
Appl. Math. Inf. Sci.9, No. 1, 223-232 (2015) 223

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090128

Applications of Adaptive Multi Step Differential
Transform Method to Singular Perturbation Problems
Arising in Science and Engineering

Essam R. El-Zahar1,2,∗

1 Department of Mathematics, College of Sciences and Humanities, Salman bin Abdulaziz University, P. O. Box 83, Alkharj,11942,
Saudi Arabia

2 Department of Basic Engineering Science, Faculty of Engineering, Shebin El-Kom, Menofia University, Egypt

Received: 28 Mar. 2014, Revised: 28 Jun. 2014, Accepted: 29 Jun. 2014
Published online: 1 Jan. 2015

Abstract: In this paper, piecewise-analytical and numerical solutions of singular perturbation initial-value problems are obtained
by an adaptive multi-step differential transform method (MsDTM). The principle of the method is introduced, and then applied to
different types of practical problems arising in science and engineering. Analytical and numerical solutions are obtained using piecewise
convergent series with easily computable components over asequence of variable-length sub-intervals. Numerical results are compared
to those obtained by the classical MsDTM and the Runge-Kuttamethod. The results demonstrate the reliability and efficiency of the
method in solving the considered problems.
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1 Introduction

Many mathematical problems arising from the real world
cannot be solved completely by analytical means. One of
the most important mathematical problems arising in
applied science and engineering is Singular Perturbation
Problems (SPPs), also known as stiff problems (Bender
and Orszag [2], Johnson[15], Kumar and Parul[17]).
SPPs, governing mathematical models, arise in many
interesting fields of science and engineering, especially in
automatic control, chemical and biochemical reactions,
electrical circuits, fluid mechanics, solid state physics,
atmospheric pollution, etc. A well known fact is that the
solution of such problems has a multiscale character, i.e.
there exist thin layers where the solution varies very
rapidly, while away from the layers the solution behaves
regularly and varies slowly. Therefore, the numerical
treatment of SPPs presents some major computational
difficulties. For a detailed discussion on the analytical and
numerical treatment of such problems one may refer to
the books of Doolanet al. [4], O’Malley [23], Rooset al.
[25], Miller et al. [20] and Smith [27]. Recently,
piecewise semi analytical- numerical methods, which do

not require perturbation or linearization, are introduced
for finding solutions of nonlinear problems. Multi-step
Differential Transform Method (MsDTM) is one of the
most effective, convenient and accurate methods for both
weakly and strongly nonlinear problems. MsDTM does
not require analytical integration or symbolic
computations as other peer piecewise semi
analytical-numerical methods. The method formulates the
Taylor series in a totally different manner and provides
the solution in terms of convergent series over a sequence
of equal-length sub-intervals. Different applications of
MsDTM can be found in (Odibatet al. [22], Keimanesh
et al. [18], Gokdoganet al. [10], Yildirim et al. [28],
Erturk et al. [8], El-Zahar [5] and Patra and Ray [24]).
However, for some important classes of problems and for
the sake of accuracy and efficiency, it is necessary to
allow variable-length step-size to be used (Celik Kizilkan
and Aydin [3], Habib and El-Zahar [12] and Gu et al.
[11]). Therefore, two different algorithms of adaptive
step-size MsDTM (AMsDTM) were presented in
(Gokdoganet al.[9] and El-Zahar [6]) and succeeded in
obtaining reliable approximate solutions for nonlinear
problems. For singularly perturbed BVPs, the differential
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transformation with asymptotic techniques are presented
for obtaining approximate solutions of second and fourth
orders BVPs by El-Zahar [6,7]. Variational iteration
method is presented by (Zhao and Xiao [29], Zhaoet al.
[30]) for Singularly Perturbed IVPs (SPIVPs) with and
without delays where the obtained sequence of iterates is
based on the use of Lagrange multipliers. The aim of our
study is to introduce the AMsDTM as an alternative to
existing methods in solving SPIVPs. In this paper, the
piecewise analytical and numerical solutions of SPIVPs
are obtained by AMsDTM. The principle of the method is
introduced and then applied directly without requiring
linearization, perturbation, analytical integration or
symbolic computations, to different types of practical
problems arising in science and engineering. Analytical
and numerical solutions are obtained using piecewise
convergent series with easily computable components
over a sequence of variable length sub-intervals. The
current results are compared with those obtained by
classical MsDTM and the fourth order Runge-Kutta
method. The results demonstrate reliability and efficiency
of the method in solving the considered problems.

2 Multi-Step Differential Transform Method

The basic definition and the fundamental theorems of the
MsDTM are given in ([22],[18],[10],[28],[8],[5],[24]).
For convenience of the reader, we present a review of the
MsDTM. Consider the following IVP for systems of
ODEs

x′1(t) = f1(t,x1,x2, ....,xn),
x′2(t) = f2(t,x1,x2, ....,xn),

...
x′n(t) = fn(t,x1,x2, ....,xn),

(1)

subject to the initial conditions

xi(t0) = ci , i = 1,2, ...,n. (2)

Let [t0,T ] be the interval over which we want to find the
solution of the initial value problem (1)-(2). In actual
applications of the Differential Transform Method
(DTM), the Nth-order approximate solution of the initial
value problem (1)-(2) can be expressed by the finite series
(Zhou[31], Janget al.[14], Abdel-Halim Hassan[1])

xi(t) =
N

∑
k=0

Xi(k)(t − t0)
k, t ∈ [t0,T ], i = 1,2, ...,n, (3)

where

Xi(k) =
1
k!

[

dkxi(t)
dtk

]

t=t0

, i = 1,2, ...,n. (4)

Equations (3) and (4) imply that the concept of differential
transformation is derived from the Taylor series expansion.
The following theorems can be deduced from (3) and (4)

Theorem 2.1. If x(t) = β (u(t)± v(t)), then
X(k) = β U(k)±β V (k).

Theorem 2.2. If x(t) = u(t) v(t), then
X(k) = ∑k

ℓ=0U(ℓ)V (k− ℓ).

Theorem 2.3. If x(t) = dmu(t)
dtm , then

X(k) = (k+m)!
k! U(k+m).

Theorem 2.4. If x(t) = (β + t)m, then
X(k) = H[m,k] m!

k!|(m−k)|! (β + t0)m−k ,

where H[m,k] =

{

1 , i f m− k ≥ 0
0 , i f m− k < 0 .

Theorem 2.5. If x(t) = eλ t , then X(k) = λ k

k! eλ t0 .

Theorem 2.6. If x(t) = sin(ωt + β ), then

X(k) = ωk

k! sin(ωt0+β + kπ
2 ).

Theorem 2.7. If x(t) = cos(ωt + β ), then

X(k) = ωk

k! cos(ωt0+β + kπ
2 ).

Using some fundamental operations of DTM, we have the
following recurrence relation:

(k+1)Xi(k+1) = Fi(k,X1,X2, ...,Xn),Xi(0) = ci, i = 1,2, ...,n,
(5)

where Fi(k,X1,X2, ...,Xn)is the differential transform of
the functionfi(t,x1,x2, ....,xn), for i = 1,2, ...,n.
The differential transformXi(k) of the unknown functions
xi(t) can be obtained by solving the iterating algebraic
system (5). In order to speed up the convergence rate and
to improve the accuracy of resulting solutions, the entire
interval [ t0, T ] is usually split into sub-intervals and the
algorithm of MsDTM is applied as follows:
Assume that the interval[ t0, T ] is divided into M
sub-intervals[tm−1 , tm], m = 1,2, ...,M of equal length
step-sizeh = (T − t0)/M by using the nodestm = t0+mh.
The main ideas of the MsDTM are as follows: First, we
apply the DTM to the IVP (1)-(2) over the interval[t0, t1],
we will obtain the following approximate solution,

xi,1(t) =
N

∑
k=0

Xi,1(k)(t − t0)
k t ∈ [t0, t1], (6)

using the initial conditionsxi(t0) = ci. For m ≥ 2 and at
each sub-interval[tm−1 , tm], we will use the initial
conditionsxi,m(tm−1) = xi,m−1(tm−1) and apply the DTM
to the IVP (1)-(2) over the interval [tm−1 , tm]. The
process is repeated and generates a sequence of
approximate solutions xi,m(t) , m = 1, ......,M ,
i = 1,2, ...,n for the solutionsxi(t),

xi,m(t) =
N

∑
k=0

Xi,m(k)(t − tm−1)
k t ∈ [tm−1, tm], (7)
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Finally, the MsDTM assumes the following solution,

xi(t) =















xi,1(t) , t ∈ [t0, t1],
xi,2(t) , t ∈ [t1, t2],
...
xi,M(t) , t ∈ [tM−1, tM].

, i = 1,2, ...,n. (8)

3 Adaptive time step-size algorithm

While we apply MsDTM, we apply the following time
step-size control algorithm presented by El-Zahar [6]

1. One gives the admissible local errorδ > 0 , and
chooses the orderN of the MsDTM .

2. From calculations, the values |Xi,m(N)|,
i = 1,2, .......n, are known for every solution
componenti .

3. At the grid point tm we calculate the value
EN = max(|Xi,m(N)|), i = 1,2, ...,n .

4. We select such step-sizehm for which

hm = τ
(

δ
EN

)1/N
≤ hmax andtm+1 = tm + hm, whereτ

is a safety factor andhmax is the maximum allowed
step-size .

Now, the present method is applied to obtain approximate
analytical-numerical solutions of some important practical
SPIVPs.

4 Applications to SPIVPs

In order to demonstrate the performance and efficiency of
the present method in solving SPIVPs, we have applied it
to four practical problems arising in various disciplines of
science and engineering.

4.1 A diode oscillator with a current source

From the circuit diagram shown in Fig 1, the circuit
equations can be constructed as follows (Johnson[15],
Kumar and Parul[17])

i =C
dV
dt

, i1 = (eαV −1)Is , i2 = (1− e−αV)Is , (9)

and then Kirchhoff’s law gives

C
dV
dt

+(eαV − e−αV )Is = I sinωt , (10)

which leads to the non-dimensional approximate equation
(x ∝ eαV )

ε ẋ = x sin t − x2+κ ,x(0) = a (1> a > 0). (11)

Typical values of the parameters areε = 0.03, κ = 10−5.

Fig 1: Circuit diagram for the diode oscillator with a
current source

By using the fundamental operations of DTM, we obtained
the following recurrence relation to (11):

Xm(k+1) =

k
∑
ℓ=0

Xm(k−ℓ) 1
ℓ! sin(tm+ ℓπ

2 )−Xm(k−ℓ)Xm(ℓ) +H[0,k]κ

(εk+ε) .

(12)
Solving the recurrence relation (12), the piecewise
analytical solution of (11) for a = 0.5 , ε = 0.03 and
t ∈ [0, 1], using AMsDTM with N = 6, δ = 0.001,
τ = 0.85 andhmax= 0.2 is given in Eq. (13).

x(t)≃







































































































0.50000−8.33300t+147.21667t2−2499.87284t3+42504.32619t4−722256.25270t5

+12273105.78000t6, t ∈ [0.00,0.01770]. 0.50013−8.33041t+146.00474t2−2366.09663t3

+33807.93150t4−356501.67870t5+1951103.32400t6, t ∈ [0.01770, 0.04174]. 0.49931
−8.14601t+131.07922t2−1705.50379t3+16526.61569t4−101351.95220t5+288748.0999t6,
t ∈ [0.04174,0.07481]. 0.49201−7.38469t+98.18151t2−931.12900t3+6004.60280t4

−23043.87420t5+39568.62653t6, t ∈ [0.07481, 0.12085]. 0.46957−5.98433t+61.56325t2

−412.26866t3+1795.61565t4−4510.16977t5+4983.00556t6, t ∈ [0.12085, 0.18589].
0.42729−4.29257t+33.14124t2−154.22318t3+459.10519t4−766.54274t5+555.17846t6,
t ∈ [0.18589, 0.27965]. 0.37498−2.87944t+17.14826t2−56.71364t3+121.07922t4

−134.94633t5+58.46625t6, t ∈ [0.27965, 0.41609]. 0.29693−1.85672t+11.82818t2

−43.14540t3+104.78378t4−129.39351t5+61.42205t6, t ∈ [0.41609, 0.55141]. −0.59046
+10.40223t−58.00728t2+167.77051t3−252.17056t4+191.97064t5−58.91925t6,
t ∈ [0.55141, 0.68767]. 3.08113−26.40423t+95.43070t2−173.37622t3+174.96493t4

−93.76382t5+20.89383t6, t ∈ [0.68767, 0.84963]. 1.68969−11.62824t+36.83124t2

−56.26686t3+47.64108t4−21.47460t5+4.02760t6, t ∈ [0.84963, 1.0000] .







































































































(13)
Figure 2(a) shows the time-step length used by the
AMsDTM for solving (11). We can observe from Fig 2
(a) that the given admissible local errorδ = 0.001, is
achieved by AMsDTM using 11 time-step,M = 11, while
MsDTM needs time-step sizeh ≤ 0.01770 to achieve the
given admissible local error and consequently needs at
least 57 time-step. Figure 2(b) shows the obtained
solutions of (11) using the AMsDTM (N = 6 ,
δ = 0.001), MsDTM (N = 6 , h = 1/M), whereM = 11
and the RK4 (h = 0.0001) atε = 0.03. We can observe
the high agreement between the AMsDTM solution and
the RK4 solution, while MsDTM with 11 time-step
results in a divergent solution. Figure 3 shows the high
agreement between the AMsDTM solution and the RK4
solution at different values of the perturbation parameter
ε, Fig 3 (a), and over a large interval, Fig 3 (b). The
maximum absolute point wise differences between
AMsDTM and RK4(h = 0.0001) solutions at different
values ofδ and ε over the interval[0, 1] are given in
Table 1. We can observe that the admissible local errorδ
is achieved by the AMsDTM independent of the
perturbation parameterε.
Table 2 presents a comparison of the processing time and
the time-stepM used in solving (11) by the AMsDTM
and MsDTM atN = 6 to achieve the specified toleranceδ
at different values ofε over the interval[0, 1] , where all
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Table 1: Maximum absolute differences between AMsDTM and RK4 solutions for problem 4.1.
∆ = max|AMsDTM − RK40.0001|

ε δ = 0.001 δ = 0.0001
0.030 2.4766e-004 5.7011e-005
0.010 2.4029e-004 5.4202e-005
0.005 2.4216e-004 2.5836e-005
0.001 2.2804e-004 8.8854e-005

Table 2: Comparison of processing time and time-step for problem 4.1 at different values ofδ andε.
MsDTM AMsDTM

ε δ Time-stepM Processing time (s) Time-stepM Processing time (s)
0.030 0.0010 57 0.512 11 0.062

0.0001 83 0.512 15 0.063
0.010 0.0010 167 0.824 19 0.078

0.0001 246 1.254 24 0.125
0.005 0.0010 333 1.989 33 0.140

0.0001 489 2.015 37 0.187
0.001 0.0010 1659 4.012 137 0.657

0.0001 2435 5.982 141 0.672

Fig 2: The time-step lengthh used by the AsDTM for solving problem 4.1 (a), and the approximate solution
using AMsDTM, MsDTM and RK4 method (b) at ε = 0.03.

Fig 3: The solutions of problem 4.1 by AMsDTM and RK4 method (a) at different values
of ε for t ∈ [0, 1] and (b) at ε= 0.03 for t ∈ [0, 15].
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calculations are carried out by MAPLE 14 software in a
PC with a Pentium 2 GHz and 512 MB of RAM.
We can observe that the AMsDTM is more effective than
the MsDTM in approximating the solution of the diode
oscillator SPIVP (11) with a minimum size of
computations.

4.2 Thermal decomposition of Ozone

The kinetic steps involved for a dilute ozone-oxygen
mixture are (Lapiduset al.[19], Miranker[21],Shampine
et al.[26])

O3 + O2

k1
⇄

k2

O +2O2,O3 + O
k3→ 2O2.

If the following dimensionless variables are defined
x = [O3]/[O3]o,y = [O]/ε [O3]o,κ = 2k2[O2]o/k1,ε = k1[O2]o/2k3[O3]o,

and the time scale divided by 2/k1[O2]o, then the transient
behavior is described by

dx
dt =−x− xy + ε κy

ε dy
dt = x− xy − ε κ y

}

, (14)

with x(0) = 1, y(0) = 0. Typical values of the parameters
are ε = 1/98, κ = 3 (Lapiduset al.[19]). The problem
has a first-order asymptotic solution given by Ilea and
Turnea[13]

x(t) = e−2t + εe−2t − εe−t/ε + O(ε2)

y(t) = 1− e−t/ε − εκe−2t + ε
[(

t
ε +

tκ
ε +κ −1

)

e−t/ε + e−2t/ε]+O(ε2)

}

.

(15)
Applying AMsDTM on (14) results in the following
recurrence relation:

Xm(k+1) =
(

−Xm(k) −∑k
ℓ=0Xm(ℓ)Ym(k− ℓ)+ εκYm(k)

)/

(k+1)
Ym(k+1) =

(

Xm(k) −∑k
ℓ=0 Xm(ℓ)Ym(k− ℓ)− εκYm(k)

)/

(εk+ ε)

}

.

(16)
The piecewise analytical solution of (14) for t ∈ [0, 0.1],
using AMsDTM (N = 6, δ = 0.001) is given in Eqs.(17)-
(18).

x(t)≃







































































1− t−47t2+1663.3t3−41696t4+7.8859E5t5−1.0491E7t6, t ∈ [0.0000, 0.00987]
0.9868−1.5699(t−0.00987)−15.902(t−0.00987)2+607.43(t−0.00987)3

−15668(t−0.00987)4+3.2018E5(t−0.00987)5−5.2701E6(t−0.00987)6, t ∈ [0.00987, 0.02095]
0.96810−1.7642(t−0.02095)−3.8834(t−0.02095)2+193.29(t−0.02095)3

−4993.8(t−0.02095)4+1.0351E5(t−0.02095)5−1.7902E6(t−0.02095)6, t ∈ [0.02095, 0.03423]
0.9443−1.7992(t−0.03423)+0.2995(t−0.03423)2+49.344(t−0.03423)3

−1275(t−0.03423)4 +2614(t−0.03423)5−4.5212E5(t−0.03423)6 , t ∈ [0.03423, 0.05093]
0.9145−1.7640(t−0.05093)+1.4609(t−0.05093)2+8.6913(t−0.05093)3

−241.63(t−0.05093)4+4838.0(t−0.05093)5−81870(t−0.05093)6 , t ∈ [0.05093, 0.07313]
0.8761−1.6927(t−0.07313)+1.6437(t−0.07313)2+0.3412(t−0.07313)3

−34.133(t−0.07313)4 +667.12(t−0.07313)5−10888(t−0.07313)6 , t ∈ [0.0.07313, 0.10000]







































































(17)

y(t)≃







































































98t −4998t2+1.6993E5t3−4.2596E6t4+8.0759E7t5−1.0832E9t6, t ∈ [0.0000, 0.00987]
0.60982+35.904(t−0.00987)−1820(t−0.00987)2+62129(t−0.00987)3−
1.5989E6(t−0.00987)4+3.2682E7(t−0.00987)5−5.3869E8(t−0.00987)6, t ∈ [0.00987, 0.02095]
0.84915+11.764(t−0.02095)−588.75(t−0.02095)2+19867(t−0.02095)3−
5.0972E5(t−0.02095)4+1.0560E7(t−0.02095)5−1.8262E8(t−0.02095)6, t ∈ [0.02095, 0.03423]
0.93557+3.1557(t−0.03423)−156.43(t−0.03423)2+5168.1t−0.03423)3−
1.3029E5(t−0.03423)4+2.6681E6(t−0.03423)5−4.6121E7(t−0.03423)6, t ∈ [0.03423, 0.05093]
0.96105+0.60804(t−0.05093)−31.526(t−0.05093)2+1010.2(t−0.05093)3−
24769(t−0.05093)4+4.9438E5(t−0.05093)5−8.3596E6(t−0.05093)6 , t ∈ [0.05093, 0.07313]
0.96571+0.047123(t−0.07313)−4.9378(t−0.07313)2+150.71(t−0.07313)3−
3554.4(t−0.07313)4 +68305(t−0.07313)5−1.1135E6(t−0.07313)6 , t ∈ [0.07313, 0.1000]







































































(18)

The solution of (14) using AMsDTM(N = 6, δ = 0.001),

MsDTM (N = 6, h = 1/M), whereM = 20, and the RK4
(h = 0.001) atε =1/98 andκ =3 for t ∈ [0, 1] is shown
in Fig 4. As we can see the MsDTM with the same
number of time steps used by AMsDTM ,M = 20, results
in a solution which is far away from the RK4 even at
t < 0.1 , while AMsDTM and RK4 solutions agree very
well. Figures 5 and 6 show that the asymptotic solution,
Eq.(15), have a small interval of convergence for the
oxygen concentration solution,y(t), and deviates much
from RK4 solution, while the AMsDTM solution has a
wide interval of convergence and agrees very well with
RK4 solution at different values of the parametersε and
κ . We can observe that the singular perturbation method
is not accurate for this problem when the parametersε
andκ are not enough small (Shampineet al.[26]). Results
in Tables 3 and 4 confirm that the accuracy of the
AMsDTM is independent of the perturbation parameter
values and it is effective in approximating the solution of
the thermal decomposition SPIVP (14) with a minimum
size of computations.

4.3 Actuator control with high-gain feedback

Fig 7: Actuator control with high gain feedback.

Consider the feedback control system shown in Fig 7
(Khalil[16]). The inner loop represents actuator control
with high-gain feedback. The plant is a single-input
single-output system represented by the state
model{A , B , C}. The state equations of the closed loop
system atA = −1, B = 1, k2 = 1/C, u = 1 can be
represented by the following SPIVP

dx
dt =−2x+ y
dy
dt = z

ε dz
dt =

−z
1+y2 + ε(4x−2y+ z)











, (19)

whereε = 1/k1 , x= xp−0.5 ,y= xp+up−1 andz= ẋp+
u̇p . Applying AMsDTM on (19), we obtain the following
nonlinear recurrence relation:

Xm(k+1) = (−2Xm(k)+Ym(k))
/

(k+1) ,Ym(k+1) = Zm(k)
/

(k+1) ,
ε ∑k

ℓ=0 ∑k−ℓ
γ=0(ℓ+1)Zm(ℓ+1)Ym(γ)Ym(k− ℓ− γ) = (ε −1)Zm(k)+ ε (4Xm(k)−2Ym(k))

+ε ∑k
ℓ=0

(

∑k−ℓ
γ=04Xm(ℓ))−2Ym(ℓ)+Zm(ℓ)

)

Ym(γ)Ym(k− ℓ− γ)− ε(k+1)Zm(k+1)











.

(20)
Solving (20), the piecewise analytical solution of (19) for
x(0) = 1, y(0) = 0, z(0) = −2 , and ε = 0.1 , using
AMsDTM (N = 6, δ = 0.001) is given in Eqs.(21)-(22).
Table 5 shows the maximum absolute differences between
AMsDTM (N = 6, δ = 0.001) and RK4 (h = 0.0001)
solutions and the time-step,M, used to achieve the
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Fig 4: Solution of (a) ozone concentration,x(t), and (b) oxygen concentration,y(t) for Problem 4.2
obtained by AMsDTM, MsDTM and RK4 method atε =1/98 andκ =3 for t ∈ [0, 1].

Fig 5: Solution comparison of (a) ozone concentration,x(t), and (b) oxygen concentration,y(t) for Problem 4.2
obtained by different methods at different values ofε for t ∈ [0, 10].

Table 3: Maximum absolute differences between AMsDTM and RK4 solutions for problem 4.2.
∆ = max|AMsDTM − RK40.0001|

κ = 3 δ = 0.001 δ = 0.0001
ε ∆x ∆y ∆x ∆y

1/98 1.5981e-006 1.5243e-004 1.5960e-007 1.5218e-005
0.005 7.5944e-007 1.4754e-004 7.9307e-008 1.4748e-005
0.001 1.4439e-007 1.3873e-004 2.4041e-008 1.3873e-005

Table 4: Comparison of processing time and time-step for problem 4.2 at different values ofδ andε.
MsDTM AMsDTM

ε δ Time-stepM Processing time (s) Time-stepM Processing time (s)
1/98 0.0010 120 0.3111 19 0.0742

0.0001 175 0.4012 22 0.0623
0.005 0.0010 247 0.6108 32 0.0930

0.0001 362 1.0541 36 0.1091
0.001 0.0010 1241 4.2108 129 0.3284

0.0001 1821 5.5540 133 0.3435

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1, 223-232 (2015) /www.naturalspublishing.com/Journals.asp 229

Fig 6: Solutions comparison of (a) ozone concentration,x(t), and (b) oxygen concentration,y(t) for Problem 4.2
obtained by different methods atε = 1/98 and different values ofκ for t ∈ [0, 10].

Table 5: The time-step,M, and the maximum absolute differences between AMsDTM and RK4 solutions of problem 4.3.
∆ = max|AMsDTM − RK40.0001|

δ = 0.001 δ = 0.0001
ε M ∆x ∆y ∆ z M ∆x ∆y ∆ z

0.100 9 7.8509e-006 3.0889e-0051.7433e-004 12 1.2709e-006 4.3168e-0063.1115e-005
0.050 11 4.4637e-006 1.7980e-0051.3520e-004 14 8.1371e-007 2.5351e-0063.0668e-005
0.010 33 3.7743e-008 1.4625e-0061.3489e-004 37 8.9847e-009 1.4530e-0071.3491e-005
0.005 61 7.0163e-009 6.8916e-0071.3489e-004 65 9.0666e-009 6.8828e-0081.3491e-005

Table 6: Maximum absolute differences between MsDTM (h = 1/M ) and RK4 solutions of problem 4.3.
∆ = max|MsDTM − RK40.0001|

δ = 0.001 δ = 0.0001
ε M ∆x ∆y ∆ z M ∆x ∆y ∆ z

0.100 9 4.9904e-004 1.2996e-0031.6649e-002 12 7.5551e-005 1.9472e-0042.3772e-003
0.050 11 1.8349e-003 4.5794e-0031.0590e-001 14 3.7810e-004 9.3720e-0042.1835e-002
0.010 33 4.1775e-004 6.0716e-0035.0401e-001 37 1.9854e-004 2.8058e-0032.3120e-001
0.005 61 9.8934e-005 5.4915e-0031.0528e+000 65 5.8954e-005 3.5866e-0036.8707e-001

Table 7: Comparison of processing time and time-step for problem 4.3 at different values ofδ andε.
MsDTM AMsDTM

ε δ Time-stepM Processing time (s) Time-stepM Processing time (s)
0.100 0.0010 21 0.6178 10 0.5127

0.0001 31 0.8891 12 0.5127
0.050 0.0010 31 0.8891 11 0.5127

0.0001 45 1.3481 14 0.5943
0.010 0.0010 137 5.9841 33 1.9710

0.0001 200 10.1290 37 2.0187
0.005 0.0010 277 16.5421 61 3.1492

0.0001 407 22.0872 65 3.3120

specified toleranceδ at different values ofε .We can
observe that decreasingε results in increasing the time
steps, where the AMsDTM needs more grid points inside
the layer to achieve the specified toleranceδ and
maintains the accuracy independent ofε . Table 6 shows
the maximum absolute differences between RK4
(h = 0.0001) solution and MsDTM solution using the
same number of time steps used by AMsDTM . The

results in Tables 6 show that the number of the time steps
used by AMsDTM is not enough for MsDTM to obtain
accurate results for the fast solution componentz(t),
compared to those obtained in Table 5. In addition, asε
decreases the accuracy of the fast solution componentz(t)
decreases. As shown in Table 7, the AsDTM is still faster
than MsDTM even though solving nonlinear relation (20)
consumes much processing time. As we can see, in Fig 8,
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for ε = 0.005 the MsDTM solution is far away from the
RK4 solution while AMsDTM solution agrees very well
with RK4 solution.

x(t)≃































































































































1.0000−2.0000t+ t2+3.0000t3−9.9167t4+17.4833t5−10.7750t6, t ∈ [0.0000, 0.0496]
0.9970−1.8831t+1.3199(t −0.0496)2+1.4264(t −0.0496)3−6.1688(t −0.0496)4

+12.4366(t −0.0496)5−18.1518(t −0.0496)6 , t ∈ [0.0496, 0.1173]
0.9808−1.6912t+1.4734(t −0.1173)2+0.2234(t −0.1173)3−3.0420(t −0.1173)4

+6.5573(t −0.1173)5−10.5945(t −0.1173)6 , t ∈ [0.1173, 0.2094]
0.9369−1.4215t+1.4218(t −0.2094)2−0.4751(t −0.2094)3−1.0394(t −0.2094)4

+2.7103(t −0.2094)5−4.2911(t − .2094)6 , t ∈ [0.2094, 0.3108]
0.8668−1.1509t+1.2357(t −0.3108)2−0.6896(t −0.3108)3−0.1603(t −0.3108)4

+1.0167(t −0.3108)5−1.7037(t −0.3108)6 , t ∈ [0.3108, 0.4341]
0.7657−0.8779t+0.9802(t −0.4341)2− .6637(t −0.4341)3+0.1875(t −0.4341)4

+0.2498(t −0.4341)5−0.5686(t −0.4341)6 , t ∈ [0.4341, 0.5840]
0.6384−0.6259t+0.7121(t −0.5840)2−0.5229(t −0.5840)3+0.2486(t −0.5840)4

−0.0213(t −0.5840)5−0.1273(t −0.5840)6 , t ∈ [0.5840, 0.7673]
0.4951−0.4117t+0.4719(t −0.7673)2−0.3574(t −0.7673)3+0.1954(t −0.7673)4

−0.0713(t − .7673)5−0.0006(t −0.7673)6 , t ∈ [0.7673, 0.9673]
0.3648−0.2601t+0.2988(t −0.9673)2−0.2283(t −0.9673)3+0.1296(t −0.9673)4

−0.0565(t −0.9673)5+0.0169(t −0.9673)6 , t ∈ [0.9673, 1.0000]































































































































(21)

y(t)≃































































































































−2.0000t+11.0000t2−33.6667t3+67.5833t4−29.6833t5−578.4139t6., t ∈ [0.0000, 0.0496]
−0.0200−1.1263t+6.9191(t −0.0496)2−21.8223(t −0.0496)3+49.8456(t −0.0496)4

−84.0373(t −0.0496)5+37.1866(t −0.0496)6 , t ∈ [0.0496, 0.1173]
−0.0751−0.4355t+3.6169(t −0.1173)2−11.7213(t −0.1173)3+26.7025(t −0.1173)4

−50.4524(t −0.1173)5+81.9783(t −0.1173)6 , t ∈ [0.1173, 0.2094]
−0.1433+0.0007t+1.4183(t −0.2094)2−5.1078(t −0.2094)3+11.4729(t −0.2094)4

−20.3257(t −0.2094)5+32.2227(t −0.2094)6 , t ∈ [0.2094, 0.3108]
−0.1855+0.1696t+0.4025(t −0.3108)2−2.0204(t −0.3108)3+4.7630(t −0.3108)4

−8.1890(t −0.3108)5+11.6660(t −0.3108)6 , t ∈ [0.3108, 0.4341]
−0.1975+ .2046t−0.0307(t −0.4341)2−0.5773(t −0.4341)3+1.6239(t −0.4341)4

−2.9123(t −0.4341)5+4.0673(t −0.4341)6 , t ∈ [0.4341, 0.5840]
−0.1807+0.1724t−0.1447(t −0.5840)2.−0.0516(t −0.5840)3+0.3908(t −0.5840)4

−0.8065(t −0.5840)5+1.1916(t −0.5840)6 , t ∈ [0.5840, 0.7673]
−0.1456+0.1204t−0.1284(t −0.7673)2+0.0669(t −0.7673)3+0.0341(t −0.7673)4

−0.1465(t −0.7673)5+0.2484(t −0.7673)6 , t ∈ [0.7673, 0.9673]
−0.1085+0.0773t−0.0874(t −0.9673)2+0.0619(t −0.9673)3−0.0234(t −0.9673)4

−0.0119(t −0.9673)5+0.0390(t −0.9673)6 , t ∈ [0.9673, 1.0000]































































































































(22)

Fig 8: Fast solution componentz(t) in problem 4.3 using
different methods atε = 0.005.

4.4 A Quarter-Car suspension system

Fig 9: A quarter-car suspension system..

The dynamics equations of the suspension system shown
in Fig 9 can be represented by (Khalil[16]).

dx
dtr

= y−w ,
dy
dtr

=−x−β (y−w)+ u,
ε dz

dtr
= w− v ,

ε dw
dtr

= αx−αβ(w− y)− z−αu,



















, (23)

where ε =
√

ksmu
kt ms

, tr= t
√

ks/ms , x = (zs − zu)/ℓ,

y = żs/ℓ
√

ms/ks , z = (zu − zr)/εℓ , w = żu/ℓ
√

ms/ks ,

α=
√

ksms
kt mu

, β= cs√
ksms

, u= Fd
ksℓ

, v= żr

ℓ
√

ms/ks
andms, mu, ks

, kt , andcs denote the mass, stiffness and the damping
rate of the sprung and unsprung elements, respectively.
The problem (21) was solved atα = 1.2, β = 0.5,
ε = 0.01,u = v = 1 andx(0) = y(0) = z(0) = w(0) = 0.1
, using AMsDTM with N = 6 andδ = 0.001 by solving
the following recurrence relation

Xm(k+1) = (Ym(k)−Wm(k))/(k+1) ,
Ym(k+1) = (−Xm(k)−β (Ym(k)−Wm(k))+ uδ (k))/(k+1)
Zm(k+1) = (Wm(k)− vδ (k))/(ε k+ ε)
Wm(k+1) = (αXm(k)−αβ (Wm(k)−Ym(k))−Zm(k)−αuδ (k))/(ε k+ ε)











.

(24)
The results are shown in Fig 10 and Fig 11. Fig 10 shows
the AMsDTM solution of (23) and the exact one. We can
observe how the AMsDTM solution captures the fast
variation of the boundary layer solution and approximates
the exact solution very well over a long time interval. Fig
11 shows how the the error of AMsDTM solution(N = 6,
δ = 0.001) is very small over the initial layer while the
error of MsDTM solution (N = 6 , h = 1/M) is very large
for the same number of time steps,M = 43 .

5 Conclusions

In this paper, we have applied the AMsDTM to SPIVPs
and obtained their piecewise-analytical and numerical
solutions. The validity of the method has been successful
by applying it directly, without requiring linearization,
perturbation, analytical integration or symbolic
computations to four practical problems arising in
modeling a diode oscillator with a current source, thermal
decomposition of ozone, actuator control with high-gain
feedback and a quarter-car suspension system. Numerical
results are presented in figures and tables at different
values of the toleranceδ and the perturbation parameter
ε . The results show that the accuracy of the method
is independent of the perturbation parameterε and the
method works successfully in handling the SPIVPs with a
minimum size of computations and a wide interval of
convergence. The results show that the proposed method
is an accurate and efficient method compared to classical
MsDTM in solving the considered problem. This
emphasizes the fact that the present method is applicable
to many other nonlinear real problems arising in different
disciplines of science or engineering and it is reliable and
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Fig 10: The approximate solution of (23) obtained by AMsDTM and the exact one atε = 0.01.

Fig 11: The error of AMsDTM and MsDTM solutions of (23) at ε = 0.01.

promising when compared with the existing methods.
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