the choice

. —A4|B
9(”) _‘GXD(B ) —lllll),
~ U

where




a graph of u; vs v yields the following

_ 0, for H < 2 x 107;
c(H) = { 3.1(log(H) - 71 g(2)), for 2 x 107 < H < 9 x 107;
2.02 + 9.14(log( /I) — Tlog(9)), for 9 x 107 < H < 9 x 108,

where the units of H are Oe/sec. Initial magnetization curves and
major loops for CMD5005 are shown in Fig. 5 for a “dc” or slowly
varying applied field, and in Fig. 6 for a field which ramps linearly
between +:120e at a rate of 96x 10%0e/sec. These results are in good
agreement with the manufacturer’s dc hysteresis data and with ex-
periments s jowing a loop shape similar to that in Fig. 6 and closure
of the major loop around 12Qe for a sinusoidal field of approximately
2MHz.

Solutions of (13) were obtained by the same finite difference
scheme (5) used for (4), with H held constant at each time step and
the resulting values for § in (12) substituted for those of §.

ANISOTROPY IN THIN FILMS

Thin films used in magnetic recording exhibit an anisotropy that
is approximately uniaxial with respect to the direction perpendicular
to the surface of the film. Experimenters [7-8] report a dependence
of hysteresis loop shapes and values on film preparation. Samples of
major loops similar to those reported are shown in Figs. 7-9. The
development of perpendicular recording has spurred an interest in
vector hysteresis calculations, for which the representation of this
anisotropy is tundamental. '

T have attempted to lay the foundations for such a vector model
by extending the tlieory described in (3)-(6) to the problem of repre-
senting in each direction the hysteretic behavior of a perfectly uniax-
1ally anisotropic material. I shall assume that in cach direction the
materizl exhibits hysteretic behavior in accord with the rate inde-
pendent theory. Representations for the perpendicular, ¢ = 0, and
the in-plane or parallel, ¥ = +x /2, directions are obtained by eval-
uating the constants in (6) from hysteresis loops measured in those



directions. At the intermediate angles, I compute values for these
constants, the closure field, and the perineability beyond closure by
scaling between the extreme directions:

Ho(y) = Ha(0) + h(¥)[Ha(n/2) — Ha(0)],

pet($) = pei(0) + h(¥)[na(r/2) — pa(0)], (16)
Ai(¢) = A;(0) + h(w)[Ai(r/2) — A:(0)],

where 1 = 1,2, 3,4 and h is a scaling function of 1 with h(0) = 0 and
h(w/2) = 1. There is currently no justification for (16) other than
the agreement it produces between computations and experiments.
For the CoCr films shown in Figs. 7-9, the sculing rule (16) with h
a monotone increasing function of Y yields hysteresis loops which
change gradually with angle between the two extremes and are, at
each direction, in accord with the principles of rate independent
hysteresis. The choice,

aw) = { ] 7P, vl </ (11)

yiclds graphs of the angular variation of the coercive field that,
in agreement with experiments, are bell-shaped for materials with
fairly similar parallel and perpendicular behaviors, and M-shaped for
preparations with rather dissimilar behaviors, as shown in Fig. 10,

In numerically simple and fast vector calculations based on these
ideas, the previous state, ({o(+), Bo(+)), in the dire:tion of the vec-
tor magnetic field H is the projection of the vector state (Ho,By)
onto the y axis. The new state, (H, B), in the ¢ direction is com-
puted from (4)-(6) and (16). The flux density in . 1e direction per-
pendicular to ¢ is demagnetized as the magnitude of the resulting
flux vector B exceeds a certain value, which I have taken to be the
closure value, B, . A complete and more correct vector model awaits
experimental clarification of the demagnetization process and »f the
effect on the y-directed magnetization of the perpendicular flux com-
ponent. Both effects, in all likelihood, depend on ¢ and its distance
to the preferred axis of magnetization.
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Table 1 Required hysteresis data and values for the material
constants in eq. (6) for the ferromagnetic material Permalloy and
the ferrites CMD5005 and C/7D. Units liere are kGauss for flux
densitiecs and Oersteds for magnetic fields.

PERMALLOY CMDS500Et C/1Dt
B, 7.58 2.5 2.5
He 0.12 5.0 6.6
B, 6. 2 1.8 1.8
I, 0.03 0.23 0.35
i, 38. 66 0. 99 0. 897
e 686. 245 6.0 9.0
Ty 3. 1466 2. 49 x 102 1. 887 x 1072
Iot 1.5 1.0x 1073 1.0x 1073
a 1.0 1.0 1.0
A 8.9929 x 10~3 0. 3746 0. 4946
A, 0. 19736 0. 5984 0. 598397
An 16. 724 -0, 76955 —0. 55789
A 0. 56187 3. 7485 x 1072 1.22877 x 1072

T(,‘crmnic'Méglﬂ:ticéé lnc, Fairﬁeld, NJ 07006
{Stackpole Corp., St. Marys, PA 15857



Table 2 Some hysteresis data and values for the material con-
stants in eq. (6) for the sample preparations of CoCr thin film shown
in Figs. 7-9. Here, flux densities are given in units of kGauss, and
values for the magnetic fields are in kOersteds.

CoCr(y = £90°)  CoCr(y =0)!  CoCr(y = 0)?

B, 7.0 7.0 7.0
H. 4.0 5.4 7.0

I, 0.6 1. 32 0.9
Ml 0. 013 0. 185 0. 0275
a 1.0 1.0 1.0

Ay 0. 8459 2.759 5. 676
Ay 0. 1946 0. 1675 0. 1271
Aa -3. 859 —2. 885 -1. 7074
Ay 0. 5889 0. 3284 0. 1147




Fig. 1 Initial magnetization curve and maor loops for a Mn-
Zn ferrite computed by numerical integration of eq. (1). Here,
a = 1, f(H) = 5000tan 1.3/ + uol, and g(H) = f'(H)[1 -
0.58exp(—2.3| H|)|.

Fig. 2 Initial magnetization curve for Permalloy from eqs. (5-
6). Flux densities and ficlds at the lavled pointe (H., Ba), (H.,0),
and (0, B, ), and the slopes p, p,, pc, and u, are used in calculating
the values given in Table 1 for the constants in eqs. (6).

Fig. 3 Material functions f (solid curve) and § (dashed curve)
from the Permalloy values in Table 1. ( Fig. 4 Solutions curves
of eq. (4) showing convergence in Permalloy from full magnetic
remanence, (0, B,), to the minor loop associated with ns:illations of
H between £50mQe. A discussion of convergence to such loops and
their stability is given in [1] and [2].

Fig. 5 [nitial magnetization curve and major loop for CMD5005
from eqs. (5-6). Values of the material constants in (6) are given in
Table 1.

Fig. 6 Initial magnctization curve and major loop for CMD5005
from eqs. (13-15) for an applied ficld ramping linearly between
+120c¢ at the rate of 96 x10°0c/scc.

Fig. 7 Initial magnetization curve and major loop for the par-
allel or in-plane axis of a CoCr film from eqs (5-8). Values for th.
material constants in (6) arc given in the first column in Table 2.

Fig. 8 Initial magnetization curve and m: jor loop for the per-
pendicular direction in a CoCr film from eqs. (5-6) for the values
given in the second column in Table 2.

Fig. 9 Initial magnetization curve and major loop for the per-
pendicular direction in o CoCr film from egqs. (5-6) for the valucs
given in the third column in Table 2.

Flig. 10 Angular variations iu the coercivity for two prepari-
tions of CoCr film. The bell-shaped curve (solid) corresponds to a
film in which the major hysteresis loops are as shown i Figa. 7-
8. The M-shaped curve (dashed) corresponds to one in which the
hysteresis loops are in Figs. 7 and 9.
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