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Applications of Cumulants to Array Processing—
Part IV: Direction Finding in

Coherent Signals Case
Egemen G̈onen, Jerry M. Mendel,Fellow, IEEE, and Mithat C. Dǒgan, Member, IEEE

Abstract— We present a subspace-based direction-finding
method for coherent signal environments using an antenna
array. Our method, which uses fourth-order statistics, is capable
of resolving more signals than a comparable second-order
statistics-based subspace method and is applicable to a larger
class of arrays. The maximum number of signals resolvable with
our method may exceed the number of sensors in the array.
Only a uniform linear subarray is needed; the rest of the array
may have arbitrary and unknown response and does not require
calibration. On the other hand, the comparable second-order
statistics-based method is limited to uniform linear arrays
only. No search procedure is needed in our method. Simulation
experiments supporting our conclusions are provided.

Index Terms—Array processing, coherent signals, cumulants,
direction finding, higher order statistics, multipath propagation.

I. INTRODUCTION

H IGHLY correlated or coherent signals are often the case
in multipath propagation environments or in military

scenarios when there are smart jammers. Existing second-
order-statistics-based subspace methods for direction finding
fail in coherent signal environments. To handle the coherency
problem, some solutions were proposed [1], [5], [9], [13],
[15]–[17]; however, these solutions are either limited to spe-
cific array configurations, or unreasonable assumptions were
made. For example, thespatial smoothing methodof [15]
and [16] is limited to uniform linear arrays and results in a
smaller number of resolved signals than that which can be
resolved with the same array under the absence of coherence;
the solution presented in [1] and [17] requires computa-
tionally intense multidimensional search, and [9] proposes
using moving arrays. Additionally, in [5], an attempt was
made to generalize spatial smoothing to a class of arbitrary
but very restrictive array geometries by using interpolated
arrays; however, it was assumed that the array manifold is
known, which requires calibration of the entire array. Porat and
Friedlander present a modified version of their cumulant-based
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algorithm [13] to handle the case of coherent signals; however,
their method is not practical because it requires selection
of a highly redundant subset of fourth-order cumulants that
contains elements, and no guidelines exist for its
selection; Second-, fourth-, sixth-, and eighth-order moments
of the data are required. We have shown [8] that using
cumulants, the case of coherent signals can be handled without
calibration and with a weaker constraint on the array structure
than required by the second-order statistics-based methods.

For independent signals, Doǧan and Mendel [2] have de-
veloped the virtual-ESPRIT algorithm (VESPA) for direction
finding. It is based on their virtual cross-correlation computer

VESPA can calibrate an array of unknown configura-
tion and arbitrary response by using just one additional pair
of identical sensors (instead of a copy of the entire array or
storage of the entire array response for every possible scenario,
which is required by ESPRIT).

In this paper, we extend VESPA to the case of coherent
signals. Our method, which we will refer to asextended VESPA
(EVESPA) throughout the paper, is capable of resolving more
signals than the second-order-statistics-based spatial smooth-
ing method and is applicable to a larger class of arrays.
The number of resolvable signals may exceed the number
of sensors in our method. Only a uniform linear subarray is
needed; the rest of the array may have arbitrary and unknown
response and does not require calibration. On the other hand,
the spatial smoothing method is limited to uniform linear
arrays.

In Section II, we define the problem. A solution to the
problem is presented in Section III. Section IV explains how
the available data can be used more efficiently. Results of
simulation experiments are provided in Section V. Conclusions
are in Section VI.

Throughout the paper, lower-case boldface letters represent
vectors; upper-case boldface letters represent matrices; and
lower and upper-case letters represent scalars. repre-
sents the th element of the matrix The symbol “*” is used
for conjugation operation, and the superscript “” is used to
denote complex conjugate transpose.

II. FORMULATION OF THE PROBLEM

In order to describe the problem best, a summary of VESPA
will be presented first. Then, we will explain why VESPA
fails in the coherent signals case. To show the interconnection
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between VESPA and EVESPA for coherent signals more
clearly, here, we present VESPA in a slightly different manner
than is done in [2].

To begin, let us assume that statistically independent
narrowband signals with center frequency

impinge on an M-element antenna array from directions
Later, we will modify this to thecoherentsignals

case. Assume for now that the array conforms to the VESPA
model, i.e., the array antennas have arbitrary and unknown
locations and responses except for two antennas that have
identical response patterns and are cumulatively referred to
as sensor doublet.

We will denote the signals received by the sensor doublet
as and They are separated by Let be the
snapshot vector received at timeThen, the received signal is

(1)

where is the steering matrix
in which is the response of the array to theth signal,
which is referred to as theth steering vector, and is a
Gaussian1 noise process with unknown autocovariance matrix
and is independent of the source signals.

VESPA starts with the estimation of two fourth-
order cumulant matrices cum
and cum with elements

cum

cum

cum

cum

(2)

cum

cum

cum

cum

(3)

1It was shown [4] that this assumption is not needed under some conditions.

where represents theth element of
in which is the vector connecting the dou-

blet’s elements; is measured with respect to
the normal line to ; is the speed of propagation of
the signals, and In the above derivations,
cumulant properties [CP1], [CP3], [CP5] and [CP6] in [10]
were used. We also used the facts that fourth-order cumulants
of a Gaussian process are zero and that the first and second
antennas have identical response patterns. The last lines of (2)
and (3) follow from the independence of the source signals
and [CP6], i.e.

cum if
otherwise.

(4)
Collecting (2) and (3) for in matrix form,

we obtain

(5)

(6)

where , and

For different
arrival angles, , and is full rank,
provided the sources have nonzero fourth-order cumulants,
and the first sensor has nonzero response to the incoming
signals. With these rank conditions, (5) and (6) satisfy all the
requirements of ESPRIT [14]. The last step of VESPA is to
apply ESPRIT to (5) and (6) to obtain the direction of arrival
estimates and steering vectors.

If the signals impinging on the array arecoherent,
covariance-based subspace direction finding methods fail
because some of the signal eigenvectors diverge into the
noise subspace. On the other hand, for VESPA,

, and therefore, the diagonal elements of matrix
are unknown functions of both the response of array and

the multipath propagation parameters. Consequently, when
there are coherent signals, an explicit solution for the signal
directions cannot be obtained from VESPA. In the next section,
we extend VESPA to handle the coherent signals case.

III. N EW SOLUTION

Consider a scenario in which there are narrowband
sources Suppose that each of these signals

undergo frequency-flat multipath propagation, pro-
ducing a set of delayed and scaled replicas of itself

impinging on an -element array from
directions In the sequel, the collection of
signals , which are coherent replicas of

, will be referred to as theth group. Let the total number
of signals impinging on the array be, that is
Our assumptions are the following:

A1) The source signals are statistically inde-
pendent, which is a valid assumption for physically
separated sources.

A2) The source signals have nonvanishing fourth-order
cumulants, which is generally true for communication
signals.
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Fig. 1. Example array configuration. There areM sensors,L of which are
uniform linearly positioned;r1(t) and r2(t) are identical guiding sensors.
Linear subarray elements are separated by�:

A3) The element array is composed of an element
uniform linear subarray and an element subarray
having arbitrary and unknown location and response
(see Fig. 1).

A4) The array is a nonambiguous one, i.e., its response to
a signal from a given direction is different from that
due to another signal from a different direction.

A5) The number of sources is less than the number of
array elements, i.e., The reason for the linear
subarray will be made clear below.

A6) The measurements are corrupted by additive noise,
which is statistically independent of the source signals,
and they can be Gaussian, non-Gaussian symmetrically
distributed, or a mixture of Gaussian and this type of
non-Gaussian noise.

We assume that snapshots taken at time points
are available. The problem is to estimate the DOA’s

The solution proceeds
in three steps.

A. Step 1: Estimate Generalized Steering Vectors

Assuming an unknown coherence model for the received
signals, the cumulants in (5) and (6) can be written in terms
of the cumulants of This, in effect, permits us to
separate the coherent groups, making it possible to obtain two
expressions that are similar to (5) and (6).

The coherence among the received signals can be expressed
as in (2) in the companion paper [7], and the received signal
can then be written in terms of the independent sources as

(7)

where is the steering matrix having columns , and
is as defined in [7, eq. (2)]. Note that is
The columns of , which are referred to as thegeneralized

steering vectors, can be estimated following Step 1 of the
companion paper [7].

Note that and can be chosen as any two
sensor measurements in the array, provided and
in [7, Eqs. (4), (6)] are nonsingular. However, choosing

and from the uniform linear subarray leads
directly to the DOA estimates at this step if the signals
are statistically independent because in that case,

and diag
diag , which follows
from the fact that the first two sensors have identical responses.
For the coherent case, however, the matrixdoes not give the
DOA’s explicitly; however, the estimated generalized steering
vectors can be used to find the DOA’s, as explained in the
next step.

B. Step 2: Spatial Smoothing

Once we have estimated the generalized steering vectors
, we can estimate the steering vector and, subsequently,

the DOA of each signal path. The general form of coherence
between the received signals lets us express each generalized
steering vector as a linear combination of steering vectors of
onecoherent group,independentof the other steering vectors,
where the combination coefficients are the elements of the
unknowncomplex propagation vector for that group. To see
this, partition the matrices and as
and , where is , and the steering

matrix for the th group is
Additionally, represents the angle of arrival of theth
signal in the th coherent group with Using
the fact that the th column of in (2) of [7] has
nonzero elements, can be expressed as

; therefore, the th column of is
where

Now, the problem of solving for steering vectors of the
received signals is transformed into independent problems,
each solving for the steering vectors of all the signal paths
in each coherent group from the generalized steering vector
of that group. To solve each of these new problems, each
generalized steering vector can be interpreted as a received
signal for an array illuminated by coherent signals having
a steering matrix and covariance matrix Then, the
DOA’s of each signal could be solved for by using a second-
order-statistics-based subspace method such as MUSIC if the
array is calibrated and if the rank of is ; however, the
array is not calibrated, and rank Therefore, we
propose to keep only the part of each estimated generalized
steering vector that corresponds to thelinear part of the array.
By doing this, we will be able to incorporate spatial smoothing
[12], [15], which, in turn, will restorethe rank of to

For this purpose, partition as

(8)

for , where is the portion of corresponding
to the uniform linear subarray of sensors (the firstelements
of for the array configuration in Fig. 1), and contains
the first rows of Now, can be interpreted [8] as a
received signal for an -element uniform linear array that is
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illuminated by coherent signals from asingle source whose
propagation vector is Note that the steering matrix of these
coherent signals is Treating as the covariance
matrix of the received signal, spatial smoothing can be applied
to restore the rank of to for , and then,
any second-order-statistics-based high-resolution method can
be employed to find the DOA’s. Note that the antenna patterns
of the sensors in the uniform linear subarray, which are the
same, are not required, i.e., calibration is not needed.

Forward spatial smoothing [12], [15] for theth group
starts by dividing the -vector into
overlapping subvectors of size

with elements Then,

a forward spatially smoothed matrix is calculated as

(9)

The conditions on the length of the linear subarray and the
parameter under which the rank of is restored to
are as follows [6]:

must satisfy if forward spatial smoothing is used,
and if both forward and backward smoothing are
used [12]. This means that if both methods are used, the linear
subarray must have at least elements, where is
the maximum number of multipaths in anyone of thegroups.
Given and , the parameter must be selected such that

C. Step 3: Extract DOA’s

By applying any second-order-statistics-based subspace
technique (e.g., root-MUSIC, etc.) to the pseudo-covariance
matrix , it is possible to estimate DOA’s
of up to coherent signals in each group. As just noted,
a linear subarray of minimum dimension is needed.

D. Discussion

Since is , the maximum number of groups
that can be resolved is Additionally, as we have
just seen, it is possible to estimate DOA’s of up to
coherent signals in each group. Consequently, the maximum
total number of coherent signals that can be resolved by our
method is If all sensors are in a uniform linear
array , then a maximum of coherent
signals can be resolved.

Note that in deriving our three-step method, we did not
restrict the entire array to be linear. Only an-element part of
it must be linear. In contrast, when the signals are coherent,
second-order-statistics-based methods using spatial smoothing
[12], [15] are limited to uniform linear arrays. In addition,
given an -element uniform linear array, while our method
can resolve at most signals, these methods can
resolve at most signals. This clearly demonstrates the
increased resolving capacity of our method.

Another point to note is that if a coherent group contains
more than signals, only the DOA estimates of that group

are affected because each group is treatedindependentlyin the
second step of our method.

Finally, even if there are no multipaths, our method works
because in this case, spatial smoothing does not affect the
unity rank of since there is only one signal in theth
group. Note that our method works for coherent or linearly
correlated signals as well as independent signals. On the other
hand, VESPA works only for the independent signals case.
The tradeoff from a hardware standpoint is that our method
requires a uniform linear subarray whose length depends on
the number of multipaths in a coherent group, whereas VESPA
requires two identical sensors. If one suspects any multipath
will be present in the data, EVESPA must be used.

IV. EFFICIENT USE OF DATA

In this section, we show that our method can be modified
to use the available data more efficiently.

A. Using Multiple Guiding Sensor Pairs

Just as when we chose the first two sensors as the guiding
pair, the two pairs of sensors and also lead
to two matrices, like [7, (4), (6)], which are in ESPRIT form to
estimate the generalized steering vectors On
the other hand, VESPA requires guiding sensor pair elements
to have identical responses because VESPA is based on the
fact that responses ofidentical but displaced sensors are
identical up to a phase constant that contains the angle of
arrival information. Consequently, we have more degrees of
freedom in our method than in VESPA. This observation
suggests that the available data can be used efficiently by
employing multiple guiding sensor pairs in Step 1, as explained
in Section III-D of the companion paper [7]. Since the required
computations for different choices of guiding sensor pairs are
independent, they can be implemented inparallel. However,
as mentioned in [7], we have found that using multiple guiding
sensor pairs does not lead to substantial improvements to
warrant the extra computations.

B. Using Covariance Information

Sensor-to-sensor independence of the measurement noise
lets us use the spatial covariance matrix of the array as
side information to improve the generalized steering vector
estimates and bearing estimates in our method. If it is known
that the measurement noise is spatially white, the eigenvectors
of the spatial covariance matrix corresponding to the small-
est repeated eigenvalues span the noise subspace, and the
remaining eigenvectors define the signal subspace.

Although we cannot identify the generalized steering vectors
from the covariance matrix when coherence is present, we
can improve our cumulant-based steering vector estimates by
projecting them onto the signal subspace obtained from the
spatial covariance matrix [2]. As explained in [2], the moti-
vation behind this approach is that the variance of covariance
estimates is lower than that of cumulant estimates for the same
sample size. Note that this method is applicable only if the
noise is white.
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If the goal is to estimate the DOA’s, we proceed to improve
our generalized steering vector estimates in EVESPA by

1) estimating the spatial covariance matrix corresponding
to the uniform linear part of the array;

2) identifying the signal subspace eigenvectors by eigen-
analysis of the spatial covariance matrix;

3) stacking the signal subspace eigenvectors into an
matrix (if there are coherent groups, the signal
subspace is dimensional);

4) projecting the cumulant-based generalized steering vec-
tor estimates onto the signal subspace to
obtain improved estimates , i.e.,

These improved generalized steering vector
estimates are used in the spatial smoothing step of
EVESPA.

C. Improving the Generalized Steering Vector
Estimates by Beamforming

The quality of bearing estimates in each coherent group
depends on the accuracy of the corresponding generalized
steering vector estimates. Although different groups are sta-
tistically independent, cross-term effects are present in the
estimates of the generalized steering vectors because a finite
number of samples are used in estimating the cumulants. In
Sections III-B and C, we worked with the generalized steering
vector estimates one at a time to extract the bearings of coher-
ent signals in each group separately, and when considering
each group, we did not make use of the already existing
generalized steering vector estimates of other groups. In this
section, we show that this latter information can be used to
improve the estimate of the generalized steering vector of
each individual group. This is achieved by suppressing the
undesired groups using a suitable beamformer so that the trans-
formed received signal contains only the desired group. The
same procedure is repeated for each group, and the transformed
data is then processed as explained below. The transformations
and subsequent processing can be implemented in parallel.
The purpose of employing the beamformer is to minimize the
cross-term effects in the cumulant estimates, which are present
due to multiple groups.

Suppose that the generalized steering matrixis estimated
in the first step of EVESPA and that we are interested in theth
group arrival angles From the signal model,
we have

(10)

where matrix

and -vector
Both and are associated with the undesired groups.

Using the estimate obtained from the first step of
EVESPA, we can find two beamformer vectors and
such that , and and are
nonzero. Two such vectors are obtained by picking any two of
the left null space vectors of Since is independent of
the columns of and are nonzero. Applying
these beamformers to the received signal, we obtain two

signals and .2 Ideally, these
transformations suppress the contributions of all groups but
the desired group Hence, ,

and Let and

so that , and

Defining the cumulant vector cum
as the vector with the th entry as

cum , an improved estimate of
can now be obtained to within a constant (which may be
complex) from

cum

cum

cum

(11)

where is the fourth-order cumulant of theth source, and
we have used the independence of the source signals, the
independence of the signals and the additive Gaussian-noise,
and [CP1], [CP3], [CP5], [CP6] in [10]. This improvement
method will be referred to as beamforming-based improvement
1 (BFBI1). A similar formulation was used in [3], where
all signals but the desired one were assumed Gaussian, and
therefore, they were suppressed by the cumulant operations.

In general, one can choose the beamformer vectorsand
, which put nulls on all the undesired signals in

ways. Let those vectors be and
Then, further smoothing of the estimate of is possible by
taking the principal component of the rank-one matrix whose

th column is defined as cum
This improvement method will be referred

to as BFBI2. Note that an estimate ofcould also be obtained
from the correlation if there were no noise term
in

Up to now, we assumed the undesired signals are suppressed
perfectly so that we are left with only one source, and we could
use the cumulant vector in (11); however, in practice, residual
undesired signal terms are present in and In that
case, the cumulant vector in (11) gives a weighted sum of
generalized steering vectors of all the sources; therefore, it is
better to use an ESPRIT-like formulation, as we did in the first
step, which can handle multiple sources.

Let and ,
where and are chosen as described above.
Note that if perfect estimates of were possible, all
entries but of and of would be zero.
Let us also define cum
and cum as the

matrices whose th elements, re-

2The reason why we have introduced~r2 will become clear later when we
consider an ESPRIT-like formulation.
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spectively, are cum and
cum Using the notation
for the th element of a vector , a simple expression for

is derived, as

cum

cum

(12)

where and diag
, and we used [CP1], [CP3], [CP5], [CP6]

in [10]. Note that if one assumes perfect nulling, in which
case all ’s but are zero, then is theoretically
rank one.

Similarly, can be shown to be

(13)

where
By applying ESPRIT to (12) and (13), we can obtain an

improved estimate of , which is then used in Steps 2 and
3 of EVESPA in the same way as explained earlier. This
improvement method will be referred to as BFBI3. Note that
because we are interested only in the part ofassociated with
the linear subarray in the second and third steps of EVESPA,
we could use only the linear part of the data to improve the
linear part of This is accomplished by applying the same
procedure explained here, in whichand are replaced by
their linear parts and respectively.

V. EXPERIMENTAL RESULTS

In this section, we present results of some simulation
experiments demonstrating our method.

A. Experiment 1: 14 Sensors, 20 Signals

We consider the array in Fig. 2. Each sensor in the array
is a dipole antenna that has a response to the
th signal, where is the arrival angle of the th signal,

and is the orientation of theth dipole. The orientations
of the dipoles are chosen arbitrarily as95 , 85 , 87 , 92 ,
90 , 90 , 90 , 90 , 90 , 90 , 90 , 90 , 90 , 90 There
are four groups and five signals in each group. Each group
contains a direct-path signal and several scaled and delayed
replicas of the direct-path signal that represent the multipaths
and “smart” jammers. In this experiment, there are 20 BPSK
signals. Additive white Gaussian noise and a different SNR is
assumed for each direct-path signal. The direction of arrivals
and propagation constants of the signals within each group

Fig. 2. Array configuration used in the first experiment. The antenna ele-
ments are dipoles oriented by the angles given in the text.

TABLE I
SAMPLE MEANS AND STANDARD DEVIATIONS OF THE ARRIVAL ANGLE

ESTIMATES BASED ON THE 100 REALIZATIONS OF EXPERIMENT 1

relative to the direct path and direct-path SNR’s are chosen
as follows, where unity propagation constants correspond to
direct-path signals:

Group 1: DOA’s: 40 , 68 , 80 , 115 , 130 ; propagation
constants:

; direct-path SNR: 20 dB.
Group 2: DOA’s: 50 , 70 , 90 , 120 , 135 ; propagation

constants: ;
direct-path SNR: 18 dB.

Group 3: DOA’s: 45 , 65 , 85 , 110 , 125 ; propagation
constants:

; direct-path SNR: 18 dB.
Group 4: DOA’s: 60 , 85 , 105 , 118 , 140 ; propaga-

tion constants:
; direct-path SNR: 19 dB.

Assuming perfect knowledge of the number of sources and
taking the right-most two dipoles in Fig. 2 as the guiding
sensor pair, we applied our method to the scenario described
above. We used 3000 snapshots to estimate the cumulant
matrices described in the formulation of our method. Both
forward and backward spatial smoothing with MUSIC were
used in the second and third steps of our method. Fig. 3 shows
the MUSIC spectrum for each coherent group obtained with
our method for 100 runs of the experiment. The sharp peaks
in the MUSIC spectrum give the arrival angle estimates. The
actual arrival angles are also marked in Fig. 3. Observe that we
are able to estimate all arrival angles, that our estimates appear
to be consistent, and that our method is able to successfully
separate close arriving angles belonging to signals in different
groups.

In Table I, the sample means and standard deviations of the
arrival angle estimates based on the 100 realizations are given.
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Fig. 3. MUSIC spectrum estimates for each coherent group obtained with our method for 100 runs of the first experiment. The actual arrival angles
are marked with the symbol “*.”

These values should be compared with those given above to
see that our method performs well.

Note that we have a total of 20 signals and a ten
sensor linear subarray; therefore,covariance-based spatial
smoothing fails since it can not resolve more sources than
sensors; therefore, there is no need to compare our results
with covariance-based ones.

B. Experiment 2: Using Covariance Information

In this experiment, we show that projecting the generalized
steering vector estimates onto the signal subspace obtained
from the spatial array covariance matrix yields better angle es-
timates than those obtained from the basic version of EVESPA.
This improvement method was proposed in Section IV-B.

For this purpose, we assumed the same signal scenario
as in Experiment 1. We applied EVESPA for 100 different

realizations of Experiment 1; for each realization, we also
applied the method described in Section IV-B in order to get
improved angle estimates, i.e., we projected the generalized
steering vector estimates onto the signal space obtained from
the spatial covariance matrix corresponding to the linear subar-
ray. The number of snapshots was 2000. For both methods, we
calculated the root-mean-square error (RMSE) for each angle
estimate. The results are given in Table II. Observe that for low
SNR’s, our projection method gives better angle estimates than
the basic version of EVESPA. As SNR increases, both versions
tend to give equal performance. One concludes, therefore, that
using the covariance information yields better results in low
SNR environments.

C. Experiment 3: Improvement by BFBI3, 2 Groups

In this experiment, we substantiate our earlier claim in
Section IV-C that the cross-term effects are reduced by sup-
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Fig. 4. Root-mean-square errors (RMSE’s) for the arrival angle estimates of the second group obtained in Experiment 3 as a function of first group
SNR. The ordering of the signals are the same as in the text.

pressing other groups when working with each group one at
a time. We again consider the 14-element array in Fig. 2, but
for simplicity, we assumed two groups, each containing five
coherent signals, with the following propagation constants and
arrival angles:

Group 1: DOA’s: 45 , 70 , 90 , 100 , 120 ; propagation
constants:

Group 2: DOA’s: 50 , 65 , 80 , 93 , 110 ; propagation
constants: The signals
with unit propagation constants correspond to direct paths. We
assumed circularly symmetric AWG noise, and 2500 snapshots
were used. Although the direct path SNR of the second group
was fixed at 10 dB, the first group SNR was variable and
was increased by 2 dB steps in the range from 0 to 20 dB.
For each value of the first group SNR, we performed a 100-
run Monte Carlo experiment by running both EVESPA and
its improved version BFBI3. Fig. 4 displays the RMSE’s for
the second group of arrival angles as a function of the first
group SNR for both regular and extended-VESPA with BFBI3
improvement. The second group was assumed to be the desired
one for BFBI3. As Fig. 4 shows, the RMSE curves for both
versions of extended VESPA follow the same path up to 10
dB, after which, the RMSE performance of regular extended-
VESPA deteriorates while the improved version gives better
estimates. This observation supports our earlier claims: When
the first group’s signal powers are lower than those of the
second group, cross terms in the second group’s cumulant
estimates due to the first group are negligible (see the region
for SNR less than 10 dB in Fig. 4). Consequently, using BFBI3
to suppress the impact of first group does not reduce RMSE’s

of the second group’s arrival angles. On the other hand, when
the first group’s signal powers are much higher than those of
the second group (when SNR is greater than 10 dB), the cross
terms present in the second group’s cumulant estimates due
to the first group are powerful. They result in poor sample
estimates and, hence, degrade the RMSE performance of the
regular extended-VESPA estimates. In this case, the improved
version of extended VESPA suppresses the first group’s signals
and, therefore, reduces the cross terms as expected (see Fig. 4
for SNR greater than 10 dB). This, in turn, results in better
cumulant estimates and, hence, better DOA estimates.

Fig. 5 displays the RMSE’s for the first group arrival angles
as a function of the first group SNR for both regular and
extended-VESPA with BFBI3 improvement. The first group
was assumed the desired one for BFBI3. As expected, the
RMSE’s decrease as the first group SNR increases. When the
first group SNR is less than the second group SNR (the region
for which SNR is less than 10 dB in Fig. 5), the improved
method gives slightly better estimates. The reason is that in
this region, suppressing the second group eliminates the cross
terms in the first group’s cumulant estimates due to the second
group. As the first group SNR increases, the impact of cross
terms due to the second group reduces; therefore, both methods
give equally good estimates.

D. Experiment 4: BFBI1 versus BFBI3

In this experiment, we compare the beamforming improve-
ment methods BFBI1 and BFBI3, which are described in
Section IV-C in terms of mean-squared error performance. We
also compare both methods to the regular version of EVESPA.
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Fig. 5. Root-mean-square errors (RMSE’s) for the arrival angle estimates of the first group obtained in Experiment 3 as a function of the first group
SNR. The ordering of the signals are the same as in the text.

Note that the BFBI1 does not require the extra eigendecom-
position that BFBI3 does and, hence, is computationally much
simpler than BFBI3.

The signal scenario is as in Experiment 1. There are four
groups each containing five signals. The direct path SNR for
each group was increased simultaneously by 2 dB steps in the
range 10 to 30 dB for all groups. For each value of SNR, we
performed a 100-run Monte Carlo experiment by running both
EVESPA and its two improved versions: BFBI1 and BFBI3.
The RMSE’s obtained by the three methods for the first group
signals are plotted as a function of SNR in Fig. 6. Observe that
the BFBI3 has the lowest RMSE among the three methods over
a useful range of SNR values. In this experiment, the minimum
required SNR for accurate estimation of DOA’s with all of
these three methods seems to be between10 and 0 dB, below
which neither of the three methods give reliable estimates
since RMSE’s are unacceptably high. For SNR greater than a
threshold value, BFBI1 has about the same MSE performance
as BFBI3, which is better than the performance of regular
EVESPA. At an even higher SNR value, all three methods
seem to have equal performances. These observations are
easier to see from Fig. 7, which “zoom” in on the high SNR
region of Fig. 6.

Conclusions to be drawn from this experiment are as fol-
lows: 1) Use BFBI1 for high SNR cases since it is com-
putationally much simpler than BFBI3, and 2) for higher
SNR’s, neither cumulant-based beamforming method yields
much improvement over regular EVESPA. Another interesting
point to note is, as seen from Fig. 6, for some groups, below
an SNR threshold, BFBI1 may yield even worse results than

the regular EVESPA. This is because BFBI1 assumes that
all groups, except the desired one, are perfectly suppressed,
which is only true if the generalized steering vector estimates
are estimated without error. For low SNR’s, the sample
cumulants, which are used to obtain the generalized steering
vector estimates, are corrupted by high power additive noise;
therefore, the vector-based improvement method may actually
deteriorate the original generalized steering vector estimates.
On the other hand, BFBI3 overcomes this problem by taking
the principal component of a suitably defined cumulant matrix
at the expense of computational load. Consequently, BFBI3
always yields the best MSE performance in the useful range
of SNR values; therefore, it is recommended for low SNR’s.

No simulations have been included for BFBI2 because
BFBI3 is a better alternative than BFBI2 from an accuracy
standpoint.

VI. CONCLUSIONS

We have shown that using cumulants, direction finding is
possible in the coherent signals case. We have also shown
that it is possible to detect more targets than sensors, which
is an impossible task to accomplish using covariance-based
subspace methods with arbitrary arrays, even in the case of
knownarray response andincoherentsignals.

Unlike some of the proposed cures for handling coherence,
our method requires no array calibration, and unlike existing
covariance-based spatial smoothing, for our method, the array
does not have to be entirely linear. Only some part of the array
must be linear, and the number of its elements determines
the maximum number of resolvable signals in each coherent
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Fig. 6. Root-mean-squared errors (RMSE’s) for the arrival angle estimates of the first group obtained in Experiment 4. BFBI1 and BFBI3 refer to the
cumulant subspace-based and vector-based improvement methods, respectively. The ordering of the signals are the same as in the text.

Fig. 7. High SNR region of Fig. 6.

group; the rest of the array may have arbitrary and unknown
response and does not require calibration.

The entire array is fully exploited by our method, which
results in a larger number of resolvable signals compared with

the covariance-based spatial smoothing method. To be more
specific, the total number of sensors determines the number
of resolvable coherent groups. As shown in Section III-A, the
presence of four arguments in the cumulants we are using
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TABLE II
ROOT-MEAN-SQUARED ERRORSOBTAINED IN EXPERIMENT 2 FOR: (a) GROUP 1,
(b) GROUP 2, (c) GROUP 3, AND (d) GROUP 4. VARIABLES rmse1 AND rmse2

REFER TO ROOT-MEAN-SQUARED ERRORSOBTAINED USING TWO DIFFERENT

VERSIONS OFOUR DF METHOD, THE BASIC VERISON, , AND THE IMPROVED

VERSION. THE LATTER IS OBTAINED BY PROJECTING THEGENERALIZED

STEERING VECTOR ESTIMATES ONTO THE SIGNAL SUBSPACE OBTAINED FROM THE

ESTIMATED SPATIAL COVARIANCE MATRIX OF THE LINEAR SUBARRAY,
RESPECTIVELY. THE RESULTS WERE BASED ON 2000 SNAPSHOTS AND 100

REALIZATIONS AND ARE GIVEN FOR SNR LEVELS OF [�10;�5; 0; 5; 10] dB

(a)

(b)

(c)

(d)

lets us first estimate the generalized steering vectors for each
group. After estimating the generalized steering vectors, we
use spatial smoothing as a postprocessing scheme on each
individual generalized steering vector to find the directions of
the signals in each group. Since covariances only have two
arguments, a formulation to estimate the generalized steering
vectors similar to Step 1 of our procedure is not possible
for them; therefore, covariance-based methods can not handle
signals on a group-by-group basis, which results in a reduced
number of resolvable signals when they are used.

We have also developed several methods to improve
direction-of-arrival estimates obtained by EVESPA. Among
these methods, the subspace-based beamforming improvement
method BFBI3 is found to offer the most significant
improvement for low SNR’s. For high SNR’s, we suggest
using extended-VESPA without the improvement methods.

EVESPA can replace existing covariance-based processing
in a given array without requiring any modification in the
associated hardware, provided the given array includes a linear
subarray. Since independent groups are treated individually,
processing can be parallelized to reduce the computing time.
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