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Abstract: This paper provides a review of the research conducted on complex network analysis 

(CAN) in electric power systems. Moreover, a new approach is presented to find optimal locations 

for microgrids (MGs) in electric distribution systems (EDS) utilizing complex network analysis. The 

optimal placement in this paper points to the location that will result in enhanced grid resilience, 

reduced power losses and line loading, better voltage stability, and a supply to critical loads during 

a blackout. The criteria used to point out the optimal placement of the MGs were predicated on the 

centrality analysis selected from the complex network theory, the center of mass (COM) concept 

from physics, and the recently developed controlled delivery grid (CDG) model. An IEEE 30 bus 

network was utilized as a case study. Results using MATLAB (MathWorks, Inc., Nattick, MA, USA) 

and PowerWorld (PowerWorld Corporation, Champaign, IL, USA) demonstrate the usefulness of 

the proposed approach for MGs placement. 

Keywords: centralized control; complex network analysis (CNA); controlled delivery grid; grid 

resilience; microgrids placement 

 

1. Introduction 

Scientists in many fields have, through the years, established extensive tools, mathematical, 

computational, and probabilistic, aimed at scrutinizing, modeling, and understanding different 

networks. The study of network science predicated its basic foundations on the development of graph 

theory, which was early examined by Leonhard Euler in 1736, when he published the famous Seven 

Bridges of Königsberg paper [1]. In the context of the network theory, a complex network could be 

defined as a graph that is composed of relatively many mutually related nodes (e.g., structural or 

functional relation) [2,3]. It could also be defined as a network that has non-observable topological 

features that do not arise in simple networks such as random ones, but often occur in graph models 

of real systems [4]. Based on the former description, electric power systems can be classified as 

complex networks and investigated through the lens of CNA [5,6]. The electric power system is 

categorized one of the most critical infrastructures. It is going through significant changes driven by 

the aging of the centralized energy infrastructure while electricity demand is growing [7], and the 

worldwide determination to reduce CO2 emissions [8,9]. Moreover, recent natural disasters, such as 

Hurricane Sandy, exposed some of the power system’s weaknesses. Therefore, a national call to 

enhance the grid’s resilience and self-healing abilities was raised [10]. This led to the imperative 

upgrade to the “smart grid”, with a key role expected to be played by MGs. In order to maximize the 

benefits of MGs within the electric power system, MGs placement is an essential feature to examine. 
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Recently, many states have started to announce competitions and prizes regarding microgrid 

implementation to promote clean energy and increase grid resilience. For example, in July 2017, the 

New Jersey Board of Public Utilities decided to deploy 13 new MGs statewide in an attempt to 

maximize their resilience in the face of catastrophic weather events. The board president announced 

that the Board’s Town Center Distributed Energy Resource (DER) MG program is funding feasibility 

studies/research for 13 separate proposed town center MGs across New Jersey [11,12]. A similar prize 

in New York has been announced as well. Moreover, microgrid implementation is also driven by 

federal and state regulatory actions to encourage Non-Wire Solutions (NWS) and reduce greenhouse 

gas (GHG) emissions from new and existing power plants. In order to maximize the resilience of the 

electric power grid in these states during the planning stage, one main aspect should be considered 

and investigated, which is the microgrid’s placement. Microgrid locations will contribute to 

maximizing the power grid’s resilience during a blackout and should perform the following tasks: 

(1) supply most of the critical loads within the distribution network; (2) maintain voltage within 

acceptable limits; (3) operate within the line loading capacities; (4) and minimize system losses. In 

order to attempt to solve the aforementioned problem, one can think of a “trial and error” approach, 
i.e., if N-microgrids are to be implemented in an M-buses system, then we are looking at NM trails to 

determine the microgrid locations that will enhance the system resilience (e.g., implementing three 

microgrids in a 30 bus system will lead to 330 = 2.06 × 1014 trials). Not including the processing time, 

the whole procedure will require a tremendous amount of time to find optimal locations, especially 

in big systems. Therefore, another approach that can provide pointers regarding the plausible 

optimal locations should be explored. 

Preceding research concentrated on finding the optimal location of distributed generation within 

an MG using metaheuristic means to minimize network losses [13]. Some of the performed research 

used complex network similarity with the electric power system to look into transient stability 

assessment [5,6]. Others used game theory to economically investigate the transfer of energy between 

distributed energy resources within an intelligent distribution system [14]. Researchers in [15] tried 

to coordinate the injection of the reactive power of photovoltaic generators to regulate the 

distribution network voltage without having to integrate new components and consequently 

eliminate the additional costs. Also, research was conducted in [16] to find the optimal 

reconfiguration of a distribution network (i.e., self-sustainable islands/MGs or sub-area partitioning) 

to maximize the energy savings. In [17], the research was focused on managing the power exchange 

between MGs during emergencies to keep all of them operational. We used the CDG model 

developed in [18,19] to enhance the EDS resilience with a high penetration of MGs in [20]. The CDG 

model suggests full observability and control of the loads by a central controller (i.e., distribution 

system operator (DSO)) that processes “requests” (i.e., demands) from all loads and yield back 

“grants” (i.e., power) according to an energy management algorithm (EMA). 

In this paper, abstract and weighted complex network frameworks have been established for a 

modified IEEE 30 bus system, along with utilizing the COM concept and centrality analysis, to 

determine the plausible optimal locations to deploy microgrids within electric distribution systems. 

The real-time energy management based on the CDG model, presented in [20], was used as an 

operational EMA for the distribution system operator (DSO) to evaluate the resilience aspect of the 

proposed locations from the developed complex network framework. In other words, the EMA 

implemented in the DSO takes into account the operational conditions (e.g., voltage variations, 

congestion limits, etc.). The input to the DSO is the available energy from the MGs and the load 

requests. The DSO tries to find the solution that has the fewest losses and highest grant/request ratio 

and is within the acceptable operational limits. Also, this paper aimed to provide an extensive review 

of previously conducted research that attempted to analyze the electric power system using complex 

networks theory. It should be mentioned that some practical limitations were not considered during 

the analysis such as the location availability. 
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2. Literature Survey 

We attempted to scrutinize the electric power systems from two main points of view: (1) an 

abstract perspective (i.e., as a graph consists from nodes and edges), regardless of the electric power 

aspects (e.g., transmission line impedances); (2) weighted graphs that blend an abstract 

understanding of complex network theories and electric power systems. 

2.1. Examining the Electric Power System from an Abstract Perspective 

Recent advancements in mapping the topology of abstract complex networks have revealed that 

a large segment of them are extremely heterogeneous with respect to the degree of the nodes (i.e., the 

number of edges connected directly to a node) [21]. In complex networks, most of the nodes have a 

low degree, but there is a continuous hierarchy of high degree nodes called “hubs”, which play a 

significant role in the network. According to the node degree distribution of the complex network, 

the system can be classified as a scale-free or single-scale network. Scale-free networks have most of 

their nodes with a low degree and some nodes are hubs; the node degree distribution of these 

networks follows a power law P(k)~k−γ with an exponent γ that mostly ranges between a value of two 

and three, where k is the node degree. Single-scale networks, in the context of power systems indicate 

that there is a path of transmission lines (TLs) between any power plant and any distribution 

substation; these networks can be considered regular networks where every node has roughly the 

same degree. Scientists examining and assessing the vulnerabilities of complex networks are usually 

interested in deciding whether the system understudy is a single-scale or scale-free network. One of 

the reasons is that, for example, scale-free networks are more resilient to the random disconnection 

of nodes; however, they are vulnerable to targeted attacks on hubs [22–24]. 

From a power system perspective, it is very important to examine whether the connectivity of 

the electric power grid is dependent on a small set of hubs and if their disconnection might initiate 

an extensive obstruction of the power transmission capabilities (e.g., a blackout). 

Researchers in [21] investigated the North American power grid from an abstract complex 

network point of view and tried to determine its ability to transfer power between generation and 

distribution when specific nodes are disconnected. The work attempted to model this power grid 

based on the data stored in the mapping system developed by Platts [25]. This mapping system 

comprises data regarding every power plant, major substation, and 115–765 kV TLs of the North 

American power grid. The model developed represents the North American electric grid as a 

network that contains approximately 14,000 nodes (i.e., substations) and 19,000 edges (i.e., 

transmission lines). Some of the significant findings of this work are as follows: 

- The cumulative degree distribution of the North American grid follows an exponential function 

P(k > K)~e−0.5K, which agrees with that of the Western power grid that is categorized as a single-

scale network. 

- The cumulative betweenness node distribution follows P(l > L)~(2500 + L)−0.7. The betweenness 

(l) of a node in a network is defined as the number of shortest paths that pass through it [26,27]. 

Assuming that the power is sent through the shortest route, the betweenness of a substation 

could be considered as an indication of how much energy passes through it. The calculated 

betweenness node distribution demonstrates that almost 40% of the substations are part of tens 

and hundreds of shortest paths, while 1% of the substations lie on a million or more shortest 

paths. These high betweenness substations, even though they may not be considered hubs, have 

a significant role in power transmission. 

- To ensure the reliability of the loads being continuously supplied, the transmission network of 

the electric power grid was designed in such a way that there is more than a single electrical line 

between any two substations. In an attempt to verify whether the North American grid topology 

has this characteristic of global redundancy or has vanished through the grid expansions, the 

authors presented a measure of the network redundancy called the “edge range”. This measure 

is defined as the distance between the ends of an edge if the edge linking them was removed 

[28]. It was found that around 900 TLs connecting generators and/or transmission substations 
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are radial. These radial TLs represent a clear weakness, as their disconnection isolates their 

endpoints and subsequently creates islanded clusters in the electric power grid. 

- Degree-based and random disconnection of nodes was performed to examine the connectivity 

loss percentage, which quantifies the average reduction in the number of generators connected 

to a specific distribution substation. Through this experiment, it was found that the elimination 

of generating substations does not change the overall connectivity of the grid due to the high 

level of redundancy at the generating substation level. However, the situation can be radically 

different when the substations being disconnected were transmission substations. For accidental 

or random disconnection, the connectivity loss is considerably low and remains proportional to 

the number of nodes that got disconnected. On the other hand, the connectivity loss is 

significantly increased when high betweenness or high degree transmission hubs are 

disconnected. In their conclusion, the electric grid can endure only a few failures of this type 

before substantial parts of the grid become separated, leading to a significant connectivity loss 

at the distribution level. For example, the failure of 4% of the substations that have high 

betweenness might lead to a 60% loss of connectivity in the grid. 

Similar work was conducted on the Italian power grid for the 220 and 380 kV transmission lines, 

which includes 341 substations and 517 transmission lines [29]. The aim of the study was to show 

that the structure of the power grid could reveal important information regarding the vulnerability 

of the network under cascading failures. In this study, the weights of the transmission lines were 

updated after disconnecting a node or line such that if the load in a line exceeds its capacity, the 

weight will be varied by a factor equal to the capacity divided by the line loading. The calculated 

cumulative node degree distribution of the Italian grid was calculated to be equal to 2.5 e−0.55k and the 

cumulative betweenness node distribution follows (785 + l)−1.44, which indicates that this grid is very 

homogeneous regarding the node degree distribution and shows a high heterogeneity in the nodes’ 
betweenness. The authors found that the node degree and betweenness are not correlated and that 

the failure of high betweenness nodes is more significant and could lead to large-scale blackouts. 

Moreover, they studied the impact of increasing the line capacity (e.g., 1.2~1.5 times) on the initiation 

of a cascading failure and found that there was no substantial difference in the results. Following the 

same type of scrutiny, Casals et al. [30] examined the structural topology of the European electric grid 

and its tolerance to targeted and accidental failures. In another work, Sole et al. [31] explored the 

fragility of the European electric power grid under targeted attacks, where specific substations in the 

network were disconnected and the patterns of failures were analyzed. Coelho et al. conducted the 

same analysis on a Brazilian test system [32]. 

In 1998, Watts and Strogatz proposed the small-world phenomenon in network models. The 

small-world networks exhibit a high clustering coefficient similar to that in regular networks and a 

small average distance like random networks. Through the formulation procedure of the small-world 

network, it is noticeable to see that it is the few long edges (i.e., edges that connect nodes to another 

far away ones) that make small-world networks different from both random and regular networks. 

The main reason is that nodes’ distances have been significantly shortened since the shortest paths 

generally pass through those long edges. As a result, the nodes connected by long edges in the 

network have higher betweenness centrality than of the other nodes. Also, in case these nodes are 

being disconnected intentionally (e.g., attacked) the structure of the network should greatly changes 

(e.g., more islands might be created) [33]. Researchers in [34] analyzed the north part of the Chinese 

national grid and found that the normalized distribution of the lengths of its shortest paths is similar 

to that of the West State Power Grid (WSPG) in the United States and tried to show it is a small-world 

network as well. 

Most of these studies focus only on the abstract structure of the power grid using node degree 

distribution and betweenness distribution, which introduces substantial insight regarding the 

vulnerability assessment of the grid. Also, these studies are considered a foundational building block 

in establishing theoretical probability models for the cascading failures research in the power grids. 

Other research tried to examine whether the electric power grid understudy is a small-world 

phenomenon by utilizing the properties of centrality and path lengths in an attempt to study the 
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vulnerability of the system and its tendency to form islands [35–37]. However, no cohesive study on 

an electric power grid has been conducted that keeps all of these parameters in perspective through 

the analysis. 

Through these types of studies, the category of the grid structure could be identified from the 

complex network perspective (e.g., single-scale, scale-free). This classification might help the electric 

power system engineers in the planning stage or while upgrading the infrastructure (e.g., add a new 

transmission line) to maintain a proper redundancy level in the transmission system. 

2.2. Scrutinizing the Electric Power System Utilizing Weighted Graphs 

Numerous measures/indices could be developed that could specify certain features of the 

network, if the structure of the network is known. Social scientists have used some centrality indices 

[38–41] to better explain a person’s impact within a network. Among these centrality indices, the most 
widely used in the electric power systems are degree centrality and betweenness centrality, as 

mentioned earlier. However, for further in-depth analysis, selected electric power system parameters 

need to be included (e.g., relate the weight of the edges to a group of electric power system properties) 

according to the type of study being conducted [42]. 

Ian Dobson from Iowa State University is considered one of the pioneers in investigating power 

system blackouts initiation and propagation using probabilistic complex network analysis models 

and finding the feature of self-organized criticality of the electric power grid [43–48]. Motter and Lai 

[28] showed how the redistribution of loads on substations due to the failure of certain important 

substations or TLs can result in a cascading failure. Dwivedi and Yu explore the idea of vulnerability 

analysis of power systems using maximum power flow-based centrality in [49]; the study was done 

on the IEEE 39 bus system. Their work presented a new direction for identifying important links in 

structural vulnerability analysis [50]. Nasiruzzaman et al. in [51] attempted to identify the critical 

nodes within the system using the conventional centrality measures of complex networks and the 

line weights were based on the electric grid impedances and power flow. Moreover, Nasiruzzaman 

and Pota in [5] conducted transient stability assessment utilizing the betweenness index and the 

power flow as the weight of the lines. Also, Chen et al. [52] introduced a bus admittance matrix into 

the traditional topological model, as weights of the TLs, for the purpose of further studying power 

grid vulnerability. Arianos et al. [53] presented a complex network-based parameter called net-ability 

to evaluate the performance of power grids during normal operation. Fang et al. in [54] investigated 

the cascading failure behavior using directed complex networks. They performed two attack 

strategies on the IEEE 118 bus network, namely “minimum in-degree”, which refers to the intentional 

attack to the input link of the node with the minimum in-degree; and “maximum out-degree”, which 

refers to the intentional attack on the input link of the node with the maximum out-degree. Their 

work concluded the following: (1) the cascading failure impact could be minimized by increasing the 

line capacity by a tolerance factor; and (2) an initial small-scale fault may result in a complete power 

outage of the network when the tolerance factor is small. 

All the aforementioned efforts have shed light on exploring the electric power system from a 

new perspective through the complex network lens, which led to significant findings, especially 

regarding grid vulnerability assessments. However, there is no commonly accepted approach that 

involves complex network analysis in conventional power system analysis. 

In subsequent sections, the use of complex network analysis to find a plausible optimal location 

to implement microgrids within a distribution system will be demonstrated. 

3. System Understudy 

The system being studied is presented in Figure 1. It shows the IEEE 30 bus system. The buses 

and lines data were extracted from [55]. The network was altered to represent a power outage 

condition by removing the main infeed from the grid. The network is divided into three areas, namely 

Areas 1, 2, and 3, each with a different load profile, as can be seen in Figure 1. The aggregated demand 

is 283.4 MW, and 126.2 MVar. We assumed that the three MGs are connected to the system at three 



Energies 2018, 11, x FOR PEER REVIEW  6 of 16 

 

different buses. The rated available apparent power during the 24 h, {Pi, Qi}, for these three MGs is 

{80, 50}, {80, 30} and {50, 20} MW and MVar, respectively. 

 

Figure 1. Modified IEEE 30 bus system. 

Each bus has a local controller. These controllers, in the case of load buses, send load requests to 

the DSO and also have the ability to execute load shedding on their controllable loads. In the case of 

microgrid buses, these local controllers represent the Microgrid Central Controllers (MGCCs) and 

send generation permissions as shown in Figure 2. The microgrid could represent a group of 

resources (wind turbines, solar farm, diesel generators, etc.) along with energy storage systems 

(batteries, flywheels, etc.). Also, it could be thought of as a cluster of MGs managed by one controller. 

The DSO does not need to have prior knowledge about the details of the MGs. The MGCC checks its 

resources and loads then only send a signal representing the possible available power that the MG 

could supply. The footprint of the IEEE 30 bus system is more than 100 km2 [56]. A single microgrid 

could supply several megawatts, such as UCSD MG in California, which supplies ~31.2 MW to a 4 

km2 campus; New York University MG, which has a capacity of 13.4 MW to supply 22 buildings; and 

Illinois Institute of Technology MG, which has a collective DERs capacity close to 9 MW [57]. 

 

Figure 2. Grant/request process in the distribution network. 

The central controller (i.e., DSO) executes the EMA in [20]. The brute force algorithm looks for a 

solution that agrees with all the constraints (i.e., acceptable voltage limits, line capacities and 

minimum losses) and allows all the requested demands to be granted. If the algorithm does not find 

a possible solution, it has to find another solution, with some of the requests not being fully supplied 

(i.e., load shedding). It was assumed that each bus controller will send a demand request, in the form 
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of a signal that comprises four load levels with a 10% difference or more. The grant signal from the 

DSO will be based on a priority list in [20]. The priority has been assigned such that Area 3 has the 

lowest priority and Area 1 has the highest. In other words, the DSO will try to grant all the requested 

demands. If that is not feasible, it will execute the brute force algorithm for a reduced demand, based 

on their priorities. In this paper, the locations of the MGs that will enhance the DSO operation will be 

further scrutinized using the complex networks framework, which will be explained in the 

subsequent section. 

4. Complex Network Framework 

In order to inspect an electric grid utilizing the CNA, the first step is to model this grid as a graph 

(i.e., TLs as edges and the buses as nodes). Figure 3 displays the equivalent graph of the IEEE 30 bus 

network. It contains 30 nodes (i.e., vertices) and the TLs are shown by 41 edges, which link the network 

nodes. Through this paper, we tried to use the complex network framework in the grid abstract form 

(i.e., undirected and unweighted) to learn about the central buses/nodes from a connectivity point of 

view. Moreover, we used different weights for the network edges (i.e., TLs) to understand the impact 

of electric system parameters such as normalized impendences and the centrality of nodes. Three main 

features were chosen to understand the nodes’ centrality in the IEEE 30 bus network: the clustering 

coefficient, betweenness and closeness centrality. Betweenness centrality could be defined as the 

number of shortest paths between all vertices (i.e., buses) that go through this vertex. It is utilized as a 

main measure of centrality [58] (i.e., a node with higher betweenness will have more impact over the 

system). The weights of the edges in betweenness were selected to be the normalized admittance of the 

TLs such that it becomes more correlated to the network power flow. In other words, the greater the 

lines admittances linked to a node, the greater the odds that the power will flow through this node. 

Betweenness can be calculated using Equation (1): 𝑐(𝑣) =  ∑ 𝑛𝑠𝑡(𝑣)𝑁𝑠𝑡𝑠,𝑡≠𝑢   , (1) 

where nst(v) is the number of shortest paths between vertices s and t that pass by the vertex v, and Nst 

is the overall number of shortest paths between vertices s and t. Closeness centrality could be defined 

as the average of the shortest paths between specific node and the rest of the nodes in the network 

[59]. The increase in node closeness indicates how near it is to the other nodes. The shortest electric 

route is the one that has the minimum resistance. Therefore, the edges’ weights were chosen to be the 

normalized impedance, since closeness is more associated with distance. Closeness can be calculated 

using Equation (2): 𝑐(𝑖) = ( 𝑣𝑖𝑁−1)2 1𝐶𝑖 , (2) 

where vi is the number of nearby vertices from vertex i (not including i), N is the number of vertices 

in any graph G, and Ci is the overall sum of distances from vertex i to all nearby vertices. If there is 

no path from vertex i to the nearby vertices, then c(i) is zero. 

The clustering measure is an index that evaluates which vertices in a graph will cluster together. 

The local clustering coefficient (LCC) of a node computes the average connections of its nearby nodes. 

The LCC for each node and the overall CC of the network can be calculated as in Equations (3) and 

(4), respectively: 𝐶𝐶(𝑣) = 2 𝑁𝑣𝐾𝑣(𝐾𝑣 − 1) (3) 

𝐶𝐶(𝐺) = 1𝑛 ∑ 𝐶𝑖𝑛𝑖=1    , (4) 

where Nv is the number of edges between vertex v nearby nodes and Kv is the vertex degree. 
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Figure 3. Shows the IEEE 30 bus network: (a) graph; (b) Closeness centrality; (c) Betweenness 

centrality. 

The LCC was calculated to examine the clustering tendency of the IEEE 30 bus. In addition, from 

the power system point of viewpoint, a bus having a high CC might indicate that if it gets separated, 

the power flow will have alternative paths to the nearby buses. In other words, a high LCC could 

indicate a less central bus, but this is not enough as a self-indicator. The overall CC was calculated for 

the 30 bus system as 0.234. It is equal to one (i.e., clique [60]) if all the vertices in the graph are linked 

to one another. 

It can be observed from the CNA in Table 1 that buses 4, 6 and 10 have more effect than the 

others. It can also be seen in Figure 3b,c. However, if the COM analogy is utilized to find the load 

center using Equations (5) and (6), bus number 5 will be the closest one to the load center. In the next 

section, it will be shown that the location of the MGs placement impacts the operation of the DSO. 𝑥𝑙 = ∑ 𝐿𝑖𝑥𝑖𝑛𝑖=1∑ 𝐿𝑖𝑛𝑖=1  (5) 
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𝑦𝑙 = ∑ 𝐿𝑖𝑦𝑖𝑛𝑖=1∑ 𝐿𝑖𝑛𝑖=1   , (6) 

where xl and yl are the coordinates of loads center, Li is the load associated with bus i, and n is the 

number of buses in the system. Weighted closeness centrality. 

Table 1. Results conducted using complex network analysis (CAN) in a complex network framework. 

Centrality type 
Closeness 

Centrality 

Average 

Closeness 
Betweenness 

Average 

Betweenness 
CC 

Weights 

Bus No. 
|Z| Abstract - 1/|Z| Abstract - - 

1 0.03757 0.009346 0.023458 2 1 1.5 0 

2 0.04114 0.012346 0.026743 28 40.5 34.25 0.166667 

3 0.037896 0.009901 0.023898 0 4 2 0 

4 0.051342 0.013333 0.032338 126 89.75 107.875 0.166667 

5 0.04297 0.009346 0.026158 34 1 17.5 0 

6 0.052748 0.015152 0.03395 208 176.5833 192.2917 0.142857 

7 0.049101 0.01087 0.029985 57 8.5 32.75 0 

8 0.036862 0.011364 0.024113 0 0 0 1 

9 0.038094 0.012195 0.025145 28 28 28 0.333333 

10 0.047808 0.013889 0.030848 161 115.6667 138.3333 0.133333 

11 0.026385 0.009091 0.017738 0 0 0 0 

12 0.048605 0.012048 0.030326 125 87.5 106.25 0.1 

13 0.032721 0.009009 0.020865 0 0 0 0 

14 0.04005 0.009804 0.024927 0 0 0 1 

15 0.045568 0.011111 0.02834 81 54 67.5 0.166667 

16 0.040794 0.010101 0.025447 8 10.41667 9.208333 0 

17 0.041507 0.011111 0.026309 18 15.91667 16.95833 0 

18 0.040242 0.009174 0.024708 23 11.41667 17.20833 0 

19 0.03232 0.009174 0.020747 4 11.41667 7.708333 0 

20 0.035456 0.010753 0.023104 7 26.25 16.625 0 

21 0.031265 0.010638 0.020952 0 0 0 1 

22 0.037667 0.011765 0.024716 42 34.91667 38.45833 0.333333 

23 0.036848 0.010309 0.023579 24 31.25 27.625 0 

24 0.030453 0.011111 0.020782 54 56.41667 55.20833 0 

25 0.025163 0.010101 0.017632 37 48.83333 42.91667 0 

26 0.017861 0.007874 0.012868 0 0 0 0 

27 0.024411 0.010638 0.017525 54 76.83333 65.41667 0.166667 

28 0.044617 0.012346 0.028481 63 72.83333 67.91667 0.333333 

29 0.019412 0.008264 0.013838 0 0 0 1 

30 0.020425 0.008264 0.014345 28 0 14 1 

5. Results and Analysis 

The MG placements decided by the CNA and the COM (i.e., placed in between the most loaded 

buses) have been evaluated utilizing the IEEE 30 bus system in Figure 1. The network is undergoing 

a blackout that happened as a result of the disconnection of the main infeed from bus 1. Three 

different sets of places for the MGs were chosen to demonstrate their effect on the real-time EMA 

based on the CDG model in [21] and the resilience of the EDS. 

The COM analogy showed that the load center is near to bus 5, and therefore buses 5, 3 and 10 

were chosen to be the set of places/locations (L1) to connect the three MGs. Buses 3 and 10 were 

chosen alongside bus 5 to assure that the MGs are spread over the IEEE 30 bus system. Sets of places 

(L2) were chosen to be buses 27, 29 and 30, which have the highest CC according to CNA. Set of places 

(L3) were chosen to be buses 4, 6, and 10, which have the highest betweenness and closeness 

centralities among the other buses, as explained in Section 4. 

Figure 4 illustrates the effect of locating the MGs at L1. Figure 4a–c depicts the normalized 

requested demands, and the power granted for 24 h at Areas 1, 2, and 3, respectively. The number of 

the bus selected by the EMA to be the swing bus is displayed hourly. Similarly, Figures 5 and 6 show 

the impact of locating the MGs at L2 and L3, respectively. 
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Figure 7a–c further show in details the yield factor through the 24 h in Area 1, 2 and 3 when the 

MGs were located at L1, L2, and L3 locations, respectively. Figure 7a shows that the yield factor of 

Area 1 among the three locations L1, L2, and L3 is comparable because Area 1 has the highest priority 

to be granted power. Also, the average yield factors of Area 1 for L1, L2, and L3 are 85.5%, 85.49%, 

and 87.31%. Figure 7b shows that for Area 2, the L2 MGs location has the lowest hourly yield factor 

and that of L3 is the highest. The average yield factors of Area 2 for L1, L2, and L3 are 82.6%, 61.57%, 

and 84.7%. Figure 7c demonstrates that L3 has the highest hourly yield factor for Area 3. The average 

yield factors of Area 3 for L1, L2, and L3 are 62.6%, 56%, and 79.3%. The overall average yield factor 

of the IEEE 30 bus system for L1, L2, and L3 MGs locations are 76.9%, 67.68%, and 83.76%. Figure 7d 

shows that L3 has the highest overall hourly yield factor in the IEEE 30 bus system. The overall 

average yield factors for the whole distribution network for locations L1, L2 and L3 are 76.89%, 

67.68%, and 83.76%. These results show that with the MGs deployed at L3, which is suggested by the 

centrality analysis, more loads (~30 MW) could be supplied during a blackout within the permissible 

operational network limits. For further information about the detailed operation of the MGCC, the 

authors have other related work in [61–68]. 
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Figure 7. The yield factors for various locations of the MGs (L1, L2, and L3) in: (a) Area 1; (b) Area 2; 

(c) Area 3; and (d) the IEEE 30 bus system. 

6. Conclusions 

This paper is a cohesive review of the application of complex network analysis in electrical 

power systems and sheds light on gaps that can be explored in future research. Moreover, this paper 

introduced a new methodology to inspect and analyze EDSs using CNA in a complex network 

framework to obtain pointers about the probable optimal locations/places to implement/connect 

MGs. The examination was executed utilizing CNA, the COM concept, and the controlled delivery 

grid (CDG) model. The IEEE 30 bus system was utilized to inspect the rationality and practicality of 

the suggested approach. It is worth mentioning that investigating all potential solutions to 

place/allocate an M no. of MGs in an N busses EDS needs enormous time and impractically large 

processing power. Complex network theory displays considerable advantages regarding finding the 

optimal location of MGs in an EDS to enhance its resilience. 
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