
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume  171, September 1972

APPLICATIONS OF BUNDLE MAP THEORYt1)
BY

DANIEL HENRY GOTTLIEB

ABSTRACT. This paper observes that the space of principal bundle maps into
the universal bundle is contractible.  This fact is added to I. M. James' Bundle map
theory which is slightly generalized here.   Then applications yield new results
about actions on manifolds, the evaluation map, evaluation subgroups of classify-
ing spaces of topological groups, vector bundle injections, the Wang exact
sequence, and //-spaces.

1. Introduction.   Let  E —>p B  be a principal G-bundle and let  EG —>- G BG be
the universal principal  G-bundle.   The author observes that the space of principal

bundle maps from  E to  £G  is "essentially" contractible.   The purpose of this

paper is to draw some consequences of that fact.   These consequences give new

results about characteristic classes and actions on manifolds, evaluation subgroups

of classifying spaces, vector bundle injections, the evaluation map and homology,

a "dual" exact sequence to the Wang exact sequence, and W-spaces.

The most interesting consequence is Theorem (8.13). Let  G be a group of

homeomorphisms of a compact, closed, orientable topological manifold  M and let

co : G —> M be the evaluation at a base point x    e M.  Then, if x(M) denotes the

Euler-Poincaré number of  M, we have that  \(M)co* is trivial on cohomology.   This

result follows from the simple relationship between group actions and characteristic

classes (Theorem (8.8)).

We also find out information about evaluation subgroups of classifying space

of topological groups.   In some cases, this leads to explicit computations, for

example, of GX(B0 ). See Theorem (7.3).
Then we devote ourselves to vector bundles and characterize the space of

vector bundle monomorphisms into the universal bundle over the appropriate Grass-

mannian space as the space of mappings of the base space of the vector bundle

into another Grassmannian.   See Theorem (9.2).

Next we study the homomorphism which arises in the Wang exact sequence.

Using bundle map theory we obtain a "dual" exact sequence which we call the

Gnaw exact sequence.  See Theorem (11.4).   We compare this exact sequence with
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24 DANIEL HENRY GOTTLIEB [September

one of Thorn's and discover some mysterious facts about  //-spaces.   See Theorem

(12.2).   Finally, using the Gnaw exact sequence, we make some improvements in

the proofs and results of [8].   See Theorem (13.2).

§2 contains  preliminaries about the topology of mapping spaces.   In   §§3, 4,

5, 6 we develop the theory of bundle mappings.  We show the relationships between

the various types of bundle mapping spaces.  In  § 7, we investigate the relation-

ship between the center of a topological group and evaluation subgroups of classify-

ing spaces.   In § 8, the study of the homology tangent bundle yields Theorem (8.13)

mentioned above.   In § 9 we turn our attention to the study of vector bundle monomor-

phisms.

The last sections of the paper are devoted to the Gnaw exact sequence and its

consequences.   In § 10 we review pertinent facts about the Wang homomorphisms.

In §11, we exhibit the Gnaw exact sequence.  In § 12 we compare the Gnaw exact

sequence with one of Thorn's and obtain new results about //-spaces.   In § 13 we

find a general condition for evaluation subgroups to be finite.

A list of sections and titles follows.
r>
§ 1.   Introduction

PART I.   Bundle map theory
2. Preliminaries
3. The space of principal bundle maps

§ 4.   The space of principal bundle equivalences

5.   Universal bundles
§ 6.   Fibre bundles with structural group  G

PART II.   Applications of bundle map theory
§ 7.  Evaluation subgroups of classifying spaces

V 8.  Characteristic classes and actions on manifolds

§ 9.  Vector bundle monomorphisms

PART III.   The Gnaw exact sequence
§10. The Wang homomorphism
§11. The Gnaw exact sequence

§12. Exact sequences of Thorn and the Gnaw exact sequence

§13. Some notes on  [8]

PART I. BUNDLE MAP THEORY

Since I have presumed to give the body of results described below the name

"bundle map theory", I should describe, to the best of my knowledge, the history

of this theory.
Some of the results described appear to be folk theorems. This refers to the

fibration theorems.   In 1961, T. E. Stewart [18] used some special cases of these

results, but he neither proved them nor gave references.   In 1963, I. M. James [lO]
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1972] APPLICATIONS OF BUNDLE MAP THEORY 25

wrote down these theorems (most of § 3 and § 4).  He then applied his results to

Stiefel manifolds and in other ways.  His work was independent of Stewart's work.

In 1968, [7], I extended James' results to the category of Hurewicz fibrations.

J was primarily concerned with proving that the space of "bundle maps" into the

universal fibration is essentially contractible.   In §5, it is observed that this fact

is true for principal fibre bundles as well.  See Theorem (5.2).   I consider this a

very attractive fact and I hope to show in the applications that it is a useful one

also.

2. Preliminaries.   Let  X and   Y be topological spaces.   Then  L(X,  Y) will

denote the space of maps from  X to   Y endowed with the compact open topology.

We shall also use the symbol   Y   .   If /: X —» Y  is a map, we denote by   L(X,  Y; f)
the subspace of  L(X, Y) of all maps homotopic to /.

We call  X a ¿-space whenever  X  is compactly generated (i.e. any set is

closed if its intersection with every compact set is closed) and Hausdorff.   Locally

compact spaces are ¿-spaces, metric spaces are ¿-spaces, CW complexes are ¿-

spaces, if G is a topological group and a ¿-space then  EG  and BG  are  ¿-spaces,

any quotient of a ¿-space is a ¿-space.   If  X and   Y are ¿-spaces,   X x Y need not

be a ¿-space, but if X is locally compact and   Y is a ¿-space, then  X x Y is a ze-
space.

Let a: X —> Z     be a map.  Then define 3.: X x Y —► X by â(x, y) = a(x)(y).
Then   a continuous implies   a is continuous.   On the other hand, if   Y is

locally compact, or if  X x Y is a ¿-space, then   a continuous implies  â is con-

tinuous.  The concept of ¿-space was brought into this discussion only so that we

may say that  a is continuous if and only if  â is continuous.   For more details, see
Dugundji [5, pp. 247-265].

We shall make repeated use of the relative form of the first covering homotopy
property [l6].

Theorem (2.1).   (The relative first covering homotopy theorem).   Let B  be a CW

complex.   Let    E —+p    B    and   E'   —*pl   B'     be   bundles   with   fibre    F    and
group G and let H —> K be a subbundle of E —*p B  such that  K  is a subcomplex

of B.  Suppose there is a bundle map f : E —» E', a homotopy of bundle maps g" :

H —» E    and a homotopy f(: B —> B'   such that (a) fr Q = /  \H; (b) the homotopy g  :
K —7 B'   induced by g^  is just gt = ft\ K; and finally (c) /n is induced by f: E—» E'.
Then there exists a homotopy of bundle maps f   • E —♦ £'  such that 7   \ H = t?   and

f f  induces ¡t: B —» B', and f  = /

By [W. Huebsch, O2 the covering homotopy theorem, Ann. of Math. 61 (1955),
555-563], the theorem above requires that B be normal and paracompact.   Since by

a theorem of Mitsuru Tsuda, every CW complex is paracompact, the hypothesis is

satisfied.   This  eliminates   the need for James' condition of a locally finite CW
complex which he uses in [lO].
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26 DANIEL HENRY GOTTLIEB [September

3. The space of principal bundle maps.   We shall concern ourselves with princi-

pal bundles   E —>p B.   The fibre is a topological group of homeomorphisms of E

which operates on the right of  E such that the following diagram commutes

E xG

\px*

E

P

-► B

We denote  cp(e, g) by e • g.

If we have two principal bundles with the same group  G,   E —>p 73   and  E

—>p    B', then a map / : E —► E', which is a fibre preserving map   that is a homeo-

morphism from each fibre  onto  its image such that  f (e • g) = f (e) ■ g  for all  e e

E  and g £ G, is known as a principal bundle map.

Now we let L*(E, E ) represent the space of all principal bundle maps from

E to E endowed with the compact open topology. Let L*(E, E ; f ) he the path

component of /. Now every principal bundle map / : E —» E induces a map of the

base spaces, / : B —» B'. Let 3> : L*(E, E'; f ) —* L(B, B'; f) be the function which
sends every bundle map intothe induced map on the base spaces. Here L(B, B ; [)

is the space of maps from B to B homotopic to / endowed with the compact open

topology.

Proposition (3.1).   With the notation above, $ : L*(E,,E'; f ) —> L(B, B'; f)  is
a Serre fibration.

Proof.   Very similar to proof of Theorem (2.1) in [lO].

The fibre of $ over a map /: B —> B1   will be denoted by   L**(E, E1).  This
is the set of all bundle maps which cover a given base map /.

Suppose we have three principal G-bundles whose total spaces are   E, E    and

E"   and whose base spaces are   B, B     and  B "  respectively.  Suppose they are re-

lated by two principal bundle maps   E —»'   E' —>g  E".   Then composition on the

left by  g' gives rise to a map g~n : L*(E, E'; f ) —* L*(E, E" ; g" ° / ).   Observe that
gs is a fibre preserving map, that is, the following diagram commutes:

(3.2)

L*(E, E'; f)

*

L(B, B'; f)

L*(E, E";g°f)

_ L(B,B";g°f)

where  / and g  ate induced by /   and  g" and gu is composition on the left.

On the other hand, composition on the right by  /   gives a map /    : L*(E', E")
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1972] APPLICATIONS OF BUNDLE MAP THEORY 27

L*(E, E") which is fibre preserving, that is, the following diagram commutes:

L*(E', E"; g) f*     «,   L*(E, E"; g o J)

(3.3)

US', B";g) f -+  L(B, B"; g°f)

An important special case of (3.3) occurs when  f : E —* E    is an inclusion

map.   Thus   E —>p B  is the restriction of  E    —>p    B     to the bundle over  B C B .

Thus   E C E'   and  /is just the restriction  p of any principal bundle map   a: E'

—► E"   to p(a) : E —* E" .

Proposition (3.4).   With above notation, assume that B  is a subcomplex of the

CW complex B'.   Then p: L*(E', E") —► L*(E, E")  is a Serre fibration.

Proof.   This theorem is essentially Theorem (2.3) of I. M. James [lO].  It

depends on the relative version of the first covering homotopy theorem.

The fibre of p : L*(E', E", g ) —> L*(E, E" ; pCg)) over pCg) will be written
L**(E', E") and is the subspace of all bundle maps E —» E whose restriction

to  E is equal to p(gO, the restriction of "g   to  E.

An important example of the restriction map occurs when we let  B = *, the

base point of B .  Then  E = G, the group.  Now  L*(G, E") is homomorphic to  E"

since any bundle map from  G —> E     is determined by its value on the identity ele-

ment  e £ G.  Similarly, L(*, B") is just  B"   and so we get a fibre preserving map

from diagram (3.3),

L*(E', E";  /)• -* E"

B

(3.5)

L(B', B"; f)   -2L
Here  co is the evaluation map.

This observation was made and used by I. M. James, (2.4) of  [lO].  We shall

use it in  § 7.

4. The space of principal bundle equivalences.   A principal bundle equivalence

f : E —► E    is a principal bundle map which is also a homeomorphism and induces

the identity map on the base spaces.  We shall let  L**(E, E) denote the space of

self bundle equivalences.   We shall show that  L**(E, E) is homeomorphic to the

fibre of $ : L*(E, £') -> L(B, B').
Let k : X —► B be any map. Then the induced principal bundle k*(E) —tk<-P'> X

is defined by k*(E) = {(x, e) £ X x E\ k(x) = p(e)\ and the projection k(p) is given
by   (x, e) r-*x.
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28 DANIEL HENRY GOTTLIEB [September

We define the natural map  27 : ¿*(E) —» E by  r¡(x, e) = e.  We have the commuta-

tive diagram

(4.1)

k*(E)

k(p)

■*    E

Clearly  77 is a principal bundle map.
7\J

The importance of  77 comes from the fact that any principal bundle map /

—» E'   must factor through  77.  In fact we have  /   = 27 ° /   where

X /*(£')

(4.2)

E'

1
P

f
- B'

where  /   is the principal bundle equivalence given by / (è) = (p(e), f (<?)).

Now the correspondence g ° 77 l—» g shows that L**(E,, £') is homeomorphic

to L**(E, f*(E')) and the correspondence h r—> f ° h shows that L**(E, f*(E'))

is homeomorphic to  L**(E, E).  This gives us the following proposition.

Proposition (4.3).   L**(E, E) is homeomorphic to L**(E, E1).

It is possible to characterize L** as follows. We denote by ¿; the function

space of maps  u : E —> G which satisfy the condition

zz(e • g) = g~ lu(e)g       (e £ E, g £ G).

If f : E —► E    is a bundle map then so is  /   • u, where  u e Çr  and  (/ •  zz)(e) =

fie)  •   uie).    Now    $(/)   =   $(/   •   u),    so   the   correspondence    u\—►   /    •   u   is

a map from <fG —» L**(E, E').  This correspondence is a homeomorphism.   Thus

L**(E, E) is homeomorphic to  cfG.   Thus, if  G  is finite, L** is finite; and if  G
is commutative, then  L**  is homeomorphic to  L(B, G).  See I.M. James, Theorem

(2.2), in [10].

5. Universal bundles.  So far, bundle map theory was essentially known to

James.   In this section we introduce the key observation, which is Theorem (5.2),

that the space of bundle maps into a universal bundle is essentially contractible.

For any topological group  G, a principal G-bundle   EG —►  " BG  is called
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universal if the homotopy groups of  EG  are trivial.   Universal bundles have the

property that any principal bundle  E —>p B  over a CW complex  B with the same group

G   is  principal  bundle  equivalent  to  an induced bundle   k*(E   )   induced by  a

map  ¿ : B —► BG.   In addition, k is called a classifying map for  E —>p B  and any

two classifying maps are homotopic.  Milnor   [ll] has shown a way to construct

universal principal bundles for any topological group  G.

The key observation comes from the following.

Lemma (5.1).   // / and g : E —► E G  are two principal bundle maps, then f is

homotopic to g  by a homotopy of principal bundle maps (written j — g).   (We are

assuming that B   is a CW complex.)

Proof.   This is easily shown to be true.   Let f:E —> E be a principal fibre

bundle equivalence and define the mapping torus

Ef= \(e, t)\ (e, l)  eEx I and (e,  l) s (/(e), 0)|.

Let  q.: E.—* B x S1 be defined by  q,(e, t) = (p(e), t).  Now  q, is well defined
since  p(f(e)) = p(e).  It is clear that  q, is a fibre bundle map.   The only question

that remains is whether  q,:E, —> B x S    is a principal G-bundle.

Let  iff : E x G —» E be the action of  G on  E.  We define  ife,: E.x G —► E, by
xfe,((e, t), g) = (i[f(e, g), t).  Since / is a principal bundle equivalence and thus com-
mutes with the action of  G, we have

xfef((e,  1), g) = (ifeAe, g),  l)=(/<A(e, g), 0)

= iifeifie), g),  0) = xfefiifie), 0), g).
So  ife, is well defined and so  q, is a principal G-fibration.

The existence of the mapping torus fibration allows us to conclude that there

is a principal bundle map  s : E —» EG  such that  s"  is homotopic, through principal

bundle maps, to  s °/.

Now we must show that there is one such s fot all homotopy equivalences /:

Each E, contains a canonical E C E.. Say E = E x 0 in E,. Then define M to be

the union of all the Ef identified at E. Then M —*q' B x (V Sl), defined by q'(e)
= q,(e) if e £ E., is a principal fibration and hence there exists a principal bundle

map r : M —► E G. Let E C M be the identified subspace of all the E's. Define s
= r | E. Now r restricted to an appropriate E gives rise to the bundle map homo-

topy  E -A1 Ef—>r   EG (where   i¿e) = (e, /) e^) so that rV,°*'0 = £.snd ?"° *,=-31'-0/.
We have just shown that there exists a principal bundle map  s" : E —> Er  such

that for any principal bundle equivalence f : E —> E we have  s*— s' ° /.

Now let g": E -+ EG  be a principal bundle map.   We shall show g ~s'.   Since
this holds for arbitrary g% the lemma will be proved.

Let g  and  s : B —► BG be induced by g" and  s" respectively.   Then both  g  and
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30 DANIEL HENRY GOTTLIEB [September

s are classifying maps for E —>p B, so g is homotopic to s. So, by the homotopy covering

property, we may assume that g = s.   Then we obtain the following diagram (see (4.2)):

B

X 8*(EG) -* E_

PG

-B,

Here  g   and  s   are principal bundle equivalences.

Now s~~    ° g : E —> E  is a self principal bundle equivalence.  Now by the
third paragraph above, we have

5  SU s  o (s- 'og)^(nos) o (s-1 o g) V o g=  g

This proves the lemma.

We shall digress to introduce the concept of "essentially homotopic".  We say

that / and g : X —► Y ate essentially homotopic if, for every map  s : p —► X from a

compact polyhedron  P  to  X, we have  f ° s homotopic to g ° s.  It is easy to see

that two essentially homotopic maps induce the same homomorphisms on homotopy

groups and on singular homology and cohomology.

If the identity map 1, X X is essentially homotopic to a constant map, we
say that  X is essentially contrac tibie.   Then  77 .(X) = 0 for all   i and hence 77 (X, Z)

= 0 for all  i.  Now we can state the main consequence of Lemma (5.1).

Theorem (5.2).   L*(E, EG) is essentially contractible.

Proof.   Let  k : B —» BG  be a classifying map for  E —»^ B.  Let  k : E —» EG  be
a principal bundle map which induces  k.  Let  i : X —► CX he the obvious inclusion

of X into the cone of  X.   Then we have the commutative diagram of principal bundles.
•-o

Í X   1 _ „., _ *X   k r;*  EGXx E CXx E

1 x p

Xx B
i X  1

1  X p

CX x B
*X k " B,

Now let   A be a compact CW complex.   Then any map  a: X —> L*(E, Er) gives
rise to an associated principal bundle map

X x  E     -

1 x p

Xx B     -

E,

■*   B,
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Now by Lemma (5.1), A ^ (* x k ) ° (i x l).   Hence the associated map  a: X

—► L*(E, EA) factors through   CX.  Hence   a is homotopic to a constant.

Now we extend our theory to the case of principal bundle maps which restrict

to a given principal bundle map on a subbundle. We suppose K C B is a subcom-

plex of B. Then the principal G-bundle E —>p B restricts to a principal G-bundle

over K, written p~l(K) —* K. Let gf : p_1(K)—» E' he a principal bundle map.

Let L*.(E, E'; g~) be the space of all principal bundle maps from E to E which

restrict on p~l(K) to g. As noted before, this is the fibre of L*(E, E1) —»*
L*(p-l(K), E').

Proposition (5.3).   L*(E, E'; "g) —*   LAB, B'; j)  is a Serre fibration such
¿¿a/ í>(/ ) = / a?!«/ p(/ ) = g1, where f   is some element of Lt (E, E ; "g).

Proof.   This follows from the relative first covering homotopy theorem.

In fact we obtain the following commutative diagram where each row or column

is a Serre fibration written in the form  F —>l E —*p B  where  E is the fibre.  We

are assuming that  K is a subcomplex of B.  We further assume that /  \p~  (K) =

'g   and that /1 K = OQO = g.   In all cases, p means the restriction map and  i means

inclusion.

£**(£, E')   -'-*   L**(E, E')  -*-L**(p-lK, E')

(5.4) E*K(E, £')   -► L*(E, E'J)-* L*(p~lK, E1 ; g)

L L U
LK(B, B') -'■-* L(B, B'; f)-' L(K, B'; g)

The first column is a Serre fibration by (5.3), the second and third by (3.1).   The

bottom row is a Serre fibration, as is well known; the middle row by Proposition

(3.4); and the top row is a fibration for the same basic reason that the middle row

is, namely by an application of the relative form of the first covering homotopy

theorem.

Now suppose that we have two  principal  bundle maps  /   and "g : £ —► Er

such that /  | p~  (K) = g" | p~  (K).  We know that  /   is homotopic to  "g   through

principal bundle maps by (5.1).  We wish to know that /   is homotopic to g   by a

homotopy  h    of bundle maps such that  h   | p~  (K) = f \p~  (K).  Again, this fol-
lows from the relative form of the first homotopy covering theorem as follows.   Let

'V.

77 : E x I —► £G be defined by H(e, t) = h t(e). Then 7/ is a principal bundle map.
Consider the subbundle ExO UEx 1 Up- l(K) x / of £ x /. We define a partial
homotopy

K  : (£ x 0) U (E x 1) u (p~ \k) x l) -* E s £ I,
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by  K_ = H restricted to the subbundle

Ks(e, 0) = 7(e),
Ks(e, l) = g(e),
K (e, t)\p~   (K) x / is a homotopy of principal bundle maps where   K   = H and

Kyie, St) = T(e).
Then there exists a homotopy of principal bundle maps  H   : E x I —» EG  such

that  Hn = H and  H   \(E x 0) U (E x l) U ip'KK) x l)= K  .  Then  H.   is the required
homotopy from /   to   g  such that  Hx(e, t) = f (e) = 'g(e) if  e e p~ 1iK).  We have just

shown the following.

Lemma (5.5).   // /    and "g : E —> EG  are principal bundle maps such that

T\p~lK = g\p-ïK, then f ~ g  (rel p~ lK).

This lemma gives us the following theorem in the same way that Lemma (5.1)

gives Theorem (5.2).

Theorem (5.6).   L*(E, EA)  is essentially contractible.

It is worthwhile observing that Theorem (5.6) gives a homotopy characteriza-

tion of  L*.* (E, E).  Namely, L^* is weak homotopy equivalent to  !Q(LK(B, Bg; /)),

the loop space of the space of maps of B —> BG  homotopic to / which restrict on

K to  f\K.  Compare this with James' characterization of L** in §4.

6. Fibre bundles with structural group  G.  We shall extend the theory of bundle

maps to fibre bundles with fibre  F  and structural group  G.

Let  E —►    B   be a principal bundle with fibre the group  G.  Suppose  G  acts

on a space   F  on the left as a group of homeomorphisms.  Consider all pairs   (e, x)

e E x F.   There is an equivalence relation between these pairs given by  (e, x)7^,

(e * g. g~l ' *)■   Let   (ei %)   denote the equivalence class of (<?, *) under this

relation.   The quotient space of  E x F by <~ (whose points are   (e, x)) is denoted

by  E xG F.
The map p~ : E x G  F —► B given  by  p~((e, g)) = p(e) is a fibre bundle pro-

jection and the fibre is   F.   The fibre bundle   F —► E xG F —>p  B  is called an
associated bundle of  £.   Every locally trivial fibre bundle with structural group  G

is obtainable by the above process.   For a good short account of these concepts,

see § 12 of Borel [2]."" 1 T
If f : E —» E    is a principal bundle map, we get an induced map  E xr F —,

_ ^o Xj

E' xG F given by / (( e, x » = (/ (e), x ).

Now let  E  and  E    be total spaces of fibre bundles with fibre   F   and group

G.  We say a map f : E —> E     is a bundle map if /   is induced by a principal

bundle map between the associated principal bundles.

Now let  E  and   E    be fibre bundles with fibre  F and group  G.   Then we defiae

the space, L*(E, E ), of bundle maps.
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The space of bundle maps is related to the space of principal bundle maps as

follows.   Let  £  and  £' be principal bundles.   Then let   <P : L*(E, E ) —»
L*(£ xr F, E' xg F) he the map which takes principal bundle maps into their in-

duced bundle maps,   <f>(f ) = f .  Note   <f>  is continuous and onto.

Proposition (6.1).   Suppose   G acts effectively on  F.   Then  V : L*(E, £') —►

L*(E xG F, E    xG F)  is a homeomorphism.

Proof.   Suppose  /   and g1 £ L*(E, £') are not equal.  We may assume that they

induce the same base map.   Then there exists an  e    e £  such that f (e A 4 "g(e A.

Thus there is some  g £ G not equal to the identity such that f (eQ) - g = g"(e„).

Since  G acts effectively on  F, there is an xQ  £ F such that g ■ xQ4 xQ.  Then

consider the induced maps  /   = <f(f ) and g = tig").   Then

f({e     x  » = (f(eA, x   )

and

g((e0, x0))=(g(e0), xQ) = (f(e0) - g, xQ> = ( / (eQ), g   l-xQ).

Since  x   4 g • x  , we have  /  4 g ■  Thus  <P   is injective.  Also  V  is open and on-

to.  So <P  is a homeomorphism.

Because the relative form of the first covering homotopy theorem holds for

fibre bundles with fibre  E and group  G, we get an analogous theory as outlined

in §3  and  §4.   For instance   £**(£, E')->' L*(E, E')->*  L(B, B1) is a Serre
fibration.

Now suppose that  EG —>p BG  is a universal principal bundle.   Then

£G xGE —> p BG  is a universal fibre bundle for fibre  F  and structural group  G.

Theorem (6.2).   Suppose  G  acts effectively on  F.  Suppose  E  and E^ are

fibre bundles with fibre  F and group  G and suppose that £     is universal (i.e. E

= EG xG F).   Then  L*(E, E^)  is essentially contractible.

Proof.   Use  Proposition  (6.1) and Theorem (5.2).

We shall consider fibre bundles with fibre a manifold   M and group  G(M), the

group of homeomorphisms.   Also we shall consider vector bundles in the sequel.

PART II. APPLICATIONS OF BUNDLE MAP THEORY

7. Evaluation subgroups of classifying spaces.   We shall begin this section

by noting Milnor's construction of the universal principal bundle   EG —► Bc, [ll].

We shall observe that  G operates on  £G as a group of principal bundle maps and

the center of  G operates as a group of principal bundle equivalences.   By using

the fact that   L* is essentially contractible, we obtain the result that the evalua-

tion subgroups must contain naturally defined groups based on the center of  G.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



34 DANIEL HENRY GOTTLIEB [September

Thus, in some cases, we can actually find the evaluation subgroups of  BG.

We consider the infinite join of the group  G, given by   G * G * ■ • ■.   The points

of  EG = G * G * • • •   will be represented as an infinite sequence  t xg x * t2g2 * • • •

where  g. £ G and  t. £ I and  S /. = 1  and all but a finite number of the  t. ate  0.

We identify 0• g with 0 for all g £ G.   Thus   t xg 1 * 12g2 * ■ ■ •   * 0 * • • -   has   O's in all
but a finite number of places.   If  EG  is given the suitable topology, then   EG  is

contractible.
Now  G operates on the right of  EG  by

AiSA As? *•••)#= 'i(g,g) * t2ig2g> *•■■■

Any two points  e  and  e   £   E_    are said to be equivalent if there exists a g £ G

such that  e = e g.  The equivalence class of  / ,g , * t2g2 * • ■ •  will be denoted by

\t,g, *t?g2 «...  ).   The quotient space  EG/G is denoted  BG  and consists of

points  ( t ,g . * t2g2 * • ■ • ).   The projection  û  which sends  t xg,* t2g2* • • • —►

( t .g . * I g7 * • • •)   gives a principal bundle  G—► EG —>p BG which is universal.

Now, note that  G acts on the left of  £G.   The action is given by

gi'i«?! *t2g1 *--A = tl(gg1)*t2(gg2)*....

Let lg : EG —> EG be given by lg(e) = g • e. Note that lg(eg) = lg(e)g- Thus
/ is a principal bundle map from £r —> EG. The correspondence given by g —» /

defines a canonical imbedding  j: G —► L*(EG, EG).
One immediate consequence is the following fact.   Let  m: G x BG —> BG  be

given by

™ig> <iiëi *¿2Z§2 *•••>)= itxiggi)*t2igg2) *•••).

Proposition (7.1).   The projection  G x BG —vn BG  is essentially homotopic to

222.

Proof.   Note that  272  is the associated map of cfe ° j : G —> L*(£G, EG) —»
LiBG, BG).  Since  L* is essentially contractible,   cfe ° j is essentially homotopic
to a constant map.   Thus the associated map 222  is essentially homotopic to the

associated map of a constant map, 27.

Let  C be the center  of  G.   If c £ C, then  /    is a principal bundle equivalence

since  /    induces the identity on  BG —» BG.   In fact, the induced map operates on

points of BG  as follows:

(tlg1   *t2g2  *•••>!->     (tlicgx)*l2icg2)*.-A

=   (.Z1(g1c)*£2(g2c)  *••■•>

=   (txgx   */2g2*--->.
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Hence we have the imbedding  j : C —* L**(EG, £G).
Now" consider the following commutative diagram, which arises from diagram

(3.5).

1_„ L**(Er, Er)

I
(7.2) L*(EG, EG)-» EG

I
L(B„ Br) -* BG

Observe that  p ° f = i, the inclusion map of  C —>! G.   Let  d represent the

boundary homomorphism from the homotopy groups of the base to the homotopy

groups of the fibre.   The image of co  : tt.(L(Bg, Bg)) —> 77.(BG) is denoted  G (BA)
and is called the ith evaluation subgroup of Bc.

Theorem (7.3).   With notation above, the image of d~l ° i  : rr.(C) —► 77.    ,(B^)
*      1 1 +1     o

is contained in G.    ,(BG) for all i.   Note d is an isomorphism.

Proof.   From the fibre homotopy exact ladder arising from (7.2), we have  p °

d = d ° co  . Thus the image of  d~    ° p    is contained in  G.    ABG) and hence the
1 ° P   o /   = d - l

Remark (7.4).   Since  j : C —► L** and  p : L** —► G  are both homomorphisms,

image of d      ° P   o j   = d ~    ° i    is

one can complete diagram (7.2) to

C ---►    L**    -£—► G

\"\  :\       1
I   ....    -.4 1

BC—¿-"       L       -^-^BG

where  j   and /    are induced by  j as is usual in the theory of universal principal

bundles.  This map  /   means that  BG operates on  BG.

Actually, there are technical flaws in the above argument, due to the fact the

classifying space theory has not been developed for Serre fibrations.  However, if

we use the Steenrod-Milgram version of classifying bundles [17], we can  see the

action:  In fact, the multiplication   C x G —>m G is actually a homomorphism since

C commutes with  G.   Thus  m  induces an action  Bc x Bc —> Bc  due to the

naturality of these classifying bundles and the fact that  BCxG = Bc x Bc.  This

is the appropriate action as can easily be checked.
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Now  C is a commutative group, hence it must be a product of Eilenberg-

Mac Lane spaces.   If  G is compact and finite dimensional, then  C must be a torus,

or a union of tori.

Corollary (7.5).  Let G be a compact finite dimensional topological group and

let the center have dimension n.   Then  GJBG) contains a free abelian group of

rank n.

Proof.   Consider the homotopy exact sequence resulting from the fibration   C

—>z G —► G/C.  Since   G/C  is a finite dimensional group, 772(G/C) = 0 by Browder's

theorem.  Since   C is a torus of dimension  n,  n (C) is a free abelian group of di-

mension  77.   Thus   t  : 77,(C)—► 77,(G) is injective and hence,  by Theorem (7.3), we

see that  G JBG) contains a free abelian group of rank n.

We use Theorem (7.3) to compute   G ABO  ).  Note that the center  C of  0(n)

consists of  / and — /, where  / is the identity  matrix.  The inclusion  C —►' 0(n)

sends  — / into the identity  component if ?2  is even and into the component of  0(72)

corresponding to determinant  — 1  if n is odd.   Thus we have

Corollary (7.6).   G ¿BOJ = nyiBOj 3é Z2  if n  is odd.

In the case of the unitary group   U(n), the center  C is  S .  Since   i  : 77 .(C) —►

77Au(n)) is the homomorphism from  Z to  Z given by sending   1  to  72, we see that

g Abu ) ^nz.2 n
Remark (7.7).   Results about the evaluation subgroups of Bc  shed some light

on the homology of BG  by means of Corollary (1) of [9]:   Let  h  : 77 (X) —»
77 .(X; Z A be the Hurewicz homomorphism tensored with   Z  , where p  is prime.

Suppose h (a) 4 0 where a £ G .(X).   Then H (X; Z ) = A  ® B where A   is ar - p 1 *     '     p

graded Z -module with (a) 072e generator in dimensions  0, i, 2i,- • ■ , (p — 1)7  if i

is even, or (h) one generator in dimensions  0 and i  if i is odd.   This fact is still

true if we let p = °°  a?2i7 Z     be the rationals.

8. Characteristic classes and actions on manifolds.   Let  G be a group of dif-

feomorphisms acting on the differentiable manifold  M.  Let  co : G x M —► M denote

the action.   If k £ H*(M; 77) is a characteristic class of  M and  77 is any group of

coefficients, we shall show that co*(k) = 1 x k.   Then, using characteristic classes

defined by Fadell for the topological case, we shall prove  co*(k) = 1 x k where the

G  in  co : G x M —»M is a group of homeomorphisms.

The above results yield various corollaries, the best of which is: Let co : G —»

M be the evaluation map. Then y(M)co*: H'(M; R) —» Hl(G; R) is the zero homomor-

phism where i > 0, G is a group of homeomorphisms on a closed manifold M and R

is any coefficient ring and  y(M) is the Euler-Poincaré number of M.

During the course of the proof, we also show that  r   : G —► BO     is essentially

contractible where  r#  is given by  rH(g) = r ° g and  r : M —> BO    is the classifying

map for the tangent bundle.
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Let  G be a space of maps from  M —► M where  M  is a CW complex, and let

£>:  G x M —> M be the action.   Let  AM) —* M  be any fibre  bundle and let r: M —►
B^ be the classifying map.   Now suppose there exists a map  i : G —► L*iriM), AM))

such that  /' = 4> ° i : G —► LÍM, M)  is induced by the action.   Then, we get the fol-
lowing commutative diagram:

(8.1)

where

L*iriM), r(M))

*

LiM, M)     -

►   L*(r(M), EJ

*

- L{M, B   : r)

(J) o id £ S^ is the universal bundle.

Theorem  (8.2).   With notation above, r   o j  is essentially homotopic to a con-

stant map.

Proof.   Consider diagram (8.1).  Since  L*(r(M), E^)  is essentially contractible,

by Theorem 6.2 we see that ^^z  is essentially homotopic to a constant map and

since ®?J i = r¡, ° j we have that r   ° j is essentially homotopic to a constant map.

Remark (8.3).   When  G  is a locally compact CW complex and  r(M)  is a  ¿-space

then  r   ° j \s actually homotopic to a constant map.

Corollary (8.4).   r ° co: G x M —> M —► B^  z's essentially homotopic to r o (pro-

jection).

Proof.   The following diagram is commutative.

(r# o/) x 1
Gx M ■* LiM, B- t)x M

(8.5)

Here the  co on the right is given by  coif, x) = f (x) fot (/, x) £ L(M; B^; r) x M.

Since  t j is essentially homotopic to a constant map we have that  ¿j(t J x l) is

essentially homotopic to r° (projection).   Since  r ° co = ¿j ° (t  j x l), we are done.

Corollary (8.6).   Let k £ H*(Bx; n).   Then

co*(r*(k)) = 1 x r*(k) £ H*(G x M; n).

Proof.   Since  r# <y is essentially homotopic to r» (projection), we have   1 x
r*(k) = (projection)* ° r*(k) = S)*ir*ik)).
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Pick a base point  xQ £ M.  Then let  co : G —»M be the evaluation map given by

co(g) = g(xQ). Let R he a ting of coefficients and let u £ Hl(M, R). Now co*(u) = co*(u) x 1

+ 1 x u + other terms where the other terms are represented by chains of the form

2 a. x b. where the  b. have dimension greater than zero.  Now we state a fact which

will allow us to apply Corollary (8.6) in a very effective manner.

Lemma (8.7).   Suppose that  u and v £ H*(M, R).  Suppose co*(v) = 1 x v.   Then

u U v = 0  implies co*(u) x v = 0.

Proof.

0 = co*(u u v) = co*(u) U co*(v)

= (co*(u) x 1 + 1 x u + other terms) Ulxii

= co*(u) x v + (other terms) U 1 x v.

Since   1x7^ can be represented by a cycle   1 x z, the other terms are represented by

chains of the form  'S. a. x (b. U z) and the chains on the right have dimension greater

than the dimension of  v.   Thus  co*(u) x v cannot cancel  out with the other terms of

co*(u U 17), hence  co*(u) x v = 0.

The hypotheses of Theorem (8.2) are satisfied when  G  is a group of diffeomor-

phisms acting on a differentiable manifold  M" with action  co : G x Mn —► M".   The

fibre bundle  r(M) —> Mn  is the tangent vector bundle and the universal fibration is

the universal  bundle  y" —> BO    (or yn —► BSO    if A4  is orientable).   Then Theorem' n ' n
(8.2) says that  r« : G —> L(M, BO  ) is essentially homotopic to a constant map.

(Here and below we shall write  r    for  r„ ° /, thus suppressing the technical  /.)

Let us call any  k £ Hl(M; n) a characteristic class if k = r*(u) for some  u £

H2(BO  , 77) (or u £ H'(BSO  , 77)).  Then if k is a characteristic class of M, Corol-
lary (8.6) says that  co*(k) = 1 x k.   This simple relationship apparently was unknown

until now, so we will note it as a theorem.

Theorem (8.8). // k is a characteristic class of a differentiable manifold M

with G operating as a group of diffeomorphisms with the action co : G x M —»M,

then  co*(k) =1x7;.

In view of Lemma (8.7), we obtain many results about co*.   The higher the di-

mension of a characteristic class, the more information we obtain about  co*.   It is

very  desirable to find characteristic classes in the top dimension of  M".  The

Euler class   y(Al)p and the index  I(M)u times some integer  c  ate two such for

closed oriented  M.  Here  // is the fundamental class in the cohomology of the mani-
fold.

Theorem (8.9).   Let  M"  be a closed oriented differentiable manifold and G be

a group of diffeomorphisms of M".   Then y(Al)û)*: H*(M; R) —► H*(G;R) and
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c • l(M)a>*: H*(M; R) —► H*(G; R) are the zero homomorphisms for any unitary ring

R  of coefficients, where  c  is an integer depending only on the dimension of  M.

Proof.   We shall prove it for  c • l(M); the proof for  \(M) is similar.   I(M)p is a

rational linear combination of Pontrjagin numbers, so  c- l(M)p is an integral  linear

combination of products of Pontrjagin classes.  We denote by  c ■ l(M)p also the

image of  c ■ l(M)p in  Hn(M, R) for any coefficient ring  R.  Thus  c ■ l(M)p is a char-

acteristic class in H"(M, R) and so £>*(c ■ I(M)p) = c • I(M) ■ 1 x p.  Since  p u a = 0

for any  a £ H*(M, R), we have by Lemma (8.7) that a>*(a) x c ■ l(M)p = 0.   Thus

c • l(M)cú*(a) x p= 0 which implies that  c ■ l(M)o>*(a) = 0.   Since this holds for arbi-

trary  a, we have proved the theorem.

Another situation where Theorem (8.2) applies is as follows:  Let  M" be a

topological manifold and let  G be a group of homeomorphism acting on  M with

action co : G x M —» M.  Let t(M) = M x M - A, the deleted product where  A  is the

diagonal.   Then  r(zM) —*p M will be the fibre bundle with fibre  M — * and projection

p(x., x  ) = x      The group of this fibration is the group of homeomorphisms of M — *

which  is  isomorphic  to the  group  H of homeomorphisms of M leaving  * fixed.

Now observe that  any homeomorphism f : M —► M can be lifted to a bundle map

/ = / x / : M x M — A —> M x M — A.  Thus there is the required map  i : G —»
L*(r(Al), AM)).

Finally,  the classifying bundle is  M — *—► EH xHiM — *) —► BH.  Let  r : M —»
BH  be the classifying map.  Now Theorem (8.2) says that  t^ : G —► LÍM, BH; r) is
essentially homotopic to a constant map.

Fadell [6] defines topological characteristic classes as follows.  Suppose   F

—> E —>p B  is a Hurewicz fibration  and suppose   £0 —>En —>       Bisa fibre sub-

space in the sense of Fadell [6].   Then   FQ C F, EQ C £  and  (E, E  , p, B; F, FQ)
is called a fibred pair.

Theorem (8.10) (Fadell).   Let  (E, £Q, p, B; £, FQ) be a fibred pair such that
(1) B   is arcwise connected,

(2) nx(B, b) acts trivially on H*(F, FQ; R) ^H*(p~l(b), p~\b); R),
(3) H*(F, F0; R) == H*(En, E" - 0; R) where  En   is n-dimensional Euclidean

space.

Then there exist natural "Thorn" isomorphisms

cfe: Hq(B; R)  SK //"+<?(E, EQ; R).

We say any fibred pair is R-orientable if condition (2) of the above theorem

holds.   Then using cfe, Fadell defines natural characteristic classes for R-orientable

fibred pairs satisfying (3) above.   For example,   let   U = cfe(l) £ Hn(E, E  ■ R).  Then

the Euler class is cfe~1(U U U).
Now let  M  be a connected topological  22-manifold.  Then Fadell shows that the

pair 5 = (M x M, M x M - A, p, M) is a locally trivial fibred pair with fibre (M, M - *)
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where  p  is projection on the first factor.   If M is K-orientable in the usual sense,

then A is orientable as a fibred pair.   The characteristic classes of this fibred

pair will  be called the characteristic classes of M.  Now R. F. Brown proved the

following theorem in [3].

Theorem (8.11) (R. F. Brown).   With M  a closed oriented connected topological

manifold, the Euler class of M  is just x(Al)p where  p. is a generator of H"(M, R).

Now we are in a position to prove the analogue for topological manifolds of

Theorem (8.8).

Theorem (8.12).   Let co : G x M —»M  be the action of a connected group  G of

homeomorphisms on a closed, R-oriented topological manifold M.   Let k £ H*(M, R)

be a Fadell characteristic class.   Then co*(k) = 1 x k.

Proof.   Recall that  H is the group of homeomorphisms of M which leave the

base point  * fixed.   Let  £H —►    B„  be the universal  principal fibre bundle with

fibre  77.   Let £ = EH xH M and  EQ = EH xH(M - *).  Then  (£, EQ, p, M) is a
fibred pair with fibre   (M, M — *).  As was stated above, the map  r : M —► B„  class-

ifies the bundle  M x M — A —> M.   Thus  r    is essentially homotopic to a constant.

Now we want to know that  k £ H*(M, R) is equal to an element  k   £ H*(BH, R)

pulled back  by  r*, that is, k = r*(k ).   Since the definition of characteristic classes

is natural, we only need to define the appropriate characteristic class for the fi-

bred pair (E, E  ) and we are done.  Unfortunately, except for when  R = Z2, the fi-

bred pair  (E, E  ) need not be orientable.  So we consider the covering space  B„

corresponding to the subgroup S C n (BH) of all  elements operating trivially on

Hn(M, M — *).   If p : BH —► BH  is the covering projection, the fibred pair  (£, EQ)
pulls  back to a fibred pair (p*E, p*EQ) over  BH.  Now  (p*E, p*EQ) is orientable,
hence we can define a characteristic class  k  £ H*(BH, R) which pulls back  to  k

under any map  F: M —► BH which is induced  by the fibre bundle map of the two

appropriate fibre pairs.

Since   (M x M, M x M — A) is orientable,  the image of r  ; nAM) —► n.(B„) is

contained  in  S.   Thus  r factors through  B„; that is, there exists  a  F: M —> B„

such that  r = p ° F.  This  F is induced by fibre bundle maps of fibre pairs, so

F*(k) = k.
Now it only remains to show that  F  is essentially homotopic to  a constant.

Note that   L(M, BH; F) —>   " L(M, BH; r) is a fibration with discrete fibre.  Since
TH : G —» L(M, Bh; r) is essentially homotopic to  a constant map, r    restricted to

any compact set X of  G  is homotopic to a constant.   By the covering homotopy

property, the homotopy lifts to a homotopy in   L(M, B„; F) and at the last stage

results in a map from  X into the discrete fibre.   Hence F  \ X is homotopic to a  con-

stant.  Hence  77  is essentially homotopic to  a constant.

Using the appropriate version of diagram (8.5) we see that F ° co is essentially
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homotopic tor» (projection).  Hence <a*(¿) = ¿j*° r*ik) = (proj.)*(¿) = 1 x ¿, thus

proving the theorem.

Theorem (8.13).   Let M  be a closed connected oriented topological manifold

with a group  G of topological homeomorphisms acting on it.   Then y(M)<y*:

H*(M, R) —» H*(G, R)  is trivial.

Proof.   Use Brown's Theorem (8.11) to show that ca*(y(M)p) = 1 x \(M)p.  Then

Lemma (8.7) as before gives the desired result.

Remark (8.14).   In the above theorems, if  R = Z    we do not need  M to be

oriented.

Remark (8.15). (a) If k is a characteristic class, then ¿o*(¿) = 1 x k implies

6J*(¿) = 0. Since cu* is injective if M is a topological group, this shows the well

known fact that characteristic classes of topological groups are zero.

(b) t    essentially homotopic to a constant shows that  r ° a> is essentially

homotopic to a constant.   This yields another proof to the statement that the tan-

gent bundle of an odd sphere is of order two.   In fact, we have   Diff S "+    —►"

5272+1 _t BS0    and the image of «: 27,     .(Diff S2n +1) — 779     ,(S2* + 1)=Zis
n 6 *       2z2+l 2zz + l

the even integers except for  S  , S3  and  S7.  If a£n       AS     H   ) is a generator,

we have r (2a) = r (co  (ci.)) = 0.

(c) Let  G be a topological group and let  H be a closed subgroup.   Then if

G/H is a closed oriented manifold, then \iG/H)p* is trivial where  p : G —► G/H

is the coset map.   This follows from the above theorem since p may be regarded as to.

(d) The Euler-Poincaré number in  Theorem  (8.13) is essential.   For example,

p: S03—> SOi/S02 = S2 induces the homomorphism  p*: H2(S2, Z 2) _ H2(SOy Z 2)
which is 720/ the zero homomorphism.

Added in proof.  Theorem (8.13) can be generalized to hold for any compact

manifold with or without boundary at a slight cost to the conclusion (4y^M)cû* — 0).

9.   Vector bundle monomorphisms.   The theory of immersions of a manifold in-

to another manifold gives rise to the space of immersions  Im(M, W) where  M and

W ate differential manifolds without boundary.   Any immersion  / induces a map on

the tangent bundles  / : r(M) —> t(W).  f   maps fibres into fibres, and /   restricted

to any fibre is an injective linear map of an 22-dimension Euclidean vector space in-

to an 222-dimensional Euclidean vector space.  We call such a map (i.e. fibre pre-

serving and restricts to fibres as an injective linear transformation) a vector bundle
injection.

Let ¿A1 be an 72-dimensional vector   bundle and let  rf" be an m-dimensional one.

Then let  L*(£", 27") be the space of vector bundle injections endowed with the

compact-open topology.   Then the space of immersions has the same weak homotopy

type  as  L*(t(M), t(W)) if dim M < dim W or if  M is open and dim M = dim W. See
113, Theorem 8.4], for example.

Thus, it is interesting to study the space of vector bundle injections for any
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pair of vector bundles, cf"  and  r¡m.  So suppose we have the vector bundle  injec-

tion

7

I /
x -

Now f*(rf) is a vector bundle over  X  and so f*(r]m) = rf2 © vm~n where   ©

denotes Whitney sums and  vm~n  is a vector bundle "orthogonal" to  tf"  in f*(r]m).

Now consider  L*(<f © ia 77), the space of vector bundle maps.   The restriction of

any vector bundle map to  <f in <f © v is a vector bundle injection.  We shall let

í> : L*(if © i', 77) —► L*(f, 77) be this restriction.   Then $ is a Serre fibration, see

A.'Phillips [13, proof of Theorem 8.4].
« *X/

Let  E**(rf © v, 77) be the space of vector bundle maps  inducing /  : rf—»77.

Then L**(rf © v, 77) is the fibre of the fibration 0. Now L** (<f © v, 77) is homeomorphic to

L**(tf © v, ¿j © 1^), the space of bundle maps whose restriction to  £ C £ © 1/ is the

inclusion <f —> <f © v.
Consider the projections  p : £ ® v —» v and  q : ¿; © v —► ç" and the injection

i: v —> % ® v.  Now there is a homomorphism  /> : £**(j/, v) —> L**(rf © v, Ç © v)

given by  ¿(/ ) = 1 © / .   Recall from § 4 that  L**(v, v) denotes the space of self

bundle equivalences.  Note  h is a homomorphism with composition of functions as

the multiplication on  L** and  L**.

Theorem (9.1).   h  is a homotopy equivalence.

Proof.   Let  p : tf © v —» v and  q : rf © v —» if be projections and let   i'.V —>

rf © v be the inclusion.  Define a map  k : L**(f © v, ç" © v) —> L**(r, 1^) by  /é(g")

= p ° "g ° i.  Then  k ° h = identity on  L**(v, v).
We shall  prove that  h ° k is homotopic to the identity on  L**.   Thus  k  is a

homotopy inverse of h which is what we need to prove.

Let g   £ £**(£ © v, ¿J © v).   Then  /> ° k(g ) = 1 © pg"i.   Thus we need to find
a systematic manner to homotopy g   into   1 © pg i.  Since  g" | f is the identity  on
(f for all  g" £ L.**, we see that  g" is uniquely determined by g" ° i : v —> ff © v.

Thus we wish to find a systematic  homotopy from  g" ° i to p"gi.

Now g" ° i is determined by p ° g" ° i and  ? » g » ¿, the first of which  is a

vector bundle injection and the second is only a vector bundle morphism.   Thus,

'g0i=q0'g0i + p0'g0i where  + means vector sum in each fibre.   Define  a

homotopy of vector bundle injections  by g". = 7 • a ° g° ° z + p ° g- ° z.   Then g"n = p °

g  ° i and g x = q°g  ° i + p° g °i = g.
Now let us consider the universal 77-vector bundle  y" —* G    where  G     is the

' n n
Grassmannian.   Now we have two fibrations:
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L**(£ © v, <t © u) U L*(£ © i>, y" L*(f, y"
and

L**(v, v) ^ L*(v, ym~n) ±+L(X, G        ; v).

Now both  L*(<f © v, ym) and  L*(iv, ym~")  are essentially contractible, hence

weakly contractible (all homotopy groups are trivial).  Since  L**  and  L** ate both

//-spaces and  h : L** —* L**  is an  H-mapping which is a homotopy equivalence,

we are led to suspect the following fact:

Theorem (9.2).   L*iÇt, ym)  is weak homotopy equivalent to  L(X, G   _  ; v).

Remark (9.3).   Notice that if  X  is a point, then  <f"  is just  R", 22-dimensional

Euclidean space.   Then Theorem (9.2) says that  L*iRn, ym) is homotopy equiva-

lent to  G as  is well known.zzz —zz
Proof of Theorem .  The predicted weak homotopy equivalence  /: L*(zf, ym) —►

L(X, G • 1^) can be realized as follows:  We consider  G     as the space of 222-zzz —zz' zzz v

dimensional subspaces in  R°°, the direct limit of the   R"'s.  Let  g° £ L*(tf", ym)

and let x £ X.  We define  f (g)(x) eC to be the  (222 — z2)-dimensional subspace

of R°° as follows.   The fibre over  x in  £"  is  R", and its image under g" is an n-

dimensional subspace, S^, of the 222-dimensional subspace, S  , given by g(x) £ G   .

Let  S,  be the   (222 — 22>dimensional  subspace of S    orthogonal  to  Se.  Then  S e

represents a point in  G   _    which we denote by /(g)(x).

To see that / is a homotopy equivalence, we define  / : L*(zf © v, ym) —►

L*(v, ym~n) as follows:   Let g" £ L*(£ © v, ym) and let  v £ v be a vector in  v.
•~\7 - i

Then define  / (g)(v) = pg/(v ) where  p denotes the projection from  S   —► S , (where

v is in the fibre of x).  Then  /   is a fibre preserving map and we  have the commu-

tative diagram

L**(Ç®v, ym)

L*(Ç@v, ym)

£*(£ ym)

f

f

L**(v, ym~n)

^   L(v, ym~n)

L(X, G

A little reflection shows that the top /   is the same as  k in  the proof of Theorem

(9.1), and hence is a homotopy equivalence.   Since both middle  L*'s  are essentially

contractible,  we see that f is a weak homotopy equivalence.
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PART III.    THE GNAW EXACT SEQUENCE
In this part we apply bundle map theory to get an exact sequence which is

"dual" to the cohomology Wang exact sequence.   Then we apply the exact sequence

to //-spaces and to evaluation subgroups.

10. The Wang homomorphism.   For a particular  a £ n (F   ), we have a Hurewicz

fibration  £ —►* E -
ing to  a.  Namely,

Pa. Sn+     and so we have the Wang exact sequence correspond-

-_, Hq(E; G) l-* Hq(F; G) -A Hq-"(F; G) -» Hq + HE, G).

We shall call  À    the Wang homomorphism for  a.

There is another definition of X      Suppose   a: S" —► E      denotes a map which

represents   a £ rr (F    ).   Then we have the commutative diagram which defines  a.;

S"x F

(10.1)

Then, by p. 456 of [15], we have

(10.2) à*(k)=lxk + âxX(k)

where ö e Hn(S"; Z) is a generator.

Let  a £ H (S"; Z) he the dual generator to  (7, let  h be the Hurewicz homomor-

phism.  Using the definition of the slant product on p. 351 of  [15], we have

(10.3) ^J-k) = <Aâ*U) = a^a x l)*2>*0O = a^(a)\co*(k) = b(a)\Û*(k).
This proof is in the spirit of [14].

This fact has two immediate corollaries.   The first is:  If h(a)= 0, then  X    is

the zero homomorphism.   The second corollary is:

(10.4) Aa+/3=Àa+V

In view of (10.4), we have a bilinear map from  77 (£ F) x H*(F; G) —► H*(F; G)

given  by  (a, k) —» Xa(k).   If we fix   a, we get the Wang homomorphism.   If we fix

k, we get a homomorphism  A¿ : 77 (£    ) —» H*(F; G) given  by A, (a) = À (k).  We

shall call  A    the Gnaw homomorphism.  In the next section, we shall imbed A,   in

the Gnaw exact sequence.

Finally, we should note one other important property of À  .   Let  u £ HP(F; G)

and  v £ Hq(F; G) and  a £ 77 (E F).   Then
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(10.5) A> U v) = A (zz) U v + i- l)"pu U X(v).

11. The Gnaw exact sequence. We wish to study the Gnaw homomorphism A

where k £ Hn(X; n) and X is a CW complex. We shall apply the results of Part I

to obtain  an exact sequence involving A

Dold and Thorn [4] and also Milnorhave shown that Eilenberg-Mac Lane spaces

K(27, 22) may  be regarded as abelian topological groups if  77 is abelian. Thus we

have the universal principal fibre bundle  £G —» K(n, n) with fibre   G = K(n, 22 — l).

We may regard  k £ Hn(X, n) as a map, also denoted  ¿, such that  k : X —►

K(77, 72).   Then  k induces a fibration  E —► X  such that

K(n, 77-1)

I
E

I
X

K(t7,   72-1)

I
1

K(t7,   7Z)

commutes.   This leads to the following diagram :

(11.1)

L**(E, E)

L*(E, E)

*

L(X, X; 1)

L**(E, EG)

"*  L*(E, EG)

L(X, K(n, n); ¿)

Here  ¿«is the map given  by ¿H(/) = ¿ % similarly for  ¿ n.

Lemma (11.2).   t7.(L(X, Kin, n); ¿)) == //""¿(X; 27) for i > 0

Proof.   This is a theorem of Thorn [19, Théorème 2].  We shall give the proof

here since it is instructive.   A map  / : S1 —> L(X, K(7r, 22); ¿)  corresponds to a map

F : S2 x X —-> Kin, n) which  restricts on  * x X to  i   If  t   is the fundamental  class

in HniKin, n); n), then

F*ii) = 1 x ¿ + o1 x p  _ .    in  HniSi x X; 27)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DANIEL HENRY GOTTLIEB [September

where  a1 is a generator of  Hl(Sl).  Thus we see that the homotopy classes of  £

and elements   u      .  in  H"~'(X; n) ate in one-to-one correspondence.rn — i

Lemma (11.3).   The homomorphism

(k^\: 77¿(L(X, X; 1)) — 77.(L(X, Kin, n); k)) Ä 77"-'¿(X; 77)

is equal to Afe : 77f(L(X, X; 1)) -» ff'KX; 77) for all i > 0.

Proof.   If  a £ tt.(l(X, X; l)), we have  (kA (a) represented by a composition

♦    K(n, n) where  £ represents   a.  Now,

(k ° F)*(t) = F*(k) = 1 x k + o{ x X(k).

Thus  a is mapped to Xa(k) = A, (a).

Theorem (11.4).   There is a long exact sequence  - - -—> 77 (X   ) —>      Hn~1(X; n)
- 77._ ¿L*(E, £)) —* * 77._ y(Xx) _ Afe - - -.

Proof.   From diagram (11.1) and the lemmas above, we get the exact ladder

*— niXX)-^■ 77(L*(E, £))• n.^LA^E, £))-► n^y^L*)-

Afe

Hn~\X; n)^-^ 77._1(L**(E, EG))-

Then, in the top sequence, we replace  77._(£**) by  Hn   l(X; 77).

We shall call the above exact sequence the Gnaw exact sequence.

12.  Exact sequences of Thom and the Gnaw exact sequence.   In this section

we shall recall an exact sequence occurring in Thorn's paper [l9l-  When X is an

//-space, this sequence and the Gnaw exact sequence look comparable.  We inves-

tigate the relationship between them and show that mostly they are quite different,

but in certain circumstances they are very  similar.   As a result of our investigation,

we find an unexpected relation among Gnaw homomorphisms of //-spaces.

Thom, in [l9L has made use of the fibration

L(A, F) -> L(A, £; k) -» L(A, B; *)

arising from the fibration   £ —» £ —*p B.  Here  * stands for the constant map and

p ° k ~ *.  When  B  is an //-group, then  L(A, B^*) is homotopically  equivalent to

L(A, B; f) for any / : A —» B.  Let us suppose that  E —> E —>p B  is the principal
fibration, with  £ = K(t7, 72 - l), corresponding to  k £ Hn(B; n).  Then  n.(L(B, F))
^ Hn~l~  (B; 77) and we get the exact sequence

// n—i— 1(B; 77) — 77,.(L(B, £)) — tt.(BB, l) -2» //»"''(B; 77)
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Since two out of the three terms agree with the Gnaw exact sequence, it is worth-

while to ask, when do the two sequences agree?

Let  p: B x B —> B be the multiplication on   B   and let  c : B —> B be the map
which is the homotopy inverse, i.e. picix), x) ~ e where  e e B  is the identity

element.   Let us denote  pix, y) by  x-y.  Now the map  c   : L(B, B; 1) —» L(B, B; 0)

given by  c  (/) = pic x f)A = c • / is a homotopy equivalence.

Suppose that  F : S2 x B —► B represents an element   a £ 27.(L(B, B; l)) and

F  : S2 x B —* B represents   (c  )  (a).   Then we can choose   F    such that  F (s, x) =

c(x). Fis, x).  We may write   F (s, x) as the composition of

(s, *) 015*4 (s, x, x) (-£&_»   (x, s, x)^LU   (c(x), Fis, x)) (_i^ c(x).F(s, x).

Define X   (k) by  (F )*(¿) = ax Aa(¿).   We are going to express  Aa(¿) in terms of

A' (¿) when the coefficients  77 are a field.   Suppose that

p*(k) »Ul+l    ®   k+^k. ® k' .
Lemma (12.1).   // 27  is a field, with the notation above,

x'Ak) = Aa(¿) + £(- lY'^'cHk.) u Aa(¿;)

where  d(j)  is the dimension of k..

Proof.   We use the composition (F')*= (l x A)*(T x l)*(c x F)*p*.  Thus

k y-^L* k ® 1 + 1 ® ¿ + £ ¿y ® ¿/

f*^* c*(¿) ®1®1 + 1®(1®¿ + o-® Aa(¿))

j
X. c*(¿.) ® (1 ® ¿/  + a ® Aa(¿;'))

(T*X1.» 1 <g> c*(¿) C3)1 + 1®1®¿ + (J®1® ÀaU)

Z1 ®c*(¿.)®¿+ Z(-iywov®c*(¿;)®Aa(¿;)
I ' 1

+

7

HixA^ 1 ® £*(*) + * + £ c*(¿;) u * A

* a ®/xau)+ ]►> iy¿())c*(¿;) u Aa(¿;i).

Now  k + c*ik) + 2. c*(k.) U¿' =0 and the term tensored with  a must be  X'(k).277 ., a
As a consequence of this lemma we have  A'  = A,  + 2. (- l)ld<-1' c*(k.) U A, '

K K, J J K,   m

where  A^   is defined by A ' (a) = A^(¿).  Now A^   is the homomorphism  d in the

Thorn exact sequence which we are comparing to our Gnaw exact sequence.   If k is

a primitive element, i.e. p*(¿) = 1 ® ¿ + k ® 1, then A ' = A,   and the two exact
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sequences are very similar.   In fact, two out of the three terms of the two sequences

agree and the connecting homomorphisms are the same.   In the absence of a commut-

ing map from  L(B, £; *)   to    L*(E, E), we can only use the "4]/ lemma" to show

that  77.(L*(E, E)) and tt.(L(B, E; *)) are in one-to-one correspondence with each

other.
Now, as is well known, X (u U v) = X (u) U v ± u U X(v).  On the other hand,

À   (u u v) = 0 since  (E )*(u (J v) = 0    (a and  v ate assumed to have positive di-

mension).   This can be seen since (£')*(%) = a <g> X^(x).   Thus  (E')*(z2 u v) =

(a <g> X'a(u)) u (cr ® ^á^)) = 0 since  o u a = 0.   Thus if k is decomposable in

77*(B; 77), then A/   is the trivial map, whereas  A,   may not be.   So, in general, the

Thom exact sequence and the Gnaw exact sequence are quite different.

Lemma (12.1) gives us an interesting relation among the Gnaw homomorphisms.

Theorem (12.2).   If k £ Hn(B; 77) where  tt  is a field, B   is an H-group and k  is
decomposable, then A^ = - S.(- l)id(i)c*(k.) U Afe '   where Afe : ni.XX) —»
H"-'(X; rr).

13. Some notes on [8]. In this section, we shall point out a shorter proof and

improve a result in [8]. Let K(n, 72) —> £ —>p X be the principal fibre bundle cor-

responding to  k £ 77" +   (X; 77).  Then Theorem 6.3 of [8] states

Theorem (13.1).   There exists a map  Ip : S1 x £ —► £  such  that ïp \ E  is the

identity on  E and

S'xE

commutes if and only if X (k) = 0 where  a is represented by <P.

Proof.   From Theorem (11.4), we know that  n.(L*(E, E)) —»   * n.(XX)
—»      Hn~1(X; 77) is exact.   Translating this exactness property into  associated

maps, we essentially get the theorem.   In fact, if À  (k) = 0, then there exists a

principal bundle map ¡p, as in the theorem, by exactness.   If, on the other hand,

there exists a  ? as in the theorem, the commutativity of the diagram shows that

xa(k) = 0.
This is a useful theorem.  It was used many  times in [8].   Suppose that we have

the sequence of fibrations   ■ • • —♦ X., —>X/V,_    —»••->X    —>   1 X where  X„  is

the  TV  connective covering of X.   Then the above theorem easily implies that

(PnVG/XN^ D GfXN-l> for  z > N ^8> Corollary 6.5]).   Now we shall state and
prove a better version of Theorem 7.2 of [8].
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Theorem (13.2).   Suppose  X  is a CW complex with a finite number of nonzero

rational homology groups.  Let n (X) be of finite type and suppose that 77¿(X) is a

finite group for all odd i,   1 < i   < 2/V.   Then G .(X) is a finite subgroup for all even

i for i < 4/V.

Proof.   The conditions that  H  (X; R) is finite dimensional and that odd homo-

topy groups are finite for dimensions less than 2/V  allows us to conclude that

H (X.; R) is finite dimensional for  z < 2/V by means of the Serre spectral sequence

mod finite groups.  Observe that Remark (7.7), when  p = °°, tells us that, for a £

G.    .(X.), we have  h^ia) = 0 when  i < 2/V.  Since   X.  is z'-connected, hx is an iso-

morphism mod finite groups, so  G.     (X.) is a finite group,  hence  G (X) is a finite

group for  i < 2/V.   Now  X^  is 2/V-connected, so  by a well-known theorem (see [12,

p. 108]) we have that the Hurewicz map h : n .(X2„) —► H .(X2N) is an isomorphism

mod finite groups for  i < 4N.  Hence applying Remark (7.7) again, we find that

G.(X2N) is finite for even i < 4N.  Hence  G2¿(X) is finite for  i < 2/V.

Corollary (13.3).   Suppose we have a fibration  F —» E —*p B  and F has finite

dimensional rational homology and n (F) is of finite type.  If n.(F) is a finite abel-

ian group for all odd i such that   1 < i < 2/V, then p  : n .(E) —> n.(B)  is an epimor-

phism mod finite abelian groups for all odd i such that   1 < i' < 4/V + 1.

As an example, let  F be a finite dimensional CW complex with  27 (F) of finite

type.  Then if 27,(F) is a finite group we have  G JF), G .(F), G JF) and G JF) as
finite subgroups.   Also, by Weingram's theorem [20], we know that  G JF) = 0.
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