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Preface

It is a great honor and pleasure for me to introduce this book “Applications of Digital
Signal Processing” being published by InTech. The field of digital signal processing is
at the heart of communications, biomedicine, defense applications, and so on. The field
has experienced an explosive growth from its origins, with huge advances both in
fundamental research and applications.

In this book the reader will find a collection of chapters authored/co-authored by a
large number of experts around the world, covering the broad field of digital signal
processing. I have no doubt that the book would be useful to graduate students,
teachers, researchers, and engineers. Each chapter is self-contained and can be
downloaded and read independently of the others.

This book intends to provide highlights of the current research in the digital signal
processing area, showing the recent advances in this field. This work is mainly
destined to researchers in the digital signal processing related areas but it is also
accessible to anyone with a scientific background desiring to have an up-to-date
overview of this domain. These nineteenth chapters present methodological advances
and recent applications of digital signal processing in various domains as
telecommunications, array processing, medicine, astronomy, image and speech
processing.

Finally, I would like to thank all the authors for their scholarly contributions; without
them this project could not be possible. I would like to thank also to the In-Tech staff
for the confidence placed on me to edit this book, and especially to Ms. Danijela Duric,
for her kind assistance throughout the editing process. On behalf of the authors and
me, we hope readers enjoy this book and could benefit both novice and experts,
providing a thorough understanding of several fields related to the digital signal
processing and related areas.

Dr. Christian Cuadrado-Laborde

PhD, Department of Applied Physics and Electromagnetism,
University of Valencia, Valencia,

Spain
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Complex Digital Signal Processing
in Telecommunications

Zlatka Nikolova, Georgi Iliev,

Miglen Ovtcharov and Vladimir Poulkov
Technical University of Sofia

Bulgaria

1. Introduction

1.1 Complex DSP versus real DSP

Digital Signal Processing (DSP) is a vital tool for scientists and engineers, as it is of
fundamental importance in many areas of engineering practice and scientific research.

The “alphabet” of DSP is mathematics and although most practical DSP problems can be
solved by using real number mathematics, there are many others which can only be
satisfactorily resolved or adequately described by means of complex numbers.

If real number mathematics is the language of real DSP, then complex number
mathematics is the language of complex DSP. In the same way that real numbers are a part
of complex numbers in mathematics, real DSP can be regarded as a part of complex DSP
(Smith, 1999).

Complex mathematics manipulates complex numbers - the representation of two variables
as a single number - and it may appear that cormplex DSP has no obvious connection with our
everyday experience, especially since many DSP problems are explained mainly by means
of real number mathematics. Nonetheless, some DSP techniques are based on complex
mathematics, such as Fast Fourier Transform (FFT), z-transform, representation of periodical
signals and linear systems, etc. However, the imaginary part of complex transformations is
usually ignored or regarded as zero due to the inability to provide a readily comprehensible
physical explanation.

One well-known practical approach to the representation of an engineering problem by
means of complex numbers can be referred to as the assembling approach: the real and
imaginary parts of a complex number are real variables and individually can represent two
real physical parameters. Complex math techniques are used to process this complex entity
once it is assembled. The real and imaginary parts of the resulting complex variable
preserve the same real physical parameters. This approach is not universally-applicable and
can only be used with problems and applications which conform to the requirements of
complex math techniques. Making a complex number entirely mathematically equivalent to
a substantial physical problem is the real essence of complex DSP. Like complex Fourier
transforms, complex DSP transforms show the fundamental nature of complex DSP and such
complex techniques often increase the power of basic DSP methods. The development and
application of complex DSP are only just beginning to increase and for this reason some
researchers have named it theoretical DSP.
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It is evident that complex DSP is more complicated than real DSP. Complex DSP transforms
are highly theoretical and mathematical; to use them efficiently and professionally requires
a large amount of mathematics study and practical experience.

Complex math makes the mathematical expressions used in DSP more compact and solves
the problems which real math cannot deal with. Complex DSP techniques can complement
our understanding of how physical systems perform but to achieve this, we are faced with
the necessity of dealing with extensive sophisticated mathematics. For DSP professionals
there comes a point at which they have no real choice since the study of complex number
mathematics is the foundation of DSP.

1.2 Complex representation of signals and systems

All naturally-occurring signals are real; however in some signal processing applications it is
convenient to represent a signal as a complex-valued function of an independent variable.
For purely mathematical reasons, the concept of complex number representation is closely
connected with many of the basics of electrical engineering theory, such as voltage, current,
impedance, frequency response, transfer-function, Fourier and z-transforms, etc.

Complex DSP has many areas of application, one of the most important being modern
telecommunications, which very often uses narrowband analytical signals; these are
complex in nature (Martin, 2003). In this field, the complex representation of signals is very
useful as it provides a simple interpretation and realization of complicated processing tasks,
such as modulation, sampling or quantization.

It should be remembered that a complex number could be expressed in rectangular, polar and
exponential forms:

a+jb=A(cosd+ jsing)= Ae!’ 1)

The third notation of the complex number in the equation (1) is referred to as complex
exponential and is obtained after Euler’s relation is applied. The exponential form of complex
numbers is at the core of complex DSP and enables magnitude A and phase 6 components to
be easily derived.

Complex numbers offer a compact representation of the most often-used waveforms in
signal processing - sine and cosine waves (Proakis & Manolakis, 2006). The complex number
representation of sinusoids is an elegant technique in signal and circuit analysis and
synthesis, applicable when the rules of complex math techniques coincide with those of sine
and cosine functions. Sinusoids are represented by complex numbers; these are then
processed mathematically and the resulting complex numbers correspond to sinusoids,
which match the way sine and cosine waves would perform if they were manipulated
individually. The complex representation technique is possible only for sine and cosine
waves of the same frequency, manipulated mathematically by linear systems.

The use of Euler’s identity results in the class of complex exponential signals:

x(n)=Aa" :|A|ej¢e(0°+j[”°) =xg(n)+ jx;(n) . )

— e(o'o +jay)

a and A=|Ale” are complex numbers thus obtaining;
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xg (1) =|Ale™" cos (wyn +4); x;(n)=|A|e”" sin (won + ¢). 3)

Clearly, xr(n) and x(n) are real discrete-time sinusoidal signals whose amplitude |Ale®" is
constant (c0=0), increasing (5o>0) or decreasing (c9<0) exponents (Fig. 1).

—® Real part 0
05 —u i T
[ Imaginary part
041
‘ 50
5 401
% <
E g
= £ 30
o 2
£ e
2 :
0 20~
104
0l
06 m
05 ‘ ‘ ‘ ‘ ‘ : 0
0 10 2 30 10 50 60 Imaginary part - 04 05 Real part

Sample number (a)

1 T T T T PR
—= Real part !
5 — ® Imaginary part !
F 504 — 4
5
|
|
Lo —
2 |
. e ‘
el c -
E e T
= o
£ g !
< @20+~ 7
|
1
104~ 7
|
ol — 4
150
Sample number (b)
04 - T
—® Real part _
60— —
— ¥ Imaginary part
05 " L " 4
L] L] LIL] L L " 0l — —
| [ [ I I |
o4n [ [ 1 1 1
n Iim Iim Iim Iim o
© ool I I i i | kS
Rl I I i i g
£ 20l - -
= i 1 1 I I 239
E ol 4 il 4L 4L o
< e i T Ak Ak £
[ [ 1 1 1 &0l — —
I I I I I
02 [ [ I I e
iC iC iC iC iC 04— -
04 Il Il [ [ e
Il Il [ [ [
i lw " i lu " " o™ = 05
. 4 n L4 . & 02 ; 0
0 10 20 30 1 50 60 Imaginary part ol 25 Real part
Sample number (
5

Fig. 1. Complex exponential signal x(r) and its real and imaginary components xz(r) and
xi(n) for (a) oo=-0.085; (b) 50=0.085 and (c) co=0
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The spectrum of a real discrete-time signal lies between -w:/2 and /2 (o is the sampling
frequency in radians per sample), while the spectrum of a complex signal is twice as narrow
and is located within the positive frequency range only.

Narrowband signals are of great use in telecommunications. The determination of a signal’s
attributes, such as frequency, envelope, amplitude and phase are of great importance for
signal processing e.g. modulation, multiplexing, signal detection, frequency transformation,
etc. These attributes are easier to quantify for narrowband signals than for wideband signals
(Fig. 2). This makes narrowband signals much simpler to represent as complex signals.

Narrowband signal x1(n)

Wideband signal x2(n)

05 B

Amplitude
Amplitude

-0.5H

0 2’0 : 4‘0 6‘0 86 160 120
Sample number
(@) (b)
Fig. 2. Narrowband signal (a) x, (n) = sin(z/60n + z/4)cos(z/2n);

wideband signal (b) x, (1) =sin(z/60n + 7/4)cos(7/16n)

Sample number

Over the years different techniques of describing narrowband complex signals have been
developed. These techniques differ from each other in the way the imaginary component is
derived; the real component of the complex representation is the real signal itself.

Some authors (Fink, 1984) suggest that the imaginary part of a complex narrowband signal
can be obtained from the first x (1) and second x% (1) derivatives of the real signal:

—xg () )
() ®

One disadvantage of the representation in equation (4) is that insignificant changes in the
real signal xgr(n) can alter the imaginary part xi(n) significantly; furthermore the second
derivative can change its sign, thus removing the sense of the square root.

Another approach to deriving the imaginary component of a complex signal representation,
applicable to harmonic signals, is as follows (Gallagher, 1968):

x;(n)=-xx(n)

xl(n)zl(n)/ ©)

20

where y is the frequency of the real harmonic signal.

Analytical representation is another well-known approach used to obtain the imaginary part
of a complex signal, named the analytic signal. An analytic complex signal is represented by
its inphase (the real component) and quadrature (the imaginary component). The approach
includes a low-frequency envelope modulation using a complex carrier signal - a complex

exponent ¢/*" named cissoid (Crystal & Ehrman, 1968) or complexoid (Martin, 2003):

(1)@ = x(n)=xg(n)e/" = xg (n)[cosmyn + jsinmyn] = xg (n)+ jx; (1) . (6)

In the frequency domain an analytic complex signal is:
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X (ejw") = XR(e/w”)+ jXI(ejw") .

)

The real signal and its Hilbert transform are respectively the real and imaginary parts of the
analytic signal; these have the same amplitude and n/2 phase-shift (Fig. 3).
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Fig. 3. Complex signal derivation using the Hilbert transformation

According to the Hilbert transformation, the components of the XR(ej“’") spectrum are

shifted by n/2 for positive frequencies and by -n/2 for negative frequencies, thus the

pattern areas in Fig. 3b are obtained. The real signal XR(ej”") and the imaginary one

X; (ej "’”) multiplied by j (square root of -1), are identical for positive frequencies and -n/2

phase shifted for negative frequencies - the solid blue line (Fig. 3b). The complex signal

Xc(ej“’”) occupies half of the real signal frequency band; its amplitude is the sum of the

Xz (ej“’") and jX,(ej‘””) amplitudes (Fig. 3c). The spectrum of the complex conjugate

analytic signal X¢ (e"j‘”") is depicted in Fig. 3d.
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In the frequency domain the analytic complex signal, its complex conjugate signal, real and
imaginary components are related as follows:

(o) e ()

(e )= S X () -x () ®)
X(ej“’")— ZXR(ejwn)zszI(ejwn), 0<w<awg/2
o ~05/2<0<0

Discrete-time complex signals are easily processed by digital complex circuits, whose
transfer functions contain complex coefficients (Marquez, 2011).

An output complex signal Yc (z) is the response of a complex system with transfer function
Hc (z), when complex signal Xc(z) is applied as an input. Being complex functions, Xc(z),
Yc (z) and Hc (z), can be represented by their real and imaginary parts:

Yﬁ@ = He(z) Xc(2)
y ¥ Y 9)

[Yr(2)+jYi(2)] [Hg(z)+jH;(2)] [Xr(2)+)X;(2)]

After mathematical operations are applied, the complex output signal and its real and
imaginary parts become:

)=[Hg(z +]H1z}[XR )+ X (2)]=

[Hr(2) X (2)-H;(2)X;(2)] + j[H;(2)Xg(z)+Hg(2)X;(2)] (10)
0 ¥

Yr(2) Yi(2)

According to equation (10), the block-diagram of a complex system will be as shown in
Fig. 4.

X (2) Lo vi(2)

Xi(z) + Y (z)

Fig. 4. Block-diagram of a complex system
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1.3 Complex digital processing techniques - complex Fourier transforms

Digital systems and signals can be represented in three domains - time domain, z-domain
and frequency domain. To cross from one domain to another, the Fourier and z-transforms
are employed (Fig. 5). Both transforms are fundamental building-blocks of signal processing
theory and exist in two formats - forward and inverse (Smith, 1999).

Fourier
transforms

Fig. 5. Relationships between frequency, time, and z- domains

Frequency
Domain

The Fourier transforms group contains four families, which differ from one another in the
type of time-domain signal which they process - periodic or aperiodic and discrete or
continuous. Discrete Fourier Transform (DFT) deals with discrete periodic signals, Discrete
Time Fourier Transform (DTFT) with discrete aperiodic signals, and Fourier Series and
Fourier Transform with periodic and aperiodic continuous signals respectively. In addition to
having forward and inverse versions, each of these four Fourier families exists in two
forms - real and complex, depending on whether real or complex number math is used. All
four Fourier transform families decompose signals into sine and cosine waves; when these
are expressed by complex number equations, using Euler’s identity, the complex versions of
the Fourier transforms are introduced.

DFT is the most often-used Fourier transform in DSP. The DFT family is a basic
mathematical tool in various processing techniques performed in the frequency domain, for
instance frequency analysis of digital systems and spectral representation of discrete signals.
In this chapter, the focus is on complex DFT. This is more sophisticated and wide-ranging
than real DFT, but is based on the more complicated complex number math. However,
numerous digital signal processing techniques, such as convolution, modulation,
compression, aliasing, etc. can be better described and appreciated via this extended math.
(Sklar, 2001)

Complex DFT equations are shown in Table 1. The forward complex DFT equation is also
called analysis equation. This calculates the frequency domain values of the discrete periodic
signal, whereas the inverse (synthesis) equation computes the values in the time domain.

Complex Discrete Fourier Transform

Forward (analysis) equation Inverse (synthesis) equation
N-1
x(n)=gReX(k) cos 2k + jsin 2
X(k)=lN_lx(n) cos 2L jsin 21k :,_1 2icn 2icn
N 3 N N —gImX(k) sin —— —jcos ——
= N N

Table 1. Complex DFT transforms in rectangular form

The time domain signal x(n) is a complex discrete periodic signal; only an N-point unique
discrete sequence from this signal, situated in a single time-interval (0N, -N/2+N/2, etc.) is
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considered. The forward equation multiplies the periodic time domain number series from
x(0) to x(N-1) by a sinusoid and sums the results over the complete time-period.

The frequency domain signal X(k) is an N-point complex periodic signal in a single
frequency interval, such as [0+0.5w], [-0.50s+0], [-0.25wms+0.25ws], etc. (the sampling
frequency s is often used in its normalized value). The inverse equation employs all the N
points in the frequency domain to calculate a particular discrete value of the time domain
signal. It is clear that complex DFT works with finite-length data.

Both the time domain x(1) and the frequency domain X(k) signals are complex numbers, i.e.
complex DFT also recognizes negative time and negative frequencies. Complex mathematics
accommodates these concepts, although imaginary time and frequency have only a
theoretical existence so far. Complex DFT is a symmetrical and mathematically
comprehensive processing technology because it doesn’t discriminate between negative and
positive frequencies.

Fig. 6 shows how the forward complex DFT algorithm works in the case of a complex time-
domain signal. xr(n) is a real time domain signal whose frequency spectrum has an even real
part and an odd imaginary part; conversely, the frequency spectrum of the imaginary part
of the time domain signal x;(1) has an odd real part and an even imaginary part. However,
as can be seen in Fig. 6, the actual frequency spectrum is the sum of the two individually-
calculated spectra. In reality, these two time domain signals are processed simultaneously,
which is the whole point of the Fast Fourier Transform (FFT) algorithm.

Time Domain
x(n)= xg (n) +j xi(n)

xR (1) x1 (n)
Real time signal Imaginary time signal

Complex DFT

Frequency Domain

X (k)=Xg (k)+Xi (k) ;

I~ - T -m--—-——---—- 1
I Real Frequency Spectrum ! Real Frequency Spectrum
: (even) : (odd)

Imaginary Frequency Spectrum
(even)

Fig. 6. Forward complex DFT algorithm

The imaginary part of the time-domain complex signal can be omitted and the time domain
then becomes totally real, as is assumed in the numerical example shown in Fig. 7. A real
sinusoidal signal with amplitude M, represented in a complex form, contains a positive wo
and a negative frequency -wo. The complex spectrum X(k) describes the signal in the
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frequency domain. The frequency range of its real, Re X(k), and imaginary part, Im X(k),
comprises both positive and negative frequencies simultaneously. Since the considered time
domain signal is real, Re X(k) is even (the spectral values A and B have the same sign), while
the imaginary part Im X(k) is odd (C is negative, D is positive).

The amplitude of each of the four spectral peaks is M/2, which is half the amplitude of the
time domain signal. The single frequency interval under consideration [-Yams+Ya0s]
([-0.5+0.5] when normalized frequency is used) is symmetric with respect to a frequency of
zero. The real frequency spectrum Re X(k) is used to reconstruct a cosine time domain
signal, whilst the imaginary spectrum Im X(k) results in a negative sine wave, both with
amplitude M in accordance with the complex analysis equation (Table 1). In a way
analogous to the example shown in Fig.7, a complex frequency spectrum can also be
derived.

Real time domain signal
of frequency wp

4

P L —

Complex spectrum
Real part Imaginary part
of complex spectrum Re X(k) of complex spectrum Im X(k)
M/2 M/2 M/2
|| -
-ws/4 -@o 0 @0 s/ 4 -@s/4 I 0 @0 @s/4
M/2
B= {% cos((non)+ %sin((oon)} D= {—%sin(mon) —%cos(ooon)}
@ ®
A= {%cos(— mon)+%sin(— 0)01’1)} C=> {%sin(— ooon)+%cos(— mon)}
X, (k)= Mcos(w,n) X, (k)= —Msin(w,n)

Fig. 7. Inverse complex DFT - reconstruction of a real time domain signal

Why is complex DFT used since it involves intricate complex number math?
Complex DFT has persuasive advantages over real DFT and is considered to be the more
comprehensive version. Real DFT is mathematically simpler and offers practical solutions to
real world problems; by extension, negative frequencies are disregarded. Negative
frequencies are always encountered in conjunction with complex numbers.
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A real DFT spectrum can be represented in a complex form. Forward real DFT results in
cosine and sine wave terms, which then form respectively the real and imaginary parts of a
complex number sequence. This substitution has the advantage of using powerful complex
number math, but this is not true complex DFT. Despite the spectrum being in a complex
form, the DFT remains real and j is not an integral part of the complex representation of real
DFT.

Another mathematical inconvenience of real DFT is the absence of symmetry between
analysis and synthesis equations, which is due to the exclusion of negative frequencies. In
order to achieve a perfect reconstruction of the time domain signal, the first and last samples
of the real DFT frequency spectrum, relating to zero frequency and Nyquist’s frequency
respectively, must have a scaling factor of 1/N applied to them rather than the 2/ N used for
the rest of the samples.

In contrast, complex DFT doesn’t require a scaling factor of 2 as each value in the time
domain corresponds to two spectral values located in a positive and a negative frequency;
each one contributing half the time domain waveform amplitude, as shown in Fig. 7. The
factor of 1/N is applied equally to all samples in the frequency domain. Taking the negative
frequencies into account, complex DFT achieves a mathematically-favoured symmetry
between forward and inverse equations, i.e. between time and frequency domains.

Complex DFT overcomes the theoretical imperfections of real DFT in a manner helpful to
other basic DSP transforms, such as forward and inverse z-transforms. A bright future is
confidently predicted for complex DSP in general and the complex versions of Fourier
transforms in particular.

2. Complex DSP - some applications in telecommunications

DSP is making a significant contribution to progress in many diverse areas of human
endeavour - science, industry, communications, health care, security and safety, commercial
business, space technologies etc.

Based on powerful scientific mathematical principles, complex DSP has overlapping
boundaries with the theory of, and is needed for many applications in, telecommunications.
This chapter presents a short exploration of precisely this common area.

Modern telecommunications very often uses narrowband signals, such as NBI (Narrowband
Interference), RFI (Radio Frequency Interference), etc. These signals are complex by nature
and hence it is natural for complex DSP techniques to be used to process them (Ovtcharov et
al, 2009), (Nikolova et al, 2010).

Telecommunication systems very commonly require processing to occur in real time,
adaptive complex filtering being amongst the most frequently-used complex DSP techniques.
When multiple communication channels are to be manipulated simultaneously, parallel
processing systems are indicated (Nikolova et al, 2006), (Iliev et al, 2009).

An efficient Adaptive Complex Filter Bank (ACFB) scheme is presented here, together with
a short exploration of its application for the mitigation of narrowband interference signals in
MIMO (Multiple-Input Multiple-Output) communication systems.

2.1 Adaptive complex filtering
As pointed out previously, adaptive complex filtering is a basic and very commonly-
applied DSP technique. An adaptive complex system consists of two basic building blocks:
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the variable complex filter and the adaptive algorithm. Fig. 8 shows such a system based on
a variable complex filter section designated LS1 (Low Sensitivity). The variable complex LS1
filter changes the central frequency and bandwidth independently (lliev et al, 2002), (Iliev et
al, 2006). The central frequency can be tuned by trimming the coefficient 8, whereas the
single coefficient B adjusts the bandwidth. The LS1 variable complex filter has two very
important advantages: firstly, an extremely low passband sensitivity, which offers resistance
to quantization effects and secondly, independent control of both central frequency and
bandwidth over a wide frequency range.

The adaptive complex system (Fig.8) has a complex input x(n)=xr(n)+jx(11) and provides
both band-pass (BP) and band-stop (BS) complex filtering. The real and imaginary parts of
the BP filter are respectively yr(n) and yi(n), whilst those of the BS filter are er(n) and ej(n).
The cost-function is the power of the BP/BS filter’s output signal.

The filter coefficient 6, responsible for the central frequency, is updated by applying an
adaptive algorithm, for example LMS (Least Mean Square):

O(n+1)=0(n)+ uRele(n)y” (n)]. (11)

The step size p controls the speed of convergence, (*) denotes complex-conjugate, i () is the
derivative of complex BP filter output y(n) with respect to the coefficient, which is subject to
adaptation.
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Fig. 8. Block-diagram of an LS1-based adaptive complex system

In order to ensure the stability of the adaptive algorithm, the range of the step size p should
be set according to (Douglas, 1999):

O<u<

. 11
- (11
where N is the filter order, o2 is the power of the signal y (1) and P is a constant which
depends on the statistical characteristics of the input signal. In most practical situations, P is
approximately equal to 0.1.
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The very low sensitivity of the variable complex LS1 filter section ensures the general
efficiency of the adaptation and a high tuning accuracy, even with severely quantized
multiplier coefficients.

This approach can easily be extended to the adaptive complex filter bank synthesis in
parallel complex signal processing.

In (Nikolova et al, 2002) a narrowband ACFB is designed for the detection of multiple
complex sinusoids. The filter bank, composed of three variable complex filter sections, is
aimed at detecting multiple complex signals (Fig. 9).
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Fig. 9. Block-diagram of an adaptive complex filter bank system
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The experiments are carried out with an input signal composed of three complex sine-
signals of different frequencies, mixed with white noise. Fig. 10 displays learning curves for
the coefficients 61, 6, and 63. The ACFB shows the high efficacy of the parallel filtering
process. The main advantages of both the adaptive filter structure and the ACFB lie in their
low computational complexity and rapid convergence of adaptation.
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Fig. 10. Learning curves of an ACFB consisting of three complex LS1-sections

2.2 Narrowband interference suppression for MIMO systems using adaptive complex
filtering

The sub-sections which follow examine the problem of narrowband interference in two
particular MIMO telecommunication systems. Different NBI suppression methods are
observed and experimentally compared to the complex DSP technique using adaptive
complex filtering in the frequency domain.

2.2.1 NBI Suppression in UWB MIMO systems

Ultrawideband (UWB) systems show excellent potential benefits when used in the design of
high-speed digital wireless home networks. Depending on how the available bandwidth of
the system is used, UWB can be divided into two groups: single-band and multi-band (MB).
Conventional UWB technology is based on single-band systems and employs carrier-free
communications. It is implemented by directly modulating information into a sequence of
impulse-like waveforms; support for multiple users is by means of time-hopping or direct
sequence spreading approaches.

The UWB frequency band of multi-band UWB systems is divided into several sub-bands. By
interleaving the symbols across sub-bands, multi-band UWB can maintain the power of the
transmission as though a wide bandwidth were being utilized. The advantage of the multi-
band approach is that it allows information to be processed over a much smaller bandwidth,
thereby reducing overall design complexity as well as improving spectral flexibility and
worldwide adherence to the relevant standards. The constantly-increasing demand for
higher data transmission rates can be satisfied by exploiting both multipath- and spatial-
diversity, using MIMO together with the appropriate modulation and coding techniques
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(Iliev et al, 2009). The multipath energy can be captured efficiently when the OFDM
(Orthogonal Frequency-Division Multiplexing) technique is used to modulate the
information in each sub-band. Unlike more traditional OFDM systems, the MB-OFDM
symbols are interleaved over different sub-bands across both time and frequency. Multiple
access of multi-band UWB is enabled by the use of suitably-designed frequency-hopping
sequences over the set of sub-bands.

In contrast to conventional MIMO OFDM systems, the performance of MIMO MB-OFDM
UWB systems does not depend on the temporal correlation of the propagation channel.
However, due to their relatively low transmission power, such systems are very sensitive to
NBI. Because of the spectral leakage effect caused by DFT demodulation at the OFDM
receiver, many subcarriers near the interference frequency suffer from serious Signal-to-
Interference Ratio (SIR) degradation, which can adversely affect or even block
communications (Giorgetti et al, 2005).

In comparison with the wideband information signal, the interference occupies a much
narrower frequency band but has a higher-power spectral density (Park et al, 2004). On the
other hand, the wideband signal usually has autocorrelation properties quite similar to
those of AWGN (Adaptive Wide Gaussian Noise), so filtering in the frequency domain is
possible. The complex DSP technique for suppressing NBI by the use of adaptive complex
narrowband filtering, which is an optimal solution offering a good balance between
computational complexity and interference suppression efficiency, is put forward in (Iliev et
al, 2010). The method is compared experimentally with two other often-used algorithms
Frequency Excision (FE) (Juang et al, 2004) and Frequency Identification and Cancellation
(FIC) (Baccareli et al,2002) for the identification and suppression of complex NBI in
different types of IEEE UWB channels.

A number of simulations relative to complex baseband presentation are performed,
estimating the Bit Error Ratio (BER) as a function of the SIR for the CM3 IEEE UWB channel
(Molish & Foerster, 2003) and some experimental results are shown in Fig. 10.
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Fig. 10. BER as a function of SIR for the CM3 channel (a) complex NBI; (b) multi-tone NBL;
(c) QPSK modulated NBI

The channel is subject to strong fading and, for the purposes of the experiments,
background AWGN is additionally applied, so that the Signal-to-AWGN ratio at the input
of the OFDM receiver is 20 dB. The SIR is varied from -20 dB to 0 dB. It can be seen (Fig. 10a)
that for high NBI, i.e. where the SIR is less than 0 dB, all methods lead to a significant
improvement in performance. The adaptive complex filtering scheme gives better
performance than the FE method. This could be explained by the NBI spectral leakage effect
caused by DFT demodulation at the OFDM receiver, when many sub-carriers near the
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interference frequency suffer degradation. Thus, filtering out the NBI before demodulation
is better than frequency excision. The FIC algorithm achieves the best result because there is
no spectrum leakage, as happens with frequency excision, and there is no amplitude and
phase distortion as seen in the case of adaptive complex filtering.

It should be noted that the adaptive filtering scheme and frequency cancellation scheme lead
to a degradation in the overall performance when SIR >0. This is due either to the amplitude
and phase distortion of the adaptive notch filter or to a wrong estimation of NBI parameters
during the identification. The degradation can be reduced by the implementation of a
higher-order notch filter or by using more sophisticated identification algorithms. The
degradation effect can be avoided by simply switching off the filtering when SIR > 0. Such a
scheme is easily realizable, as the amplitude of the NBI can be monitored at the BP output of
the filter (Fig. 8).

In Fig. 10b, the results of applying a combination of methods are presented. A multi-tone NBI
(an interfering signal composed of five sine-waves) is added to the OFDM signal. One of the
NBI tones is 10 dB stronger than the others. The NBI filter is adapted to track the strongest NBI
tone, thus preventing the loss of resolution and Automatic Gain Control (AGC) saturation. It can
be seen that the combination of FE and Adaptive Complex Filtering improves the
performance, and the combination of FIC with Adaptive Complex Filtering is even better.

Fig. 10c shows BER as a function of SIR for the CM3 channel when QPSK modulation is
used, the NBI being modelled as a complex sine wave. It is evident that the relative
performance of the different NBI suppression methods is similar to the one in Fig. 10a but
the BER is higher due to the fact that NBI is QPSK modulated.

The experimental results show that the FIC method achieves the highest performance. On
the other hand, the extremely high computational complexity limits its application in terms
of hardware resources. In this respect, Adaptive Complex Filtering turns out to be the
optimal NBI suppression scheme, as it offers very good performance and reasonable
complexity. The FE method shows relatively good results and its main advantage is its
computational efficiency. Therefore the complex DSP filtering technique offers a good
compromise between outstanding NBI suppression efficiency and computational
complexity.

2.2.2 RFI mitigation in GDSL MIMO systems

The Gigabit Digital Subscriber Line (GDSL) system is a cost-effective solution for existing
telecomunication networks as it makes use of the existing copper wires in the last
distribution area segment. Crosstalk, which is usually a problem in existing DSL systems,
actually becomes an enhancement in GDSL, as it allows the transmission rate to be extended
to its true limits (Lee et al, 2007). A symmetric data transmission rate in excess of 1 Gbps
using a set of 2 to 4 copper twisted pairs over a 300 m cable length is achievable using
vectored MIMO technology, and considerably faster speeds can be achieved over shorter
distances.

In order to maximize the amount of information handled by a MIMO cable channel via the
cable crosstalk phenomenon, most GDSL systems employ different types of precoding
algorithms, such as Orthogonal Space-Time Precoding (OSTP), Orthogonal Space-
Frequency Precoding (OSFP), Optimal Linear Precoding (OLP), etc. (Perez-Cruz et al, 2008).
GDSL systems use the leading modulation technology, Discrete Multi-Tone (DMT), also
known as OFDM, and are very sensitive to RFI. The presence of strong RFI causes nonlinear
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distortion in AGC and Analogue-to-Digital Converter (ADC) functional blocks, as well as
spectral leakage in the DFT process. Many DMT tones, if they are located close to the
interference frequency, will suffer serious SNR degradation. Therefore, RFI suppression is of
primary importance for all types of DSL communications, including GDSL.
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Fig. 11. MIMO GDSL Common Mode system model

The present section considers a MIMO GDSL Common Mode system, with a typical MIMO
DMT receiver, using vectored MIMO DSL technology (Fig. 11) (Poulkov et al, 2009).

To achieve the outstanding data-rate of 1 Gbps, the GDSL system requires both source and
load to be excited in Common Mode (Starr et al, 2003). The model of a MIMO GDSL channel
depicted in Fig. 11 includes 8 wires that create k=7 channels all with the 0 wire as reference.
Zs and Z; denote the source and load impedance mat