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Abstract

The human brain can be represented as a graph in which neural units such as cells or small 

volumes of tissue are heterogeneously connected to one another through structural or functional 

links. Brain graphs are parsimonious representations of neural systems that have begun to offer 

fundamental insights into healthy human cognition, as well as its alteration in disease. A critical 

open question in network neuroscience lies in how neural units cluster into densely interconnected 

groups that can provide the coordinated activity that is characteristic of perception, action, and 

adaptive behaviors. Tools that have proven particularly useful for addressing this question are 

community detection approaches, which can identify communities or modules: groups of neural 

units that are densely interconnected with other units in their own group but sparsely 

interconnected with units in other groups. In this paper, we describe a common community 

detection algorithm known as modularity maximization, and we detail its applications to brain 

graphs constructed from neuroimaging data. We pay particular attention to important algorithmic 

considerations, especially in recent extensions of these techniques to graphs that evolve in time. 

After recounting a few fundamental insights that these techniques have provided into brain 

function, we highlight potential avenues of methodological advancements for future studies 

seeking to better characterize the patterns of coordinated activity in the brain that accompany 
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human behavior. This tutorial provides a naive reader with an introduction to theoretical 

considerations pertinent to the generation of brain graphs, an understanding of modularity 

maximization for community detection, a resource of statistical measures that can be used to 

characterize community structure, and an appreciation of the usefulness of these approaches in 

uncovering behaviorally-relevant network dynamics in neuroimaging data.
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Modularity has been hailed as fundamental property of the human brain dating back to 

Greek philosophy, and it has continued to inform theories from phrenology [86] and 

cognitive science [79, 36, 172], to brain mapping and functional localization [168]. The 

relevance of modularity for brain structure and function stems from its fundamental 

advantages for evolution and development. Research across the biological sciences suggests 

that modular organization allows for rapid adaptation [115, 100] and provides robustness to 

either sudden or gradual perturbations in genes or environment [123, 115, 116]. Unlike 

homogeneously connected networks, modular networks can effectively buffer the impact of 

perturbations by keeping their effects relatively local [152] while simultaneously enabling 

efficient information processing [75, 11], supporting functional specialization [88] and 

efficient learning [74]. These benefits of modularity are particularly relevant for the human 

brain, which evolved under evolutionary pressures for adaptability [132], energy efficiency, 

and cost minimization [60, 49, 173, 55, 34], and which also develops under biological 

pressures to balance segregation and integration of function [49].

Exactly how modularity is instantiated in the brain is a question that has fascinated 

neuroscientists for more than a century. The answer to this question is complicated by the 

fact that the brain is a complex system composed of neural units that communicate with one 

another in dynamic spatiotemporal patterns [5]. How these patterns of communication are 

organized, reflecting thought, cognition, and behavior remains a mystery [44]. A particularly 

appropriate mathematical language to describe these patterns – and to determine the role that 

modularity might play within them – is network science [155]. In its simplest form, network 

science summarizes a system by isolating its component parts (nodes) and their pairwise 

interactions (edges) in a graph [40]. Over the last decade, the application of network science 

to neuroscience (also known as network neuroscience [16]) has offered intuitions for the 

fundamental principles of organization and function in the brain [48].

A quintessential concept in network neuroscience is the notion of network modularity, 

wherein neural units are structurally or functionally connected to one another in clusters or 

modules [139]. Intuitively, modularity is an architectural design feature that allows system 

processes to implement local integration of information, while maintaining systems-level 

adaptability. Graphs that display modular structure [82] can give rise to more complex 

dynamics than graphs that display random structure [196]. Modular networks of coupled 

oscillators also promote synchronizability [7] as well as the formation of chimera states, 

characterized by the coexistence of synchronized and desynchronized elements [216]. 
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Modularity often exists across multiple hierarchical levels [138], enabling rapid responses to 

fluctuating external input [122, 25, 142], and supporting complex dynamics alongside 

functional efficiency [187, 113]. The functional properties that modularity confers to a 

system provide strong motivation for studying modular organization in brain graphs across 

both health and disease (Fig. 1).

In this tutorial, we survey the literature pertinent to an understanding of modular structure in 

brain graphs, and its relevance for human cognition. We begin by discussing common 

methods for building brain graphs from diverse data sources representing distinct types of 

neurophysiological signals. We then turn to a description of community detection 

approaches commonly applied to such graphs, and we place a particular emphasis on the 

method of modularity maximization. Next, we offer a resource of statistical measures that 

can be used to characterize community structure in brain graphs, including measures of their 

topology and embedding into physical space. We complement the discussion of methods and 

statistics for single graphs with a description of extensions of community detection 

approaches for time-evolving graphs. Next, we provide a resource of statistical measures that 

can be used to characterize dynamic community structure in brain graphs. We then review 

applications of these techniques to questions in neuroscience to give the reader an 

appreciation of the usefulness of these approaches in uncovering behaviorally-relevant 

network dynamics in neuroimaging data. Finally, we discuss methodological innovations 

that are needed to advance our understanding of how patterns of coordinated activity in the 

human brain account for behavior.

Building brain graphs

In its general form, a brain graph is composed of (i) a set of nodes characterizing 

anatomical, functional, or computational units, and (ii) a set of edges representing pairwise 

relations between two nodes (Fig. 2). Brain graphs can be built from many types of 

neuroimaging data, including magnetic resonance imaging (MRI), electrocorticography 

(ECoG), electroencephalography (EEG), and magnetoencephalography (MEG). Across all 

modalities, one seeks a definition of nodes that distills the brain into its most fundamental 

pieces relevant to the hypothesis being tested, and a definition of edges that constitutes the 

fundamental relation relevant to the function under study [51]. The choice of nodes and 

edges guides the appropriate interpretations that can be drawn from the graph [171, 51, 215].

a) Defining nodes: In MRI studies, nodes can be defined using anatomical landmarks [1], 

cytoarchitecture [45, 212], sulcal and gyral landmarks [105, 68, 69, 207], or boundaries of 

functional activation [167, 222], either in controlled [219] or uncontrolled [223, 127] tasks. 

Indeed, functional atlases [61, 151] can incorporate activation information across many tasks 

[71] or parse which regions tend to be activated independently [171]. Nodes at a large-scale 

can also be defined based on connectivity at a small scale. For example, in connectivity-

based parcellation [214, 26], one begins with voxel-level estimates of structural connectivity 

from diffusion MRI [210], and then applies a clustering technique to extract modules of 

densely interconnected voxels; each module is then treated as a node in the brain graph [73].
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In ECoG, MEG, and EEG studies, graphs are constructed to study synchronized activity of 

neuronal ensembles [163, 89, 46]. Frequently, nodes are chosen to reflect electrodes in EEG 

or ECoG (e.g., [119, 50, 118]) and sensors in MEG (e.g., [22, 15, 197]). However, electrode 

and sensor time series reflect a combination of signals from cortical and subcortical sources, 

and are susceptible to artifacts from muscles contractions, head movements, and 

environmental noise [211]. To address these limitations, one can apply source reconstruction 

[for review, 99, 177], and then use those sources as nodes [191, 147]. One can also use 

multiple functional neuroimaging measurements such as simultaneous fMRI and EEG 

recordings [47] to define nodes [148]. Importantly, each method of node determination has 

implications for network estimates of brain dynamics, as described more thoroughly in 

several recent reviews [106, 198, 192].

Defining edges

Edges can reflect structural connections across spatial scales [30], such as bundles of axonal 

fibers between regions (e.g., [218, 146, 112]) or synapses between neurons. In humans, 

structural connections are measured using diffusion MRI [for review, see 10, 210], and fiber 

trajectories are estimated using tractography methods [143, 27]. The resultant brain graph 

can be used to identify specific connections that enable efficient and rapid communication 

between regions [18], or collections of connections with diverse higher order structures [94, 

190, 189].

Edges can also reflect coordinated activity between regions thought to underlie cognition 

[83, 84, 92], where coordination is quantified by correlation, coherence, phase lag index, or 

a measure of synchronization between time series [23, 107], or by effective connectivity 

methods that estimate casual relations [85]. Such functional time series can be derived from 

MRI [111, 108, 109, 96] or from EEG in cognitively relevant frequency bands [52, 43]. An 

important caveat for estimates of functional connectivity between two regions is that they 

can be driven by a third source [37, 98].

When studying relations among edges in time-varying graphs – where a graph is constructed 

from each of many time windows–, one can use a hypergraph to formalize the idea that 

groups of edges, rather than single edges alone, represent a fundamental unit of interest [20, 

65, 102]. This approach is partially motivated by evidence suggesting that edges can develop 

differentially in a coordinated fashion over the lifespan [66], leading to architectural features 

that cannot simply be defined by graphs composed of dyads [20]. Such developmental 

coordination of functional connections might be driven by intrinsic computations [20], and 

subsequently have mutually trophic effects on underlying structural connectivity [17]. Co-

varying functional connections in early life could support the emergence of cognitive 

systems observed in adulthood [102]. Hypergraphs can formalize these relationships, and 

thereby offer a unique perspective on brain graph architecture.

Evaluating community structure in brain graphs

After choosing nodes and edges, we let G = (V, A) be a complex network of N nodes, where 

V = {1, ⋯, N} is the node set, and A ∈ ℝN×N is the adjacency matrix whose elements Aij 

give the weight of the edge between node i and node j. In a binary graph, elements are either 
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values of 0 or 1, which indicate whether an edge exists, while in a weighted graph, elements 

have non-binary values that reflect the strength of their pairwise connection. If the edge 

weight between a node pair is symmetric, the graph is called undirected, and Aij = Aji for all 

(i, j); the graph is called directed otherwise. In an undirected binary graph, the degree of a 

node, ki, is given by the number of its non-zero edges: ki = Σj∈N Aij. To evaluate community 

structure in the brain graph, we note that a community structure is a partition  = {C1, ⋯, 

CK}, where Ci ⊂ V consists of the nodes in the ith community and K is the number of 

communities in G. Here we only consider non-overlapping community structure, which 

means that Ci∩Cj = ∅ if i ≠ j. We note that in the case of a temporal graph with L layers, 

and where the adjacency matrix of layer l has elements Aijl, one can similarly define a 

community structure as a set of L partitions.

The overarching goal of community detection is to provide an understanding of how nodes 

are joined together into tightly knit groups, or modules, and whether such groups are 

organized into natural hierarchies in the graph. Community structure exists in a variety of 

real world systems including several social, biological, and political systems [82], and 

community detection methods can be used to uncover that structure algorithmically. Recent 

applications of these methods to real-world systems have uncovered segregated committees 

in the US House of Representatives [169], segregated protein classes in protein-protein 

interaction networks [56], and segregated functional groups of areas in brain graphs [19]. 

Uncovering community structure can provide important intuition about the system’s 

function, and the large-scale functional units that drive the system’s most salient processes 

[93].

Mathematics of modularity maximization

Many methods exist for community detection [81]. Some draw on notions in physics such as 

the Potts model [174], while others draw on notions in mathematics such as random walks 

[225] and spectral properties of the adjacency matrix [153, 158, 154, 224]. Still others more 

closely track other concepts and techniques in computer science and engineering [e.g., 57]. 

In this section, we will primarily discuss a single method – modularity maximization – due 

to its frequent use in the network neuroscience community. However, readers interested in 

understanding various other algorithms and approaches may enjoy several other recent 

reviews [82, 170]. Importantly, the summary metrics that we define and discuss for both 

static and time-varying graphs are applicable to any study of community structure, 

independent of the specific method used to identify that structure.

Modularity maximization refers to the maximization of a modularity quality function, whose 

output is a hard partition of a graph’s nodes into communities. The most common 

modularity quality function studied in network neuroscience to date is

Q = ∑
ij

[(Aij − γPij)]δ(Ci, C j), (1)

where Aij is the ijth element of the adjacency matrix, i is a node assigned to community Ci 

and node j is assigned to community Cj. The Kronecker delta δ(Ci, Cj) is 1 if i, j are in the 
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same community and zero otherwise, γ is called a structural resolution parameter [14]. The 

element Pij is the expected weight of the edge connecting nodes i, j under a specific random 

network null model. A common null model is the Newman-Girvan null model which is 

given by kikj/2m where ki is the degree of node i and m is the number of non-zero elements 

in the upper triangle of the undirected adjacency matrix [157]. This null model encodes the 

intuition that two nodes of high degree are more likely to share an edge than two nodes of 

low degree. For a discussion of alternative null models, see [14].

The structural resolution parameter, γ, is often set to unity for simplicity. However, due to a 

well-known resolution limit [174], this choice will tend to produce a fixed number of 

communities, even if a stronger community structure could be identified at smaller or larger 

topological scales. To deal with this limitation, it is common to vary γ over a wide range of 

values. The benefit of such a parameter sweep is that it can also uncover hierarchical 

organization in the graph: robust community structure across several topological scales 

[169]. Some graphs contain a single scale (or several discrete scales) at which community 

structure is present. For these graphs, it has been suggested that a useful method by which to 

identify that scale(s) is to search for γ values at which all partitions estimated (from multiple 

runs of the modularity maximization algorithm) are statistically similar [14].

Maximization of the modularity quality function defined above is NP-hard. Because an exact 

solution is unknown, various heuristics have been devised to maximize (or nearly maximize) 

Q without resorting to an exhaustive search of all possible partitions, which for most real-

world graphs proves to be computationally intractable [170]. Heuristics vary in terms of 

their relative speed, fidelity, and appropriateness for large versus small graphs. One common 

heuristic is a Louvain locally-greedy algorithm [38], which contains two phases: one where 

modularity is optimized by allowing only local changes of communities, and one where the 

identified communities are aggregated to build a new network of communities. These two 

phases are repeated iteratively until modularity no longer increases. A second common 

heuristic is based on simulated annealing, which appears particularly natural when one 

realizes that finding the modularity of a network is analogous to finding the ground-state 

energy of a spin system [175, 104]. In this approach, nodes are combined into communities, 

and such communities are maintained with some probability dependent on whether they 

increase or decrease the modularity quality index; the probability of accepting a decrease in 

modularity slowly decreases as the solution space is explored. A third and complementary 

approach is based on extremal optimization, and optimizes the global variable (modularity 

quality index) by improving extremal local variables (contribution of a single node to the 

modularity quality index) [72]. For example, a simple heuristic randomly partitions the 

network into two communities, and the node with the lowest fitness (extremal) is moved 

from its partition to the opposite partition. This procedure is repeated until an optimal 

division of the network into two components is completed; then each component is 

iteratively bipartitioned in the same way. Generally speaking, greedy algorithms tend to be 

relatively swift [59], while simulated annealing [103], extremal optimization [72], and others 

[160] can be slower yet provide quite stable partitions. With most heuristics, one should 

perform the optimization many times in order to create an ensemble of partitions, and both 

understand and report the variability in those solutions.
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The modularity landscape is rough, containing many near degeneracies [97]. This means that 

there are many structurally diverse alternative partitions of nodes into communities with 

modularity values very close to the optimum. Near degeneracy is particularly prevalent in 

large binary graphs, and less prevalent in small weighted graphs. Degeneracy becomes 

especially problematic when the partitions identified by multiple optimizations of the 

modularity quality function are dissimilar. In these cases, we might wish to identify a single 

representative partition from the set of partitions observed. One common approach to 

identify a consensus community structure is similarity maximization [70], where the 

partition of interest is that which has the greatest similarity to all other observed partitions. 

A second common approach is an association-recluster method [128, 14, 30], which uses a 

clustering algorithm to find a consensus partition by exploiting the fact that across an 

ensemble of partitions, a single node may be affiliated with the same other nodes. Partition 

degeneracy can also be addressed by expressing the best partition as an average across 

multiple near-optimal partitions, and by treating the community allegiance of nodes as fuzzy 

variables [28] or via probabilistic clustering [110].

Summarizing community structure in brain graphs

Topological summary statistics

Several summary statistics that can be derived from community detection methods are 

reported in neuroimaging studies. Many of these can be defined based on the network’s 

topology, independent of any embedding of that network into a physical space (Fig. 3). Here 

we offer a summary of these statistics, and point the reader to a few (certainly not all) recent 

references that have used them in the neuroimaging literature to address questions of import 

to neuroscientists.

b) Number of communities:: The number of communities provides an indication of the scale 

of community structure in a network. Note that NCk = |Ck| is the number of nodes in module 

Ck. A large number of communities suggests a small scale of structure in the network, while 

a small number of communities suggests a large scale of structure in the network.

c) Size of communities:: The average size of communities, and the distribution of 

community sizes are also useful diagnostics of community structure. The number of nodes N 

divided by the number of communities K gives the mean size of communities in the graph.

d) Modularity quality index:: For community structure identified with modularity-based 

approaches, the modularity quality index Q serves as a useful measure of the quality of the 

partition of nodes into communities (see Eq. (1)). To some degree, higher values indicate 

more optimal partitions than lower values, after accounting for caveats of the roughness of 

the modularity landscape [97], the size of the graph, and the edge weight distribution, among 

potentially other confounds. For a recent review of the use of this metric in neuroimaging 

studies, see [195].

e) Within- and between-module connectivity:: It is also of interest to calculate the strength 

of edges inside of modules, and the strength of edges between modules. We refer to these 

notions as within- and between-module connectivity, respectively and define
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Ik1, k2
=

∑i ∈ C
k1

, j ∈ C
k2

Aij

NC
k1

NC
k2

, (2)

to be the strength between module Ck1 and module Ck2. When the two modules are identical 

(k1 = k2), this measure amounts to the average strength of that module, and we interpret it as 

the recruitment of the module. When the two modules are different (k1 ≠ k2), we might also 

wish to compute the relative interaction strength

RIk1, k2
=

Ik1, k2

Ik1, k1
Ik2, k2

, (3)

to account for statistical differences in module size. Within- and between-module 

connectivity has been shown to vary appreciably with learning [21], differ across motor 

versus working memory function [62], mark neuromodulatory effects [185], track 

neurodevelopment [101, 24], and change in psychiatric disease [180].

f) Intra-module strength z-score:: One might also wish to quantify how well connected a 

node is to other nodes in its community, a notion that is formalized in the intra-module 

strength z-score [103]:

zi =

SC
i
− SCi

σ
S

Ci

, (4)

where SCi denotes the strength (i.e., total edge weight) of node i’s edges to other nodes in its 

own community Ci, the quantity S
Ci

 is the mean of SCi over all of the nodes in Ci, and σ
S

Ci

 is 

the standard deviation of SCi in Ci. This statistic was recently applied to brain graphs to 

study the learning of categories [193].

g) Participation coefficient:: One might also wish to measure how the connections emanating 

from a node are spread among nodes in the different communities, a notion that is 

formalized in the participation coefficient [103]:

Pi = 1 − ∑
k = 1

K

(

SiC
k

Si

)

2

, (5)

where SiCk is the strength of edges of node i to nodes in community Ck. This statistic has 

been used to better understand how learning is impacted by patterns of intermodular 
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connectivity [193], how brain function is altered in antipsychotic-naive first-episode 

schizophrenia patients [131], and how structural modular segregation mediates the 

relationship between age and executive function in youth [24].

Spatial summary statistics

It is often interesting to quantify how a network is embedded into physical space (Fig. 3), 

and specifically the spatial properties of communities. Currently, relatively few measures 

exist and future work should focus on this important area. Below we present five measures 

previously proposed to quantify the spatial aspects of community structure. Many of these 

statistics have not yet been used in the neuroimaging literature, and there is therefore an 

open opportunity to use them to better understand the spatial embedding of modular 

structure in the brain.

h) Community average pairwise spatial distance:: The community average pairwise spatial 

distance, lCk is the average Euclidean distance between all pairs of nodes within a 

community [76]:

lC
k

=
2

NC
k
(NC

k
− 1) ∑

i, j ∈ C
k

‖ri − r j‖, (6)

where ri is the position vector of node i. The average pairwise spatial distance of the entire 

network is given by the same equation calculated over all nodes within the network.

i) Community spatial diameter:: The community spatial diameter, dCk is defined as the 

maximum Euclidean distance between all pairs of nodes within a community [76]:

dC
k

= max (‖ri − r j‖) . (7)

The spatial diameter of the entire network is given by the same equation, but calculated over 

all nodes within the network.

j) Community spatial extent:: The spatial extent of a community is an inverse estimate of the 

density of a community and quantifies the area or volume of the community, normalized by 

the number of nodes within the community [76]. Specifically, we can define

sC
k

=
1

NC
k

Vh(ri)i ∈ C
k

, (8)

where Vh is the volume (3 dimensions) or area (2 dimensions) of the region bounded by the 

points of the convex hull of nodes within the community. The convex hull is the minimal 

convex set containing all of the points within the community and is informally described as 

the polygon created by connecting all points that define the perimeter of the community. It 

should be noted that in this definition of the spatial extent, the normalization assumes the 
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average size of a region is approximately constant. If this is not the case, the equation could 

be modified to take into account the boundaries or sizes of individual regions to better 

estimate the inverse measure of density. This statistic has been used to assess the spatial 

embedding of synchronized functional clusters estimated from two-photon calcium imaging 

data acquired in a chronically epileptic dentate gyrus of a mouse model of temporal lobe 

epilepsy [76].

k) Community radius:: We can define the community radius ρCk as the length of the vector 

of standard deviations of all nodes in the community [134]:

ρC
k

= (
1

NC
k

∑
i ∈ C

k

‖ri‖
2 −

1

NC
k

2
‖ ∑

i ∈ C
k

ri‖
2
)

1
2 . (9)

The average community radius of the entire network is a dimensionless quantity that 

expresses the average relationship between individual community radii and the network as a 

whole

ρ =
1
N

∑
k

NC
k

ρC
k

R
, (10)

where NCk serves to weight every community by the number of nodes it contains, and R is a 

normalization constant equal to the radius of the entire network: 

R = (
1
N

∑
i = 1
N ‖r

i
‖2 −

1

N
2

‖∑
i = 1
N

r
i
‖

2
). In the context of human brain graphs, this statistic has 

previously been used to assess the changes in the spatial extent of modules as they are 

identified across different levels of the topological hierarchy [134].

l) Community laterality:: Laterality is a property that can be applied to any network in which 

each node can be assigned to one of two categories, J1 and J2, and describes the extent to 

which a community localizes to one category or the other.

For an individual community Ck, the laterality ΛCk is defined as [70]:

ΛC
k

=
|NJ1 − NJ2|

NC
k

, (11)

where NJ1 and NJ2 are the number of nodes located in each category, respectively. The value 

of ΛCk ranges between zero (i.e., the number of nodes in the community are evenly 

distributed between the two categories) and unity (i.e., all nodes in the community are 

located in a single category).

The laterality of a given partition, , of a network is defined as:

Garcia et al. Page 10

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Λ𝒞 =
1
N

∑
k

NC
k
ΛC

k
− ∑

k

NC
k
ΛC

k
, (12)

where 〈ΣkNCkΛCk〉 denotes the expectation value of the laterality under the null model 

specified by randomly reassigning nodes to the two categories while keeping the total 

number of nodes in each category fixed. One of the most important functional 

specializations of the brain is laterality, and prior work has used this statistic to demonstrate 

subtle interhemispheric discrepancies in functional brain graphs during linguistic processing 

due to task demands [70].

Strength and significance of communities

When reporting values for either topological or spatial diagnostics, it is important to 

consider potential sources of error or variation that would inform the confidence in the 

measured values. For example, there may be error in the estimated weights of individual 

edges in the network, either from errors in the images themselves, or errors in the statistical 

estimates of structural or functional connectivity from those images. There may also be 

variance associated with multiple estimates of a network, either from different subjects, or 

from the same subject at different instances in time or in different brain states. In each case, 

it is useful to discuss the potential errors or sources of variance contributing to the estimated 

diagnostics of community structure, and to quantify them where possible.

In addition to accurately describing the potential sources of error in one’s data, it can also be 

useful to explicitly measure the significance of a given community structure. In this section, 

we describe two notions that can be used to quantify the strength and significance of 

communities. (Note that in this section, we use a few variable names that have been defined 

differently in earlier sections, largely to remain consistent with the traditional use of these 

variable names in their relevant subfields.)

m) Normalized persistence probability:: The persistence probability is a measure of the 

strength of a community in a graph with salient community structure [165]. Given an 

adjacency matrix A, we construct an N-state Markov chain with transition matrix P by 

performing a row-normalization on A. Specifically, the transition probability from i to j is 

given by

pij =
Aij

∑ j Aij

. (13)

Under some mild conditions, there exists a unique equilibrium distribution π ∈ ℝN that 

satisfies π = πP. Roughly speaking, this implies that if an individual takes a random walk on 

V with transition probabilities given by P, then — after some sufficiently long period of time 

— the probability that the individual is on the ith node is πi regardless of where the 

individual started.

Garcia et al. Page 11

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Now, given P and any distribution π on V, we can construct a K-state Markov chain with 

transition probability

Q = [diag(πH)]−1HT diag(π)PH, (14)

where H is an N×K binary matrix coding the partition ; that is, hni indicates whether the 

nth node is in the kth community. We call the K-state Markov chain a lumped Markov chain. 

We can check that Π = πH is an equilibrium distribution of the lumped Markov chain, 

which satisfies Π = ΠQ, and therefore the lumped Markov chain can be treated as an 

approximation of the transition of communities in the original Markov chain. We note that 

then, the expected escape time of Ck is τk = (1 − qkk)−1, which implies that if now the 

individual is in Ck, then on average it will take τk jumps for the individual to jump to 

another community. The persistence probability of the kth comunity is therefore defined as 

qkk; the larger this value, the longer the expected escape time, and the more significant the 

community.

In practical applications, the persistence probability is influenced by the size of the 

community. Larger communities always have larger persistence probabilities. Importantly, 

this fact can bias empirical results for graphs whose community size distribution is relatively 

broad. To address this limitation, we can normalize the persistence probability as follows

q
∼

k =
N

NC
k

qkk . (15)

The kth community is significant if q̃k ≫ 1. Intuitively, this normalization assumes that the 

graph is fully connected and that the weights of edges are all equal; then, the persistence 

probability of the k-th cluster is 

N
C

k

N
. Whenever a community has a persistence probability 

that is larger than some threshold α, we will refer to it as an α-community. If all 

communities are α-communities, we call the entire partition an α-partition.

n) Statistical comparison to a permutation-based null model:: Given a community structure 

, we can in fact compute the contribution of each community to the modularity quality 

index as follows:

Q(Ck |𝒞) = ∑
i, j ∈ C

k

(Aij − γPij), (16)

where as before γ is the structural resolution parameter, A is the adjacency matrix, and P is a 

null model adjacency matrix. Intuitively, Q(Ck| ) measures how strong the kth community 

is, and it is interesting to ask whether it is stronger than expected under some appropriate 

null model.
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To address this question, we can algorithmically generate a community structure r, which 

has exactly the same number of communities and the same number of nodes in each 

corresponding community as in , by simply permuting the order of nodes in V. We use this 

permutation-based approach to construct an ensemble of partitions, and for each partition we 

can calculate Q(Ck| r). Now, we define

S(Ck |𝒞) =
Q(Ck |𝒞) − Qmax(k)

Qmax(k) − Qmin(k)
, (17)

where Q
min

(k) = min
i
Q(C

k
r(i) |𝒞r(i)) and Q

max
(k) = max

i
Q(C

k
r(i) |𝒞r(i)). The quantity S(Ck| ) is 

a normalized measure that provides information about how strong the community is in 

comparison to what is expected under a permutation-based null model. This method was 

recently used to identify hyperedges in a set of functional brain graphs ordered over the 

developmental time period spanning 8 years of age to 22 years of age [102].

Modularity maximization for temporal graphs

The methods described above can be applied to a single graph, or separately to all graphs in 

a graph ensemble. However, in the study of neural function and its relation to cognition, or 

its change with age and disease, we often have an ordered set of graphs, where the order is 

based on time (Fig. 4). In this case, it is useful to consider methods for modularity 

maximization in temporal graphs — a set of graphs ordered according to time from earliest 

time to latest time [188]. A recent generalization of modularity maximization for graphs 

with L layers is given by the multilayer modularity quality function [144]:

Qmultilayer =
1

2μ
∑
ijlr

{(Aijl − γlPijl)δlr + δijω jlr}δ(Cil, C jr), (18)

where the adjacency matrix of layer l has elements Aijl, and the null model matrix of layer l 

has elements Pijl, γl is the structural resolution parameter of layer l, ωjlr is the temporal 

resolution parameter and gives the strength of the inter-layer link between node j in layer l 

and node j in layer r, δ is the Kronecker delta, and μ is the total edge weight. Small values of 

the temporal resolution parameter result in greater independence of partitions across 

neighboring layers, and large values of the temporal resolution parameter result in greater 

dependence of partitions across neighboring layers. Note that ω can vary from 0 to infinity.

Determining appropriate choices for the values of the structural (γ) and temporal (ω) 

resolution parameters is an important enterprise. In some cases, one might have information 

about the system under study that would dictate the number of communities expected, or 

their relative size, or their relative variation over time. However, if such information is not 

available for the system under study, then one must turn to data-driven methods to obtain 

values for γ and ω that most accurately reflect the spatial and temporal scales of community 

structure within the data. Several heuristics have been suggested in the literature, including 

(i) comparison to statistical null models (which we will describe in a later section) [14], (ii) 
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identifying a point in the γ-ω plane where the set of partitions obtained from multiple 

maximizations of the multilayer modularity quality function are statistically similar [53], or 

(iii) identifying the point in the γ-ω plane where the dynamic community structure displays 

certain features [202].

Topological summary statistics for dynamic community structure

Several summary statistics exist which are frequently reported to characterize dynamic 

community structure in empirical studies. A few particularly simple statistics include (i) the 

mean and temporal variance of the number of communities, (ii) the mean and temporal 

variance of the size of communities, and (iii) the multilayer modularity quality index 

Qmultilayer. In addition to these simple statistics — which have their correlaries in the single-

layer case — we can also define several statistics that explicitly capitalize on the temporal 

nature of the data.

o) Flexibility:: The flexibility of a single node i, ξi, is defined as the number of times a node 

changes in community allegiance across network layers, normalized by the number of 

possible changes [19]. Mathematically,

ξi =
gi

L − 1
, (19)

where gi is the number of times that the particle changes its community. The flexibility of 

the entire multilayer graph is then given by the mean flexibility of all nodes

Ξ =
1
N

∑
i

ξi . (20)

Intra-individual differences in this metric have been linked to mood [35] and attention [186], 

while inter-individual differences in this metric have been linked to learning [19], cognitive 

flexibility and working memory performance [41], and reinforcement learning [91]. The 

metric has also been shown to be an intermediate phenotype for schizophrenia risk [42], and 

is altered by an NMDA-receptor antagonist [42].

p) Node disjointedness:: Node disjointedness describes how often a node changes 

communities independently. Specifically, we are interested in when a node moves from 

community s to community k, and no other nodes move from community s to community k. 

If node i makes g
i
ind such changes out of L − 1 possible changes, we define the node 

disjointedness as follows [203]:

Δi =
gi

ind

L − 1
. (21)
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q) Cohesion strength:: The node cohesion can be defined as the number of times a node 

changes communities mutually with another node. Specifically, node cohesion is a pairwise 

measure that is expressed as a cohesion matrix, M, where edge weight Mij denotes the 

number of times a pair of nodes moves to the same community together, g
ij
mut divided by L 

− 1 possible changes. The cohesion strength of node i is then defined as follows [203]:

Ωi = ∑
j ≠ i

Mij . (22)

This metric has been shown to be more sensitive to individual differences in motor skill 

learning than either node disjointedness or node flexibility [203].

r) Promiscuity:: The promiscuity ψi of node i is defined as the fraction of all communities in 

which the node participates at least once, across all network layers [162], and importantly 

can determine whether a node’s flexibility may be high simply because it is switching 

between two communities or is truly flexible across all communities. The network 

promiscuity Ψ can be defined as the average promiscuity over all nodes

Ψ =
1
N

∑
i

ψ i . (23)

s) Stationarity:: To define stationarity, we first write the autocorrelation J(Cl, Cl+m) between 

a given community at layer l, Cl, and the same community at layer l + m, Cl+m, as

J(Cl, Cl + m) =
|Cl ∩ Cl + m|

|Cl ∪ Cl + m|
, (24)

where |Cl ∩ Cl+m| is the number of nodes present in community C in layer l and in layer l + 

m, and |Cl ∪ Cl+m| is the number of nodes present in community Ck at layer l or layer l + m 

[161]. Then if li is the layer in which community C first appears, and lf is the layer in which 

it disappears, the stationarity of community Ck is

ζC
k

=

∑l = l
i

l = l
f

− 1
J(Cl, Cl + 1)

l f − li
. (25)

The stationarity of the entire multilayer network is then given by

ζ =
1

NC
k

∑
k

ζC
k

. (26)

Garcia et al. Page 15

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While initially defined in the context of social networks [161], the stationarity has also 

proven useful as a marker of temporal variation in functional brain graphs in healthy adult 

humans in the process of motor skill acquisition [19].

Statistical Validation and Prediction

After estimating community structure from a single brain graph, or from a multilayer brain 

graph, one is next faced with the questions of (i) whether and how that community structure 

is statistically significant, (ii) how to compare community structure in one graph ensemble to 

community structure in a second graph ensemble, and (iii) how to infer underlying 

mechanisms driving the observed community structure. Answering these questions requires 

tools from statistics that are directly informed by network architecture, and tools from 

generative modeling that can provide insights into possible mechanisms.

The statistical significance of a community structure can only be determined in relation to a 

defined null model. One of the most common approaches to defining null models for brain 

graphs is via permutation: for example, the placement or weight of the edges in the true 

graph can be permuted uniformly at random (Fig. 5). In prior work, this null model has been 

referred to both as a connectional null model [19] or a random edges null model [188]. If the 

graph is a temporal multilayer brain graph, one could also consider permuting the inter-layer 

links uniformly at random (sometimes referred to as a nodal null model). One could also 

consider permuting the order of the layers uniformly at random (sometimes referred to as a 

temporal null model) [19]. For a discussion of related null models specifically for dynamic 

graphs, see [188, 120].

When graphs are built from functional data, one can also consider null models that are 

constructed from surrogate time series [14, 120]. Perhaps the simplest surrogate data 

technique begins by permuting the elements of each time series uniformly at random and 

then continues by recomputing the measure of functional connectivity between pairs of time 

series [205]. This approach is sometimes referred to as a random shuffle null model. While a 

fundamental benchmark, this null model is quite lenient, and it is commonly complemented 

by more stringent tests [14]. For example, the Fourier Transform surrogate preserves the 

linear correlation of the series by permuting the phase of the time series in Fourier space 

before taking the inverse transform to return the series to temporal space. A related 

technique – the Amplitude Adjusted Fourier Transform – works similarly except that it also 

preserves the amplitude distribution of the original time series [204]. For helpful additional 

discussion of surrogate data time series, see [181, 182].

After confirming that the community structure observed in the empirical graph is unlike that 

observed in either graph-based or time-series-based null models, one might next wish to 

compare two sets of empirical graphs. Specifically, one might wish to state that the 

community structure in one graph ensemble (e.g., healthy brains) is significantly different 

from the community structure in another graph ensemble (e.g., brains from individuals with 

disorders of mental health). One simple approach would be to use traditional parametric 

statistics to determine group differences in a summary measure such as the many defined in 

the earlier sections of this review. Broadly speaking, this approach assumes the data are 
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normally distributed with a mean that is parameterized by a linear model. Common 

techniques include t-tests, F-tests, and analyses of variance. However, the assumption that 

network statistics are normally distributed is often violated in real-world data. In such cases, 

it is more appropriate to use non-parametric permutation testing, which accounts for the true 

variation in the empirically observed data. This method is computationally costly since it 

requires an estimation of the null distribution via unlabeled simulation of the available data. 

For a recent review of this method as it applies to neuroimaging data, see [159].

Finally, moving beyond statistical validation, one might also wish to understand the 

mechanisms by which community structure arises in one’s data of interest, and predict how 

alterations in those mechanisms could lead to altered community structure. These sorts of 

topics are particularly important in understanding normative development and aging, and in 

understanding changes in graph architecture with disease or injury. To begin to build an 

intuition for possible mechanisms of community structure, it is natural to turn to generative 

network modeling techniques [31], in which wiring rules are posited and the resultant graph 

is compared to the empirically observed graphs; if the observed graph displays similar 

architecture to the modeled graph, then the wiring rule is said to constitute a potential 

mechanism. Such generative models can be either static or growing models [126], and can 

be defined either in a deterministic or probabilistic manner [194]. A particularly useful 

model for mesoscale structure — including but not limited to community structure — is the 

stochastic blockmodel, which has recently been used in the context of both structural [32] 

and functional [164] brain graphs (Fig. 6). Importantly, stochastic blockmodels have also 

recently been extended to multilayer graphs [200], suggesting their potential utility in 

understanding mechanisms of brain dynamics as well.

Collectively, these statistical approaches provide a rich set of tools to examine the robustness 

and reliability of brain graphs constructed from neuroimaging techniques sensitive to neural 

structure and activity across different spatial scales. Furthermore, recent advancements in 

generative network modeling provide new avenues to examine the mechanisms supporting 

network modularity that will complement work using community detection to characterize 

the static and dynamic evolution of these networks.

From modularity in neural systems to behavior

Mounting evidence supports the notion that modularity in brain graphs is important for 

healthy task-based and resting-state dynamics. Functional network communities correspond 

to groups of regions that are activated by the performance of specific cognitive and 

behavioral tasks requiring for example perception, action, and emotion [63]. Interestingly, 

evidence suggests that the human brain transitions among functional states that maximize 

either segregation or integration of communities, and the integrated states are associated 

with faster and more accurate performance on a cognitive task [185, 184]. Several studies 

have identified relationships between individual differences in modularity and memory 

performance [209, 58, 3, 185, 78, 199]. Changes in global modularity predict effective 

memory retrieval [213], account for reaction time on correct responses [209], and relate to 

individual variability on other measures of behavioral performance [199]. Converging 

evidence from electroencephalography studies in which community detection approaches 
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are applied [206, 166] further suggest that increased integration is required for successful 

working memory function [39, 124, 226].

The relationship between network modularity and performance is also expressed in the 

resting brain. Global network modularity at rest has been shown to predict inter- and intra-

individual differences in memory capacity [201]. When network modularity in resting state 

dynamics decreases following sleep deprivation, it accounts for behavioral performance 

impairments [29]. Aging brains typically become less modular at the global scale [137, 90, 

54], including specific modularity decreases in the executive control network and attention 

subsystems associated with typical cognitive decline [33]. Similarly, increased modularity is 

associated with improved learning and neuroplasticity. Patients with brain injury [8] as well 

as older adults [87] with more modular brain networks at baseline have been shown to 

exhibit greater improvements following cognitive training.

Importantly, community detection approaches have also revealed the importance of time-

evolving changes in modular networks that underlie human behavior. When participants 

successfully learn a simple motor skill across several days, the community organization and 

its dynamics change as the skill becomes more automatic [19, 21]. Motor skill learning is 

also accompanied by a growing autonomy of the sensorimotor system, and by a 

disengagement of frontal-cingulate circuitry which predicts individual differences in 

learning rate [21]. Even at much shorter time-scales and over the course of a single session, 

dynamic community structure can capture changes in task demands and changes in cognitive 

state [6, 95, 41, 35, 62].

Finally, the importance of modular network organization for healthy brain function is 

underscored by its alteration in clinical samples [80]. Connectopathy has been documented 

in patients with several mental health disorders including but not limited to schizophrenia, 

depression, anxiety, dementia, and autism [140, 136, 220]. Schizophrenia has been 

characterized by diminished small-world organization [141, 133, 176], altered modular 

organization [221, 130, 140, 121, 17, 4], and dysmodularity: an overall increase in both 

structural and functional connectivity that greatly reduces the anatomical specialization of 

network activity [64]. Other disorders of mental health, such as depression, have also been 

documented to exhibit altered network modularity [135, 217, 179], and emerging evidence 

suggests that changes in inter-module connectivity could underlie common reward deficits 

across both mood and psychotic disorders [183].

Methodological considerations and future directions

There are several methodological considerations that are important to mention in the context 

of applying modularity maximization techniques to neuroimaging data condensed into brain 

graphs. Perhaps one of the most fundamental consideration relates to the notion that one 

might be able to identify an “optimal” structural or temporal resolution parameter with 

which to uncover the graph’s most salient community structure. Such a notion presupposes 

that the graph displays strongest community structure at only a single topological or 

temporal scale. Yet, in many real-world systems — including brain graphs — modules exist 

across a range of topological scales from small to large, each contributing in a different 
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manner to the system’s overall function. Moreover, such nested modules might display 

dynamics over different temporal scales, enabling segregation and integration of 

computational processes from transient control to long-distance synchrony. Thus, while 

choosing an optimal resolution parameter may not only be difficult, it may also be 

unfounded, depending on the architecture of the single-layer graph or multilayer graph under 

study.

Several approaches have been proposed to address the multi-scale organization of brain 

graphs (Fig. 8; for a recent review, see [30]). One intuitive solution is to sweep across the 

topological and temporal scales of the system by incrementally changing the resolution 

parameters [77]. The advantage of this approach is that it allows us to track the stability of 

partitions across topological scales and identify robust modules. Nevertheless the 

communities in this approach are identified independently at each scale and thus a secondary 

algorithm is necessary for the reconstruction of a continuous topological community 

structure. An explicit multi-scale community detection algorithm can be used to address this 

limitation, by allowing simultaneous identification of the community organization across 

several scales [144]. A recent application of this approach to neuroimaging data has 

uncovered notable topological heterogeneity in the community structure of both structural 

and functional brain graphs, and in the extent of coupling across these modalities [9] (Fig. 

9).

In addition to understanding community structure across different scales in a single data 

modality, it is becoming increasingly important to identify and characterize community 

structure across different data modalities. The multilayer network formalism, which we 

described in this review in the particular context of temporal graphs, can also be used to link 

graphs from different imaging modalities together [208, 145]. Intuitively, community 

structure — and the topological or temporal scales at which it is most salient — can differ 

significantly across imaging modalities. In functional brain graphs estimated over long time 

scales, the community structure is of neural origin, and thus communities at coarser scales 

imply higher temporal independence and functional segregation between the communities. 

By contrast, in structural brain graphs, the community structure can be more reflective of the 

brain’s spatial organization, constituted by small focal clusters, mesoscale distributed 

circuits, and gross-scale hemispheres. Since the topological organization of a brain graph 

can differ across scales in different imaging modalities, it is useful to apply methods that can 

explicitly compare and contrast community structure across a range of topological and 

temporal resolutions [9].

Advantages and Disadvantages of the Graph Approach

A key advantage of community detection techniques is their relative simplicity. 

Nevertheless, this same simplicity can challenge mechanistic understanding of the 

organizational principles that shape emerging real-time dynamics of the system. This 

challenge is particularly apparent in the interpretation of the value of the modularity quality 

index: researchers often interpret higher (lower) modularity values as an increase (decrease) 

in overall segregation (integration) of brain networks. Yet, it is critical to realize that one can 

change the structure of a network in a host of ways that all lead to comparable changes in the 
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value of the modularity quality index, but also lead to strikingly different large-scale 

functional dynamics. Moreover, modularity values themselves are dependent on the 

resolution parameter at which they are calculated, and direct comparison between modularly 

values in two graphs using the same resolution parameter hinges on the assumption that both 

graphs display “optimal” community structure at the same topological scale. Modularity 

values are also difficult to compare in two graphs that exhibit community structure at 

different topological scales, as the resolution parameters used for the calculation of the 

modularity are different. Thus, in general, the interpretability of the modularity value is quite 

limited.

More generally, it is important to bear in mind that community detection techniques such as 

modularity maximization assess one specific type of organization in a graph. It may 

therefore be useful to combine this approach with other techniques to examine 

complementary types of organization present in the same graph or present in the time series 

irrespective of the graph [for several recent reviews, see 117, 114, 120]. Within the network 

science discipline, community detection can be used to examine a specific type of meso-

scale organization [for others, see 32], while other graph measures can be used to examine 

organization at other scales [150]. Examples of these other measures include centralities 

[13], clustering coefficient [178], path-length [12], and global and local efficiency [129] to 

name a few. Future work could also use generalizations of these network measures to 

multilayer data (see [125] for a recent review, and see [188] for a toolbox for use in applying 

those notions to neuroimaging data). Furthermore, these tools may also provide novel 

avenues for studying the coupling between the time-varying and multi-scale community 

structure in functional brain graphs and the underlying hierarchical scaffold in structural 

brain graphs [9].

Finally, it is important to note that the most common approach used to construct a brain 

graph treats brain regions as nodes and inter-regional connections as edges. Although this 

simple graph model has proven useful in advancing our understanding of the organization of 

brain networks in health and disease, it suffers from an implicit assumption of node 

homogeneity. That is, each node is distinguished not by any feature of its own, but by its 

relation to other nodes. Future work could aim to explore and advance community detection 

methods for annotated graphs [156] in the context of brain networks to account for the 

heterogeneous function and anatomy of different brain regions [149] (Fig. 10). Moreover, 

exploring alternative ways to construct brain networks such as hypergraphs [20, 102], and 

alternative methods to identify community structure such as link-communities [2, 67], could 

offer important and complimentary information regarding the organizational principles of 

brain network architecture.

Conclusion

Here, we have reviewed recent efforts to model brain structure and function using graphs. 

We focused on describing methods to identify, characterize, and interpret community 

structure in such graphs, with the goal of better understanding cognitive processes and 

resulting behavior in health and disease. We began by describing how brain graphs are 

commonly built, and then we discussed two community detection algorithms based on 
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modularity maximization: one constructed for use on single graphs, and one constructed for 

use on multilayer graphs. We also offered a collation of summary statistics that can be used 

to characterize topological features of community structure, spatial features of community 

structure, and features of dynamic community structure. We closed with a discussion of 

methodological considerations and future directions, as well as a few comments on the 

advantages and disadvantages of the graph approach. Our hope is that this review will serve 

as a useful introduction to the study of community structure in brain graphs, and will spur 

the development of new tools to more accurately parse and interpret modularity in human 

brain structure and function.
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Fig. 1. Brain graphs and communities within them
One can construct a brain graph in several ways, and subsequently study its modular 

architecture using community detection techniques developed for graphs. Here, we illustrate 

an example pipeline in which we use non-invasive neuroimaging in humans to obtain 

regional timeseries of continuous neural activity (Left). Next, we define a weighted 

undirected graph and represent that graph in an adjacency matrix, each element of which 

provides an estimate of the statistical similarity between the time series of region i and the 

time series of region j (Middle). Finally, we apply community detection techniques to the 

brain graph to identify modules. Here, a module is composed of nodes (regions) that are 

more densely interconnected with one another than expected in some appropriate random 

network null model. If we have temporally extended data, we can also consider defining a 

temporal graph, and using dynamic community detection techniques to study the temporal 

evolution of modules and their relation to cognition (Right). In this review, we discuss 

considerations, methods, statistics, and interpretations relevant to this process.
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Fig. 2. Defining brain graphs: common datatypes
Various neuroimaging techniques can be used to measure brain network dynamics. Due to 

their prominence in the literature, we focus on direct measurements from implanted 

electrodes on the cortical surface (ECoG; orange), sensors on or above the scalp (EEG or 

MEG; green), and indirect measurements from BOLD and diffusion (MRI; purple). Each 

technique is associated with a specific spatial and temporal scale that can offer different 

insights into brain structure and function.
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Fig. 3. Distinction between network space and physical space
Spatial network statistics are important for understanding how a network is embedded into 

physical space. Here we illustrate the distinction between network space and physical space, 

motivating the importance of using stastistics in both spaces to understand a system’s 

organization. (Left) An example graph that has been embedded into a physical (2-

dimensional Euclidean) space. (Right) A list of connections between nodes and their 

respective network and physical distances, demonstrating that long physical distances need 

not be long network distances, and visa versa.
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Fig. 4. Building temporal brain graphs and characterizing their dynamic community structure
Here we illustrate methodological steps to build a temporal brain graph and to estimate its 

dynamic community structure. First, we define nodes, shown here as a whole-brain 

parcellation. Next, in each time window, we define edges, shown here as statistical 

similarities in regional time series. We build a multilayer graph from the ordered set of 

graphs across all time windows, and we link graphs in neighboring layers by identity links 

(edges between node i in layer t and itself in layer t − 1 and t + 1). After constructing the 

multilayer brain graph, we can apply a community detection technique such as the 

maximization of a multilayer modularity quality function. This process produces a time-
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dependent partition of nodes into communities or modules. Because multilayer modularity 

maximization contains tunable parameters, we might also wish to search the 2-dimensional 

parameter space to find a parameter pair that results in a stable partition (for example, here 

reflected by a low variance of Qmultilayer across multiple iterations of the maximization 

algorithm). Finally, the dynamic community structure can be quantitatively characterized 

with graph statistics (e.g., flexibility, cohesion, and disjointedness).

Garcia et al. Page 37

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Permutation-based null models for statistical testing of community structure
(A) Schematic of a toy network with four nodes and four edes in a single time window. (B) 

Multilayer network framework in which the networks from four time windows are linked by 

connecting nodes in a time window to themselves in the adjacent time windows (colored 

curves). (C) Statistical framework composed of a connectional null model (Left), a nodal 

null model (Middle), and a temporal null model (Right) in which intranetwork links, 

internetwork links, and time windows, respectively, in the real network are randomized in 

the permuted network. (We show all of the randomized links in red.) Figure reproduced with 

permission from [19].
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Fig. 6. Stochastic blockmodels can detect other types of meso-scale structure unseen by 
modularity maximization
Networks can exhibit different types of meso-scale structure. (A) Assortative communities 

are sub-networks whose internal density of connections exceeds their external density. (B) 

Disassortative (multi-partite) communities are sub-networks where connections are made 

preferentially between communities so that communities’ external density exceed their 

internal density. (C) Core-periphery organization consists of a central core that is connected 

to the rest of the network and then peripheral nodes that connect to the core but not to one 

another. (D) These meso-scale structures can be present simultaneously in the same network. 

For example, communities I–II interact assortatively, III–IV interact disassortatively, while 

I–III interact as a core and periphery. Reproduced with permission from [32].
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Fig. 7. From modularity to behavior
Dynamic changes in the modular organization of functional brain networks capture the 

short- and long-term network reconfigurations triggered by the requirements of an on-going 

task or following weeks of training. (A) Dynamic task-related fluctuations of community 

structure during task performance. (Left) Time series plot demonstrated the close 

relationship between mean BT (participation coefficient) across 100 subjects (thick black 

line; individual subject data plotted in gray and task-block repressors plotted in blue). 

(Right) distinct changes in community structure during N-back task (a common working 

memory task) compared to the resting state. Note that during N-back performance, the 

frequency of time points where the network is more integrated significantly increases (red/

yellow) compared to the rest blocks (marked by a significant increase in the network 

segregation) [185]. (B) Learning-induced autonomy of sensorimotor systems captured by a 

reduction in the probability that motor and visual regions are allied to one another in a single 

community. The module allegiance matrices are calculated over different phases of learning 

(naive, early, middle, and late). The bottom row magnifies the visual and motor modules’ 

allegiance matrices (highlighted with green and yellow brain overlay on the left). Note that 

the strength of the allegiance between the visual and motor modules decreases as the motor 

sequences become more automatic, which signifies the increased autonomy of these systems 

over the course of learning [21]. Figure reproduced with permission from [185] and [21]
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Fig. 8. The multiscale brain
Brain networks are organized across multiple spatiotemporal scales and also can be analyzed 

at topological (networks) scales ranging from individual nodes to the network as a whole. 

Figure reproduced with permission from [30].
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Fig. 9. Schematic representing the construction of a multilayer network for use in multi-scale 
modularity maximization
Duplicates of a graph are connected in a multilayer fashion to construct a 3D graph. The 

smallest resolution parameter γ is assigned to the first layer (x), and it is linearly increased 

for the neighboring layers (y, z). The topological scale coupling parameter, τ, tunes the 

strength of dependence of the communities across layers. Since the community assignments 

are dependent on the adjacent layers, nodes that display high clustering over neighboring 

topological scales are identified as a single community spanning several scales. In this 

schematic, the large communities identified at initial layers progressively break into smaller 

sub-communities, revealing the hierarchical community organization of the graph. 

Reproduced with permission from [9].
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Fig. 10. Mesoscale network methods can address activity, connectivity, or the two together
In the human brain, the structural connectome supports a diverse repertoire of functional 

brain dynamics, ranging from the patterns of activity across individual brain regions to the 

dynamic patterns of connectivity between brain regions. Current methods to study the brain 

as a networked system usually address connectivity alone (either static or dynamic) or 

activity alone. Methods developed to address the relations between connectivity and activity 

are few in number, and further efforts connecting them will be an important area for future 

growth in the field. In particular, the development of methods in which activity and 

connectivity can be weighted differently – such as is possible in annotated graphs – could 

provide much-needed insight into their complimentary roles in neural processing. Figure 

reproduced with permission from [120].
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