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1. Introduction

There are developed many topological methods which are powerful tools in
the theory of critical points of functionals; see for example [2], [3], [5], [6], [9],
[13]–[20], [22]–[25], [27]–[29], [32], [33], [43]–[45], [47], [48], [51], [59]. It happens
quite often that functionals whose critical points are important in the theory
of differential equations are invariant under an action of a compact Lie group
G. Symmetric variational nonlinear problems have been considered by many
mathematicians; see for instance [7], [8], [10]–[12], [15], [21], [29]–[31], [34], [37],
[41], [46], [55]–[57], [62], [63].
In [55] the author has constructed a degree theory for S1-equivariant, or-

thogonal maps (the known class of S1-equivariant gradient maps is included in
the class of S1-equivariant orthogonal maps). Moreover, we have applied this
degree to research of bifurcations of solutions of S1-equivariant nonlinear varia-
tional problems. For other definitions of degree theories for equivariant gradient
maps we refer the reader to [21] (in case of S1-symmetries) and to [37] (in case
of symmetries of any compact Lie group). Degree theories for (not gradient)
equivariant maps have been constructed in [26], [39], [40].
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In [55] we have only shown how to compute the degree for S1-equivariant or-
thogonal isomorphisms (see Lemma 4.1, Theorem 4.2 and Corollary 4.3 of [55]).
Till now nothing has been known about this degree in the degenerate case, i.e.
if the linearization of an S1-equivariant orthogonal map at the origin in not an
isomorphism. Therefore the aim of this article is to develop methods of comput-
ing the degree for S1-equivariant orthogonal maps and apply these methods to
finite-dimensional nonlinear variational problems with S1-symmetries.

Let us recall an interesting result concerning the Brouwer topological degree.
Let f : (Rn, 0) → (Rn, 0) be a C1-map such that 0 ∈ Rn is an isolated point
in f−1(0) and dim(kerDf(0)) = 1. It is known that the Brouwer topological
degree deg(f,Dnα, 0) is equal to ±1 or 0, where Dnα = {x ∈ Rn : ‖x‖ < α} and α
is such that f−1(0)∩Dnα = {0}. If dim(kerDf(0)) > 1 then, generally, we know
nothing about deg(f,Dnα, 0). Let us restrict the class of maps considered. Assume
additionally that f = ∇g is the gradient of a C2-function g : Rn → R and that
dim(ker(Df(0))) = 2. Then it is known that deg(f,Dnα, 0) = (−1)m

−(Df(0))p,
where m−(Df(0)) denotes the negative Morse index of Df(0) = ∇2g(0) and
p ≤ 1 is the degree of a two-dimensional gradient map which is obtained by the
Lyapunov–Schmidt reduction. If dim(kerDf(0)) > 2 then, generally, we know
nothing about deg(f,Dnα, 0).

Some computations of the Brouwer degree have been done in [4], [38], [54]
in the nonequivariant case, and for G-equivariant maps in [36], [42], [48]–[50],
[60], [61].

From now on assume that V is a finite-dimensional orthogonal representation
of the group S1 and that ∇f : (V, 0)→ (V, 0) is the gradient of an S1-equivariant
C2-function f : V → R such that the origin 0 ∈ V is its isolated critical point. Fix
α > 0 such that (∇f)−1(0) ∩Dα(V ) = {0} and denote by DEG(∇f,Dα(V )) ∈
Z ⊕ (

⊕∞
i=1 Z) the degree for S1-equivariant orthogonal maps, where Dα(V ) =

{x ∈ V : ‖x‖ < α}.
The above remarks on the Brouwer degree show that it would be interesting

to answer the following question:

How to compute DEG(∇f,Dα(V )) when dim(ker(∇2(0))) > 1?
Unfortunately, generally, we do not know how to do it. Nevertheless, it

turned out that, under some additional assumptions, we are still able to compute
some coordinates of this degree. Sometimes this allows us to distinguish two
S1-equivariant gradient maps ∇f1,∇f2 : (V, 0) → (V, 0) by their degrees as
S1-equivariant orthogonal maps.

This paper is organized as follows.

In Section 2 we prove some new results concerning the degree theory for S1-
equivariant, orthogonal maps. Lemma 2.4 is a known fact in the case of gradient
C1-maps and continuous homotopies (see [52]) and gradient homotopies (see
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[22]). In this paper we formulate it for the class of S1-equivariant gradient
C1-maps and S1-equivariant gradient homotopies. We will use Lemma 2.4 in
order to simplify a map whose degree as S1-equivariant orthogonal map will be
computed. Theorem 2.11 gives a useful formula for the degree in the case of S1-
equivariant gradient product maps. Combining Lemma 2.4 with Theorem 2.11
we distinguish two S1-equivariant gradient maps by our degree (see Theorems
2.13, 2.15, 2.17, 2.19, 2.21).

In Section 3 we apply the results of the previous section to S1-equivariant
variational bifurcation problems. Namely, in Theorems 3.1–3.5 we formulate and
prove sufficient conditions for the existence of bifurcation points of solutions of
nonlinear problems. Under additional assumptions we are also able to control the
isotropy group of bifurcating sequences (see Remark 3.6). The last bifurcation
theorem in this section is the finite-dimensional version of the global Rabinowitz
bifurcation theorem for S1-equivariant gradient maps (see Theorem 3.7).

Section 4 is devoted to the study of S1-equivariant nonlinear variational prob-
lems. In this section we apply the results of Section 2 to asymptotically linear
problems. In Theorems 4.1–4.3 we formulate sufficient conditions for the exis-
tence of nontrivial solutions of asymptotically linear S1-equivariant variational
problems. Under additional assumptions we distinguish solutions of asymptoti-
cally linear problems by their isotropy groups (see Remark 4.4).

In Section 5 we give some final remarks and comments concerning this article
and the further applications of results of this paper.

Acknowledgments. The author wishes to express his thanks to Professor
E. N. Dancer from the University of Sydney for suggesting the problem and
for many valuable remarks concerning the preliminary version of this article
and to Professor K. Gęba from the Gdańsk University for many stimulating
conversations and helpful comments. This paper has been finished during the
author’s stay at the Institute of Applied Mathematics of the Ruprecht-Karls-
University of Heidelberg. The author wishes to express his gratitude to Professor
T. Bartsch and to Professor W. Jäger for the invitation and hospitality.

2. Degree for S1-equivariant gradient maps

In [55] we constructed a degree theory for S1-equivariant orthogonal maps
and using this degree we proved some global and local results in bifurcation
theory. The aim of this section is to prove some new theorems in the degree
theory of S1-equivariant orthogonal maps. We formulate and prove them only
for gradient maps. Any gradient S1-equivariant map is orthogonal. Therefore
from now on the degree for S1-equivariant orthogonal maps will be called the
degree for S1-equivariant gradient maps.
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Let S1 = {z ∈ C : |z| = 1} denote the group of complex numbers of modulus
one and let

Zj = {g ∈ S1 : g = eiθ for θ = 2πk/j and k = 0, 1, . . . , j − 1}

be a cyclic subgroup. We denote by V a finite-dimensional real representation
of S1. If v ∈ V then S1v = {g ∈ S1 : g · v = v} is the isotropy group of v ∈ V .
Moreover, if V is orthogonal, let 〈 · , · 〉 be an S1-invariant inner product in V . If
V0 ⊂ V is a subrepresentation of V then (V0)⊥ = {v ∈ V : ∀v0 ∈ V0, 〈v, v0〉 = 0}.
For j ∈ N = {1, 2, 3, . . .} define a map %j : S1 → GL(2,R) as follows:

% j(eiθ) =
[
cos jθ − sin jθ
sin jθ cos jθ

]
, 0 ≤ θ < 2π.

For k, j ∈ N we denote by R[k, j] the direct sum of k copies of (R2, %j); we also
denote by R[k, 0] the trivial k-dimensional representation of S1. We say that
two representations V and W are equivalent if there exists an equivariant linear
isomorphism T : V →W .
The following classical result gives a complete classification (up to equiva-

lence) of finite-dimensional representations of the group S1 (see [1]).

Theorem 2.1 (Classification theorem). If V is a representation of S1 then
there exist finite sequences {ki}, {ji} satisfying

(∗) ji ∈ {0} ∪ N, ki ∈ N, 1 ≤ i ≤ r, j1 < . . . < jr,

such that V is equivalent to
⊕r
i=1R[ki, ji]. Moreover, the equivalence class of V

is uniquely determined by {ji}, {ki} satisfying (∗).

Let f : V ×R→ V be an S1-equivariant gradient map such that f(0, λ) = 0
for any λ ∈ R.

Definition 2.2. A solution (v, λ) ∈ V × R of the equation f(v, λ) = 0 is
said to be nontrivial if v 6= 0. The set of nontrivial solutions will be denoted
by N (f). A point λ0 ∈ R is said to be a bifurcation point of solutions of the
equation f(v, λ) = 0 if (0, λ0) ∈ cl(N (f)).

The next theorem is Krasnosel’skĭı’s local bifurcation theorem for S1-equi-
variant gradient maps. In this theorem instead of the Brouwer topological degree
we use the degree for S1-equivariant gradient maps. For the proof in the infinite-
dimensional case see [55].

Theorem 2.3 (Krasnosel’skĭı’s bifurcation theorem). Let f : V × R → V

be an S1-equivariant gradient map such that f(0, λ) = 0 for any λ ∈ R. Fix
λ1, λ2 ∈ R such that (0, λ1) and (0, λ2) are not bifurcation points of solutions of
the equation f(v, λ) = 0. If for any sufficiently small α > 0,

DEG(f( · , λ1), Dα(V )) 6= DEG(f( · , λ2), Dα(V )),

then in [λ1, λ2] there is a bifurcation point of solutions of f(v, λ) = 0.
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The following lemma will prove extremely useful in the second part of this
section.

Lemma 2.4 (Splitting lemma at the origin). Let V be a finite-dimensional,
real, orthogonal representation of S1. Let f : (V, 0)→ (V, 0) be an S1-equivariant
gradient C1-map such that

1. 0 ∈ V is isolated in f−1(0),
2. Df(0) is degenerate.

Then there is α > 0 and an S1-equivariant gradient map

f0 : (Dα(V ), ∂Dα(V ))→ (V, V − {0})

such that

1. there is an S1-equivariant gradient homotopy Ht such that
(a) Ht : (Dα(V ), ∂Dα(V ))→ (V, V − {0}),
(b) H0 = f and H1 = f0,
(c) H−1t (0) ∩Dα(V ) = {0} for any t ∈ [0, 1],

2. there is an S1-equivariant, gradient map ϕ : (Dα(ker(Df(0))), 0) →
(ker(Df(0)), 0) such that if A = Df(0)|im(Df(0)) and v = (v1, v2) ∈
V = ker(Df(0))⊕ im(Df(0)) then

f0(v) = f0(v1, v2) = (ϕ(v1), A(v2)).

An example of an appropriate homotopy can be found in [22].
Let V and W be finite-dimensional, real, orthogonal representations of S1.

Let Ω (resp. W) be an open, bounded and S1-invariant subset of V (resp. W ).

Lemma 2.5. Let f = ∇ψ : (Ω, ∂Ω)→ (V, V −{0}) be an S1-equivariant gra-
dient map. Then there is an S1-equivariant gradient homotopy Ht : (Ω, ∂Ω) →
(V, V − {0}) such that

1. H0(v) = f(v),
2. HS

1

t = f
S1 for all t ∈ [0, 1],

3. H1(v1, v2) = (fS
1
(v1), v2) for v = (v1, v2) ∈ V = V S

1 ⊕ (V S1)⊥ in a
sufficiently small neighbourhood of (fS

1
)−1(0) ∩ Ω.

The proof is left to the reader.
We will need the notion of S1-regular value.

Definition 2.6. Let f : (Ω, ∂Ω∪ΩS1)→ (V, V −{0}) be an S1-equivariant
gradient map. The point 0 ∈ V is said to be an S1-regular value of f if

1. f−1(0) consists of a finite number of orbits in Ω,
2. if v0 ∈ f−1(0) then dim(ker(Df(v0))) = 1.
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Lemma 2.7. Let f : (Ω, ∂Ω∪ΩS1)→ (V, V −{0}) be an S1-equivariant gra-
dient map. Then f can be approximated in C0-norm by S1-equivariant gradient
maps such that 0 ∈ V is their S1-regular value.

Remark 2.8. The above lemma was formulated in [21]. See also Theo-
rem 7.8, p. 80 of [15].

The following two technical lemmas will be needed in the proof of Theo-
rem 2.11. Denote by Dβ(Rn, a) the open disc of radius β centered at a ∈ Rn.

Lemma 2.9. Let f : (Ω, ∂Ω ∪ ΩS1) → (V, V − {0}) be an S1-equivariant
gradient map such that 0 ∈ V is its S1-regular value and that f−1(0) consists of
one orbit of the action of S1. Let g : (Rn, a)→ (Rn, 0) be such that Dg(a) is an
isomorphism. Choose β > 0 such that g−1(0) ∩Dβ(Rn, a) = {a}. Then

DEG((f, g),Ω×Dβ(Rn, a)) = sign(det(Dg(a))) ·DEG(f,Ω).

Lemma 2.10. Let Ω ⊂ V and W ⊂ W be open, bounded, S1-invariant
subsets such that ΩS

1
= ∅ andWS1 = ∅. Assume that f : (Ω, ∂Ω)→ (V, V −{0})

and g : (W, ∂W)→ (W,W − {0}) are S1-equivariant gradient maps. Then

DEG((f, g),Ω×W) = Θ ∈ Z⊕
( ∞⊕
i=1

Z
)
.

The Brouwer topological degree deg((f, g),Ω1 × Ω2, (0, 0)) of a continuous
product map (f, g) : (Ω1 × Ω2, ∂(Ω1 × Ω2)) → (Rn × Rm,Rn × Rm − {(0, 0)})
is equal to deg(f,Ω1, 0) · deg(g,Ω2, 0). The following theorem is an analogue of
this property for S1-equivariant gradient maps. Let us equip Z ⊕

⊕∞
i=1 Z with

a ring structure by defining multiplication in the following way:

α ? β = (α0 · β0, α0 · β1 + β0 · α1, α0 · β2 + β0 · α2, α0 · β3 + β0 · α3, . . .)

for α = (α0, α1, α2, . . .), β = (β0, β1, β2, . . .) ∈ Z⊕
⊕∞
i=1 Z.

Theorem 2.11 (Cartesian product formula). Let Ω1 ⊂ V and Ω2 ⊂ W be
open, bounded, S1-invariant subsets of representations V and W , respectively.
Let f : (Ω1, ∂Ω1) → (V, V − {0}) and g : (Ω2, ∂Ω2) → (W,W − {0}) be S1-
equivariant gradient maps. Then

DEG((f, g),Ω1 × Ω2) = DEG(f,Ω1) ?DEG(g,Ω2).

Proof. Using Lemma 2.5 without loss of generality one can assume that
there exist open S1-invariant subsets U1 ⊂ Ω1 and U2 ⊂ Ω2 such that

1. f−1(0) ∩ US11 = f−1(0) ∩ ΩS
1

1 ,
2. f(v1, v2) = (fS

1
(v1), v2) for (v1, v2) ∈ U1 ⊂ Ω1 ⊂ V = V S

1 ⊕ (V S1)⊥,
3. g−1(0) ∩ US12 = g−1(0) ∩ ΩS

1

2 ,
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4. g(w1, w2) = (gS
1
(w1), w2) for (w1, w2) ∈ U2 ⊂ Ω2 ⊂ W = WS

1 ⊕
(WS

1
)⊥.

Set W1 = Ω1 − (cl(U1) ∪ V S
1
) and W2 = Ω2 − (cl(U2) ∪WS

1
) and notice that

f−1(0) ⊂ U1 ∪ W1, U1 ∩ W1 = ∅, g−1(0) ⊂ U2 ∪ W2, U2 ∩ W2 = ∅. By the
properties of degree (see Theorem 3.9 of [55]),

DEG((f, g),Ω1 × Ω2) = DEG((f, g),U1 × U2) + DEG((f, g),U1 ×W2)
+ DEG((f, g),W1 × U2) + DEG((f, g),W1 ×W2).

To compute DEG((f, g),U1 × U2), notice that if

(v1, v2, w1, w2) ∈ U1 × U2 ⊂ V S
1
⊕ (V S

1
)⊥ ⊕WS

1
⊕ (WS

1
)⊥,

then

(f, g)(v1, v2, w1, w2) = (f(v1), v2, g(w1), w2) = (fS
1
(v1), v2, gS

1
(w1), w2).

Thus by Theorem 3.9 of [55] we obtain

DEG((f, g),U1 × U2) = DEG((f, g)S
1
, (U1 × U2)S

1
)

= DEG((f, g)S
1
, (Ω1 × Ω2)S

1
).

To compute DEG((f, g),U1 ×W2), first notice that if

(v1, v2, w1, w2) ∈ U1 ×W2 ⊂ V S
1
⊕ (V S

1
)⊥ ⊕WS

1
⊕ (WS

1
)⊥,

then

(f, g)(v1, v2, w1, w2) = (f(v1), v2, g(w1, w2)).

In view of Lemma 2.7, without loss of generality, one can assume that

1. 0 ∈ V S1 is a regular value of fS1 : (ΩS11 , ∂ΩS
1

1 )→ (V S
1
, V S

1 − {0}),
2. 0 ∈W is an S1-regular value of g : (W2, ∂W2)→ (W,W − {0}).

Then

1. (fS
1
)−1(0) = {a1, . . . , ap} and DfS

1
(ai) is a nonsingular matrix for any

i = 1, . . . , p,
2. g−1(0) = M1 ∪ . . . ∪Mq and dim(ker(Dg(a))) = 1 for any a ∈ Mj ,
j = 1, . . . , q.

Fix β > 0 such that Dβ(Rn, ai) ∩ Dβ(Rn, aj) = ∅, for all i, j ∈ {1, . . . , p},
i 6= j. Moreover, let Q1, . . . ,Qq ⊂ W2 be open, S1-invariant, disjoint subsets
such that Mj ⊂ Qj for all j ∈ {1, . . . , q}. Thus we obtain

DEG((f, g),U1 ×W2) =
q∑
j=1

p∑
i=1

DEG((fS
1
, g), Dβ(V S

1
, ai)×Qj).
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By Lemma 2.9 and Theorem 3.9 of [55] we obtain

q∑
j=1

p∑
i=1

DEG((fS
1
, g), Dβ(V S

1
, ai)×Qj)

=
q∑
j=1

p∑
i=1

sign(det(DfS
1
(ai))) ·DEG(g,Qj)

=
q∑
j=1

DEG(g,Qj) ·
p∑
i=1

sign(det(DfS
1
(ai)))

=
q∑
j=1

DEG(g,Qj) · deg(fS
1
,ΩS

1

1 , 0)

= deg(fS
1
,ΩS

1

1 , 0) ·
q∑
j=1

DEG(g,Qj)

= deg(fS
1
,ΩS

1

1 , 0) ·DEG(g,W2) = DEGS1(f,Ω1) ·DEG(g,W2),

where deg(fS
1
,ΩS

1

1 , 0) denotes the Brouwer topological degree. Repeating the
above reasoning we show that

DEG((f, g),W1 × U2) = deg(gS
1
,ΩS

1

2 ) ·DEG(f,W1)
= DEGS1(g,Ω2) ·DEG(f,W1).

Finally, from Lemma 2.10 it follows that DEG((f, g),W1 ×W2) = 0.
The above computations and the properties of degree now yield

DEG((f, g),Ω1 × Ω2) = DEG((f, g)S
1
, (Ω1 × Ω2)S

1
)

+ DEGS1(f,Ω1) ·DEG(g,W2) + DEGS1(g,Ω2) ·DEG(f,W1)
= DEG((f, g)S

1
, (Ω1 × Ω2)S

1
)

+ DEGS1(f,Ω1) · (DEG(g,Ω2)−DEG(gS
1
,ΩS

1

2 ))

+ DEGS1(g,Ω2) · (DEG(f,Ω1)−DEG(fS
1
,ΩS

1

1 ))

= (DEG((f, g)S
1
, (Ω1 × Ω2)S

1
)−DEGS1(f,Ω1) ·DEG(gS

1
,ΩS

1

2 ))

+ DEGS1(f,Ω1) ·DEG(g,Ω2) + DEGS1(g,Ω2) ·DEG(f,Ω1)
−DEGS1(g,Ω2) ·DEG(fS

1
,ΩS

1

1 )

= DEGS1(f,Ω1) ·DEG(g,Ω2) + DEGS1(g,Ω2) ·DEG(f,Ω1)
−DEG((f, g)S

1
, (Ω1 × Ω2)S

1
). �

The Brouwer topological degree deg(f, (a, b), 0) of a continuous map f :
(a, b)→ R is equal to ±1 or 0. The following lemma gives an analogous property
for the degree of S1-equivariant gradient maps.
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Lemma 2.12. Let V be a two-dimensional nontrivial representation of S1

such that V ≈ R[1, j0]. Assume that f : (Dα(V ), ∂Dα(V ))→ (V, V − {0}) is an
S1-equivariant gradient map. Then

DEGQ(f,Dα(V )) =


1, Q = S1,

1 or 0, Q = Zj0 ,

0, Q 6= Zj0 , S1.
We omit an easy proof.
The point of the following theorem is that it allows one to distinguish two

S1-equivariant gradient maps with isolated zeros at the origin by their degree.
The distinct coordinates of degrees correspond to the isotropy groups of points
which do not occur in the kernels of the linearizations of the maps considered.
If A is a symmetric matrix then we denote by σ−(A) the set of negative

eigenvalues of A and by µ(λ) the multiplicity of λ ∈ σ−(A).

Theorem 2.13. Let f1, f2 : (V, 0)→ (V, 0) be S1-equivariant gradient maps
such that

1. 0 ∈ V is isolated in f−11 (0) and in f
−1
2 (0),

2. ker(Df1(0)) ∩ V S
1
= {0} and ker(Df2(0)) ∩ V S

1
= {0},

3. if V ≈
⊕n
i=1R[ki, ji] and ker(Df1(0)) ≈

⊕n1
i=1R[k

1
i , j
1
i ], ker(Df2(0)) ≈⊕n2

i=1R[k
2
i , j
2
i ] then there is ji0 ∈ {j1, . . . , jn} − {0} such that

(a) ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j11 , . . . , j1n1},
(b) ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j21 , . . . , j2n2},
(c) ∑
λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ) 6=
sign(det(Df1(0)|im(Df1(0))))
sign(det(Df2(0)|im(Df2(0))))

·
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ).

Then there is α > 0 such that DEG(f1, Dα(V )) 6= DEG(f2, Dα(V )). More
precisely,

DEGZji0 (f1, Dα(V )) 6= DEGZji0 (f2, Dα(V )).

Proof. Fix i ∈ {1, 2}. Set Ai = Dfi(0)|im(Dfi(0)) and take an S
1-equi-

variant C1-map ϕi : (Dα(ker(Dfi(0))), 0) → (ker(Dfi(0))), 0) as in Lemma 2.4.
Then for any sufficiently small α > 0 we have

DEG(fi, Dα(V )) = DEG(f i0, Dα(V )),

where f i0 : Dα(ker(Dfi(0)) ⊕ im(Dfi(0))) → ker(Dfi(0)) ⊕ im(Dfi(0)) is given
by the formula

f i0(v1, v2) = (ϕi(v1), Ai(v2)).
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Notice that by assumption 2 and from the definition of degree (see [55]) it follows
that

DEGS1(ϕi, Dα(ker(Dfi(0)))) = 1.

Moreover, from assumptions 3(a) and 3(b) it follows that the isotropy group
of any point in ker(Df1(0)) and ker(Df2(0)) is different from Zji0 . Therefore
from the definition of degree it follows that DEGZji0 (ϕi, Dα(ker(Dfi(0)))) = 0,
i = 1, 2.

Applying now Theorem 2.11 we obtain

DEGZji0 (f
i
0, Dα(V ))

= DEGS1(ϕi, Dα(ker(Dfi(0)))) ·DEGZji0 (Ai, Dα(im(Dfi(0))))

+ DEGS1(Ai, Dα(im(Dfi(0)))) ·DEGZji0 (ϕi, Dα(ker(Dfi(0))))

= DEGZji0 (Ai, Dα(im(Dfi(0))))

+ sign(det(Ai)) ·DEGZji0 (ϕi, Dα(ker(Dfi(0))))

= DEGZji0 (Ai, Dα(im(Dfi(0))))

=
1
2
sign(det(Dfi(0)|im(Dfi(0)))) ·

∑
λ∈σ−(Dfi(0)|R[ki0 ,ji0 ])

µ(λ).

The last equality is a consequence of Corollary 4.3 of [55]. In other words, we
have just computed the coordinate of DEG(fi, Dα(V )) which corresponds to the
isotropy group Zji0 . Invoking assumption 3(c) completes our proof. �

In order to illustrate the above theorem we consider the following example.

Example 2.14. Let f1, f2 : V = R[4, 0] ⊕ R[4, 1] ⊕ R[4, 2] → V be S1-
equivariant gradient maps such that 0 ∈ V is isolated in f−11 (0) and in f

−1
2 (0),

and

Df1(0) =



− Id4 0 0 0 0 0
0 + Id2 0 0 0 0
0 0 − Id6 0 0 0
0 0 0 + Id2 0 0
0 0 0 0 0 · Id2 0
0 0 0 0 0 − Id4


,

Df2(0) =



− Id4 0 0 0 0 0
0 − Id2 0 0 0 0
0 0 − Id6 0 0 0
0 0 0 + Id2 0 0
0 0 0 0 + Id2 0
0 0 0 0 0 − Id4


.
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It is evident that ker(Df1(0)) = R[1, 2], ker(Df2(0)) = {0}, and that for ji0 = 1,
we have ji0 6= gcd{2} = 2 and

6 =
∑

λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ) 6=
sign(det(Df1(0)|im(Df1(0))))
sign(det(Df2(0)|im(Df2(0))))

·
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) =
1
1
· 8.

All the assumptions of Theorem 2.13 are fulfilled, and therefore

3 = DEGZji0 (f1, Dα(V )) 6= DEGZji0 (f2, Dα(V )) = 4. �

The following theorem is analogous to Theorem 2.13. However, the set
ker(Df2(0))S

1
is a nonzero linear subspace of V S

1
.

Theorem 2.15. Let f1, f2 : (V, 0)→ (V, 0) be S1-equivariant gradient maps
such that

1. 0 ∈ V is isolated in f−11 (0) and in f
−1
2 (0),

2. ker(Df1(0)) ∩ V S
1
= {0} and dim(ker(Df2(0)) ∩ V S

1
) = k,

3. if V ≈
⊕n
i=1R[ki, ji] and ker(Df1(0)) ≈

⊕n1
i=1R[k

1
i , j
1
i ], ker(Df2(0)) ≈

R[k, 0]⊕
⊕n2
i=1R[k

2
i , j
2
i ] then there is ji0 ∈ {j1, . . . , jn} − {0} such that

(a) ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j11 , . . . , j1n1},
(b) ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j21 , . . . , j2n2},
(c) if k = 1, then∑

λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ) 6= γ ·
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ),

for γ = 0, 1,
(d) if k = 2 then∑

λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ) 6= γ ·
sign(det(Df1(0)|im(Df1(0))))
sign(det(Df1(0)|im(Df2(0))))

·
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ)

for γ ≤ 1,
(e) if k > 2, then∑

λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ) 6= γ ·
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ)

for γ = 0, 1, 2, . . .
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Then there is α > 0 such that

DEG(f1, Dα(V )) 6= DEG(f2, Dα(V )).

More precisely, DEGZji0 (f1, Dα(V )) 6= DEGZji0 (f2, Dα(V )).

Proof. Repeating the same reasoning as in the proof of Theorem 2.13 we
obtain

DEGZji0 (f1, Dα(V )) =
1
2
sign(det(Df1(0)|im(Df1(0)))) ·

∑
λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ)

and

DEGZji0 (f2, Dα(V ))

= DEGS1(ϕ2, Dα(ker(Df2(0))))

·DEGZji0 (Df2(0)|R[ki0 ,ji0 , Dα(im(Df2(0))))

= DEGS1(ϕ2, Dα(ker(Df2(0))))

· 1
2
sign(det(Df2(0)|im(Df2(0)))) ·

∑
λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ).

From assumption 2 it follows that

• if k = 1, then DEGS1(ϕ2, Dα(ker(Df2(0)))) = ±1 or 0,
• if k = 2, then DEGS1(ϕ2, Dα(ker(Df2(0)))) ≤ 1,
• if k > 2, then DEGS1(ϕ2, Dα(ker(Df2(0)))) ∈ Z.

The rest of this proof is a consequence of assumption 3(c)–(e). �

In order to illustrate the above theorem we consider the following example.

Example 2.16. Let f1, f2 : V = R[k, 0] ⊕ R[3, 2] ⊕ R[1, 4] → V be S1-
equivariant gradient maps such that 0 ∈ V is isolated in f−11 (0) and in f

−1
2 (0),

and

Df1(0) =


− Idk 0 0 0 0
0 − Id2 0 0 0
0 0 − Id2 0 0
0 0 0 − Id2 0
0 0 0 0 0 · Id2

 ,

Df2(0) =


0 · Idk 0 0 0 0
0 − Id2 0 0 0
0 0 − Id2 0 0
0 0 0 + Id2 0
0 0 0 0 0 · Id2

 .



Applications of Degree for S1-Equivariant Gradient Maps 395

It is evident that ker(Df1(0)) = R[1, 4], ker(Df2(0)) = R[k, 0]⊕R[1, 4] and that
for ji0 = 2, we have ji0 6= gcd{4} = 4 and

6 =
∑

λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ) 6= γ ·
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) = γ · 4.

All the assumptions of Theorem 2.15 are fulfilled, and therefore

DEGZji0 (f1, Dα(V )) 6= DEGZji0 (f2, Dα(V )). �

In the following theorem we distinguish coordinates of degrees which corre-
spond to the isotropy group appearing in the kernel of the linearization of one
of the maps considered.

Theorem 2.17. Let f1, f2 : (V, 0)→ (V, 0) be S1-equivariant gradient maps
such that

1. 0 ∈ V is isolated in f−11 (0) and in f
−1
2 (0),

2. ker(Df1(0)) ∩ V S
1
= {0} and ker(Df2(0)) ∩ V S

1
= {0},

3. V ≈
⊕n
i=1R[ki, ji] and ker(Df1(0)) ≈

⊕n1
i=1R[k

1
i , j
1
i ], ker(Df2(0)) ≈

R[1, ji0 ],
4. ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j11 , . . . , j1n1},
5.

∑
λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ) 6=
sign(det(Df1(0)|im(Df1(0))))
sign(det(Df2(0)|im(Df2(0))))

·
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) + γ

for γ = 2, 0.

Then there is α > 0 such that

DEG(f1, Dα(V )) 6= DEG(f2, Dα(V )).

More precisely, DEGZji0 (f1, Dα(V )) 6= DEGZji0 (f2, Dα(V )).

Proof. Repeating the proof of Theorem 2.13, for a sufficiently small positive
α, we obtain
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DEGZji0 (f1, Dα(V )) = DEGZji0 ((ϕ1, A1), Dα(V ))

= DEGS1(ϕ1, Dα(ker(Df1(0)))) ·DEGZji0 (A1, Dα(im(Df1(0))))

+ DEGS1(A1, Dα(im(Df1(0)))) ·DEGZji0 (ϕ1, Dα(ker(Df1(0))))

= DEGZji0 (A1, Dα(im(Df1(0))))

+ sign(det(A1)) ·DEGZji0 (ϕ1, Dα(ker(Df1(0))))

= DEGZji0 (A1, Dα(im(Df1(0))))

=
1
2
sign(det(Df1(0)|im(Df1(0)))) ·

∑
λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ),

where A1 = Df1(0)|im(Df1(0)) and ϕ1 is as in Lemma 2.4. Moreover,

DEGZji0 (f2, Dα(V )) = DEGZji0 ((ϕ2, A2), Dα(V ))

= DEGS1(ϕ2, Dα(ker(Df2(0)))) ·DEGZji0 (A2, Dα(im(Df2(0))))

+ DEGS1(A2, Dα(im(Df2(0)))) ·DEGZji0 (ϕ2, Dα(ker(Df2(0))))

= DEGZji0 (A2, Dα(im(Df2(0))))

+ sign(det(A2)) ·DEGZji0 (ϕ2, Dα(ker(Df2(0)))),

where A2 = Df2(0)|im(Df2(0)) and ϕ2 is as in Lemma 2.4. From assumption 3
it follows that dim(ker(Df2(0))) = 2, therefore by Lemma 2.12 we know that
DEGZji0 (ϕ2, Dα(ker(Df2(0)))) is equal to 1 or 0. Consequently, we obtain

DEGZji0 (f2, Dα(V )) = DEGZji0 (A2, Dα(im(Df2(0)))) + δ · sign(det(A2))

=
1
2

(
sign(det(Df2(0)|im(Df2(0)))) ·

∑
λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ)
)

+ δ · sign(det(Df2(0)|im(Df2(0))))

=
1
2

(
sign(det(Df2(0)|im(Df2(0)))) ·

∑
λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ)

+ 2 · δ · sign(det(Df2(0)|im(Df2(0))))
)

= sign(det(Df2(0)|im(Df2(0)))) ·
1
2

( ∑
λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) + 2 · δ
)

for δ = 1 or 0.

Combining formulas for DEGZji0 (f1, Dα(V )) and DEGZji0 (f2, Dα(V )) with
assumption 5 completes the proof. �
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In order to illustrate the above theorem we consider the following example.

Example 2.18. Let f1, f2 : V = R[4, 1] ⊕ R[4, 2] → V be S1-equivariant
gradient maps such that 0 ∈ V is isolated in f−11 (0) and in f

−1
2 (0), and

Df1(0) =


− Id2 0 0 0
0 + Id6 0 0
0 0 0 · Id6 0
0 0 0 + Id2

 ,

Df2(0) =


0 · Id2 0 0 0
0 − Id6 0 0
0 0 + Id6 0
0 0 0 + Id2

 .
Notice that ker(Df1(0)) = R[3, 2], ker(Df2(0)) = R[1, 1], and for ji0 = 1 we have
ji0 6= gcd{2} = 2, and

2 =
∑

λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ) 6=
sign(det(Df1(0)|im(Df1(0))))
sign(det(Df2(0)|im(Df2(0))))

·
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) + γ =
1
1
· 6 + γ,

where γ = 2, 0. All the assumptions of Theorem 2.17 are fulfilled, and therefore

DEG{e}(f1, Dα(V )) 6= DEG{e}(f2, Dα(V )).

The following theorem is similar to Theorem 2.17. The only difference is that
we assume that (ker(Df1(0)))S

1
is a nonzero linear subspace of V S

1
.

Theorem 2.19. Let f1, f2 : (V, 0)→ (V, 0) be S1-equivariant gradient maps
such that

1. 0 ∈ V is isolated in f−11 (0) and in f
−1
2 (0),

2. dim(ker(Df1(0)) ∩ V S
1
) = k and ker(Df2(0)) ∩ V S

1
= {0},

3. ker(Df2(0)) ≈ R[1, ji0 ] and ker(Df1(0)) ≈ R[k, 0] ⊕
⊕n1
i=1R[k

1
i , j
1
i ],

V ≈
⊕n
i=1R[ki, ji],

4. ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j11 , . . . , j1n1},
5. either

γ1 ·
∑

λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ) 6=
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) + γ2,

where

if k = 1, then γ1 = ±1, 0 and γ2 = 2, 0,

if k > 2, then γ1 ∈ Z and γ2 = 2, 0,
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or

γ1 ·
sign(det(Df1(0)|im(Df1(0))))
sign(detDf2(0)|im(Df2(0))))

·
∑

λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ)

6=
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) + γ2,

where k = 2, γ1 ≤ 1 and γ2 = 2, 0.

Then there is α > 0 such that

DEG(f1, Dα(V )) 6= DEG(f2, Dα(V )).

More precisely, DEGZji0 (f1, Dα(V )) 6= DEGZji0 (f2, Dα(V )).

Proof. Repeating the proof of Theorem 2.17, for a sufficiently small positive
α, we obtain

DEGZji0 (f1, Dα(V )) = DEGZji0 ((ϕ1, A1), Dα(V ))

= DEGS1(ϕ1, Dα(ker(Df1(0)))) ·DEGZji0 (A1, Dα(im(Df1(0))))

+ DEGS1(A1, Dα(im(Df1(0)))) ·DEGZji0 (ϕ1, Dα(ker(Df1(0))))

= DEGS1(ϕ1, Dα(ker(Df1(0)))) ·DEGZji0 (A1, Dα(im(Df1(0))))

= DEGS1(ϕ1, Dα(ker(Df1(0))))

· 1
2
sign(det(Df1(0)|im(Df1(0)))) ·

∑
λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ),

where A1 = Df1(0)|im(Df1(0)) and ϕ1 is as in Lemma 2.4. Moreover,

DEGZji0 (f2, Dα(V )) = DEGZji0 ((ϕ2, A2), Dα(V ))

= DEGS1(ϕ2, Dα(ker(Df2(0)))) ·DEGZji0 (A2, Dα(im(Df2(0))))

+ DEGS1(A2, Dα(im(Df2(0)))) ·DEGZji0 (ϕ2, Dα(ker(Df2(0))))

= DEGZji0 (A2, Dα(im(Df2(0))))

+ sign(det(A2)) ·DEGZji0 (ϕ2, Dα(ker(Df2(0)))),

where A2 = Df2(0)|im(Df2(0)) and ϕ2 is as in Lemma 2.4. From assumption 3
it follows that dim(ker(Df2(0))) = 2, therefore by Lemma 2.12 we know that
DEGZji0 (ϕ2, Dα(ker(Df2(0)))) is equal to 1 or 0. Additionally, from assumption
2 it follows that



Applications of Degree for S1-Equivariant Gradient Maps 399

• if k = 1, then DEGS1(ϕ1, Dα(ker(Df1(0)))) = ±1 or 0,
• if k = 2, then DEGS1(ϕ1, Dα(ker(Df1(0)))) ≤ 1,
• if k > 2, then DEGS1(ϕ1, Dα(ker(Df1(0)))) ∈ Z.

Consequently, we obtain

DEGZji0 (f1, Dα(V ))

= DEGS1(ϕ1, Dα(ker(Df1(0))))
1
2
sign(det(Df1(0)|im(Df1(0)))) ·

∑
λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ)

= δ1 ·
1
2
sign(det(Df1(0)|im(Df1(0)))) ·

∑
λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ)

and

DEGZji0 (f2, Dα(V )) = DEGZji0 (A2, Dα(im(Df2(0)))) + δ2 · sign(det(A2))

=
1
2
sign(det(Df2(0)|im(Df2(0)))) ·

∑
λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ)

+ δ2 · sign(det(Df2(0)|im(Df2(0))))

=
1
2

(
sign(det(Df2(0)|im(Df2(0)))) ·

∑
λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ)

+ 2 · δ2 · sign(det(Df2(0)|im(Df2(0))))
)

= sign(det(Df2(0)|im(Df2(0))))

· 1
2

( ∑
λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) + 2 · δ2
)
,

where

• if k = 1, then δ1 = ±1 or 0 and δ2 = 1 or 0,

• if k = 2, then then δ1 ≤ 1 and δ2 = 1 or 0,

• if k > 2, then δ1 ∈ Z and δ2 = 1 or 0.

Combining formulas for DEGZji0 (f1, Dα(V )) and DEGZji0 (f2, Dα(V )) with
assumption 5 completes the proof. �

Example 2.20. Let f1, f2 : V = R[1, 0] ⊕ R[4, 1] ⊕ R[4, 2] → V be S1-
equivariant gradient maps such that 0 ∈ V is isolated in f−11 (0) and in f

−1
2 (0),

and
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Df1(0) =


0 · Id1 0 0 0 0
0 − Id2 0 0 0
0 0 + Id6 0 0
0 0 0 0 · Id6 0
0 0 0 0 + Id2

 ,

Df2(0) =


+Id1 0 0 0 0
0 0 · Id2 0 0 0
0 0 − Id6 0 0
0 0 0 + Id6 0
0 0 0 0 + Id2

 .
Notice that ker(Df1(0)) = R[1, 0]⊕R[3, 2], ker(Df2(0)) = R[1, 1], and for ji0 = 1
we have ji0 6= gcd{2} = 2, and

γ1 · 2 = γ1 ·
∑

λ∈σ−(Df1(0)|R[ki0 ,ji0]
)

µ(λ)

6=
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) + γ2 = 6 + γ2,

where γ1 = ±1, 0, γ2 = 2, 0. All the assumptions of Theorem 2.19 are fulfilled,
and therefore

DEG{e}(f1, Dα(V )) 6= DEG{e}(f2, Dα(V )).

In the following theorem points with isotropy group Zji0 occur in the linear
spaces ker(Df1(0)) and ker(Df2(0)). Nevertheless, we can distinguish coordi-
nates of degree which correspond to this isotropy group.

Theorem 2.21. Let f1, f2 : (V, 0)→ (V, 0) be S1-equivariant gradient maps
such that

1. 0 ∈ V is isolated in f−11 (0) and in f
−1
2 (0),

2. ker(Df1(0)) ∩ V S
1
= {0} and ker(Df2(0)) ∩ V S

1
= {0},

3. V ≈
⊕n
i=1R[ki, ji] and ker(Df1(0)) ≈ R[1, ji0 ], ker(Df2(0)) ≈ R[1, ji0 ],

4. ∑
λ∈σ−(Df1(0)|R[ki0 ,ji0 )

µ(λ) 6=
sign(det(Df1(0)|im(Df1(0))))
sign(det(Df2(0)|im(Df2(0))))

·
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) + γ,

where γ = ±2, 0.
Then there is α > 0 such that

DEG(f1, Dα(V )) 6= DEG(f2, Dα(V )).

More precisely, DEGZji0 (f1, Dα(V )) 6= DEGZji0 (f2, Dα(V )).
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Proof. As in the proof of Theorem 2.17 we obtain the formulas

DEGZji0 (f1, Dα(V )) = sign(det(Df1(0)|im(Df1(0))))

· 1
2

( ∑
λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ) + 2 · δ1
)

and

DEGZji0 (f2, Dα(V )) = sign(det(Df2(0)|im(Df2(0))))

· 1
2

( ∑
λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) + 2 · δ2
)
,

where δ1, δ2 ∈ {0, 1}. Combining these with assumption 4, we complete the
proof. �

Example 2.22. Let f1, f2 : V = R[6, 1] → V be S1-equivariant gradient
maps such that 0 ∈ V is isolated in f−11 (0) and in f

−1
2 (0), and

Df1(0) =
[
0 · Id2 0
0 + Id10

]
, Df2(0) =

[
0 · Id2 0
0 − Id10

]
.

Notice that ker(Df1(0)) = R[1, 1], ker(Df2(0)) = R[1, 1], and for ji0 = 1 we have

0 =
∑

λ∈σ−(Df1(0)|R[ki0 ,ji0 ])

µ(λ) 6=
∑

λ∈σ−(Df2(0)|R[ki0 ,ji0 ])

µ(λ) + γ = 10 + γ,

where γ = ±2, 0. All the assumptions of Theorem 2.21 are fulfilled, therefore

DEG{e}(f1, Dα(V )) 6= DEG{e}(f2, Dα(V )).

3. Applications to bifurcation theory

In this section we formulate sufficient conditions for the existence of bifurca-
tion points of S1-equivariant variational bifurcation problems. In the proofs of
these theorems, as the main tool, we use the degree for S1-equivariant gradient
maps. More precisely, we apply the Krasnosel’skĭı theorem for S1-equivariant
gradient maps (see Theorem 2.3). Using Theorems 2.13, 2.15, 2.17, 2.19, 2.21 we
distinguish degrees for S1-equivariant gradient maps on two different levels of a
parameter space. In other words, we verify the assumptions of the Krasnosel’skĭı
theorem.

Theorem 3.1. Let f : V × R→ V be an S1-equivariant gradient map such
that f(0, λ) = 0 for any λ ∈ R. Fix λ1, λ2 ∈ R and assume that

1. ker(Df(0, λ1)) ∩ V S
1
= {0} and ker(Df(0, λ2)) ∩ V S

1
= {0},
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2. if V ≈
⊕n
i=1R[ki, ji] and

ker(Df(0, λ1)) ≈
n1⊕
i=1

R[k1i , j
1
i ], ker(Df(0, λ2)) ≈

n2⊕
i=1

R[k2i , j
2
i ],

then there is ji0 ∈ {j1, . . . , jn} − {0} such that
(a) ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j11 , . . . , j1n1},
(b) ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j21 , . . . , j2n2},

3. ∑
λ∈σ−(Df(0,λ1)|R[ki0 ,ji0 ])

µ(λ) 6=
sign(det(Df(0, λ1)|im(Df(0,λ1))))
sign(det(Df(0, λ2)|im(Df(0,λ2))))

·
∑

λ∈σ−(Df(0,λ2)|R[ki0 ,ji0 ])

µ(λ).

Then in [λ1, λ2] there is a bifurcation point of solutions of the equation f(v, λ)
= 0.

Proof. Without loss of generality one can assume that λ1 and λ2 are not
bifurcation points. In Theorem 2.13, put fi(v) = f(v, λi) for i = 1, 2. We obtain

DEG(f1, Dα(V )) 6= DEG(f2, Dα(V )),

because the Zji0 coordinates of the above degrees are different. Applying Theo-
rem 2.3 we complete the proof. �

Theorem 3.2. Let f : V × R→ V be an S1-equivariant gradient map such
that f(0, λ) = 0 for any λ ∈ R. Fix λ1, λ2 ∈ R and assume that

1. ker(Df(0, λ1)) ∩ V S
1
= {0} and dim(ker(Df(0, λ2)) ∩ V S

1
) = k,

2. if V ≈
⊕n
i=1R[ki, ji] and

ker(Df(0, λ1)) ≈
n1⊕
i=1

R[k1i , j
1
i ], ker(Df(0, λ2)) ≈ R[k, 0]⊕

n2⊕
i=1

R[k2i , j
2
i ],

then there is ji0 ∈ {j1, . . . , jn} − {0} such that
(a) ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j11 , . . . , j1n1},
(b) ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j21 , . . . , j2n2},

3. if k = 1, then∑
λ∈σ−(Df(0,λ1)|R[ki0 ,ji0 ])

µ(λ) 6= γ ·
∑

λ∈σ−(Df(0,λ2)|R[ki0 ,ji0 ])

µ(λ)

where γ = 0, 1,
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4. if k = 2, then∑
λ∈σ−(Df(0,λ1)|R[ki0 ,ji0 ])

µ(λ) 6= γ ·
sign(det(Df(0, λ1)|im(Df(0,λ1))))
sign(det(Df(0, λ2)|im(Df(0,λ2))))

·
∑

λ∈σ−(Df(0,λ2)|R[ki0 ,ji0 ])

µ(λ)

for γ ≤ 1,
5. if k > 2, then∑

λ∈σ−(Df(0,λ1)|R[ki0 ,ji0 ])

µ(λ) 6= γ ·
∑

λ∈σ−(Df(0,λ2)|R[ki0 ,ji0 ])

µ(λ),

where γ = 0, 1, 2, . . .

Then in [λ1, λ2] there is a bifurcation point of solutions of the equation f(v, λ)
= 0.

Proof. The proof is the same as that of Theorem 3.1, except that instead
of Theorem 2.13 we apply Theorem 2.15. �

Theorem 3.3. Let f : V × R→ V be an S1-equivariant gradient map such
that f(0, λ) = 0 for any λ ∈ R. Fix λ1, λ2 ∈ R and assume that

1. ker(Df(0, λ1)) ∩ V S
1
= {0} and ker(Df(0, λ2)) ∩ V S

1
= {0},

2. ker(Df(0, λ2)) ≈ R[1, ji0 ] and ker(Df(0, λ1)) ≈
⊕n1
i=1R[k

1
i , j
1
i ], V ≈⊕n

i=1R[ki, ji],
3. ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j11 , . . . , j1n1},
4. ∑
λ∈σ−(Df(0,λ1)|R[ki0 ,ji0 ])

µ(λ) 6=
sign(det(Df(0, λ1)|im(Df(0,λ1))))
sign(det(Df(0, λ2)|im(Df(0,λ2))))

·
∑

λ∈σ−(Df(0,λ2)|R[ki0 ,ji0 ])

µ(λ) + γ,

where γ = 2, 0.

Then in [λ1, λ2] there is a bifurcation point of solutions of the equation f(v, λ)
= 0.

Proof. The proof is the same as that of Theorem 3.1, with Theorem 2.17
used instead of Theorem 2.13. �

Theorem 3.4. Let f : V × R→ V be an S1-equivariant gradient map such
that f(0, λ) = 0 for any λ ∈ R. Fix λ1, λ2 ∈ R and assume that

1. dim(ker(Df(0, λ1)) ∩ V S
1
) = k and ker(Df(0, λ2)) ∩ V S

1
= {0},
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2. ker(Df(0, λ2)) ≈ R[1, ji0 ] and

ker(Df(0, λ1)) ≈ R[k, 0]⊕
n1⊕
i=1

R[k1i , j
1
i ], V ≈

n⊕
i=1

R[ki, ji],

3. ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j11 , . . . , j1n1},
4. if k = 1, then

γ1 ·
∑

λ∈σ−(Df(0,λ1)|R[ki0 ,ji0 ])

µ(λ) 6=
∑

λ∈σ−(Df(0,λ2)|R[ki0 ,ji0 ])

µ(λ) + γ2,

where γ1 = ±1, 0 and γ2 = 2, 0,
5. if k = 2, then

γ1 ·
sign(det(Df(0, λ1)|im(Df(0,λ1))))
sign(det(Df(0, λ2)|im(Df(0,λ2))))

·
∑

λ∈σ−(Df(0,λ1)|R[ki0 ,ji0 ])

µ(λ)

6=
∑

λ∈σ−(Df(0,λ2)|R[ki0 ,ji0 ])

µ(λ) + γ2,

where γ1 ≤ 1 and γ2 = 2, 0,
6. if k > 2, then

γ1 ·
∑

λ∈σ−(Df(0,λ1)|R[ki0 ,ji0 ])

µ(λ) 6=
∑

λ∈σ−(Df(0,λ2)|R[ki0 ,ji0 ])

µ(λ) + γ2,

where γ1 ∈ Z and γ2 = 2, 0.

Then in [λ1, λ2] there is a bifurcation point for the equation f(v, λ) = 0.

Proof. Repeat the proof of Theorem 3.3, using Theorem 2.19 instead of
Theorem 2.17. �

Theorem 3.5. Let f : V × R→ V be an S1-equivariant gradient map such
that f(0, λ) = 0 for any λ ∈ R. Fix λ1, λ2 ∈ R and assume that

1. ker(Df(0, λ1)) ∩ V S
1
= {0} and ker(Df(0, λ2)) ∩ V S

1
= {0},

2. V ≈
⊕n
i=1R[ki, ji] and ker(Df(0, λ1)) ≈ R[1, ji0 ], ker(Df(0, λ2)) ≈

R[1, ji0 ],
3. ∑
λ∈σ−(Df(0,λ1)|R[ki0 ,ji0 ])

µ(λ) 6=
sign(det(Df(0, λ1)|im(Df(0,λ1))))
sign(det(Df(0, λ2)|im(Df(0,λ2))))

·
∑

λ∈σ−(Df(0,λ2)|R[ki0 ,ji0 ])

µ(λ) + γ,

where γ = ±2, 0.

Then in [λ1, λ2] there is a bifurcation point for f(v, λ) = 0.
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Proof. Repeat the proof of Theorem 3.1, using Theorem 2.21 instead of
Theorem 2.13. �

Remark 3.6. Notice that in Theorems 3.1–3.5 we do not control the isotropy
group of the bifurcating sequence of orbits of solutions. Under some additional
assumptions one can compute these isotropy groups. In other words, we can
prove symmetry breaking bifurcation theorems. Namely, assume additionally in
Theorems 3.1–3.5 that

1. for fixed λ1, λ2 ∈ R there are no bifurcation points for fS1(v, λ) = 0 for
λ ∈ [λ1, λ2], where fS

1
: V S

1 × R → V S
1
is the restriction of f to the

set of fixed points of the S1 action,
2. {j ∈ {j1, . . . , jn} : j/ji0 ∈ N} = {ji0}.

Then we can show that in [λ1, λ2] there is a bifurcation point for f(v, λ) = 0
with the bifurcating sequence of orbits of zeros of f having isotropy group Zji0 .

Additionally, notice that in order to exclude the existence of bifurcation
points of fS

1
(v, λ) = 0 it is enough to replace assumption 1 of this remark by

the assumption that DfS
1
(0, λ) is an isomorphism for any λ ∈ [λ1, λ2]. This

assumption is more restrictive but it seems to be easier to verify. �

The last bifurcation theorem we formulate in this paper is the finite-dimen-
sional version of the global Rabinowitz bifurcation theorem for S1-equivariant
gradient maps (an infinite-dimensional version of this theorem can be found in
[55]). Let V be a finite-dimensional representation of S1 and let Ω ⊂ V × R be
open and S1-invariant. Additionally, assume that f : Ω→ R is an S1-equivariant
C2-function such that for any α < β,

#({(0, λ) ∈ Ω ∩ ({0} × R) : det(∇2f(0, λ)) = 0} ∩ ({0} × [α, β])) <∞

and that ∇f : (V ×R, {0} ×R)→ (V, {0}), where ∇f denotes the gradient of f
and #(A) denotes the number of elements of the set A.

Fix λ0 ∈ A = {λ ∈ R : (0, λ) ∈ Ω∩ ({0}×R) : det(∇2f(0, λ)) = 0} and ε > 0
such that [λ0 − ε, λ0 + ε] ∩ A = {λ0}. Define the bifurcation index η(λ0) by

η(λ0) = DEG(∇f( · , λ0 + ε), Dα(V ))−DEG(∇f( · , λ0 − ε), Dα(V )),

where Dα(V ) denotes the disc of a sufficiently small radius α centered at the
origin. Denote by C(λ0) the connected component of the set

cl({(v, λ) ∈ Ω : ∇f(v, λ) = 0 and v 6= 0})

such that (0, λ0) ∈ C(λ0).
Without loss of generality one can assume that V = R[k, 0]⊕R[k1, j1]⊕ . . .⊕

R[kr, jr], where 0 ≤ k, 0 < ki, 0 < j1 < . . . < jr.
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It is known that

∇2f(0, λ0 ± ε) =


A±0 0 0 0
0 A±1 0 0

0 0
. . . 0

0 0 0 A±r

 .
By Corollary 4.3 of [55] the coordinate η(λ0)Q of the bifurcation index η(λ0)
which corresponds to the isotropy group Q is equal to

η(λ0)Q =


sign(det(A+0 ))− sign(det(A

−
0 )), Q = S1,

0, Q = Zji for ji 6∈ Kjr ,
1
2 sign(det(A

+
0 )) ·
∑
λ∈σ−(A+i )

µ(λ)

− sign(det(A−0 )) ·
∑
λ∈σ−(A−i )

µ(λ), Q = Zji for ji ∈ Kjr ,

where Kjr = {j1, . . . , jr}. It is understood that if k = 0 then sign(detA±0 ) = 1.

Theorem 3.7 (Global Rabinowitz bifurcation theorem). If η(λ0) 6= Θ ∈
Z ⊕ (

⊕∞
i=1 Z) then either

(a) the component C(λ0) is not compact in Ω (if Ω = V × R it means that
C(λ0) is unbounded), or

(b) C(λ0)∩ ({0}×R)∩Ω = {0}× {λi1 , . . . , λis} ⊂ {0}×A,
∑s
j=1 η(λij ) =

Θ ∈ Z⊕ (
⊕∞
i=1 Z).

In order to prove this theorem it is enough to repeat the reasoning presented
in the case of the infinite-dimensional version of the Rabinowitz global bifurcation
theorem for S1-equivariant orthogonal operators (see [55]).

Remark 3.8. All the theorems of this section give sufficient conditions for
the existence of bifurcation points of solutions of S1-equivariant gradient non-
linear problems. As a tool we have used the degree theory for S1-equivariant
gradient maps. It is natural to pose the question of global bifurcations, i.e.
whether connected sets of nontrivial solutions bifurcate from the set of trivial
solutions and if they are global in the sense of Rabinowitz. The linearizations of
our maps at (0, λ) ∈ V × R are degenerate, therefore all the trivial solutions of
f(v, λ) = 0 are suspected of being bifurcation points. That is why in this situ-
ation we cannot apply the global bifurcation theorem presented in this section,
Theorem 3.7. Nevertheless, following [35], we can still work with the notion of
global bifurcation from an interval.
We say that there is a global bifurcation of solutions of f(v, λ) = 0 from

[λ1, λ2] if there is a connected set C of nontrivial solutions of f(v, λ) = 0 whose
closure intersects {0} × [λ1, λ2] and such that either C is unbounded or cl(C)
contains a trivial solution outside {0} × [λ1, λ2]. In fact, using the degree for
S1-equivariant gradient maps in place of the Brouwer degree we can adapt the
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proof of [53] to obtain a global bifurcation from a fixed interval in the parameter
space.
Degree theory is the only topological tool which is used in the proofs of

global bifurcation theorems. For instance, the change of the Conley index does
not imply that the set of nontrivial solutions bifurcating from the set of trivial
solutions is connected. Therefore, the theorems proved in this section have an
advantage over approaches via classical topological invariants other than the
degree. �

The following question seems to be important in view of Remark 3.8.

Is it possible to get the results of Section 3 working with subspaces
fixed by various isotropy groups and using standard topological in-
variants like the Brouwer degree, the Morse theory and the Conley
index?

In order to answer this question we will consider some examples of families of
S1-equivariant gradient maps. Let m0(B),m+(B),m−(B) denote the nullity,
positive Morse index and negative Morse index of a symmetric matrix B, re-
spectively.

Example 3.9. Consider a 1-parameter family of S1-equivariant C2-func-
tions f : (V = R[4, 0] ⊕ R[4, 1] ⊕ R[4, 2]) × R → R[1, 0]. Assume additionally
that ∇f(0, λ) = 0 for any λ ∈ R, and there are λ1, λ2 ∈ R such that
(a) 0 ∈ V is isolated in ∇f( · , λi)−1(0) for i = 1, 2,
(b) ∇2f(0, λi) = Dfi(0) for i = 1, 2, where Dfi(0) are given in Example
2.14.

In Example 2.14 it has been shown that

3 = DEG{e}(∇f( · , λ1), Dα(V )) 6= DEG{e}(∇f( · , λ2), Dα(V )) = 4.

It is easy to check that all the assumptions of Theorem 3.1 are fulfilled. Hence in
[λ1, λ2] there is a bifurcation point of ∇f(v, λ) = 0. Referring to Remark 3.8 we
can say that we have proved the existence of a global bifurcation from [λ1, λ2].

Coming back to our question, there are three possible isotropy groups of
points in V , namely, S1, {e} and Z2.

Isotropy group S1. After restriction we obtain a map (∇f)S1 : V S1 × R =
R[4, 0] × R → V S

1
such that (∇2f)S1(0, λi) = − Id4 for i = 1, 2. Since on two

levels of the parameter space, λ1 and λ2, we have the same map − Id4, we cannot
distinguish them by any topological invariant.

Isotropy group {e}. After restriction we obtain a map (∇f){e} : V × R →
V . Since m0(∇2f)(0, λ1) = 2 and m−(∇2f)(0, λ1) = 14 is even, we have
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deg(∇f( · , λ1), Dα(V )) ≤ 1. Since m−(∇2f)(0, λ2) = 16, m+(∇2f)(0, λ2) = 4
and m0(∇2f)(0, λ2) = 0, we have deg(∇f( · , λ2), Dα(V )) = 1. It can happen
that both degrees are equal to 1. This means that we cannot distinguish the
maps ∇f( · , λ1) and ∇f( · , λ2) using the Brouwer degree.
Since the intersection of the intervals

[m+(∇2f)(0, λ1),m+(∇2f)(0, λ1) +m0(∇2f)(0, λ1)] = [4, 6]

and

[m+(∇2f)(0, λ2),m+(∇2f)(0, λ2) +m0(∇2f)(0, λ2)] = [4, 4]

is not empty we cannot distinguish ∇f( · , λ1) and ∇f( · , λ2) using the Conley
index and Morse theory.

Isotropy group Z2. After restriction we obtain a map (∇f)Z2 : V Z2 × R =
(R[4, 0]⊕R[4, 2])× R→ V Z2 such that

(∇2f)Z2(0, λ1) =


− Id4 0 0 0
0 Id2 0 0
0 0 0 · Id2 0
0 0 0 − Id4

 ,

(∇2f)Z2(0, λ2) =


− Id4 0 0 0
0 Id2 0 0
0 0 Id2 0
0 0 0 − Id4

 .
Since m0((∇2f)Z2(0, λ1)) = 2 and m−((∇2f)Z2(0, λ1)) = 8 is even, we obtain
deg((∇f)Z2( · , λ1), Dα(V Z2)) ≤ 1.
Sincem−((∇2f)Z2(0, λ2)) = 8,m+((∇2f)Z2(0, λ2)) = 4,m0((∇2f)Z2(0, λ2))

= 0, we have deg((∇f)Z2( · , λ2), Dα(V Z2)) = 1. It can happen that both de-
grees are 1 so we cannot distinguish (∇f)Z2( · , λ1) and (∇f)Z2( · , λ2) using the
Brouwer degree.

Since the intersection of the intervals

[m+((∇2f)Z2(0, λ1)),m+((∇2f)Z2(0, λ1)) +m0((∇2f)Z2(0, λ1))] = [2, 4]

and

[m+((∇2f)Z2(0, λ2)),m+((∇2f)Z2(0, λ2)) +m0((∇2f)Z2(0, λ2))] = [4, 4]

is not empty we cannot distinguish the two maps using the Conley index and
Morse theory. �

Similar examples can be obtained starting from Examples 2.16, 2.18, 2.20
and 2.22.
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4. Applications to asymptotically linear problems

In this section we formulate sufficient conditions for the existence of nontrivial
orbits of zeros (different from the origin) of S1-equivariant gradient maps. We
apply the results proved in Section 2.

Theorem 4.1. Let f : (V, 0) → (V, 0) be an S1-equivariant gradient map
such that

1. f(x) = A0(x) + o|x| as |x| → 0,
2. there is β > 0 such that there is an S1-equivariant gradient homotopy

H : (Dβ(V )× [0, 1], ∂Dβ(V )× [0, 1])→ (V, V − {0})

such that H( · , 0) = f and H( · , 1) = A∞,
3. A∞ is a nonsingular symmetric matrix, and A0 is a symmetric matrix,
4. ker(Df(0)) ∩ V S1 = ker(A0) ∩ V S

1
= {0},

5. if V ≈
⊕n
i=1R[ki, ji] and ker(A0) ≈

⊕n0
i=1R[k

0
i , j
0
i ], then there is ji0 ∈

{j1, . . . , jn} − {0} such that
(a) ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j01 , . . . , j0n0},
(b) ∑

λ∈σ−((A0)|R[ki0 ,ji0 ]
)

µ(λ) 6=
sign(det((A0)|im(A0)))
sign(det(A∞))

·
∑

λ∈σ−((A∞)|R[ki0 ,ji0 ]
)

µ(λ).

Then there is a nontrivial (different from the origin) zero of f .

Proof. Suppose that the origin is the only zero of f . From the assumptions
for β > 0 and sufficiently small α > 0 we have

DEG(f,Dβ(V )) = DEG(A∞, Dβ(V )) = DEG(A∞, Dα(V )).

Putting in Theorem 2.13, f1 = A∞ and f2 = f , we show that

DEG(f1, Dβ(V )) = DEG(f1, Dα(V )) 6= DEG(f2, Dα(V )),

and consequently, by Theorem 3.9 of [55],

DEG(f,Dβ(V )− cl(Dα(V ))) = DEG(f,Dβ(V ))−DEG(f,Dα(V ))
= DEG(A∞, Dβ(V ))−DEG(f,Dα(V ))
= DEG(f1, Dβ(V ))−DEG(f2, Dα(V ))

is a nontrivial element in Z⊕(
⊕∞
i=1 Z). Applying Theorem 3.9 of [55] we complete

the proof. �
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Theorem 4.2. Let f : (V, 0) → (V, 0) be an S1-equivariant gradient map
such that

1. f(x) = A0(x) + o|x|, when |x| → 0,
2. there is β > 0 such that there is an S1-equivariant gradient homotopy

H : (Dβ(V )× [0, 1], ∂Dβ(V )× [0, 1])→ (V, V − {0})

such that H( · , 0) = f and H( · , 1) = A∞,
3. A∞ is a nonsingular symmetric matrix, and A0 is a symmetric matrix,
4. ker(Df(0)) ∩ V S1 = ker(A0) ∩ V S

1
= R[k, 0],

5. if V ≈
⊕n
i=1R[ki, ji] and ker(A0) ≈ R[k, 0]⊕

⊕n0
i=1R[k

0
i , j
0
i ], then there

is ji0 ∈ {j1, . . . , jn} − {0} such that
(a) ji0 6= gcd{a1, . . . , ak} for any a1, . . . , ak ∈ {j01 , . . . , j0n0},
(b) if k = 1, then∑

λ∈σ−((A∞)|R[ki0 ,ji0 ])

µ(λ) 6= γ ·
∑

λ∈σ−((A0)|R[ki0 ,ji0 ])

µ(λ),

where γ = 0, 1,
(c) if k = 2 then∑

λ∈σ−((A∞)|R[ki0 ,ji0 ])

µ(λ) 6= γ ·
sign(det((A0)|im(A0)))
sign(det(A∞))

·
∑

λ∈σ−((A0)|R[ki0 ,ji0 ])

µ(λ),

for γ ≤ 1,
(d) if k > 2, then∑

λ∈σ−((A∞)|R[ki0 ,ji0 ])

µ(λ) 6= γ ·
∑

λ∈σ−((A0)|R[ki0 ,ji0 ])

µ(λ),

where γ = 0, 1, 2, . . .

Then there is a nontrivial (different from the origin) zero of f .

Proof. Repeat the proof of Theorem 4.1 using Theorem 2.15 instead of
Theorem 2.13. �

Theorem 4.3. Let f : (V, 0) → (V, 0) be an S1-equivariant gradient map
such that

1. f(x) = A0(x) + o|x| as |x| → 0,
2. there is β > 0 such that there is an S1-equivariant gradient homotopy

H : (Dβ(V )× [0, 1], ∂Dβ(V )× [0, 1])→ (V, V − {0})

such that H( · , 0) = f and H( · , 1) = A∞,
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3. A∞ is a nonsingular symmetric matrix, and A0 is a symmetric matrix,
4. ker(Df(0)) ∩ V S1 = ker(A0) ∩ V S

1
= {0},

5. V ≈
⊕n
i=1R[ki, ji] and ker(A0) ≈ R[1, ji0 ],

6. ∑
λ∈σ−((A0)|R[ki0 ,ji0 ])

µ(λ) 6=
sign(det((A0)|im(A0)))
sign(det(A∞))

·
∑

λ∈σ−((A∞)|R[ki0 ,ji0 ])

µ(λ) + γ,

where γ = 2, 0.

Then there is a nontrivial (different from the origin) zero of f .

Proof. Repeat the proof of Theorem 4.1 using Theorem 2.17 instead of
Theorem 2.13.

Remark 4.4. In Theorems 4.1–4.3 we have proved the existence of nontrivial
orbits of zeros of S1-equivariant gradient maps but we have not been able to give
a lower estimate of the number of these orbits and their isotropy groups. Under
some additional assumptions one can compute these isotropy groups. Namely,
assume additionally in Theorems 4.1–4.3 that

1. (fS
1
)−1(0) = {0},

2. {j ∈ {j1, . . . , jn} : j/ji0 ∈ N} = {ji0}.

Then we can show that there is a nontrivial orbit of zeros of f whose isotropy
group is equal to Zji0 . We distinguish these orbits by their isotropy groups. �

Remark 4.5. Notice that instead of assumption 2 in Theorems 4.1–4.3 one
can assume that f is asymptotically linear, i.e.

f(x) = A∞(x) + o|x| as |x| → ∞.

This assumption is more natural but more restrictive than those in Theorems
4.1–4.3. �

Similarly to Section 3 we try to answer the following question.

Is it possible to get the results of Section 4 working with subspaces
fixed by various isotropy groups and using standard topological in-
variants like the Brouwer degree, the Morse theory and the Conley
index?

In order to answer it we consider some examples.
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Example 4.6. Consider an S1-equivariant C2-function

f : V = R[1, 1]⊕R[1, 2]→ R[1, 0].

Assume additionally that

1. ∇f(x) = ∇2f(0) · x+ o(|x|), |x| → 0,
2. ∇f(x) = ∇2f(∞) · x+ o(|x|), |x| → ∞,
3.

∇2f(0) =
[
− Id2 0
0 0 · Id2

]
,

4.

∇2f(∞) =
[
+Id2 0
0 − Id2

]
.

It is easy to check that for ji0 = 1 all the assumptions of Theorem 4.1 are
fulfilled. This shows the existence of an orbit of critical points of f . There are
three possible isotropy groups of points in the representation V : S1, {e} and Z2.

Isotropy group S1. V S
1
= {0}.

Isotropy group {e}. After restriction we obtain a map ∇f : V → V . Choose
sufficiently small α > 0 and sufficiently large β > 0. It is easy to see that

deg(∇f,Dα(V )) = 1 = deg(∇f,Dβ(V )).

This means that we cannot prove the existence of a nontrivial orbit of critical
points of f using the Brouwer degree. Since the intersection of the intervals

[m+(∇2f(∞)),m+(∇2f(∞)) +m0(∇2f(∞))] = [2, 2]

and
[m+(∇2f(0)),m+(∇2f(0)) +m0(∇2f(0))] = [0, 2]

is not empty we cannot prove the existence of a nontrivial orbit of critical points
of f using the Conley index and Morse theory.

Isotropy group Z2. After restriction we obtain a map (∇f)Z2 : V Z2 =
R[1, 2] → V Z2 . Choose sufficiently small α > 0 and sufficiently large β > 0.
It is easy to see that

deg((∇f)Z2 , Dα(V Z2)) = 1 = deg((∇f)Z2 , Dβ(V Z2)).

This means that we cannot prove the existence of a nontrivial orbit of critical
points of f using the Brouwer degree. Since the intersection of the intervals

[m+((∇2f)Z2(∞)),m+((∇2f)Z2(∞)) +m0((∇2f)Z2(∞))] = [0, 0]

and
[m+((∇2f)Z2(0)),m+((∇2f)Z2(0)) +m0((∇2f)Z2(0))] = [0, 2]
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is not empty we cannot prove the existence of a nontrivial orbit of critical points
of f using the Conley index and Morse theory. �

Example 4.7. Consider an S1-equivariant C2-function

f : V = R[1, 0]⊕R[1, 1]⊕R[1, 2]→ R[1, 0].

Assume additionally that

1. ∇f(x) = ∇2f(0) · x+ o(|x|), |x| → 0,
2. ∇f(x) = ∇2f(∞) · x+ o(|x|), |x| → ∞,
3.

∇2f(0) =

 0 · Id1 0 0
0 + Id2 0
0 0 0 · Id2

 ,
4.

∇2f(∞) =

+Id1 0 0
0 − Id2 0
0 0 + Id2

 .
It is easy to check that for ji0 = 1 all the assumptions of Theorem 4.2 are fulfilled.
This shows the existence of an orbit of critical points of f .
Reasoning as in Example 3.9 we can show that standard topological invari-

ants do not work in this case. �

Example 4.8. Consider an S1-equivariant C2-function

f : V = R[5, 1]→ R[1, 0].

Assume additionally that

1. ∇f(x) = ∇2f(0) · x+ o(|x|), |x| → 0,
2. ∇f(x) = ∇2f(∞) · x+ o(|x|), |x| → ∞,
3.

∇2f(0) =
[
0 · Id2 0
0 − Id8

]
,

4.
∇2f(∞) = [+ Id10 ] .

It is easy to check that for ji0 = 1 all the assumptions of Theorem 4.3 are fulfilled.
This gives the existence of an orbit of critical points of f . It is easily seen that it
is possible to prove the existence of a nontrivial orbit of zeros of f using Morse
theory. �

5. Final remarks

In this paper we have prepared a topological tool which we intend to apply
to qualitative investigations of elliptic differential equations, Hamiltonian sys-
tems, wave equations and second order ODE’s. Mainly, we are interested in
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sufficient conditions for the existence of nontrivial solutions of asymptotically
linear equations and in the existence of bifurcation points.
In order to apply our results to differential equations one can use Amann–

Zehnder saddle-point reduction. The first step in this direction is done in [58].
The degree for S1-equivariant gradient maps has also been defined in the infinite-
dimensional case, for compact perturbations of the identity. In fact, in order to
compute this invariant it is enough to compute the degree of a finite-dimensional
map. Therefore the results of Section 2 will be used in infinite-dimensional
computations.
We can distinguish orbits of critical points by their isotropy groups. It allows

one to prove multiplicity results for differential equations. Moreover, sufficient
conditions for local and global bifurcations of solutions of differential equations
can be formulated. Additionally, one can prove symmetry-breaking bifurcation
results.
In this article we have only considered problems with resonance at the ori-

gin, i.e. the linearization Df(0) at the origin was degenerate, while at infinity,
Df(∞) was an isomorphism. Let f : V → V be an S1-equivariant, gradient,
asymptotically linear map whose “derivative at infinity” Df(∞) is degenerate
and let Dβ(V ) denote an open disc centered at the origin with sufficiently large
radius β � 0. A still open and very interesting question is

Is it possible to compute DEG(f,Dβ(V )) when Df(∞) is degenerate?

T. Bartsch and S. Li [9] have recently proved an implicit function theorem
at infinity. Using their results one can prove a splitting lemma at infinity. Com-
bining the splitting lemma at the origin (Lemma 2.4), the splitting lemma at
infinity and the Cartesian product formula (Theorem 2.11), one can investigate
asymptotically linear problems with both kinds of resonance, at the origin and
at infinity.
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H. Poincaré Anal. Non Linéaire 2 (1985), 473–486.

[22] , Degenerate critical points, homotopy indices and Morse inequalities, I, J. Reine

Angew. Math. 350 (1984), 1–22.

[23] , Degenerate critical points, homotopy indices and Morse inequalities, II, J.
Reine Angew. Math. 382 (1987), 145–164.

[24] , Degenerate critical points, homotopy indices and Morse inequalities, III, Bull.

Austral. Math. Soc. 40 (1989), 97–108.

[25] Y. H. Ding and J. Q. Liu, Periodic solutions of asymptotically linear Hamiltonian

systems, J. Systems Sci. Math. Sci. 9 (1990), 30–39.
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