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Applications of Cortical Signals to Neuroprosthetic
Control: A Critical Review

Richard T. Lauer, P. Hunter Peckham, Kevin L. Kilgore, and
William J. Heetderks

Abstract—Cortical signals might provide a potential means of in-
terfacing with a neuroprosthesis. Guidelines regarding the necessary
control features in terms of both performance characteristics and user
requirements are presented, and their implications for the design of a first
generation cortical control interface for a neuroprosthesis are discussed.

Index Terms—Cortical interface, electroencephalogram (EEG), neuro-
prosthesis.

I. INTRODUCTION

Neuroprosthetic systems provide function by electrical stimulation
of paralyzed muscles in a coordinated fashion. The individual using the
system can control the stimulation, usually through movement of some
nonparalyzed part of the body. For example, in the Case Western Re-
serve University (CWRU)/VA hand-grasp neuroprosthesis [1], [2], the
user controls opening and closing of his or her hand by movement of
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the contralateral shoulder. This movement is sensed by an external po-
sition transducer that is taped to the user’s shoulder and chest. The com-
mand signal is sent to an external control unit, which converts the signal
into the appropriate stimulus level for each muscle. This signal is sent
through a radio frequency (RF) link to the implanted stimulator unit,
which in turn generates a stimulus pulse train of the appropriate mag-
nitude to each electrode placed on the different muscles of the forearm
and hand. By coordinating the activation of each muscle, a functional
grasp pattern is achieved.

The user controls the degree of opening and closing of the hand by
movement of the contralateral shoulder—moving the shoulder forward
(protraction) results in hand closing, moving the shoulder back (re-
traction) results in hand opening. The control is proportional, allowing
the user to modulate the grasp force for the desired task by adjusting
shoulder position. The neuroprosthesis also uses a state control input
(typically a chest mounted switch) that enables the user to select dif-
ferent pre-programmed grasp patterns, to turn the device on and off,
and to lock and unlock the hand.

Ongoing research and clinical experience has defined limitations that
are inherent in the shoulder generated command signal and its hardware
implementation. First, shoulder control is restricted to the contralateral
arm, thus restricting bilateral implementation of the neuroprosthesis.
Second, the external mounting is cumbersome, necessitates external
wiring, and performance varies somewhat with mounting differences.
Current research is designed to overcome these deficiencies. In partic-
ular, an implantable transducer that senses the position of the ipsilateral
wrist has been designed and clinically implemented [3]. Also, myoelec-
tric control has been assessed as an alternative command signal, using
the EMG signal from retained muscles [4], [5] as the control source.
Nevertheless, all of these signal sources are somewhat unnatural and
require the user to learn to relate an artificial command with the in-
tended movement. It is in this dimension of natural control that a cor-
tical interface provides the greatest potential.

II. CHARACTERISTICS OF THECOMMAND CONTROL INPUT

The characteristics of the command signal for a hand neuroprosthesis
should enable the user to utilize a natural method to select a grasp pat-
tern, regulate hand opening/closing and the grasp strength, and main-
tain grasp. The principal feature of the command signal is proportional,
single degree of freedom information under user volitional control de-
livered at a sufficient accuracy and speed to provide appropriate control
of the hand. Acceptable factors to achieve this type of control can be
separated into performance and user criteria. A partial review of these
criteria has been compiled elsewhere [6], [7]. These criteria are shown
in the following sections.

A. Performance Criteria

1) One Degree of Freedom:A single degree of freedom input
signal will enable control of both hand opening/closing and grasp
strength. Control of some other upper extremity movement (e.g.,
elbow extension, forearm pronation) can be linked to synergistic
movements [8], [9], thus reducing the demands of the controller. Other
movements (e.g., shoulder) will require a separate control input. For
the operation of the contralateral hand, a second control input will
also be required since sequential control of the hand is not clinically
acceptable.

2) Stability over Time:Stability is required to enable day-to-day
consistency of the command input. This is addressed further in the dis-
cussion section as applicable to cortical signals.
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3) Minimal Delay: Delays between intention and action degrade
performance. A nominal, acceptable value to this has been placed at
200 ms [10].

4) Number of Discrete Levels of Activation:The command input
should at least match the performance capabilities of the hand neu-
roprosthesis. Although approximately 100 to 200 stimulus levels are
available, only five to eight levels are used in practice by the user [6].
This number of levels can be achieved by either using the unaltered
signal or through additional processing. For example, a signal with only
two discrete levels can be used to gate a command up and down at
a predetermined rate, and thus achieve graded control [20]. However,
the deficit in this method is the introduction of a command delay. This
trade-off between the number of available command levels and com-
mand delay is an essential performance criterion.

5) Selectivity: The command signal should not be affected by other
intentional voluntary movements, movements generated by electrical
stimulation, or the stimulus artifact (see Discussion).

B. User Criteria

User criteria are more difficult to describe quantitatively, but are crit-
ical for user acceptance of any control method. The control must be
“natural” for the user, i.e., it must not require extensive special atten-
tion. The control must also be convenient to access, easy to learn and
utilize, and cosmetically acceptable. Clinically, it is also desirable that
the interface is easy to implement and safe from electrical hazard and
biological compatibility perspectives.

It is clear that the performance and user criteria are in conflict with
one another. For example, a surface cortical potential system utilizing
external electrodes has performance restrictions and is not likely to be
cosmetic, but it will be safe. Alternatively, an intracortical recording
system will likely have considerably better performance and be cos-
metic, but will be more difficult to deploy clinically and have consider-
ably greater concerns of safety based purely on being implanted. Thus,
judgement will be required in determining the balance between these
factors for the specific intended clinical application.

III. CORTICAL INTERFACEDEVELOPMENT FORNEUROPROSTHETIC

CONTROL

The development of a cortical interface to the hand neuroprosthesis
can take one of two forms, either through the use of an intracortical
recording array [11]–[14] or though the use of surface cortical poten-
tials [15]–[18]. Research undertaken at CWRU and the Cleveland VA
Medical Center (MC) has focused on assessing the feasibility of using
surface cortical signals to operate a hand grasp system.

The interface is shown in Fig. 1. The controller is a combination of
the BCI system and the neuroprosthesis developed in the laboratory
at CWRU and the Cleveland VAMC. The EEG signal, recorded from
electrodes on the scalp, is amplified and filtered using a Laplacian spa-
tial filter. The signal is then converted into a voltage by performing a
spectral analysis. Further noise reduction is achieved using an adaptive
step-size [4] filter, and the signal is converted into a command to con-
trol grasp using a gated control algorithm. This algorithm only allows
for dynamic hand function, converting high voltages into a state com-
mand to ramp open the hand and low voltages into a state command
to ramp closed the hand. Features such as holding the object for long
periods of time are not possible with this algorithm. However, even this
minimal amount of function, should enable a subject to grasp and ma-
nipulate objects.

Our initial work has identified a number of important aspects of the
cortical signal that must be considered in order for it to be used for neu-
roprosthetic control. First, it is uncertain that the surface EEG signal
will have the information content of some of the already established

Fig. 1. Schematic of the EEG-based controller for the Hand Grasp
Neuroprosthesis.

methods of control, such as shoulder position. Most studies to date have
focused on a binary “high–low” signal using the EEG, although Mc-
Farlandet al. [20] has shown that there may be potential to achieve
as many as four discrete states with further subject training and im-
proved signal processing. However, it may be that the EEG signal is
better suited to provide a state signal for functions, such as switching
between grasp patterns or turning stimulation on and off. It may also
be possible to generate a “proportion in time” signal from this infor-
mation similar to that used for myoelectric control, in which the signal
gates the command to increase or decrease at a known fixed rate [21].
Thus, if the subject is able to hold and maintain a high or low level for
a discrete period of time (with a resolution of 0.5 s), then it is possible
to convert the state information into proportional information, allowing
for greater control.

The information outflow rate of the EEG system might be rather
low because of the signal processing involved and the nature of the
EEG signal. Appropriate spectral analyses usually require a 200-ms
sample size. To accomplish this and still allow for a 10-Hz update rate
for the interface, a 100-ms data backlogging function is often used
which introduces a delay. Another delay occurs in the generation of
an appropriate change in the EEG signal. Studies of changes in the
frontal rhythms due to cognitive processing suggest that this delay will
be about 300 ms [22]–[24] which may also apply to the� and central
� rhythms. These delays would have the effect of introducing a notice-
able delay to the user between the initiation of the command and the
response of the neuroprosthesis. It was stated in the Introduction that
during the accomplishment of any task, a delay of greater than 0.2 s
will degrade performance. This will be the limiting factor to the use of
EEG for direct proportional control of grasp, but may not be especially
limiting for a state signal.

The intracortical signal, in comparison, appears to have a large infor-
mation content and a quick response time. The signal may also be easier
to use than the EEG signal if, as expected, less training and attention is
required. However, there are two major issues regarding the use of in-
tracortical recordings. The first of these is the stability of the signal over
the course of days and years. In this case, the requirements for neuro-
prosthetic control may be more lenient than the requirements currently
placed on this type of recording for neurophysiological studies. Sta-
bility has typically been defined as recording from the same neuron or
population of neurons over time, and much effort has gone into demon-
strating this type of stability. However, for neuroprosthetic control, the
requirement is that the user is able to consistently generate the control
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signal reliably, without the need for frequent re-tuning. This may not
require constant recording from the same group of neurons, but rather
requires that the user can always generate a reliable signal from the
neurons within the recording range of the electrode array. It may also
be that slow changes in the relative sensitivity of an electrode between
neurons can be naturally accommodated for by the user, without the
need for specific retraining. A simple recalibration that could occur in-
termittently or during in-patient visits at perhaps six-month intervals
would seem to be acceptable in this regard.

A second issue regarding the use of intracortical recordings is the
unresolved issue of cortical plasticity following spinal cord injury. Cur-
rently, research is focused on recording neural activity from the hand
and arm area of the cortex, and then using this signal to control a robotic
arm. This is the first step toward controlling a neuroprosthetic system.
However, to restore hand function there is a reliance upon recording
hand movement from an intact cortical representation in the somato-
motor area. The question arises, however, as to whether or not these
neuron populations will be present and functionally active in the motor
cortex of an individual with a midcervical level spinal cord injury. It
has been hypothesized that the somatomotor cortex undergoes reor-
ganization after a spinal cord injury [25], but the degree is unknown.
This is an area that requires further investigation if cortical control of
a neuroprosthesis is to be achieved. If the arm and hand areas are no
longer present, or if the neuron population representing these areas are
sufficiently reduced so that recording from these neurons is no longer
possible, then research must also be directed into finding alternative
sites in the motor control system which may be used to acquire this in-
formation.

Another issue that must be dealt with if cortical signals are to be
used to control a neuroprosthesis is the stimulus artifact from stimu-
lation electrodes in the prosthesis. We have verified that even stimula-
tion applied as far away as the forearm produces an artifact on the scalp.
Typical stimulation rates for the hand grasp neuroprosthesis range from
12 to 16 Hz. This has been determined to be the optimal frequency for
electrical stimulation [26]. Frequencies below this rate result in an un-
fused muscle contraction and an unusable hand grasp, while frequen-
cies above this result in greater muscle fatigue and a decrease in the
amount of time the system can be used. In EMG studies, the stim-
ulus artifact was removed by blanking the recorded signal during the
time period that the stimulus pulses are generated (typically a period
of 20–30 ms out of every 60–80 ms) [4]. It is not certain whether users
can achieve adequate control of the� or � rhythms, which have a fre-
quency of 8–10 Hz. A higher� rhythm might be a better control signal.
This impact of the stimulation artifact is one that will also have to be
addressed with the use of intracortical recordings, although the skull
may provide substantial artifact suppression.

Another aspect of the EEG signal that is important to consider is the
identification of the optimum cortical area for signal acquisition. Most
of the reported studies that use EEG signals for the control of external
devices record the signal generated over the somatomotor cortex. In
these studies, the application is intended for severely disabled individ-
uals with no muscle movement at all [18], or able-bodied users who
are resting their extremities [15]. However, in individuals who have
sustained midcervical level spinal cord injury, for which cortical con-
trol would be an important command signal source for neuroprosthetic
use, voluntary movement is retained in the shoulder and upper arm.
The stimulated hand muscles of the neuroprosthesis then augment these
voluntary movements. Any control source must not interfere with the
user’s ability to make maximum use of their voluntary musculature.
However, arm movement can have a pronounced effect upon the� and
� rhythms recorded from the somatomotor cortex, may interfere with
control signals developed in these areas. It is not clear whether users
can achieve adequate control of the� or � rhythm while moving their

arms in a simulated task. Therefpre, we have explored recording over
the frontal cortex where the effects of arm movement might be less. On
the other hand, signals recorded over the frontal cortex can be contami-
nated by electromyographic (EMG) or electro-oculographic (EOG) ac-
tivity. Indeed, early data [19] that initially reported to show user control
of a frontal� rhythm were found to contain EMG contamination.

The use of the EEG signal for the operation of a practical neuropros-
thesis for daily use will also require further advancements in recording
electrode technology. Presently, recording an EEG signal requires
the placement of individual electrodes or a cap upon the scalp, with
the locations based roughly upon physiological landmarks. Because
these electrodes must be donned and doffed, there are variances in the
recorded signals during each session that require a recalibration during
each use. These problems can be overcome with the use of a subdural
recording array [27] or an implanted array [28], [29] that would
provide stable and repeatable signals. It is our expectation that an
implanted recording electrode will be needed for users to find this type
of system cosmetically acceptable for daily use in social situations.
Nevertheless, it will be critical for investigations to demonstrate that
this interface is safe as well as effective before introduction in a
neuroprosthesis can be anticipated.

IV. CONCLUSION

The use of the cortical signal for the operation of a hand grasp neu-
roprosthesis is particularly attractive because it provides a means of
restoring the link between thought and hand movement which was lost
at the time of injury. Guidelines for both performance characteristics
and user requirements have been established. However, there is still
much which needs to be explored, not only with the technology, but
also with the underlying neurophysiology of spinal cord injury and with
the conversion of the signal into neuroprosthetic control.
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A Natural Basis for Efficient Brain-Actuated Control

Scott Makeig, Sigurd Enghoff, Tzyy-Ping Jung, and
Terrence J. Sejnowski

Abstract—The prospect of noninvasive brain-actuated control of
computerized screen displays or locomotive devices is of interest to many
and of crucial importance to a few ‘locked-in’ subjects who experience
near total motor paralysis while retaining sensory and mental faculties.
Currently several groups are attempting to achieve brain-actuated control
of screen displays using operant conditioning of particular features of
the spontaneous scalp electroencephalogram (EEG) including central

-rhythms (9–12 Hz). A new EEG decomposition technique, independent
component analysis (ICA), appears to be a foundation for new research in
the design of systems for detection and operant control of endogenous EEG
rhythms to achieve flexible EEG-based communication. ICA separates
multichannel EEG data into spatially static and temporally independent
components including separate components accounting for posterior
alpha rhythms and central activities. We demonstrate using data from
a visual selective attention task that ICA-derived -components can show
much stronger spectral reactivity to motor events than activity measures
for single scalp channels. ICA decompositions of spontaneous EEG would
thus appear to form a natural basis for operant conditioning to achieve
efficient and multidimensional brain-actuated control in motor-limited
and locked-in subjects.

I. INTRODUCTION

Recent work in several laboratories has demonstrated that noninva-
sively recorded electric brain activity can be used to voluntarily con-
trol switches and communication channels, allowing a few so-called
locked-in near-totally paralyzed subjects the ability to communicate,
however slowly, with their families and aides ([4]; [14]; [2]). Com-
munication rates achieved to date are in the range of several bits a
minute, far from rates that would allow locked-in persons access to
normal social interaction. This communication briefly describes a tech-
nique for blind decomposition of electroencephalogram (EEG) data
into temporally and often functionally independent components that
would appear to provide a natural basis for optimizing brain-actuated
control ([7]; [9]). An example is given of a decomposition of sponta-
neous EEG in one subject into four components accounting for spatially
distinguishable though widely overlapping posterior alpha and central
�-rhythmic activities. Learned control of the amplitude of motor-re-
lated central�-rhythms in the alpha frequency range (8–12 Hz) ([5]) is
being used for brain-actuated control by at least two groups ([13]; [15]).
We demonstrate that the motor-response related spectral perturbations
demonstrated by the independent component analysis (ICA)-defined
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