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ABSTRACT

Bayesian model selection is a tool to decide whether the introduction of a new pa-
rameter is warranted by data. I argue that the usual sampling statistic significance
tests for a null hypothesis can be misleading, since they do not take into account the
information gained through the data, when updating the prior distribution to the pos-
terior. On the contrary, Bayesian model selection offers a quantitative implementation
of Occam’s razor.

I introduce the Savage–Dickey density ratio, a computationally quick method to
determine the Bayes factor of two nested models and hence perform model selection.
As an illustration, I consider three key parameters for our understanding of the cos-
mological concordance model. By using WMAP 3–year data complemented by other
cosmological measurements, I show that a non–scale invariant spectral index of per-
turbations is favoured for any sensible choice of prior. It is also found that a flat
Universe is favoured with odds of 29 : 1 over non–flat models, and that there is strong
evidence against a CDM isocurvature component to the initial conditions which is
totally (anti)correlated with the adiabatic mode (odds of about 2000 : 1), but that
this is strongly dependent on the prior adopted.

These results are contrasted with the analysis of WMAP 1–year data, which were
not informative enough to allow a conclusion as to the status of the spectral index. In a
companion paper, a new technique to forecast the Bayes factor of a future observation
is presented.

Key words: Cosmology – Bayesian model comparison – Statistical methods – Spec-
tral index – Flatness – Isocurvature modes

1 INTRODUCTION

In the epoch of precision cosmology, we often face the prob-
lem of deciding whether or not cosmological data support
the introduction of a new quantity in our model. For in-
stance, we might ask whether it is necessary to consider a
running of the spectral index, an extra isocurvature mode,
or a non-constant dark energy equation of state. The status
of such additional parameters is uncertain, as often sampling
(frequentist) statistics significance tests do not allow them
to be ruled out with high confidence. There is a large body
of work1 that addresses the difficulties arising from the use
of p–values (significance level) in assessing the need for a
new parameter. Many weaknesses of significance tests are

⋆ E-mail address: rxt@astro.ox.ac.uk
1 A good starting point is the collection of references available
from the website of David R. Anderson, Department of Fishery
and Wildlife Biology, Colorado State University.

clarified, and some even overcome, by adopting a Bayesian
approach to testing. In this work, we take the viewpoint of
Bayesian model selection to determine whether a parameter
is needed in the light of the data at hand.

The key quantity for Bayesian model comparison is
the marginal likelihood, or evidence, whose calculation
and interpretation is attracting increasing attention in
cosmology and astrophysics (Drell et al. 2000; Saini et al.
2004; Lazarides et al. 2004; Beltran et al. 2005; Kunz et al.
2006; Trotta 2007c), after it was introduced in the cos-
mological context by Jaffe (1996); Slosar et al. (2003).
The marginal likelihood has proved useful in other con-
texts, as well, for instance consistency checks between
data sets (Hobson et al. 2002; Marshall et al. 2006), the de-
tection of galaxy clusters via the Sunayev-Zel’dovich ef-
fect (Hobson & McLachlan 2003) and neutrino emissions
from type II supernovae (Loredo & Lamb 2002). In this pa-
per we use the Savage–Dickey density ratio for an efficient
computation of marginal likelihoods ratios (Bayes factor),

http://lanl.arXiv.org/abs/astro-ph/0504022v3
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while in a companion paper (Trotta 2007a) we present a
new method to forecast the Bayes factor probability distri-
bution of a future observation, called PPOD (for “Predictive
Posterior Odds Distribution”)2. We then illustrate applica-
tions to some important parameters of current cosmological
model building.

This paper is organized as follows: we review the basics
of Bayesian model comparison in section 2 and we introduce
the Savage–Dickey density ratio (SDDR) for the computa-
tion of the Bayes factor between two nested models. Section
3 is devoted to the application of model selection to three
central parameters of the cosmological concordance model:
the spectral tilt of scalar perturbations, the spatial curvature
of the Universe and a totally (anti)correlated isocurvature
CDM contribution to the initial conditions. We discuss our
results and summarize our conclusions in section 4.

Some complementary material is presented in the ap-
pendices. An explicit illustration of Lindley’s paradox is
given in appendix A, the mathematical derivation of the
SDDR is presented in appendix B while a series of bench-
mark tests for the accuracy of the SDDR are carried out in
appendix C.

2 BAYESIAN MODEL COMPARISON

In this section, we first briefly review the basics of Bayesian
inference and model comparison and introduce our notation.
We then present the Savage–Dickey density ratio for a quick
computation of the Bayes factor of two nested models.

2.1 Bayes factor

Bayesian inference (see e.g. Jaynes (2003); MacKay (2003))
is based on Bayes’ theorem, which is a consequence of the
product rule of probability theory:

p(θ|d,M) =
p(d|θ,M)π(θ|M)

p(d|M)
. (1)

On the left-hand side, the posterior probability for the pa-
rameters θ given the data d under a model M is propor-
tional to the likelihood p(d|θ,M) times the prior probabil-
ity distribution function (pdf), π(θ|M), which encodes our
state of knowledge before seeing the data. In the context of
model comparison it is more useful to think of π(θ|M) as an
integral part of the model specification, defining the prior
available parameter space under the model M . The normal-
ization constant in the denominator of (1) is the marginal

likelihood for the model M (sometimes also called the “evi-
dence”) given by

p(d|M) =

Z

Ω

p(d|θ,M)π(θ|M)dθ (2)

where Ω designates the parameter space under model M . In
general, θ denotes a multi–dimensional vector of parameters
and d a collection of measurements (data covariance matrix,
etc), but to avoid cluttering the notation we will stick to the
simple symbols introduced above.

2 The method was called ExPO for “Expected Posterior Odds”
in a previous version of this work (Trotta 2005). I am grateful to
Tom Loredo for suggesting the new, more appropriate name.

Consider two competing models M0 and M1 and ask
what is the posterior probability of each model given the
data d. By Bayes’ theorem we have

p(Mi|d) ∝ p(d|Mi)π(Mi) (i = 0, 1), (3)

where p(d|Mi) is the marginal likelihood for Mi and π(Mi) is
the prior probability of the ith model before we see the data.
The ratio of the likelihoods for the two competing models is
called the Bayes factor:

B01 ≡ p(d|M0)

p(d|M1)
, (4)

which is the same as the ratio of the posterior probabilities
of the two models in the usual case when the prior is pre-
sumed to be noncommittal about the alternatives and there-
fore π(M0) = π(M1) = 1/2. The Bayes factor can be inter-
preted as an automatic Occam’s razor, which disfavors com-
plex models involving many parameters (see e.g. MacKay
(2003) for details). A Bayes factor B01 > 1 favors model M0

and in terms of betting odds it would prefer M0 over M1

with odds of B01 against 1. The reverse is true for B01 < 1.
It is usual to consider the logarithm of the Bayes fac-

tor, for which the so–called “Jeffreys’ scale” gives empir-
ically calibrated levels of significance for the strength of
evidence (Jeffreys 1961; Kass & Raftery 1995), | lnB01| >
1;> 2.5;> 5.0. Different authors use different conventions
to qualify the Jeffreys’ levels of strength of evidence. In this
work we will use the convention summarized in Table 1 – of-
ten in the literature one deems odds above | lnB01| = 5 to be
‘decisive’, but we prefer to avoid the use of the term because
of the strong connotation of finality that it carries with it.
If we assume that the two competing models are exhaus-
tive, i.e. that p(M0|d) + p(M1|d) = 1 and a non–committal
prior π(M0) = π(M1) = 1/2, we can relate the strength of
evidence to the posterior probability of the models,

p(M0|d) =
B01

B01 + 1

p(M1|d) =
1

B01 + 1
.

(5)

This probability is indicated in the third column of Table 1.
The subject of hypothesis testing has received an enor-

mous amount of attention in the past, and the controversy
on the subject is far from being resolved among statisticians.
An illustration of the difference between Bayesian model se-
lection and frequentist hypothesis testing is given in Ap-
pendix A, where Lindley’s paradox is worked out with the
help of a simple example. There it is shown that the Bayesian
approach has the advantage of taking into account the infor-
mation provided by the data, which is ignored by frequentist
hypothesis testing.

Evaluating the marginal likelihood integral of Eq. (2)
is in general a computationally demanding task for multi–
dimensional parameter spaces. Thermodynamic integration
is often the method of choice, whose computational bur-
den can become fairly large, as it depends heavily on the
dimensionality of the parameter space and on the char-
acteristic of the likelihood function. In certain cosmolog-
ical applications, thermodynamic integration can require
up to 100 times more likelihood evaluation than parame-
ter estimation (Beltran et al. 2005). An elegant algorithm
called “nested sampling” has been recently put forward by
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Table 1. Jeffreys’ scale for the strength of evidence when com-
paring two models, M0 versus M1, with our convention for de-
noting the different levels of evidence. The probability column
refers to the posterior probability of the favoured model, as-
suming non–committal priors on the two competing models,
i.e. π(M0) = π(M1) = 1/2 and that the two models exhaust
the model space, p(M0|d) + p(M1|d) = 1.

| ln B01| Odds Probability Notes

< 1.0 <∼ 3 : 1 < 0.750 Inconclusive
1.0 ∼ 3 : 1 0.750 Positive evidence
2.5 ∼ 12 : 1 0.923 Moderate evidence
5.0 ∼ 150 : 1 0.993 Strong evidence

Skilling (2004), and implemented in the cosmological con-
text by Bassett et al. (2004); Mukherjee et al. (2006). While
nested sampling reduces the number of likelihood evalua-
tions to the same order of magnitude as for parameter esti-
mation, in the cosmological context this does not necessarily
imply that the computing time can be reduced accordingly,
see Mukherjee et al. (2006) for details.

2.2 The Savage–Dickey density ratio

Here we investigate the performance of the Savage-Dickey
density ratio (SDDR), whose use is very promising in terms
of reducing the computational effort needed to calculate the
Bayes factor of two nested models, as we show below (for
other possibilities, see e.g. DiCiccio et al. (1997)).

Suppose we wish to compare a two-parameters model
M1 with a restricted submodel M0 with only one free pa-
rameter, ψ, and with fixed ω = ω⋆ (for simplicity of notation
we take a two–parameters case, but the calculations carry
over trivially in the multi–dimensional case). Assume fur-
ther that the prior is separable (which is usually the case in
cosmology), i.e. that

π(ω,ψ|M1) = π(ω|M1)π(ψ|M0). (6)

Then the Bayes factor B01 of Eq. (4) can be written as (see
Appendix B)

B01 =
p(ω|d,M1)

π(ω|M1)

˛

˛

˛

˛

ω=ω⋆

(SDDR). (7)

This expression goes back to J.M. Dickey (1971),
who attributed it to L.J. Savage, and is therefore
called Savage–Dickey density ratio (SDDR, see also
Verdinelli & Wasserman (1995) and references therein).
Thanks to the SDDR, the evaluation of the Bayes factor
of two nested models only requires the properly normalized
value of the marginal posterior at ω = ω⋆ under the extended
modelM1, which is a by–product of parameter inference. We
note that the derivation of (7) does not involve any assump-

tion about the posterior distribution, and in particular about
its normality.

For a Gaussian prior centered on ω⋆ with standard de-
viation ∆ω and a Gaussian likelihood3 with mean µ̂ and
width σ̂, Eq. (7) gives

lnB01(β, λ) =
1

2
ln(1 + β−2) − λ2

2(1 + β2)
, (8)

3 Notice that µ̂ and σ̂ are referred to the likelihood, not the pos-
terior pdf.

where we have introduced the number of sigma’s discrep-
ancy λ = |µ̂ − ω⋆|/σ̂ and the volume reduction factor
β = σ̂/∆ω (see Appendix A for details). For strongly in-
formative data, β−1 ≫ 1 and in terms of the information
content I = − ln β ≥ 0, Eq. (8) is approximated by

lnB01 ≈ I − λ2/2 (informative data). (9)

The two terms on the right–hand side pull the Bayes factor
in opposite directions: a large information content I signals a
large volume of wasted parameter space under the prior, and
acts as an Occam’s razor term favouring the simpler model,
while a large λ favours the more complex model because of
the mismatch between the measured and the predicted value
of the extra parameter. Evidence against the simpler model
scales as λ2, while evidence in its favour only accumulates as
I = − ln β. Furthermore, for strong odds against the simpler
model (λ ≫ 1) the prior choice becomes irrelevant unless
I ≫ λ, a situation which gives rise to Lindley’s paradox (see
Appendix A). For the case where λ ≪ 1, i.e. the prediction
of the simpler model is confirmed by the observation, the
odds in favour of the simpler model are determined by the
information content I , and therefore by the prior choice.

The use of the SDDR for nested models has several ad-
vantages. A first important point is the analytical insight
Eq. (7) gives into the working of model selection for two
nested models, which we have briefly sketched above. Priors
on the common parameters on both models are unimpor-
tant, as they factor out when computing the Bayes factor.
The only relevant scales in the problem are the quantities
λ and β, see Eq. (9), with the latter controlled by the prior
width on the extra parameter. The volume effect arising
from a change in the prior (e.g., when enlarging the prior
range) can be easily estimated from the SDDR expression,
without recomputing the posterior. Usually, the posterior
pdf in Eq. (7) will be obtained by Monte Carlo Markov
Chain (MCMC) techniques. In this case, even a change in
the variables, or a more restrictive prior can usually be ap-
plied by simply posterior re–weighting the MCMC samples
without recomputing them. Secondly, the SDDR can be ap-
plied to existing MCMC chains, and therefore the model
selection question can be dealt with easily after the param-
eter estimation step has already been performed. Finally,
Appendix C demonstrates that in the benchmark Gaussian
likelihood scenario the SDDR gives accurate results out to
λ<∼ 3. For larger value of λ the performance of the method
is hindered by the fact that it becomes very difficult with
conventional MCMC methods to obtain samples far out into
the tails of the posterior. One could argue however that the
most interesting regime for model comparison is precisely
where the SDDR can yield accurate answers. This is also
the region where most of the model selection questions in
cosmology currently lie. Finally, often a high numerical ac-
curacy in the Bayes factor does not seem to be central for
most model comparison questions, especially in view of the
fact that the uncertainty in the result can be strongly dom-
inated by the prior range one assumes. This suggests that a
quick and computationally inexpensive method such as the
SDDR might be helpful in assessing the model comparison
outcome for a broad range of priors. We therefore advocate
the use of SDDR method for model selection questions in-
volving nested models with moderate discrepancies between
the prediction of the simple model and the posterior result,
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λ<∼ 3. We now turn to the demonstration of the method on
current cosmological observations.

3 APPLICATION TO COSMOLOGICAL

PARAMETERS

In this section we apply the Bayesian model selection tool-
box presented above to three cosmological parameters which
are central for our understanding of the cosmological concor-
dance model: the spectral index of scalar (adiabatic) pertur-
bations, the spatial curvature of the Universe and an isocur-
vature cold dark matter (CDM) component to the initial
conditions for cosmological perturbations.

3.1 Parameter space and cosmological data

We use the WMAP 3–year temperature and polarization
data (Hinshaw et al. 2006; Page et al. 2006) supplemented
by small–scale CMB measurements (Readhead et al. 2004;
Kuo et al. 2004). We add the Hubble Space Telescope mea-
surement of the Hubble constant H0 = 72 ± 8 km/s/Mpc
(Freedman et al. 2001) and the Sloan Digital Sky Survey
(SDSS) data on the matter power spectrum on linear (k <
0.1h−1Mpc) scales (Tegmark et al. 2004). Furthermore, we
shall also consider the supernovae luminosity distance mea-
surements (Riess et al. 2004). We denote all of the data sets
but WMAP as “external” for simplicity of notation. We are
also interested in assessing the changes in the model com-
parison outcome in going from WMAP 1–year to WMAP
3–year data. We shall therefore compare our results using
the 3–year WMAP data with the first–year WMAP data re-
lease (Bennett et al. 2003; Hinshaw et al. 2003; Verde et al.
2003), complemented by the “external” data sets described
above4.

We make use of the publicly available codes CAMB
and CosmoMC (Lewis & Bridle 2002) to compute the
CMB and matter power spectra and to construct Monte
Carlo Markov Chains (MCMC) in parameter space. The
Monte Carlo (MC) is performed using “normal parame-
ters” (Kosowsky et al. 2002), in order to minimize non–
Gaussianity in the posterior pdf. In particular, we sample
uniformly over the physical baryon and cold dark matter
(CDM) densities, ωb ≡ Ωbh

2 and ωc ≡ Ωch
2, expressed in

units of 1.88×10−29 g/cm3; the ratio of the angular diameter
distance to the sound horizon at decoupling, Θ⋆, the optical
depth to reionization τr (assuming sudden reionization) and
the logarithm of the adiabatic amplitude for the primordial
fluctuations, ln 1010AS. When combining the matter power
spectrum with CMB data, we marginalize analytically over
a bias b considered as an additional nuisance parameter.
Throughout we assume three massless neutrino families and
no massive neutrinos (for constraints on these quantities,
see instead e.g. Bowen et al. (2002); Spergel et al. (2006);
Lesgourgues & Pastor (2006)), we fix the primordial Helium
mass fraction to the value predicted by Big Bang Nucleosyn-
thesis (see e.g. Trotta & Hansen (2004)) and we neglect the

4 A more detailed discussion on the WMAP first year data model
comparison result and the power of the external data sets can be
found in the original version of the present work, Trotta (2005).

contribution of gravitational waves to the CMB power spec-
trum.

3.2 Model selection from current data

The scalar spectral index

As a first application we consider the scalar spectral index
for adiabatic perturbations, nS . We compare the evidence
in favor of a scale invariant index (M0 : nS = 1), also called
an Harrison-Zel’dovich (HZ) spectrum, with a more general
model of single-field inflation, in which we do not require
the spectral index to be scale invariant, M1 : nS 6= 1. The
latter case is called for brevity “generic inflation”.

Within the framework of slow–roll inflation, the prior
allowed range for the spectral index can be estimated by
considering that nS = 1 − 6ǫ + 2η, where η and ǫ are the
slow-roll parameters. If we assume that ǫ is negligible, then
nS = 1+2η. If the slow-roll conditions are to be fulfilled, η ≪
1, then we must have |η|<∼ 0.1, which gives 0.8<∼nS <∼ 1.2.
Hence we take a Gaussian prior on nS with mean µ = 1.0
and width σ = 0.2.

The result of the model comparison is shown in Table 2.
When employing WMAP 1–year data, the model compar-
ison yields an inconclusive result (lnB01 = 0.68 ± 0.04),
but the new, lower value for nS from the WMAP 3–year
data, enhanced by the small scale CMB measurements and
SDDS matter power spectrum data, does yield moderate
evidence for a non–scale invariant spectral index (lnB01 =
−2.86± 0.28), with odds of about 17:1, or a posterior prob-
ability of a scale invariant index of 5%, when compared
to the above alternative generic inflation model. This is a
consequence of both the shift of the peak of the posterior
to nS = 0.95 and a reduction of its spread when using
WMAP 3–year data, which places the scale invariant value
of nS = 1 at about 3.3σ away from the posterior’s peak (see
however the discussion about possible systematic effects in
Parkinson et al. (2006)). In Table 2 we also give the result-
ing value of the Bayes factor obtained by using the SDDR
formula and a Gaussian approximation to the posterior, see
Eq. (A9). Since the marginalized posterior for nS is very well
approximated by a Gaussian, we find a very good agreement
between this crude estimate and the numerical result using
the actual shape of the posterior, with a discrepancy of or-
der 5%. This supports the idea that for reasonably Gaussian
pdf’s using a Gaussian approximation to the SDDR might
be a good way of obtaining a first estimate of the Bayes
factor for nested models.

Our findings are in broad agreement
with Parkinson et al. (2006), where it was found using
nested sampling that a similar data compilation as the one
employed here gives lnB01 = −1.99 ± 0.26 for the compari-
son between the HZ model and a generic inflationary model
with a flat prior between 0.8 ≤ nS ≤ 1.2. For such a flat
prior, we obtain, using the SDDR, lnB01 = −2.98 ± 0.28,
where the difference with Parkinson et al. (2006) has to
be ascribed to different constraining power of the different
data compilations used, rather than to the methods for
computing the Bayes factor. For a more detailed discussion
of a series of possible systematic effects which might change
the outcome of the model comparison, see section IIIC
in Parkinson et al. (2006).
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Table 2. Summary of model comparison results from WMAP data combined with small–scale CMB measurements, SDDS, HST and
SNIa data. WMAP3+ext refers to WMAP 3 year data release, WMAP1+ext to WMAP 1st year data. The most spectacular improvement
from WMAP1 to WMAP3 is the moderate evidence against a scale–invariant spectral index. Errors in the Bayes factor are obtained by
computing the variance of the SDDR estimate from 5 subchains (see Appendix C for details). The “estimate” column gives the value
obtained by employing the Gaussian approximation to the likelihood, Eq. (A9) for a Gaussian prior or Eq. (A10) for a flat prior.

Data ln B01 from SDDR Odds in favour Probability Comment
(numerical) (estimate) of simpler model of simpler model

Spectral index: nS = 1 versus 0.8 ≤ nS ≤ 1.2 (Gaussian)

WMAP3+ext −2.86 ± 0.28 −3.00 1 to 17 0.05 Moderate evidence for non–scale invariance
WMAP1+ext 0.68 ± 0.04 0.71 2 to 1 0.66 Inconclusive result

Spatial curvature: Ωκ = 0 versus −1.0 ≤ Ωκ ≤ 1 (Flat)

WMAP3+ext 3.37 ± 0.05 3.25 29 to 1 0.97 Moderate evidence for a flat Universe
WMAP1+ext 2.70 ± 0.09 2.68 15 to 1 0.94 Moderate evidence for a flat Universe

Adiabaticity: fiso = 0 versus −100 ≤ fiso ≤ 100 (Flat)

WMAP3+ext 7.62 ± 0.02 7.63 2050 to 1 0.9995 Strong evidence for adiabatic conditions
WMAP1+ext 7.50 ± 0.03 7.53 1800 to 1 0.9994 Strong evidence for adiabatic conditions

The spatial curvature

We now turn to the issue of the geometry of spatial sections.
We evaluate the Bayes factor for Ωκ = 0 (flat Universe)
against a model with Ωκ 6= 0. As discussed above, we only
need to specify the prior distribution for the parameter of
interest, namely Ωκ. We choose a flat prior of width ∆Ωκ =
1.0 on each side of Ωκ = 0, for we know that the universe is
not empty (thus Ωκ < 1.0, setting aside the case of Λ < 0)
nor largely overclosed (therefore Ωκ >∼ − 1 is a reasonable
range, see 3.3 for further comments).

Cosmic microwave background data alone cannot
strongly constrain Ωκ because of the fundamental geomet-
rical degeneracy. Even CMB and SDSS data together allow
for a wide range of values for the curvature parameter, which
translates into approximately equal odds for the curved and
flat models. Adding SNIa observations drastically reduces
the range of the posterior, since their degeneracy direction
is almost orthogonal to the geometrical degeneracy of the
CMB. Further inclusion of the HST measurement for the
Hubble parameter narrows down the posterior range consid-
erably, since the handle on the value of the Hubble constant
today breaks the geometrical degeneracy. When all of the
data (WMAP3+ext) is taken into account, we obtain for the
Bayes factor lnB01 = 3.37 ± 0.05, favouring a flat Universe
model with moderate odds of about 29 : 1 (see Table 2). This
corresponds to a posterior probability for a flat Universe of
97%, for our particular choice of prior. We notice the slight
improvement in these odds from the result obtained using
WMAP1+ext data, where the odds were 15 : 1, which is to
be ascribed mainly to the inclusion of polarization data that
helps further tightening constraints around the geometrical
degeneracy.

The CDM isocurvature mode

The third case we consider is the possibility of a cold dark
matter (CDM) isocurvature contribution to the primordial
perturbations. For a review of the possible isocurvature
modes and their observational signatures, see e.g. Trotta
(2004). Determining the type of initial conditions is a cen-
tral question for our understanding of the generation of per-
turbations, and has far reaching consequences for the model
building of the physical mechanisms which produced them.
Constraints on the isocurvature fraction have been derived

in several works, which considered different phenomenologi-
cal mixtures of adiabatic and isocurvature initial conditions
(Pierpaoli et al. 1999; Amendola et al. 2002; Trotta et al.
2001, 2003; Trotta & Durrer 2006; Bucher et al. 2004;
Crotty et al. 2003; Valiviita & Muhonen 2003; Beltran et al.
2004; Moodley et al. 2004; Kurki-Suonio et al. 2005). Two
recent studies making use of the latest CMB data
(Bean et al. 2006; Keskitalo et al. 2006) obtain different
conclusions as to the level of isocurvature contribution.
While both groups report a lower best fit chi–square for
a model with a large (n ∼ 3) spectral index for the CDM
isocurvature component, they give a different interpretation
of the statistical significance of the improvement. It is pre-
cisely in such a context that a model selection approach as
the one presented here might be helpful, in that it allows to
account for the Occam’s razor effect described above. The
question of isocurvature modes has been addressed from
a model comparison perspective by Beltran et al. (2005);
Trotta (2007b).

Since the goal of this work is not to present a detailed
analysis of isocurvature contributions, but rather to give a
few illustrative applications of Bayesian model selection, we
restrict our attention to the comparison of a purely adiabatic
model against a model containing a CDM isocurvature mode
totally correlated or anti–correlated. For simplicity, we also
take the isocurvature and adiabatic mode to share the same
spectral index, nS . This phenomenological set–up is close
to what one expects in some realizations of the curvaton
scenario, see e.g. Gordon & Lewis (2003); Lyth & Wands
(2003); Lazarides et al. (2004). For an extended treatment
including all of the 4 different isocurvature modes, see Trotta
(2007b).

We compare model M0, with adiabatic fluctuations
only, with M1, which has a totally (anti)correlated isocur-
vature fraction

fiso ≡ S
ζ
, (10)

where ζ is the primordial curvature perturbation and S the
entropy perturbation in the CDM component (see Trotta
(2004); Lazarides et al. (2004) for precise definitions). The
sign of the parameter fiso defines the type of correlation. We
adopt the convention that a positive (negative) correlation,
fiso > 0 (fiso < 0), corresponds to a negative (positive) value
of the adiabatic–isocurvature CMB correlator power spec-
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trum on large scales. We choose fiso as the relevant parame-
ter for model comparison because of its immediate physical
interpretation as an entropy–to–curvature ratio, but this is
only one among several possibilities.

In the absence of a specific model for the generation
of the isocurvature component, there is no cogent physical
motivation for setting the prior on fiso. A generic argument
is given by the requirement that linear perturbation theory
be valid, i.e. ζ,S ≪ 1. This however does not translate into
a prior on fiso, unless we specify a lower bound for the cur-
vature perturbation. In general, fiso is essentially a free pa-
rameter, unless the theory has some built–in mechanism to
set a scale for the entropy amplitude. This however requires
digging into the details of specific realizations for the gener-
ation of the isocurvature component. For instance, the cur-
vaton scenario predicts a large fiso if the CDM is produced
by curvaton decay and the curvaton does not dominate the
energy density, in which case |fiso| ∼ r−1 ≫ 1, since the
curvaton energy density at decay compared with the total
energy density is small, r ≡ ρcurv/ρtot ≪ 1 (Lyth & Wands
2003; Gordon & Lewis 2003). Once the details of the curva-
ton decay are formulated, it might be possible to argue for
a theoretical lower bound on r, which gives the prior range
for the predicted values of fiso.

In the absence of a compelling theoretical motivation
for setting the prior, we can still appeal to another piece
of information which is available to us before we actually
see any data: the expected sensitivity of the instrument. By
assessing the possible outcomes of a measurement given its
forecasted noise levels we can limit the a priori accessible
parameter space for a specific observation on the grounds
that it is pointless to admit values which the experiment
will not be able to measure. For the case of fiso, there is a
lower limit to the a priori accessible range dictated by the
fact that a small isocurvature contribution is masked by the
dominant adiabatic part. Conversely, the upper range for fiso
is reached when the adiabatic part is hidden in the prevailing
isocurvature mode. In order to quantify those two bounds,
we carry out a Fisher Matrix forecast assuming noise levels
appropriate for the measurement under consideration, thus
determining which regions of parameter space is accessible
to the observation. Such a prior is therefore motivated by
the expected sensitivity of the instrument, rather then by
theory. The prior range for a scale–free parameter thereby
becomes a computable quantity which depends on our prior
knowledge of the experimental apparatus and its noise levels.

We have performed a FM forecast in the (ζ, |S|) plane,
whose results are plotted in Figure 1 for the WMAP ex-
pected sensitivity. We use a grid equally spaced in the log-
arithm of the adiabatic and isocurvature amplitudes, in the
range 10−6 ≤ ζ ≤ 5 · 10−4 and 10−8 ≤ |S| ≤ 10−2. For each
pair (ζ, |S|) the FM yields the expected error on the am-
plitudes as well as on fiso. The expected error however also
depends on the fiducial values assumed for the remaining
cosmological parameters. In order to take this into account,
at each point in the (ζ, |S|) grid we run 40 FM forecasts
changing the type of correlation (sign(S) = ±1), the spec-
tral index (nS = 0.8 . . . 1.2 with a step of 0.1) and the op-
tical depth to reionization (τr = 0.05 . . . 0.35 with a step of
0.1). The other parameters (θ, ωc, ωb) are fixed to the con-
cordance model values, since ζ,S are mostly correlated with
τr, nS and thus only the fiducial values assumed for the latter

Figure 1. The parameter space accessible a priori to WMAP in
the (ζ, |S|) plane is obtained by requiring better than 10% ac-
curacy on |fiso| in the Fisher Matrix error forecast (open circles
for the best case, crosses for the worst case, depending on the
fiducial values of τr , nS and on the sign of the correlation). This
translates into a prior accessible range 0.4 <∼ |fiso|<∼ 100 (diagonal,
dashed lines), but only if ζ, |S|>∼ 10−5. Models which roughly sat-
isfy the COBE measurement of the large scale CMB anisotropies
(δT/T ≈ 10−5) lie on the blue/solid line and have positive (neg-
ative) correlation left (right) of the cusp.

two parameters have a strong impact on the predicted errors
of the amplitudes. We then select the best and worst out-
come for the expected error on fiso, in order to bracket the
expected result of the measurement independently on the
fiducial value for τr, nS . Notice that at no point we make
use of real data. By requiring that the expected error on
fiso be of order 10% or better, we obtain the a priori acces-
sible area in amplitude space for WMAP, which is shown in
Figure 1.

It is apparent that fiso cannot be measured by WMAP if
either ζ or |S| are below about 10−5, in which case the signal
is lost in the detector noise. For amplitudes larger than 10−5,
|fiso| = 1 is accessible to WMAP with high signal–to–noise
independently on the value of τr, nS , while |fiso| ≈ 0.4 can be
measured only in a few cases for the most optimistic choice
of parameters. As an aside, we notice that if we restrict our
attention to models which roughly comply with the COBE
measurement of the large scale CMB power (blue/solid lines
in Figure 1), then WMAP can only explore the subspace of
anti–correlated isocurvature contribution (right of the cusp)
and only if ζ >∼ 7·10−5 . On the other end of the range, we can
see that |fiso| = 100 is about the largest value accessible to
WMAP, at least for ζ ≥ 5 ·10−4 , |S| ≥ 10−2. There is a sim-
ple physical reason for the asymmetry of the accessible range
around |fiso| = 1: a small isocurvature contribution can be
overshadowed by the adiabatic mode on large scales due to
cosmic variance, but a subdominant adiabatic mode is still
detectable even in the presence of a much larger isocurva-
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ture part, because the first adiabatic peak at ℓ ≈ 200 sticks
out from the rapidly decreasing isocurvature power at that
scale (at least if the spectral tilt is not very large, as in our
case). In conclusion, the values of |fiso| which WMAP can
potentially measure with high signal–to–noise are approxi-
mately bracketed by the range 0.4 ≤ |fiso| ≤ 100, assuming
that ζ >∼ 10−5. Given the fact that most of the prior volume
lies above |fiso| = 1, we can take a flat prior on fiso cen-
tered around fiso = 0, with a range −100 ≤ fiso ≤ 100, or
∆fiso = 100. As we shall see below, it is this large range of
a priori possible values compared with the small posterior
volume which heavily penalizes an isocurvature contribution
due to the Occam’s razor behavior of the Bayes factor.

The marginalized posterior on fiso from WMAP3+ext
data gives a 95% interval −0.06 ≤ fiso ≤ 0.10, thus yield-
ing only upper bounds on the CDM isocurvature fraction,
in agreement with previous works using a similar param-
eterization (see Trotta (2007b) for details). The spread of
the posterior is of order 0.1, which lies an order of mag-
nitude below the level (|fiso| = 1) at which an isocurva-
ture signal would have stand out clearly from the WMAP
noise. The Bayes factor corresponding to the above choice
of prior (−100 ≤ fiso ≤ 100) is given in Table 2, and with
lnB01 = 7.62 it corresponds to a probability of 0.9995 (or
odds of 2050 to 1) for purely adiabatic initial conditions.
This is a consequence of the large volume of wasted param-
eter space under the large prior used here, and a fine exam-
ple of automatic Occam’s razor built into the Bayes factor.
We notice that in order to obtain a model–neutral conclu-
sion (odds of 1:1) one would have to choose a prior width
below 0.1, i.e. find a mechanism to strongly limit the avail-
able parameter space for the isocurvature amplitude (Trotta
2007b). In other words, the introduction of a new scale–free
isocurvature amplitude is generically unwarranted by data,
a feature already remarked by Lazarides et al. (2004).

This result differs from the findings of Beltran et al.
(2005), who considered an isocurvature CDM admixture to
the adiabatic mode with arbitrary correlation and spectral
tilt and concluded that there is no strong evidence against
mixed models (odds of about 3 : 1 in favor of the purely
adiabatic model). While their setup is not identical to the
one presented here and thus a direct comparison is difficult,
we believe that the key reason of the discrepancy can be
traced back to the different basis for the initial conditions
parameter space. Instead of the isocurvature fraction fiso,
Beltran et al. (2005) employ the parameter α describing the
fractional isocurvature power, which is related to fiso by

α =
f2

iso

1 + f2

iso

. (11)

The infinite range 0 ≤ |fiso| < ∞ corresponds in this
parametrization to a compact interval [0..1) for α (or (−1..1)
for

√
α), over which they take a flat prior for the variable α

(or
√
α). Flat priors over α or

√
α correspond to the priors

over |fiso| depicted in Figure 2, which cut away the region
of parameter space where |fiso| ≫ 1. As a consequence, the
Occam’s razor effect is suppressed and the resulting odds in
favor of the purely adiabatic model are much smaller than
in our case.

This example illustrates that model comparison results
can depend crucially on the underlying parameter space. We

Figure 2. Equivalent priors on |fiso| corresponding to the flat
priors used in Beltran et al. (2005) for the parameters α and

√
α.

Both priors cut away the parameter space |fiso| ≫ 1, thus re-
ducing the Occam’s razor effect caused by a scale-free parameter.
The odds in favor of the purely adiabatic model thus become
correspondingly smaller. Model comparison results can depend
crucially on the variables adopted.

now turn to discuss the dependence of our other results on
the prior range one chooses to adopt.

3.3 Dependence on the choice of prior

As described in detail in Appendix A, the Bayes factor is
really a function of two parameters, λ and the information
content I = − ln β, see Eq. (A9) for the case of a Gaus-
sian prior and a Gaussian likelihood in the parameter of
interest. Figure 3 shows contours of | lnB01| = const for
const = 1.0, 2.5, 5.0 in the (I, λ) plane, as computed from
Eq. (A9). The contours delimit significative levels for the
strength of evidence, as summarized in Table 1. In the fol-
lowing, we will measure the information content I in base–10
logarithm. For moderately informative data (I ≈ 1− 2) the
measured mean has to lie at least about 4σ away from ω⋆

in order to robustly disfavor the simpler model (i.e., λ>∼ 4).
Conversely, for λ<∼ 3 highly informative data (I >∼ 2) do favor
the conclusion that ω = ω⋆. In general, a large information
content favors the simpler model, because Occam’s razor pe-
nalizes the large volume of “wasted” parameter space of the
extended model. A large λ disfavors exponentially the sim-
pler model, in agreement with the sampling theory result.
The location on the plane of the three cases discussed in the
text (the scalar spectral index, the spatial curvature and the
CDM isocurvature component) is marked by diamonds (cir-
cles) for WMAP1+ext (WMAP3+ext). Even though the in-
formative regions of Figure 3 assume a Gaussian likelihood,
they are illustrative of the results one might obtain in real
cases, and can serve as a rough guide for the Bayes factor
determination.

Another useful properties of displaying the result of the
model comparison in the (I, λ) plane as in Figure 3 is that
the impact of a change of prior can be easily estimated. A
different choice of prior will amount to a horizontal shift of
the points in Figure 3, at least as long as I > 0 (i.e., posterior
dominated by the likelihood). Thus we can see that given the
results with the priors used in this paper, no other choice

of priors for fiso or Ωκ within 4 order of magnitude will
achieve a reversal of the conclusion regarding the favoured
model. At most, picking more restrictive priors (reflecting
more predictive theoretical models) would make the points
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Figure 3. Regions in the (I, λ) plane (shaded) where one of the
competing models is supported by positive (odds of 3:1), moder-
ate (12:1) or strong (odds larger than 150:1) evidence. The white
region corresponds to an inconclusive result (odds of about 1:1),
while in the region I < 0 (dotted) the posterior is dominated
by the prior and the measurement is non–informative. In the
lower horizontal axis, I is given in base 10, i.e. I = − log10 β,
while it is given in bits in the upper horizontal axis. The con-
tours are computed from the SDDR formula assuming a Gaus-
sian likelihood and a Gaussian prior. The location of the three
parameters analyzed in the text is shown by diamonds (circles)
for WMAP1+ext data (WMAP3+ext data). Choosing a wider
(narrower) prior range would shift the points horizontally to the
right (to the left) of the plot.

for fiso or Ωκ drift to the left of Figure 3, eventually entering
in the white, inconclusive region I <∼ 0.5. For the spectral
index from WMAP 3–year data, choosing a prior 2 orders
of magnitude larger than the one employed here, ie −19 <
nS < 20 would reverse the conclusion of the model selection,
favouring the model nS = 1 with odds of about 3:1. This
choice of prior is however physically unmotivated. On the
other hand, reducing the prior by one order of magnitude
– i.e., making it of the same order as the current posterior
width (I = 0) – would still not alter the conclusion that
nS = 1 is disfavoured with moderate odds.

The prior assignment is an irreducible feature of
Bayesian model selection, as it is clear from its presence
in the denominator of Eq. (7). There is a vast literature
which adresses the problem of assigning prior probabilities
(see footnote 1) in a way which reflects the state of knowl-
edge before seeing the data. In applications to model selec-
tion, it might be more useful to regard the prior as express-
ing the available parameter space under the model, rather
then a state of knowledge before seeing the data, as argued
in Kunz et al. (2006). The underpinnings of the prior choice
can be found in our understanding of model–specific issues.
In this work we have offered two examples of priors stem-
ming from theoretical motivations: the prior on the scalar
spectral index is a consequence of assuming slow–roll infla-

tion while the prior on the spatial curvature comes from our
knowledge that the Universe is not empty (and therefore
the curvature must be smaller than −1) nor overclosed (or
it would have recollapsed). This simple observations set the
correct scale for the prior on Ωκ, which is of order unity.
On the other hand, if one wanted to impose an inflation–
motivated prior of width ≪ 1, then the information content
of the data would go to 0 and the outcome of the model se-
lection would be non-informative. In general, it is enough to
have an order of magnitude estimate of the a priori allowed
range for the parameter of interest, since the logarithm of
the model likelihood is proportional to the logarithm of the
prior range. Furthermore, considerations of the type out-
lined above can help assessing the impact of a prior change
on the model comparison outcome. Often one will find that
most “reasonable” prior choices will lead to qualitatively to
the same conclusion, or else to a non–committal result of
the model comparison.

For essentially scale–free parameters, such as the adia-
batic and isocurvature amplitudes of our third application,
model theoretical considerations of the type employed by
Lazarides et al. (2004) can lead to a limitation of the prior
range. In the context of phenomenological model building,
we have demonstrated that an analysis of the a priori pa-
rameter space accessible to the instrument can be used to
define a prior encapsulating our expectations on the quality
of the data we will be able to gather.

An important caveat is the dependence of the Bayes
factor on the basis one adopts in parameter space, which
sets the natural measure on the parameters. A flat prior on
θ does not correspond to a flat prior on some other set α(θ)
obtained via a non–linear transformation, since the two prior
distributions are related via

π(θ|M) = π(α|M)
˛

˛

˛

dα(θ)

dθ

˛

˛

˛

. (12)

As illustrated by the case of the isocurvature amplitude, this
is especially relevant for parameters which can vary over
many orders of magnitudes. We put forward that the choice
of the parameter basis can be guided by our physical insight
of the model under scrutiny and our understanding of the
observations. This principle would suggest that one should
adopt flat priors along “normal variables” or principal com-
ponents, because those are directly probed by the data and
usually can be interpreted in terms of physically relevant and
meaningful quantities. A general principle of consistency can
be invoked to select the most appropriate variable for cases
where many apparently equivalent choices are present (for
example, fiso, α or

√
α). We leave further exploration of this

very relevant issue to a future publication.

4 CONCLUSIONS

We have argued that frequentist significance tests should be
interpreted carefully and in particular that Bayesian model
selection reasoning should be used to decide whether the
introduction of a parameter is warranted by data. The main
strengths of the Bayesian approach are that it does consider
the information content of the data and that it allows one
to confirm predictions of a model, instead of just disproving
them as in the sampling theory approach.
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We have investigated the use of the Savage–Dickey den-
sity ratio (SDDR) as a tool to compute the Bayes factor of
two nested models, at no extra computational cost than the
Monte Carlo sampling of the parameter space. The tech-
nique is likely to be accurate for cases where the the esti-
mated value of the extra parameter under the larger model
lies less than about 3 sigma’s away from the predicted value
under the simpler model, as shown in Appendix C. In a com-
panion paper (Trotta 2007a) a complementary technique is
introduced, called PPOD, which produces forecasts for the
probability distribution of the Bayes factor from future ex-
periments.

We have applied this Bayesian model selection point of
view to three central ingredients of present–day cosmological
model building. Regarding the spectral index of scalar per-
turbations, we found that WMAP 3–year data disfavour a
scale–invariant spectral index with moderate evidence, and
that this result holds true for all reasonable choices of priors.
This is a significant change with respect to the inconclusive
result one obtained using the WMAP 1st year data release
instead. We found that the odds in favour of a flat Uni-
verse have doubled (from 15 : 1 to 29 : 1) in going from
WMAP1+ext to WMAP3+ext, and we have stressed that
this conclusion can only be obtained if the Hubble parameter
is measured independently or if supernovae luminosity dis-
tance measurements (or other low–redshift rulers, such as
baryonic acoustic oscillations, see Eisenstein et al. (2005))
are employed. Finally, purely adiabatic initial conditions
are strongly preferred to a mixed model containing a to-
tally (anti)correlated CDM isocurvature contribution (odds
larger than 1000 : 1), on the grounds of an Occam’s razor
argument, that the prior available parameter space is much
larger than the small surviving posterior volume. This is
however crucially dependent on the variable one chooses to
impose flat priors on.

In the light of these findings, it seems to us that model
comparison tools offer complementary insight in what the
data can tell us about the plausibility of theoretical specu-
lations regarding cosmological parameters, and can provide
useful guidance in the quest of a cosmological concordance
model.
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APPENDIX A: AN ILLUSTRATION OF

LINDLEY’S PARADOX

Lindley (1957)’s paradox describes a situation where fre-
quentist significance tests and Bayesian model selection pro-
cedures give contradictory results. As we demonstrate below,
it arises because the information content of the data is ne-
glected in the frequentist approach.

Let us consider the toy example of a measurement of
a Gaussian distributed quantity, ω, by drawing n iid sam-
ples with known s.d. σ. Then the likelihood function is the
normal distribution

p(µ̂, σ̂|ω) = Nµ̂,σ̂(ω), (A1)

where µ̂ is the estimated mean and σ̂ = σ/
√
n its uncer-

tainty. From the point of view of frequentist statistics, a
significance test is performed on the null hypothesis H0 :
ω = ω⋆. We define λ as dimensionless number which indi-
cates “how many sigma’s away” is our estimate of the mean,

µ̂, from its value under H0 in units of its uncertainty:

λ ≡ |µ̂− ω⋆|
σ̂

. (A2)

This “number of sigma’s” difference is interpreted as a mea-
sure of the confidence with which one can reject H0. The
“p–value”

p–value =

Z

∞

λ

p(µ̂, σ̂|ω)dω (A3)

is compared to a number α, called the “significance level”
of the test and the hypothesis H0 is rejected at the 1 − α
confidence level if p–value < α. If we pick a (fixed) confi-
dence level, say α = 0.05, then the frequentist significance
test rejects the null hypothesis if

Z(λ) ≡ 1√
2π

Z

∞

λ

exp
`

−t2/2
´

dt ≤ α/2. (A4)

(for a 2–tailed test). For α = 0.05 the equality in Eq. (A4)
holds for λ = 1.96. In other words, sampling statistics reject
the null hypothesis at the 95% confidence level if the mea-
sured mean is more than λ = 1.96 sigma’s away from the
predicted ω⋆ under H0.

This conclusion can be in strong disagreement with the
Bayesian evaluation of the Bayes factor, i.e. a value ω⋆ re-
jected under a frequentist test can on the contrary be fa-
vored by Bayesian model comparison (Lindley 1957). In the
Bayesian model comparison approach, the two competing
models are M0, with no free parameters, in which the value
of ω is fixed to ω = ω⋆, and model M1, with one free param-
eter ω 6= ω⋆. Under M1, our prior belief before seeing the
data on the probability distribution of ω is explicitly repre-
sented by the prior pdf π(ω). This prior pdf is then updated
to the posterior via Bayes theorem5, Eq. (1).

A formal measure of the information gain obtained
through the data is the cross–entropy between prior and
posterior, the Kullback–Leibler divergence

DKL(p, π) =

Z

p(θ|d) ln
p(θ|d)
π(θ)

dθ. (A5)

For a Gaussian prior of standard deviation ∆ω centered on
ω⋆ and a Gaussian likelihood with mean µ̂ and standard
deviation σ̂, the information gain is given by

DKL +
1

2
= − ln β +

1

2
β2(λ2 − 1), (A6)

where we have defined

β ≡ σ̂/∆ω, (A7)

the factor by which the accessible parameter space under
M1 is reduced after the arrival of the data (remember that
σ̂ is the standard deviation of the likelihood). For totally
uninformative data, β = 1 and λ = 0, and thus DKL = 0.

5 Notice that, after applying Bayes theorem, the posterior prob-
ability is attached to the parameter ω itself, not to the estimator
µ̂ as in sampling theory. In the Bayesian framework we only deal
with observed data, never with properties of estimators based
on a (fictional) infinite replication of the data. In cosmology one
only has one realization of the Universe and there is not even the
conceptual possibility of reproducing the data ad infinitum and
therefore the Bayesian standpoint seems better suited to such a
situation.
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Unless λ ≫ 1 (in which case the null hypothesis is rejected
with many sigma’s and there is hardly any need for model
comparison) we can usually neglect the second term on the
right–hand–side of Eq. (A6). We are therefore led to define
a simpler measure of the information content of the data, I ,
as

I ≡ − ln β. (A8)

The choice of the logarithm base is only a matter of con-
venience, and this sets the units in which the entropy is
measured. Had we chosen base–2 logarithm instead, the in-
formation would have been measured in bits. In Figure 3,
the choice of using the base–10 logarithm for the bottom
horizontal axis means that I describes the order of magni-
tude by which our prior knowledge has improved after the
arrival of the data.

We now compute the Bayes factor B01 in favor of model
M0 from Eq. (7), using again the above Gaussian prior, ob-
taining

B01(β, λ) =
p

1 + β−2 exp

„

− λ2

2(1 + β2)

«

. (A9)

The model comparison result thus depends not only on λ,
but also on the quantity β, which is proportional to the
volume occupied by the posterior in parameter space and
describes the information gain in going from prior to pos-
terior. If instead of a Gaussian prior one takes a flat prior
around ω⋆ of width 2∆ω (the factor of 2 being chosen to
facilitate the comparison with the case of a Gaussian prior
of standard deviation ∆ω) one obtains instead

B01(β, λ) =

r

2

π
β−1 exp

`

−λ2/2
´

× (A10)

ˆ

Z
`

λ− β−1
´

− Z
`

λ+ β−1
´˜

−1

.

where the function Z(y) is defined in (A4), a consequence
of the top–hat prior. For β−1 ≫ λ, the posterior is well
localized within the boundaries of the prior and the term in
square brackets in (A10) tends to 1.

In order to clarify the role of the information content
and the difference with frequentist hypothesis testing, con-
sider the following example (see Figure A1). For a fixed
choice of prior width ∆ω, imagine performing three different
measurements, each with a different value of β (i.e., with
different information content I) but with outcomes such
that λ is the same in all three cases. This is depicted in
the top panel of Figure A1, where the likelihood mean is
λ = 1.96 sigma’s away from ω⋆ for all three cases. Under
sampling statistics, all three measurements equally reject
the null hypothesis, that ω = ω⋆, at the 95% confidence
level. And yet common sense clearly tells us that this can-
not be the right conclusion in all three cases. Indeed, the
Bayes factor, Eq. (A9) or (A10), correctly recovers the in-
tuitive result (bottom panel of Figure A1): the measure-
ment with the larger error (β = 1/5, or I = 0.7, expressed
in base–10 logarithm) corresponds to the least informative
data, and the Bayes factor slightly disfavours the simpler
model (lnB01 = −0.2, or odds of about 5:4 against M0 and
p(M0|d) = 0.44). For β = 1/20 or I = 1.3 (moderately infor-
mative data), evidence starts to accumulate in favor of M0

(lnB01 = 1.08, odds of 3:1 in favor and p(M0|d) = 0.75). For
very informative data, β = 1/100, I = 2, Bayesian reason-
ing correctly deduces that the simpler M0 should be favored

Figure A1. Illustration of Lindley’s paradox. Sampling statistics
hypothesis testing rejects the hypothesis that ω = ω⋆ with 95%
confidence in all 3 cases (coloured curves) illustrated in the top
panel (λ = 1.96 in all cases). Bayesian model selection does take
into account the information content of the data I, and correctly
favors the simpler model (predicting that ω = ω⋆) for informative
data (right vertical line in the bottom panel, I = 2 expressed in
base–10 logarithm), with odds of 14 : 1 (for a Gaussain prior,
dotted black line). Using a flat prior of the same width (solid black
line) instead reduces lnB01 by a geometric factor ln(2/π)/2 =
0.22 in the informative (I ≫ 1) regime. Notice that for non–
informative data (I ≪ 0) the Bayes factor reverts to equal odds
for the two models.

(lnB01 = 2.68, odds of 14:1 in favor of M0 and a posterior
probability p(M0|d) = 0.94). The above numbers are for a
Gaussian prior, but those conclusion are largely indepen-
dent of the choice of a Gaussian or of a flat prior, provided
the bulk of the prior volume is the same (compare the dot-
ted and solid line in the bottom panel of Figure A1 for a
Gaussian and a flat prior, respectively).

This illustration shows that the Bayes factor can cor-
rectly favor models which would be rejected with high confi-
dence by hypothesis testing in a sampling theory approach.
While in sampling theory one is only able to disprove mod-
els by rejecting hypothesis, it is important to highlight that
the Bayesian evidence can and does accumulate in favor of
simpler models, scaling as 1/β. While it is easier to disprove
ω = ω⋆, since model rejection is exponential with λ, the
Bayesian approach allows to evaluate what the data have to
say in favor of an hypothesis, as well.

In summary, quoting the number of sigma’s away from
ω⋆ (the λ parameter) is not always an informative statement
to decide whether or not a parameter ω differs from ω⋆.
Answering this question is a model comparison issue, which
requires the evaluation of the Bayes factor.
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APPENDIX B: DERIVATION OF THE SDDR

The Bayes factor B01 of Eq. (2) can be evaluated by com-
puting the integrals

p(M0|d) =

Z

dψπ0(ψ)p(d|ψ,ω⋆), (B1)

p(M1|d) =

Z

dψdωπ1(ψ,ω)p(d|ψ,ω) ≡ q. (B2)

Here π0(ψ) denotes the prior over ψ in model M0, and
π1(ψ, ω) the prior over (ψ, ω) under model M1. Note that,
since the models are nested, the likelihood function for M0

is just a slice at constant ω = ω⋆ of the likelihood function
in model M1, p(d|ψ,ω).

Now multiply and divide B01 by the number p(ω⋆|d) ≡
p(ω = ω⋆|d,M1), which is the marginalized posterior for
ω under M1 evaluated at ω⋆, and using that p(ω⋆|d) =
p(ω⋆, ψ|d)/p(ψ|ω⋆, d) at all points ψ, we obtain

B01 = p(ω⋆|d)
Z

dψ
π0(ψ)p(d|ψ,ω⋆)p(ψ|ω⋆, d)

q · p(ω⋆, ψ|d)
(B3)

= p(ω⋆|d)
Z

dψ
π0(ψ)p(ψ|ω⋆, d)

π1(ω⋆, ψ)
, (B4)

where in the second equality we have used the definition of
posterior, namely that p(ω⋆, ψ|d) = p(d|ω⋆, ψ)π1(ω⋆, ψ)/q.
Up to this point we have not made any assumption nor ap-
proximation. We now assume that the prior satisfies

π1(ψ|ω⋆) = π0(ψ), (B5)

which always holds in the (usual in cosmology) case of sep-
arable priors, i.e.

π1(ω,ψ) = π1(ω)π0(ψ). (B6)

Under this assumption, and since p(ψ|ω⋆, d) in (B4) is the
normalized marginal posterior, Eq. (B4) simplifies to the
SDDR given in Eq. (7).

APPENDIX C: BENCHMARK TESTS FOR THE

SDDR

In order to explore the accuracy of the SDDR, we have tested
its performance for the benchmark case of a Gaussian likeli-
hood. A D–dimensional likelihood is generated by choosing
a random D–dimensional, diagonal covariance matrix. The
correlations can be set to 0 without loss of generality since
in the Gaussian case it is always possible to rotate to the
principal axis of the covariance ellipse. The mean of the like-
lihood is set to 0 for the last D − 1 dimensions, while for
the first parameter (the one we are interested in testing) the
mean is chosen to lie λσ1 away from 0, where λ is selected
below and σ2

1 is the covariance along direction 1. We then
compare the two following nested models: M0 predicts that
the first parameter θ1 = 0, while M1 has a Gaussian prior
centered around 0 and of width ∆w = σ1/β, where β is
fixed.

The posterior is then reconstructed using a MCMC al-
gorithm and the Bayes factor computed using the SDDR.
The results are shown in Figure C1 as a function of the
number of samples for parameter spaces of dimension D =
5, 10, 20 and for λ = 1, 2, 3. We have fixed β = 0.2 through-
out (changing the value of β only rescales the Bayes factor

Figure C1. Benchmark test for the SDDR formula for a Gaus-
sian likelihood and prior, for parameter spaces of dimensionality
D. The horizontal, dotted lines give the exact value. The SDDR
performs extremely well for comparing models lying λ < 3 sigma’s
away from each other. In this case, less than 105 samples are re-
quired to achieve a satisfactory agreement with the exact result.
For λ >∼ 4 the tails of the likelihood are not sufficiently explored
to apply the SDDR. The missing points for λ = 3 indicate that
the given number of samples are insufficient to achieve coverage
of the simpler model prediction.

without affecting the accuracy, as long as β < 1, i.e. for infor-
mative data). The errors on the Bayes factor are computed
as in the text using a bootstrap technique: the full sample
set is divided in R = 5 subsets, then the mean and standard
deviation of the SDDR are computed from those subsets.
The error thus only reflect the statistical noise within the
chain and it does not take into account a possible systematic
under–exploration of the likelihood’s tails.

It is clear that the SDDR performs extremely well for
λ ≤ 2 while it becomes less accurate for λ = 3. This is be-
cause it is rather difficult to explore regions further out in the
tails of the distribution using conventional MCMC methods.
For λ > 3 it becomes very unpractical to obtain sufficient
samples in the tail. For models that lie less than about 3
sigma’s away from each other, the SDDR gives a satisfac-
tory accuracy in the model comparison result at no extra
cost than the parameter estimation step, requiring less than
105 samples. Furthermore, the scaling with the dimensional-
ity of the parameter space appears to be rather favourable,
and the error increases only mildly from D = 5 to D = 20
at a given number of samples.

Clearly, for likelihoods that are close to Gaussian, the
approximations (A9) and (A10) can still give a useful or-
der of magnitude estimate of the result. Finally, we stress
that in the regime where the SDDR works well (λ<∼ 3) its
accuracy is not limited by the assumption of normality of
the likelihood, but only by the efficiency and accuracy of the
MCMC reconstruction of the posterior. Particular care must
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be exercised in exploring accurately distributions presenting
heavier tails than Gaussians, and further work is required
to extend the MCMC sampling to the regime λ>∼ 4. In this
case, sampling at a higher temperature could help in obtain-
ing sufficient samples in the tail, an issue whose exploration
we leave for future work.
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