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Abstract—Applications using artificial neural networks
(ANNs) for optical performance monitoring (OPM) are pro-
posed and demonstrated. Simultaneous identification of optical
signal-to-noise-ratio (OSNR), chromatic dispersion (CD), and po-
larization-mode-dispersion (PMD) from eye-diagram parameters
is shown via simulation in both 40 Gb/s on-off keying (OOK) and
differential phase-shift-keying (DPSK) systems. Experimental ver-
ification is performed to simultaneously identify OSNR and CD.
We then extend this technique to simultaneously identify accumu-
lated fiber nonlinearity, OSNR, CD, and PMD from eye-diagram
and eye-histogram parameters in a 3-channel 40 Gb/s DPSK wave-
length-division multiplexing (WDM) system. Furthermore, we
propose using this ANN approach to monitor impairment causing
changes from a baseline. Simultaneous identification of accumu-
lated fiber nonlinearity, OSNR, CD, and PMD causing changes
from a baseline by use of the eye-diagram and eye-histogram
parameters is obtained and high correlation coefficients are
achieved with various baselines. Finally, the ANNs are also shown
for simultaneous identification of in-phase/quadrature (I/Q) data
misalignment and data/carver misalignment in return-to-zero
differential quadrature phase shift keying (RZ-DQPSK) transmit-
ters.

Index Terms—Neural networks, optical fiber communication,
optical performance monitoring, phase modulation.

I. INTRODUCTION

H
IGH-PERFORMANCE optical networks are susceptible

to various degrading effects that can change over time.

Knowledge of the data channel degradation can be used to

diagnose the network, repair the damage, drive a compen-

sator/equalizer, and/or reroute traffic around a non-optimal link

[1]–[3]. Therefore, it is valuable to monitor the channels for

many types of impairments, such as optical signal-to-noise-ratio

(OSNR), chromatic dispersion (CD), polarization-mode-dis-

persion (PMD), and fiber nonlinearity, which can change with

temperature, plant maintenance, and path reconfiguration. Key

features of any optical performance monitors are simplicity
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in implementation and the ability to accommodate different

modulation formats and impairments.

Recently, optical networks have been evolving from closed

systems to open systems, in which the optical layer is designed

to allow transmitter/receiver add and drop without affecting

the current structure. This trend has been reflected in service

provider requirements for “alien wavelengths” and in the

standards—most notably, ITU-T G.698.2 [4]. Associated with

changes in the number of channels are the power transients in

the surviving channels arising from cross saturation in optical

amplifiers and the nonlinear interactions among channels.

To maintain system performance, agile optical performance

monitoring (OPM) and automatic system control become

increasingly important.

OPM can be performed by measuring changes to the data and

determining “real-time” changes resulting from various impair-

ments, such that a change in a particular effect will change a

measured parameter. This can employ: (i) optical techniques

to monitor changes in a radio frequency (RF) tone power or

in the spectral channel power distribution [5], or (ii) electrical

post-processing techniques in the specific case of coherent de-

tection [6], [7].

The optical approaches have been shown to be powerful for

OPM. However, the electrical distortions that are crucial for the

signal quality at the decision point tend to be neglected in the

optical approaches. Several techniques have been proposed for

OPM using off-line digital signal processing of received elec-

trical data signals [8]–[21]. Four of these methods [8]–[11] uti-

lize amplitude histograms, power distributions or asynchronous

sampling to estimate bit error rate (BER); four [12]–[15] em-

ploy delay-tap plots to distinguish among impairments; three

[16]–[18] use pattern recognition techniques to identify mul-

tiple impairments; and the rest [19]–[21] use parameters derived

from eye diagrams and histograms for the same purpose. The

latter approach is to probe the network upon initialization and

train each receiver to record a specific data eye-diagram pattern

that corresponds to a specified range of potential physical pa-

rameters. These eye diagrams can be generated either from a

synchronized sampler, or by a technique that regenerates such

diagrams from asynchronous samples [11]. Once the network

is fully operational, variations in the received eye diagram from

the ideal formation can then be attributed to specific physical

parameters derived from the prior network/receiver training.

Recently, we have made use of a neural network approach to

“train” receivers in an optical network to distinguish between

resultant shapes of the data channel’s eye diagrams and the de-

grading effects of OSNR, CD, PMD [19], [20]. The ANN ap-

proach has further been applied to monitor accumulated fiber

nonlinearity in addition to OSNR, CD, PMD [21]. By use of
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this method, the coefficients of the neural network algorithm are

iteratively derived prior to live traffic being sent through the net-

work. A similar technique has also been used for time misalign-

ment monitoring in return-to-zero differential quadrature phase

shift keying (RZ-DQPSK) transmitters [22], which extends the

applications of our ANN approach to a broader sense of OPM.

In this paper, we show various applications of ANNs in

OPM. In Section II, the concept and structure of ANNs are

introduced. The popularly used multilayer perceptron (MLP)

neural network and various steps involved in the development

of neural network models are described. In Section III, simul-

taneous identification of OSNR/CD/PMD is demonstrated in

40 Gb/s on-off keying (OOK) and DPSK systems via simu-

lation. Subsequent experimental verification is performed to

simultaneously identify OSNR and CD. In Section IV, we

add accumulated channel nonlinear effects to CD, PMD, and

OSNR. We demonstrate this technique in a 3-channel 40 Gb/s

RZ-DPSK WDM system. Furthermore, we propose using

our ANN approach to monitor impairment causing changes

from a baseline instead of the absolute values. Simultaneous

identification of accumulated fiber nonlinearity, OSNR, CD,

and PMD introducing changes from a baseline by use of the

eye-diagram and eye-histogram parameters in a 3-channel 40

Gb/s DPSK WDM system is obtained with various baselines.

In Section V, ANNs are used for simultaneous identification of

in-phase/quadrature (I/Q) data and data/carver misalignments

in RZ-DQPSK transmitters, which indicates the applications of

ANNs in a broader sense of OPM.

II. ARTIFICIAL NEURAL NETWORKS

A. ANN Concepts

As bit rates increase, it becomes more difficult to predict the

data degradation mechanisms in optical networks. In order to

enable robust and cost-effective “self-managed” operation, it

would be desirable for the network itself to agilely monitor the

physical impairments and the quality of the data signals, and au-

tomatically diagnose and feed back information to control the

network. By incorporating trained receivers, a simple structure

of a self-managed network is shown in Fig. 1(a). Impairments

are indentified by the trained receivers in the optical network

element (ONE) and error signals are generated and sent to the

routers. Further actions can be taken so that the network con-

troller can agilely control and manage the network.

To illustrate how the trained receivers work, we introduce the

concepts of ANNs. ANNs are information-processing systems

that learn from observations and generalize by abstraction [23],

[24], which are attractive alternatives to conventional methods

such as numerical modeling methods, analytical methods, or

empirical modeling solutions. ANNs have the ability to model

multi-dimensional nonlinear relationships and are simple to use.

Furthermore, the neural network approach is generic (i.e., the

same modeling technique can be re-used for passive/active de-

vices/systems) and the response is fast. Due to these features,

the ANN approach has gained much attention as a powerful

tool in a number of areas such as pattern recognition, speech

processing, control, and bio-medical engineering, and recently

been applied in RF modeling, microwave design, and optical

Fig. 1. Concepts of ANNs. (a) Self-managed optical networks. ONE: optical
network element; (b) the structure of an artificial neutral network (ANN); (c) a
3-layer perceptron (MLP3) ANN model.

performance monitoring. Oftentimes, neural networks are first

trained to model the electrical/optical behavior of passive and

active components/circuits/systems. These trained neural net-

works can then be used in high-level simulation and design, pro-

viding fast answers to the task they have learned [25], [26].

An ANN consists of multiple layers of processing elements

called neurons. Each neuron is connected to other neurons in

neighboring layers by varying coefficients that represent the

strengths of these connections, as shown in Fig. 1(b). ANNs

learn the relationships among sets of input-output data that are

characteristics of the device or system under consideration.

After the input vectors are presented to the input neurons and

output vectors are computed, the ANN outputs are compared to

the desired outputs, and errors are calculated. Error derivatives

are then calculated and summed for each weight until all of

the training sets have been presented to the network. The error

derivatives are used to update the weights for the neurons, and

training continues until the errors reach prescribed low values.

MLP is the basic and most frequently used structure. In the

MLP neural network, the neurons are grouped into layers. The
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first and last layers are called input and output layers, respec-

tively, and the remaining layers are called hidden layers. Typ-

ically, an MLP neural network consists of an input layer, one

or more hidden layers, and an output layer. For example, an

MLP neural network with an input layer, one hidden layer, and

an output layer, is referred to as 3-layered MLP or MLP3, as

shown in Fig. 1(c). The hidden layer allows complex models of

input-output relationships. The mapping of these relationships

is given by , where is the input

vector, is the output vector, and and are the weight

matrices between the input and hidden layers and between the

hidden and output layers, respectively. The function can be

the smooth switch-type activation functions, such as sigmoid,

arc-tangent, and hyperbolic-tangent, which are bounded, con-

tinuous, monotonic and continuously differentiable. In our anal-

ysis, a nonlinear sigmoidal activation function given by

is used, where is the input to a hidden neuron

or an output neuron.

In addition to MLP, there are other ANN structures [27], such

as radial basis function (RBF) networks, wavelet networks, and

recurrent networks. The universal approximation theorem [28]

states that there always exists a 3-layer MLP neural network

that can approximate any arbitrary, nonlinear, continuous, mul-

tidimensional function to any desired accuracy. The number of

hidden neurons depends upon the degree of nonlinearity of the

function and the dimensionality of the model. Highly nonlinear

systems require more neurons, while smoother systems require

fewer neurons. In our work, the number of hidden neurons is op-

timized via adaptive processes, which add/delete neurons during

training.

B. ANN Training and Testing

The most important step in neural network model develop-

ment is the training process. In this sub-section, we will explain

the ANN training and testing processes in more details.

The neural network weight parameters are initialized so

as to provide a good starting point for training. The widely used

strategy for MLP weight initialization is to initialize the weights

with small random values (e.g., in the range [ 0.5, 0.5]). To im-

prove the convergence of training, one can use a variety of dis-

tributions (e.g., Gaussian distribution), and/or different ranges

and different variances for the random number generators used

in initializing the ANN weights [29].

The training data consists of sample pairs,

, where and are - and -vectors representing the

inputs and the desired outputs of the neural network and rep-

resents the index set of the training data. In our work, the inputs

are the parameters derived from eye diagrams or other sources,

e.g. RF tone power, and asynchronous diagrams, and the outputs

are the impairments, e.g. OSNR, CD, and PMD. We define the

neural network training error as [30]

(1)

where is the th element of and is the th

neural network output for input . The purpose of neural net-

work training is to adjust such that the error function

is minimized. The error between training data and ANN outputs

is fed back to the ANN to guide the internal weight update of

the network. Here, is called the weight update, and

is a positive step size known as the learning rate. Gradient

based iterative training techniques determine update direction

based on error information and error derivative in-

formation . Step size can be determined in one

of the following ways: (1) small value, either fixed or adaptive

during training; or (2) line minimization to find best value of .

The time needed for training depends on the amount of

training data involved, the structure of the neural network, and

also the training algorithm. There are several gradient-based

iterative training algorithms, including back propagation,

conjugate gradient and quasi-Newton. Back propagation is rel-

atively slow in converging, so second-order training algorithms,

such as conjugate gradient and quasi-Newton, are oftentimes

preferred for their increased efficiency. The quasi-Newton ap-

proach is relatively fast due to its quadratic converge property,

although more computer memory is required since it relies on

the Hessian matrix whose inverse needs to be calculated. The

conjugate gradient method is a nice compromise in terms of

memory and implementation effort, since the descent direction

runs along the conjugate direction, which can be determined

without matrix computations.

We use feed-forward computation in our work. Given the

input vector and the weight vector , neural network feed-

forward computation is a process used to compute the output

vector . It is useful not only during neural network training but

also during the usage of the trained neural model. The external

inputs are first fed to the input neurons and the outputs from

the input neurons are fed to the hidden neurons. Continuing this

way, the outputs of one layer neurons are fed to the next layer

neurons [30]. During feed-forward computation, neural network

weights remain fixed.

After training, the ANN can be tested by use of other sets

of data. The correlation coefficient, which represents how close

the ANN model outputs to the testing data, can be used as the

quality measurement factor.

III. ANNs FOR CD/PMD/OSNR MONITORING

A. CD/PMD/OSNR

With the increase of system capacity, optical networks will be

highly susceptible to deleterious and data-degraded fiber-based

impairments. CD, PMD, and OSNR are among a few of the

most important impairments due to the broad spectra of high-

rate signals. Therefore, the ability of the network to identify the

amount of the impairments is quite important to maintain system

performance.

Fig. 2 shows the simulated eye diagrams for a 40 Gb/s

RZ-OOK signal at a few select combinations of OSNR, CD

and first-order PMD (i.e., differential group delay (DGD)).

The simulated DGD emulation assumes that the signal polar-

ization principle states have worst-case alignments with 50:50

power in the fast and slow axes. Visually, it is obvious that

these impairments produce distinct features. To quantify these

attributes, we can calculate various eye-diagram parameters.

For this example, we choose four such parameters, including

Q-factor, eye closure, root-mean-square (RMS) jitter, and

crossing amplitude. Q-factor is defined as the difference of
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Fig. 2. The impact of degradation effects on eye diagrams of an RZ signal. Tx:
transmitter; Rx: receiver; DGD: differential group delay (first-order PMD).

the mean upper and lower levels divided by the sum of the

upper and lower level standard deviations; eye closure is the

ratio of the outer eye height to the inner eye height; crossing

amplitude is the point on the vertical scale where the rising

and falling edges intersect; and RMS jitter is usually defined as

the standard deviation of the time data calculated in a narrow

window surrounding the crossing amplitude. These four inputs

are chosen because they change significantly with varying

impairment combinations.

The ANN architecture used in this work is a feed-forward,

three-layer perceptron structure. The ANN consists of four

inputs (Q-factor, closure, jitter, and crossing-amplitude), three

outputs (OSNR, CD, and DGD), and twelve hidden neurons.

The ANN is trained by use of a software package developed

by Zhang et al. [31]. We first verify the concept via simulation

in 40 Gb/s RZ-OOK and RZ-DPSK systems. The conjugate

gradient method is used for training. The training data are

obtained from the eye diagrams by use of one set of 125 sam-

ples ( dB;

ps/nm; ps). Another set of 64 samples

( dB;

ps/nm; ps) is used for testing.

The simulated fiber channel includes a laser with a full width

at half maximum (FWHM) line-width of 10 MHz; a 40 Gb/s

logic source; a single-arm, Mach-Zehnder modulator (MZM)

biased at the quadrature point with driving voltage for gen-

erating OOK and at minimum point with driving voltage

for generating DPSK, where is the half-wave voltage of the

MZM, followed by another MZM for RZ pulse carving. Impair-

ments are added through emulators in the link and then the sig-

nals are detected by using a single photodiode for RZ-OOK and

a balanced receiver following a delay line interferometer (DLI)

for RZ-DPSK, where the eye diagrams are recorded and the eye

diagram parameters are extracted.

Fig. 3(a) shows the training error versus the epochs. An epoch

is defined as a stage of ANN training that involves presentation

of all the samples in the training data set to the neural network

once for the purpose of learning. The testing and ANN-mod-

eled data are compared in Fig. 3(b) and (c). The ANN reports

a correlation coefficient of 0.97 and 0.96 for OOK and DPSK

systems, respectively. The measured average errors for OSNR,

CD and DGD are 0.57 dB, 4.68 ps/nm, and 1.53 ps, respectively

for 40 Gb/s RZ-OOK, and are 0.77 dB, 4.74 ps/nm, and 0.92 ps,

respectively for 40 Gb/s RZ-DPSK.

B. Experimental Verification

The experimental setup is shown in Fig. 4. 40 Gb/s RZ-DPSK

or RZ-OOK signals are generated using two cascaded MZMs.

Fig. 3. Simulation results for OSNR/CD/PMD monitoring in 40 Gb/s OOK
and DPSK systems. (a) Training error; (b) 40 Gb/s RZ-OOK testing results; (c)
40 Gb/s RZ-DPSK testing results.

Fig. 4. Experimental setup. CW: continuous wave.

The signal then goes through a tunable dispersion compensating

module (TDCM) with 400 ps/nm tuning range and 10

ps/nm tuning resolution, which serves as the CD emulator. The

output of the TDCM is sent to an erbium-doped fiber amplifier

(EDFA) with a variable optical attenuator (VOA) in front to ad-

just the received OSNR. The noise-loaded signal is then filtered

by a bandpass filter (BPF) with 1 nm bandwidth, and sent to a

scope, where the eye diagram parameters are extracted.

In our experiment, we vary OSNR and CD to get two sets of

eye diagram parameters for 40 Gb/s RZ-DPSK and RZ-OOK

signals, respectively, including extinction ratio, eye opening

factor and signal-to-noise ratio. One set with 20 samples

( dB; ps/nm) is

sent to the ANN model for training, and the other set with 12

samples ( dB; ps/nm)
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Fig. 5. Experimental results for OSNR/CD monitoring in 40 Gb/s OOK and
DPSK systems. (a) 40 Gb/s RZ-OOK testing results; (b) 40 Gb/s RZ-DPSK
testing results.

is used for testing. The final training errors for the OOK and

DPSK data are 0.03 and 0.04, respectively. Fig. 5 shows

testing results with the experimental data. For the RZ-DPSK

signal, we use the eye of the destructive port of the DLI to

extract parameters since we cannot estimate balanced eye

diagrams with the scope. The ANN reports a correlation coeffi-

cient of 0.99 for both of the 40 Gb/s RZ-OOK and RZ-DPSK

systems. Fig. 5 compares the testing and ANN-modeled data.

The measured average errors for OSNR and CD are 0.58 dB,

2.53 ps/nm, respectively for 40 Gb/s RZ-OOK and are 1.85 dB,

3.18 ps/nm, respectively for 40 Gb/s RZ-DPSK.

The OSNR considered in this experimental work is 16 32 dB

for illustration purpose. In real optical systems, the OSNR can

be lower, such as 10–12 dB in 40 Gb/s DPSK systems, which is

validated via simulation is the next sub-section.

C. Monitoring Low OSNR

OSNR values in real optical networks may degrade to

levels as low as 10–12 dB for 40 Gb/s DPSK systems.

Here, we perform a simulation for 40 Gb/s RZ-DPSK

using parameters similar to that in the experiment above.

Only OSNR and CD are varied for illustration purposes.

We use 49 samples (

dB; ps/nm) for training

and 36 samples ( dB;

ps/nm) for testing. The eye-di-

agram parameters include Q-factor, eye closure, and RMS

jitter. Fig. 6 compares the testing and ANN-modeled data. The

ANN reports a correlation coefficient of 0.99, which shows the

effectiveness of using ANNs for identification of lower OSNRs.

In this case, the measured average errors for OSNR and CD are

1.23 dB, and 4.56 ps/nm, respectively.

Fig. 6. Simulation results for OSNR/CD monitoring in a 40 Gb/s DPSK
system.

Fig. 7. The impact of degradation effects on the eye diagrams of RZ-DPSK.

IV. ANNs FOR CD/PMD/OSNR/ACCUMULATED

NONLINEARITY MONITORING

A. CD/PMD/OSNR/Accumulated Nonlinearity

One parameter that has not been explored much in OPM has

been the accumulation of nonlinear impairment on the data

channels, which has typically been one of the most difficult pa-

rameters to monitor in an optical network. Adding accumulated

nonlinearity is also a challenge in terms of the neural network

approach, due to its specific signatures on the eye diagrams.

Fig. 7 shows simulated eye diagrams for the middle channel

of a 3-channel 40 Gb/s RZ-DPSK WDM system at a few se-

lect combinations of OSNR, CD, DGD and optical power. We

can clearly see that different impairment combinations imprint

different signatures on the eye diagrams. In this case, the four

outputs are input optical power, OSNR, CD, and PMD, and the

eight inputs include Q-factor, eye-closure, RMS jitter, ‘0’-level

crossing amplitude, mean of ‘1’s and ‘0’s, standard derivation

(SD) of ‘1’s and ‘0’s.

Fig. 8 shows the 3-channel WDM configuration used in the

simulation. The 40 Gb/s RZ-DPSK signals are generated by

two cascaded MZMs and then coupled together with a channel

spacing of 0.8 nm. The channels are decorrelated by use of logic

sources with different pseudo-random bit sequence (PRBS) or-

ders. The WDM signals then pass through 2 km of highly non-

linear fiber (HNLF) with a nonlinear coefficient of 18

km , zero dispersion wavelength of (1550 nm), and dis-

persion slope of 0.05 ps/nm km, following by a CD emulator

and a PMD emulator. The output is sent to an EDFA with a

variable optical attenuator in front to adjust the received OSNR.

The signal is then filtered by a BPF with 0.64 nm bandwidth,

and sent to an oscilloscope, where the eye diagram and eye his-

togram parameters are extracted. A 3-channel case is chosen to
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Fig. 8. Simulation setup. � : the wavelength of the channel of interest. � �

���� nm.

Fig. 9. Training error versus number of epochs for a 40 Gb/s RZ-DPSK channel
(middle channel) in a 3-channel WDM system.

illustrate the concept, although this approach is also applicable

to WDM networks with more channels.

The middle channel is chosen for the analysis because it ex-

periences the strongest interchannel nonlinearity. The training

data are obtained from the eye diagrams by use of a set of 135

samples (optical power dBm;

dB; ps/nm; ps). Note

that a few training samples are used in this work. In practical

networks, a much larger amount of data will be required for

training. Fig. 9 shows the training error versus epochs. The final

training error is 0.1 in our case.

Once the model is trained, we validate its accuracy by use

of a different set of testing data that includes 32 samples

(optical power dBm; dB;

ps/nm; ps). Again, the simulated

DGD emulation assumes that the signal polarization principle

states have worst-case alignments with 50:50 power in the fast

and slow axes. The ANN reports a correlation coefficient of

0.97.

Fig. 10 compares the testing and ANN-modeled data for op-

tical power, OSNR, CD, and DGD. The measured average errors

for optical power, OSNR, CD and DGD are 0.46 dB, 1.45 dB,

3.98 ps/nm, and 0.65 ps, respectively. It is shown that the ANN

models, trained with parameters derived from eye diagrams and

eye histograms, can potentially be used to simultaneously iden-

tify accumulated fiber nonlinearity, OSNR, CD, and PMD in

WDM channels.

B. ANNs for Identification of Impairment Causing Changes

from a Baseline

Normally, when considering a system to be monitored, we as-

sume the system is impairment-free; then different impairments,

such as CD and PMD, are added for the purpose of testing

the monitoring approaches. However, systems are not perfect,

and inevitably contain a certain amount of impairments. Thus,

starting from a baseline is more practical in terms of perfor-

mance monitoring.

Fig. 10. Simulation results for comparison of testing and ANN-modeled data
for a 40 Gb/s RZ-DPSK channel (middle channel) in a 3-channel system.
(a) Optical power; (b) OSNR; (c) CD; (d) first-order PMD.

Fig. 11. Block diagrams of using ANN for monitoring changes from a baseline.
RMS: root-mean-square; SD: standard derivation. (a) Training; (b) testing.

From the analyses and demonstrations in the former sec-

tions, ANNs have been shown to be a potentially powerful

tool for OPM. Continuing with this ANN approach, we

make use of changes in optical power, OSNR, CD and PMD

as the outputs of the neural network, rather than absolute

values. Similarly, different impairment combinations imprint

different signatures on the obtained eye diagrams, where

the input parameters are extracted. Again, the ANN used is

an MLP3 with 12 hidden neurons. Fig. 11 shows a block

diagram for the training and testing, where 135 samples

are used for training ( optical power

dB; dB; ps/nm;

ps) and 32 samples are used for testing

( optical power dB; dB;

ps/nm; ps).

Similar to Fig. 8, Fig. 12 shows the simulation setup for mon-

itoring impairment causing changes from a baseline. The initial

system has a certain amount of impairments, which is added
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Fig. 12. Simulation setup. � : the wavelength of the channel of interest. � �

���� nm. DLI: delay-line interferometer.

Fig. 13. Simulation results for comparison of testing and ANN-modeled data
for a 40 Gb/s RZ-DPSK channel (middle channel) in a 3-channel WDM system.
(a) Optical power change; (b) OSNR change; (c) CD change; (d) First-order
PMD change.

with a spool of optical fiber. The rest of the system stays the

same, as shown in Fig. 8.

The baseline is set to optical power dBm,

dB, ps/nm and ps for

initial training and testing. The final training error is 0.1 in

this case. The ANN reports a correlation coefficient of 0.93.

Fig. 13 compares the testing and ANN-modeled data for the

optical power, OSNR, CD, and DGD changes. It is shown

that the ANN models, trained with parameters derived from

eye diagrams and eye histograms, can potentially be used to

simultaneously identify the accumulated fiber nonlinearity,

OSNR, CD, and PMD causing changes in WDM channels.

To consider other cases, we vary the baseline arbitrarily and

repeat the training and testing. Fig. 14 shows a plot of correlation

coefficients for various baselines. We can clearly see that high

coefficients are achieved regardless of the baseline, which shows

that the ANN approach is largely independent of the system ref-

erence. This technique could potentially be valuable for perfor-

mance monitoring in optical systems with dynamic traffic.

Fig. 14. Variation of the correlation coefficient with various baselines.

The inputs of ANNs so far are derived from eye-diagrams,

which in general need clock recovery and are considered high

cost. Recently we are able to derive parameters from the asyn-

chronously generated delay-tap plots and train the ANNs to si-

multaneously identify OSNR, CD and DGD [32]. Moreover, the

inputs of ANNs can be any other types of parameters that re-

flect the changes of impairments. In the following section, we

extend the monitoring work to identify the time misalignments

in RZ-DQPSK transmitters, in which case the inputs of ANNs

are the RF tone/low frequency power levels.

V. ANNs FOR TIME MISALIGNMENT IDENTIFICATION IN

RZ-DQPSK TRANSMITTERS

As the modulation format becomes more advanced, the trans-

mitter tends to become more complex in terms of number of

components and time synchronization among the components.

Due to unavoidable optical/electronic device aging, imperfec-

tions and temperature variations, maintaining the correct timing

within the transmitter is quite difficult and yet crucial to main-

tain system performance. Therefore, a laudable goal would be

to monitor the time misalignment in order to provide a feedback

signal and maintain proper synchronization. For an RZ-QPSK

transmitter, the following are important: (i) I and Q data must

be aligned with each other, and (ii) the RZ pulse carver must be

synchronized to the data.

There have been reports of measurements of time mis-

alignment/synchronization for serial and parallel types of

RZ-DQPSK transmitters [33]. In these techniques, a specific

parameter is measured, such as power in an RF tone or power in

one part of the spectrum. These parameters will either increase

or decrease with a particular temporal misalignment. One could

use a simple feedback loop that would either maximize or

minimize these measured values. However, it would be more

valuable if the transmitter could be “trained” to recognize and

directly relate RF tone power or spectral power to a specific

temporal misalignment cause and value.

Since ANNs have the ability to learn the relationships among

sets of input-output data that are characteristic of the device or

system under consideration and then apply the relationship to

any testing data within the range of interest, we apply this tech-

nique to identify the time misalignments in both parallel and

serial types of RZ-DQPSK transmitters.

Fig. 15(a) shows the concept of misalignments in par-

allel-type RZ-DQPSK transmitters. When data streams I and

Q are misaligned, the clock tone power at the symbol rate

decreases with the increase of the misalignment. When data

I/Q are aligned, the RF power at low frequencies increases

with the data/pulse carving misalignment. Fig. 15(b) shows

the misalignments in a serial-type RZ-DQPSK transmitter. By

monitoring the optical clock tone at the symbol rate, we can
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Fig. 15. Conceptual diagram of the misalignments in parallel/serial-type
RZ-DQPSK transmitters. (a) Parallel-type. (b) Serial-type.

determine the I/Q misalignment, and the misalignment between

data and carver can be monitored by measuring the power

change in RF clock tone.

The ANN architecture used in this work is a feed-forward,

three-layer perceptron structure. The hidden layer consists of

8 hidden neurons. The conjugate gradient method is used for

training. We choose the RF clock tone power after direct de-

tection of DQPSK and low-frequency RF power after direct de-

tection of RZ-DQPSK for the parallel case, while for the serial

case, we use the optical clock tone power of DQPSK (which can

be filtered by an optical filter and detected by a photodiode to

convert to RF power) and the RF clock tone power after direct

detection of RZ-DQPSK for the inputs to the ANNs. Note that

after directly detecting RZ-DQPSK in the parallel case and the

low-frequency RF power in the serial case, the clock power can

serve as a third parameter for training.

The training data is a set of 121 samples (I/Q misalignment

ps in steps of 5 ps; carver misalignment ps

in steps of 5 ps). Fig. 16(a) shows the training error versus

epochs for the 20-Gb/s parallel RZ-DQPSK transmitter. The

final training error is 0.087 when two inputs are used and

0.03 when three inputs are used. Once the model is trained,

we validate its accuracy by use of a different set of testing data

that includes 100 samples (I/Q misalignment ps in

steps of 5 ps; carver misalignment ps in steps of 5

ps). The ANN reports a correlation coefficient of 0.97 and 0.99

for 2-input and 3-input, respectively. Fig. 16(b) and (c) compare

the testing and ANN-modeled data for the 2-input and 3-input

models. We observe that the 3-input case gives a better predic-

tion.

Fig. 16. Simulation results for comparison of testing and ANN-modeled data
for 20-Gb/s parallel RZ-DQPSK. (a) Training error; (b) with 2-input ANN
model; (c) with 3-input ANN model.

Fig. 17 shows the results for the 80-Gb/s serial-type

RZ-DQPSK transmitter. A set of 121 samples (I/Q

misalignment ps in steps of 1.25 ps;

carver misalignment ps in steps of 1.25 ps)

is used for training and another set of 100 samples (I/Q

misalignment ps in steps of 1.25 ps;

carver misalignment ps in steps of 1.25 ps)

is used for testing. We observe that the 2-input model gives

a good prediction, with a correlation coefficient of 0.99. In

contrast, the 2-input model in the parallel case does not do as

well. The reason is that the RF low-frequency power, which

serves as the second input in the parallel-type transmitter

depends not only on the carver misalignment but also on the

Authorized licensed use limited to: NIST Research Library. Downloaded on August 7, 2009 at 10:28 from IEEE Xplore.  Restrictions apply. 



3588 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 27, NO. 16, AUGUST 15, 2009

Fig. 17. Simulation results for comparison of testing and ANN-modeled data
for 80-Gb/s serial RZ-DQPSK.

I/Q misalignment, while for the serial case, the second input

RF clock tone power depends only on the carver misalignment

due to the previous phase modulation.

This technique is shown for direct-detection systems, but

should also work for coherent systems, since coherent and

noncoherent setups can share the same types of transmitters.

VI. CONCLUSION

In this paper, we proposed and demonstrated a technique

of using artificial neural networks for optical performance

monitoring. The concept and structure of our neural networks

were introduced. Simultaneous identification of OSNR, CD

and PMD from eye-diagram parameters was demonstrated in

40 Gb/s OOK and DPSK systems with high correlation coef-

ficients. The technique was extended to identify accumulated

channel nonlinear effects in addition to CD, PMD, and OSNR

from eye-diagram and eye-histogram parameters in a 3-channel

40 Gb/s DPSK WDM system. A correlation coefficient of 0.97

was obtained for a set of testing data. Furthermore, we pro-

posed using our ANN approach to monitor impairment causing

changes from a baseline. Simultaneous identification of ac-

cumulated fiber nonlinearity, OSNR, CD, and PMD causing

changes from baseline was obtained and high correlation coef-

ficients were achieved with various baselines. ANNs were also

used for the simultaneous identification of I/Q data misalign-

ment and data/carver misalignment in both parallel-type and

serial-type RZ-DQPSK transmitters. A correlation coefficient

of 0.99 was obtained by using a 3-input ANN for the parallel

case and a 2-input ANN for the serial case.

We have shown that ANNs are a powerful tool for perfor-

mance monitoring in optical fiber communication systems. Be-

cause ANNs have the ability to model arbitrary relationships

between inputs and outputs, they have the potential to be useful

in other aspects of optical system and device design.
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