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APPLICATIONS OF CONVEX ANALYSIS TO
MULTIDIMENSIONAL SCALING

JAN DE LEEUW

A. In this paper we discuss the convergence of an algorithm for

metric and nonmetric multidimensional scaling that is very similar to

the C-matrix algorithm of Guttman. The paper improves some earlier

results in two respects. In the first place the analysis is extended to cover

general Minkovski metrics, in the second place a more elementary proof

of convergence based on results of Robert is presented.

This paper was originally presented at the European Meeting of Statisti-

cians, 6–11 September, 1976, in Grenoble, France. It was published pre-

viously in J.R. Barra, F. Brodeau, G. Romier and B. Van Cutsem (eds),

Recent Developments in Statistics, Amsterdam, North Holland Publishing

Company, 1977, 133–146.

1. I

In multidimensional scaling (MDS) problems the data consist of m nonneg-

ative square matrices ∆1, · · · ,∆m of order n, whose elements are interpreted

as measures of dissimilarity between the n objects o1, · · · , on measured at m

replications r1, · · · , rm Thus δi jk is the dissimilarity between objects oi and

o j at replication r. In a psychological context the objects are often called

stimuli and the replications are defined by the dissimilarity judgments of

2000 Mathematics Subject Classification. 62H25.
Key words and phrases. nonmetric scaling. multidimensional scaling, convex analysis,

majorization.
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2 JAN DE LEEUW

different subjects. Moreover we assume that m nonnegative square matrices

W1, · · · ,Wm of order n are given, whose elements are interpreted as weights,

i.e. wi jk indicates the relative importance or precision of measurement δi jk.

Multidimensional scaling techniques represent objects o1, · · · , on as points

x1, · · · , xn in a metric space 〈Ω, d〉 in such a way that the distances d(xi, x j)

are approximately equal to the dissimilarities δi jk. We sometimes write di j

for d(xi, x j).

In this paper we study representations of O = {o1, · · · , on} in the space of

all p-tuples of real numbers, in which the metric is defined by a norm ‖ • ‖.

Thus di j = ‖xi − x j‖. A representation of O is then an n × p matrix X, with

row i representing oi. We also define the notation di j(X) for the distance

between xi and x j.

The loss function we use in this paper to evaluate the badness-of-fit of a

particular representation X is

σ(X) =
m∑

k=1

n∑
i=1

n∑
j=1

wi jk(δi jk − di j(X))2

Clearly σ(X) ≥ 0, and σ(X) = 0 if and only if di j(X) = δi jk for all i, j, k

with wi jk > 0. If wi jk = 0 then the value of σ(X) does not depend on

δi jk. This provides us with a simple device for handling missing data: if

the observation corresponding with the triple i, j, k is missing, then we can

choose δi jk arbitrarily, and set wi jk = 0.

The first and most basic MDS problem we study in this paper is the min-

imization of σ(X) over all n × p configuration matrices X. This is usu-

ally called metric MDS, to distinguish it from the more general nonmetric

problem in which the δi jk are only partially known. Or, more precisely,

in the MDS problem as we have defined it so far the δi jk have to be either
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completely known or completely unknown (missing), nonmetric MDS deals

with various kinds of intermediate cases. In a later section of the paper we

discuss straigthforward extensions of our techniques that cover nonmetric

MDS.

2. PW

Algorithms for the minimization of σ(X) have been proposed earlier by

Kruskal [1964a,b] and Guttman [1968]. In fact both Kruskal and Guttman

propose algorithms to solve the more general nonmetric scaling problems.

In this general nonmetric case there are substantial differences between the

two approaches, but if we specialize them to the metric MDS problem they

become very similar. A detailed discussion and comparison of the algo-

rithms and the corresponding computer programs is available in Lingoes

and Roskam [1973]. We only discuss the main ideas, and the major differ-

ences between the two approaches in the metric case.

Kruskal proposes a gradient method of the form

X ← X − α∇σ(X),

where ∇σ(X) is the gradient of σ at X, i.e. the n × pmatrix of partial

derivatives, and where α > 0 is a step-size. Guttman on the other hand

shows that the stationary equation ∇σ(X) = 0 can be rewritten in the form

X − C(X)X = 0, where C(X) is a square symmetric matrix valued function

of X. He proposes the iterative process

X ← C(X)X.
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By substituting Guttman’s formula for the gradient in Kruskal’s algorithm

we find

X ← X − α(X −C(X)X) = (1 − α)X + αC(X)X.

Thus Guttman’s algorithm is a special case of Kruskal’s with a constant

step-size α equal to one. And Kruskal’s algorithm can be interpreted as an

over- or underrelaxed version of Guttman’s algorithm. Interesting geometri-

cal and mechanical interpretations of these algorithms have been discussed

by Kruskal and Hart [1966], McGee [1966], and Gleason [1967].

There are two problems with the Kruskal-Guttman approach that specifi-

cally interest us. In the first place the distance function di j(X) is typically

not differentiable at all configurations X with xi = x j. This implies that a

gradient method cannot be applied to σ(X) without further specifications,

it implies that the usual convergence theorems for gradient methods are in-

valid, and it also implies that local minimum points of σ(X) need not satisfy

the stationary equations. The second problem is that it has not been shown,

for either Kruskal’s “heuristic” or for Guttman’s “constant” step-size pro-

cedure, that the resulting algorithms are indeed convergent. Kruskal [1969,

1971] has proved some partial results, and Guttman [1968] and Lingoes and

Roskam [1973] have some heuristic arguments and some empirical results,

but there is no complete convergence proof.

Until recently these problems have been ignored, or they have been "dis-

solved" by transforming the model and, through the model, the loss func-

tion. ALSCAL, for example, defines the loss on the squared distances and

squared dissimilarities Takane et al. [1977]. Classical metric scaling meth-

ods apply both squaring and double centering to the dissimilarities, and then
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define the loss on the scalar products Torgerson [1958]. These transforma-

tions do make the loss functions better behaved in some respects, but they

do not really solve the problems with the Kruskal-Guttman approach, they

merely transform them away. Moreover using transformations seems less

direct, and does not generalize to other distance functions than the usual

Euclidean one.

In this paper we derive a simple algorithm for directly minimizing σ(X).

that can easily proved to be convergent. Although the derivation of the al-

gorithm does not use differentiation or stationary equations, it turns out that

the algorithm is identical to Guttman’s C-matrix method. One (modest) in-

terpretation of the main result of this paper is that it provides a convergence

proof for Guttman’s algorithm. Another interpretation is that we show that

the C-matrix method should not be interpreted as a gradient method. It is

more natural to view it as a minimization method based on an analysis of

the convexity properties of the distance function. In fact it may very well be

better not to interprete Kruskal’s algorithm as a gradient method, but as a

relaxed version of the C-matrix method. This interpretation makes it possi-

ble, for example, to construct interesting optimal step-size procedures that

do not use heuristic arguments and several arbitrary parameters.

3. P R: P

In this section we reduce the MDS problem to a more simple form by par-

titioning the loss function into additive components. For this purpose we

define
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wi j =
1
m

m∑
k=1

wi jk,

δi j =

m∑
k=1

wi jkδi jk/mwi j,

wi j =
1
2

(wi j + w ji),

δi j =
wi jδi j + w jiδ ji

wi j + w ji

for i , j,

wii = δii = 0.

As is customary in the analysis of variance we collect the components of

the partitioning in a table,

SOURCE LOSS COMPONENT

Proper Loss
∑n

i=1
∑n

j=1 wi j(δi j − di j(X))2.

Symmetry
∑n

i, j

{
wi jδ

2
i j − wi jδ

2
i j

}
.

Hollowness
∑n

i=1 wiiδ
2
ii.

Individual differences
∑m

k=1
∑n

i=1
∑n

j=1 wi jk(δi jk − δi j)
2.

Total loss
∑m

k=1
∑n

i=1
∑n

j=1 wi jk(δi jk − di j(X))2

It is obvious that we minimize the total loss if we minimize the proper loss,

and that the proper loss is more simple. In fact in defining the proper loss

we can suppose without loss of generality that both the weigths and the

dissimilarities are symmetric and hollow. The only assumption we make

about the δi j is that they are nonnegative. The weigths are also assumed

to be nonnegative, but we make the additional nondegeneracy assumption

of irreducibility: we suppose that there is no partitioning of {1, 2, · · · , n}

such that wi j = 0 whenever i and j belong to different members of the

partition. Again this assumption causes no real loss of generality, because
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if all between-subset weigths are zero the MDS problem separates into a

number of smaller problems corresponding with each of the subsets.

4. PM: U  H

As we have shown in the previous section the metric MDS problem can be

reformulated without loss of generality as the minimization of

σ(X) =
∑∑
1≤i< j≤n

wi j(δi j − di j(X))2

over the n × p configuration matrices X. In this section we study a closely

related maximization problem, that is in some respects more simple. For

the discussion of this alternative problem we need the following definitions.

ρ(X) =
∑∑
1≤i< j≤n

wi jδi jdi j(X),

η2(X) =
∑∑
1≤i< j≤n

wi jd
2
i j(X),

η2
δ =
∑∑
1≤i< j≤n

wi jδ
2
i j,

and

λ(X) = ρ(x)/η(X)ηδ.

Theorem 4.1. For all X we have 0 ≤ λ(X) ≤ 1. Moreover λ(X) = 1 if and

only if the dissimilarities δi j and the distances di j(X) for which wi j , 0 are

proportional.

Proof. This follows directly from the Cauchy-Schwartz inequality applied

to ρ(X). �
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Theorem 4.2. a: Suppose X̂ minimizes σ(X). Then X̂ also maximizes

λ(X).

b: Suppose X̂ maximizes λ(X). Then {ρ(X̂)/η2(X̂)}X̂

minimizes σ(X).

Proof. Because di j(βX) = βdi j(X) for all X and all β ≥ 0 we can reformulate

the MDS problem as the minimization of∑∑
1≤i< j≤n

wi j(δi j − βdi j(X))2

over the n× p matrices X and over all β ≥ 0. The minimum over β for fixed

X is attained at

β̂ = ρ(X)/η2(X),

and the value at the minimum is η2
δ(1 − λ

2(X)). The theorem follows from

these computations. �

It follows from Theorem 4.2 that we can solve the metric MDS problem by

finding the configuration matrix that maximizes λ(X).

5. T E C

Suppose di j(X) is Euclidean, i.e.

d2
i j(X) =

p∑
s=1

(xis − x js)2.

In this case it is convenient to derive some matrix expressions for ρ(X) and

η(X). Define the matrix valued function B(X) by

bi j(X) = −wi jδi jsi j(X) if i , j,

bii(X) =
∑

wi jδi jsi j(X).
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Here

si j(X) =


d−1

i j (X) if di j(X) , 0,

0 otherwise.

We also define the matrix V by

vi j = −wi j if i , j,

vii =
∑

wi j.

Both B(X) and V are real symmetric matrices with non-positive off-diagonal

and non-negative diagonal elements, whose rows and columns sum to zero.

By a familiar matrix theorem they are consequently both positive semi-

definite of rank not exceeding n−1. Because V is irreducible by assumption

we have in fact rank(V) = n − 1, and the null space of V is the set of all

vectors with constant elements. (Taussky [1949]; also Varga [1962, sections

1.4 and 1.5]). If e is the n-vector with all elements equal to one, then the

Moore-Penrose inverse of V is simply

V+ = (V +
1
n

ee′)−1 −
1
n

ee′.

The following results can be verified easily.

Theorem 5.1. a: ρ(X) = tr X′B(X)X.

b: η2(X) = tr X′VX.

We also define, for all pairs of configuration matrices,

µ(X,Y) = tr X′B(Y)Y.

Theorem 5.2. µ(X,Y) ≤ ρ(X) for all X,Y.

Proof. The Cauchy-Schwartz inequality implies

di j(X) ≥ si j(Y)
p∑

s=1

(xis − x js)(yis − y js).
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If we multiply both sides with wi jδi j, sum all inequalities, and simplify, we

find the inequality stated in the theorem. �

Using the notation developed in this section we can now define the B-matrix

algorithm for Euclidean metric multidimensional scaling as the recursion

Xk+1 = V+B(Xk)Xk. The only difference between Guttman’s C-matrix and

our B-matrix is due to the fact that we have removed the homogeneity from

the problem in section 4, this makes B more simple than C.

Theorem 5.3. a: The three sequences ρ(Xk), η(Xk), and λ(Xk) are

bounded and increasing. The limits are ρ∞, η∞ =
√
ρ∞, and λ∞ = ρ∞/ηδη∞ .

b: The sequence Xk has convergent subsequences. If

X∞ is the limit of a convergent subsequence, then

λ(X∞) = λ∞. Moreover X∞ is a fixed point, i.e.

X∞ = V+B(X∞)X∞, and if λ is differentiable at X∞

then ∇λ(X∞) = 0.

c: ‖Xk+1 − Xk‖ → 0.

Proof. From the Cauchy-Schwartz inequality

ρ(Xk) = tr (Xk)′VXk+1 ≤ η(XK)η(Xk+1).

From Theorem 5.2

ρ(Xk+1) ≥ tr (Xk+1)′B(Xk)Xk = tr (Xk+1)′VXk+1 = η2(Xk+1).

If we combine these inequalities we obtain

η(Xk) ≤
ρ(Xk)
η(Xk)

≤ η(Xk+1),

and

ρ(Xk) ≤
η(Xk)
η(Xk+1)

ρ(Xk+1) ≤ ρ(Xk+1).
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Because ρ(Xk) ≤ η2
δ and η(Xk) ≤ ηδ it follows that both ρ(Xk) and η(Xk)

are convergent increasing sequences, with limits, say, ρ∞ and η∞. Because

λ(Xk) ≤ 1 it follows that λ(Xk) is another convergent increasing sequence

with limit λ∞. Moreover ρ∞ = η2
∞, and λ∞ = ρ∞/ηδη∞. It also follows

that the sequence Xk lies in the compact set η(X) ≤ ηδ and has convergent

subsequences. There is equality in the basic chain of inequalities if and only

if X is a fixed point. This implies that subsequential limits are fixed points.

Finally

tr (Xk+1 − Xk)′V(Xk+1 − Xk) =

= η2(Xk+1) + η2(Xk) − 2ρ(Xk) → 2(η2
∞ − ρ∞) = 0,

which implies part (c) of the theorem. �

A very similar result appears in Robert [1967]. The general convergence

theorems of Zangwill [1969] and Meyer [1976] are also relevant. Observe

that Theorem 5.3 does not say that Xk converges. This follows only if we

make some rather arbitrary additional assumptions, for example that there is

only a finite number of fixed points, or that one of the subsequential limits

is an isolated fixed point. If Xk does not converge, it follows that the set

of limit points is a continuum (a result due to Ostrowski, cf Daniel [1971,

section 6.3]).

Theorem 5.3 is our basic convergence theorem for metric Euclidean MDS.

It is quite satisfactory, and it has been proved by very elementary methods.

In fact the proof only uses some elementary properties of sequences, and

the Cauchy-Schwartz inequality.
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6. N-EM

Our method can be generalized to general Minkovski metrics, with the met-

ric defined by a gauge φ. We shall use some elementary facts about gauges

without proof. The proofs follow easily from the beautiful introduction

to gauges and norms in Rockafellar [1970, chapter 15]. Introductions to

Minkovski geometry are given in Busemann and Kelly [1953] and Buse-

mann [1955].

A gauge is a function φ : Rn → R satisfying

G1: φ(x) ≥ 0.

G2: φ(x) = 0 if and only if x = 0.

G3: φ(µx) = µφ(x) for all µ ≥ 0.

G4: φ(x + y) ≤ φ(x) + φ(y).

A gauge is a norm if we can replace G3 by the stronger

G5: φ(µx) = |µ|φ(x) for all µ.

A gauge defines a distance function by the rule

di j(X) = φ(xi − x j).

Unless the gauge is a norm this distance is not necessarily symmetric. With

some minor modifications our results are also valid if we replace G2 by the

weaker

G6: φ(0) = 0.

In fact most of the results remain valid if we only assume G3 and G4,

i.e. for all homogeneous convex functions. Thus gauges are relevant for
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our problem because they can be used to construct very general distance

functions. But they are even more relevant because of the following result.

Theorem 6.1. Both ρ(X) and η(X) are gauges on the space of all n × p

configuration matrices.

Proof. For both ρ(X) and η(X) property G1 is obvious. For η(X) property

G2 follows from irreducibility, for ρ(X) property G6 is obvious, We could

assume G2, but we never need it. Properties G3 and G4 follows from the

fact that each di j(X) is convex and homogeneous on the space of configura-

tion matrices. �

The theorem shows that the metric MDS problem reduces to the maximiza-

tion of a ratio of two gauges. Problems of that type have been studied by

Robert [1967], Boyd [1974], Tao [1975, 1976]. Before we discuss their re-

sults and apply them to our problem we state some of the elementary facts

about gauges.

First define the polar of a gauge as the function φ◦ : Rn → R given by

φ◦(y) = max
x

〈x, y〉
φ(x)

.

Here 〈•, •〉 denotes inner product.

Fact 6.2. a: The polar of a gauge is a gauge, the polar of a norm is

a norm.

b: The polar of the polar of a gauge φ is the gauge φ.

c: The Euclidean norm
√
〈x, x〉 is its own polar.

d: (Holder’s inequality). If φ and φ◦ are polar gauges, then

〈x, y〉 ≤ φ(x)φ◦(y) for all x, y ∈ Rn.

We can study the conditions for equality in Holder’s inequality by introduc-

ing subdifferentials. Remember that a subgradient of a function φ at a point
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x is a vector y such that φ(z) ≥ φ(x) + 〈y, z − x〉 for all z ∈ Rn. The set of all

subgradients of φ at a point x is the subdifferential of φ at x, and is written as

∂φ(x). Thus for each x the symbol ∂φ(x) stands for a subset of Rn, possibly

empty. Again we mention some facts about subdifferentials, without proof.

The proofs can be found in part V of Rockafellar [1970].

Fact 6.3. a: If φ is a finite convex function, then for each x ∈ Rn the

set ∂φ(x) is nonempty, convex, and compact.

b: If φ is differentiable at x with gradient ∇φ(x), then

∂φ(x) = {∇φ(x)}.

c: The map x→ ∂φ(x) is closed, i.e. if xi → x∞, if yi → y∞,

and if for each i also yi ∈ ∂φ(xi), then y∞ ∈ ∂φ(x∞).

By combining the results of Fact 6.2 and Fact 6.3 we find the following

results.

Fact 6.4. a: Suppose φ is a gauge. Then y ∈ ∂φ(x) if and only if

φ(z) ≥ 〈y, z〉 for all z ∈ Rn, and φ(x) = 〈y, x〉.

b: Suppose φ and φ◦ are polar gauges. Then x ∈ ∂φ(y)

if and only if 〈x, y〉 = φ◦(y) and φ(x) = 1. Moreover

y ∈ ∂φ(x) if and only if 〈x, y〉 = φ(x) and φ◦(y) = 1.

c: Suppose φ and φ◦ are polar gauges. Then 〈x, y〉 =

φ(x)φ◦(y) if and only if x ∈ φ(x)∂φ(y) if and only if

y ∈ φ◦(y)∂φ(x).

Now consider the problem of maximizing the ratio

λ(x) =
φ(x)
ψ(x)

.

with both φ and ψ gauges. From the definitions of gauges and their polars

we obtain the following result.
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Theorem 6.5. Maximizing λ(x) over Rn is equivalent to maximizing

ξ(x, y) =
〈x, y〉

ψ(x)φ◦(y)

over Rn ⊗ Rn, and this is equivalent to minimizing

λ◦(x) =
φ◦(x)
ψ◦(x)

over Rn.

By using Holder’s inequality we can derive the following necessary condi-

tions for an extreme value.

Theorem 6.6. a: If x̂, ŷ maximizes ξ(x, y) then ŷ ∈ φ◦(ŷ)∂φ(x̂) and x̂ ∈

ψ(x̂)∂ψ(ŷ).

b: If x̂ maximizes λ(x) or minimizes λ◦(x) then x̂ ∈

ψ(x̂)∂ψ◦(∂φ(x̂)).

For maximizing λ(x) the following algorithm was proposed by Robert (1967).

We start with x0 such that ψ(x0) = 1. Then define yk ∈ ∂φ(xk) and xk+1 ∈

∂ψ◦(yk).

Theorem 6.7. a: The sequence λ(xk) is increasing and convergent.

The sequence λ◦(yk) is decreasing and convergent.

Both sequences converge to the same limit λ.

b: All accumulation points of (xk, yk) correspond with

the same function value λ = ξ. Moreover all accu-

mulation points satisfy the necessary conditions of

Theorem 6.6.
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Proof. From our facts about gauges

φ◦(yk) = 1,

ψ(xk+1) = 1,

〈xk, yk〉 = φ(xk),

〈xk+1, yk〉 = ψ◦(yk).

By applying Holder’s inequality

φ(xk) = 〈xk, yk〉 ≤ ψ◦(yk)ψ(xk) = ψ◦(yk),

ψ◦(yk) = 〈xk+1, yk〉 ≤ φ(xk+1)φ◦(yk) = φ(xk+1),

and thus

λ(xk) ≤ 1/λ◦(yk) ≤ λ(xk+1),

which implies part (a). Because the subdifferentials are closed and the iter-

ations remain in a compact set we can apply the general convergence theo-

rems of Zangwill [1969] to get (b). �

If we compare 6.7 and 5.3 we see that 6.7 has no part (c), and is conse-

quently weaker than 5.3. It is possible to prove that ‖xk+1 − xk‖ → 0 in this

more general context too. but we need additional assumptions. One of the

more natural ones is that φ or ψ◦ or both are differentiable at all station-

ary points, other possibilities are discussed by Meyer [1976]. A far more

important difference between the algorithms of sections 5 and 6 is that in

most cases the function ψ◦ cannot be computed in closed form. The same

thing is true for the subdifferential ∂ψ◦. This means that we must compute

xk+1 by maximizing 〈x, yk〉 over {x | ψ(x) = 1}. This is a convex program-

ming problem which cannot be solved in a finite number of steps in general.
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Consequently we need a version of Theorem 6.7 in which this convex pro-

gramming problem is truncated after a finite number of steps. Zangwill’s

general convergence theory shows how this truncating should be done.

The simplifications in section 5 are possible because the gauge ψ is ellip-

soidal in this case. If both ψ and φ are ellipsoidal, then Robert has pointed

out that the algorithm reduces to the power method for solving a general-

ized eigenvalue problem. Compare also Tao [1976]. It is of some interest

that Guttman already pointed out that his C-matrix method for MDS looked

like a sort of generalized power method. The analysis in this paper shows

what the exact relationships are.

7. N-MDS

In the simplest forms of nonmetric MDS we must minimize

τ(X,∆) =

∑n
i=1
∑n

j=1 wi j(δi j − di j(X))2∑n
i=1
∑n

j=1 wi jdi j(X)2

over all n× p configuration matrices X and over all n× n disparity matrices

∆. The disparity matrices must be chosen from a known convex cone Γ,

the metric MDS problem is the special case in which Γ is a ray, the addi-

tive constant problem is the special case in which Γ is a two-dimensional

subspace. We briefly indicate the modifications needed to apply our ideas

to nonmetric MDS in this simple form. More complicated partitioned loss

functions, with more complicated normalizations, will be discussed in sub-

sequent publications.

By using the homogeneity of the distance function as in section 4 we can

show that the nonmetric MDS problem is equivalent to the maximization of

λ(X,∆) =
ρ(X,∆)
η(X)η(∆)

,
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with

ρ(X,∆) =
n∑

i=1

n∑
j=1

wi jδi jdi j(X),

η(∆) =
n∑

i=1

n∑
j=1

wi jδ
2
i j

and η(X) as before. If we define

ρ(X) = max
∆∈Γ

ρ(X,∆)
η(∆)

then ρ(X) is a homogeneous convex function, in fact a gauge. Thus we have

a problem of the familiar form, a ratio of gauges must be maximized, and

the algorithm of section 6 can be applied.

If the distance function is Euclidean, the analysis of section 5 can be used.

The only difference with metric MDS is in the definition of ρ(X), in the

nonmetric case we have to compute the optimum ∆ for given X in order to

compute ρ(X). We can compute the optimum ∆̂(X) as the unique minimizer

of
n∑

i=1

n∑
j=1

wi j(δi j − di j(X))2

over the cone Γ. After solving this regression problem we can normalize

the solution such that η(∆̂(X)) = 1, but this is not strictly necessary. The B-

matrix algorithm for nonmetric Euclidean MDS is defined as the recursion

Xk+1 = V+B(Xk, ∆̂(Xk))Xk,

with B(Xk, ∆̂(Xk)) defined as B(X), but with δ̂i j(X) substituted for δi j. The

same inequalities and equations can be derived as in 5.1, 5.2, and the proof

of 5.3.

Theorem 7.1. Parts a,b,c of Theorem 5.3 are also true for the nonmetric

Euclidean B-matrix algorithm.
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In the nonmetric case the differences between our B-matrix method and

Guttman’s C-matrix method are larger than in the metric case. One impor-

tant reason is that Guttman uses rank images, while our convexity approach

forces us to use monotone regression estimates of the δi j. I have not been

able to find a rigorously defined optimization problem in which rank images

can be used. This does not mean, of course, that we cannot use rank images

in the earlier iterations of an MDS algorithm. In the earlier iterations we

can do anything we please. As in TORSCA we can use the semi-nonmetric

Young-Householder process, or as in MINISSA we can use rank images.

We only have to switch to monotone regression and the B-matrix algorithm

if things are getting out of hand (if the loss starts to increase, for example).
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