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The use of empirical characteristic functions for inference problems, including estimation in some special

parametric settings and testing for goodness of fit, has a long history dating back to the 70s. More recently,

there has been renewed interest in using empirical characteristic functions in other inference settings. The

distance covariance and correlation, developed by Székely et al. (Ann. Statist. 35 (2007) 2769–2794) and

Székely and Rizzo (Ann. Appl. Stat. 3 (2009) 1236–1265) for measuring dependence and testing indepen-

dence between two random vectors, are perhaps the best known illustrations of this. We apply these ideas to

stationary univariate and multivariate time series to measure lagged auto- and cross-dependence in a time

series. Assuming strong mixing, we establish the relevant asymptotic theory for the sample auto- and cross-

distance correlation functions. We also apply the auto-distance correlation function (ADCF) to the residuals

of an autoregressive processes as a test of goodness of fit. Under the null that an autoregressive model is

true, the limit distribution of the empirical ADCF can differ markedly from the corresponding one based on

an i.i.d. sequence. We illustrate the use of the empirical auto- and cross-distance correlation functions for

testing dependence and cross-dependence of time series in a variety of contexts.

Keywords: U -statistics; AR process; auto- and cross-distance correlation function; ergodicity; Fourier

analysis; residuals; strong mixing; testing independence; time series

1. Introduction

In time series analysis, modeling serial dependence is typically the overriding objective. In order

to achieve this goal, it is necessary to formulate a measure of dependence and this may depend on

the features in the data that one is trying to capture. The autocorrelation function (ACF), which

provides a measure of linear dependence, is perhaps the most used dependence measure in time

series. It is closely linked with the class of ARMA models and provides guidance in both model

selection and model confirmation. On the other hand, the ACF gives only a partial description

of serial dependence. As seen with financial time series, data are typically uncorrelated but de-

pendent so that the ACF is non-informative. In this case, the dependence becomes visible by

examining the ACF applied to the absolute values or squares of the time series. In this paper,

we consider the application of distance correlation in a time series setting, which can overcome

some of the limitations of other dependence measures.
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In recent years, the notions of distance covariance and correlation have become rather popular

in applied statistics. Given vectors X and Y with values in R
p and R

q , the distance covariance

between X and Y with respect to a suitable measure μ on R
p+q is given by

T (X,Y ;μ) =
∫

Rp+q

∣∣ϕX,Y (s, t) − ϕX(s)ϕY (t)
∣∣2μ(ds, dt), (1.1)

where the characteristic function of any random vector Z ∈ R
d is denoted by ϕZ(t) =

E[ei〈t,Z〉], t ∈ R
d . The distance correlation is the corresponding version of T standardized to

values in [0,1]. The quantity T (X,Y ;μ) is zero if and only if ϕX,Y = ϕXϕY μ-a.e. In many

situations, for example, when μ has a positive Lebesgue density on R
p+q , we may conclude that

X and Y are independent if and only if T (X,Y ;μ) = 0. An empirical version Tn(X,Y ;μ) of

T (X,Y ;μ) is obtained if the characteristic functions in (1.1) are replaced by their corresponding

empirical versions. Then one can build a test for independence between X and Y based on the

distribution of Tn under the null hypothesis that X and Y are independent.

The use of empirical characteristic functions for univariate and multivariate sequences for in-

ference purposes has a long history. In the 1970s and 1980s, Feuerverger and Mureika [12],

Csörgő [4–6] and many others proved fundamental asymptotic results for i.i.d. sequences, in-

cluding Donsker-type theory for the empirical characteristic function. Statisticians have applied

these methods for goodness-of-fit tests, changepoint detection, testing for independence, etc.;

see, for example, Meintanis and coworkers [15,21,22], and the references therein. The latter au-

thors employed the empirical distance covariance for finite measures μ. Feuerverger [11] was

the first to apply statistics of the form (1.1) for general measures. In particular, he advocated the

infinite measure

μ(ds, dt) = |s|−2|t |−2 ds dt

for testing independence of univariate data. Székely et al.1  ([27–29], see also the references

therein) developed asymptotic techniques for the empirical distance covariance and correlation

of i.i.d. sequences for the infinite measure μ given by

μ(ds, dt) = cp,q |s|−α−p|t |−α−q ds dt, (1.2)

where cp,q is a constant (see (2.13)) and α ∈ (0,2). With this choice of μ, the distance correla-

tion, T (X,Y ;μ)/(T (X,X;μ)T (Y,Y ;μ))1/2 is invariant relative to scale and orthogonal trans-

formations, two desirable properties for measures of dependence. As a consequence, this choice

of measure is perhaps the most common. However, there are other choices of measures for μ that

are also useful depending on the context.

Dueck et al. [9] studied the affinely invariant distance covariance given by T̃ (X,Y ;μ) =
T (�−1

X X,�−1
Y Y), where �X,�Y are the respective covariance matrices of X and Y and μ

is given by (1.2). They showed that the empirical version of T̃ (X,Y ;μ)/(T̃ (X,X;μ)T̃ (Y,Y ;
μ))1/2, where �X and �Y are estimated by their empirical counterparts, is strongly consistent.

In addition, they provide explicit expressions in terms of special functions of the limit in the case

1They appeared to have coined the terms distance covariance and correlation.
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when X,Y are multivariate normal. Further progress on this topic has been achieved in [26] and

[20], who generalized distance correlation to a metric space.

In this paper, we are interested in the empirical distance covariance and correlation applied to a

stationary sequence ((Xt , Yt )) to study serial dependence, where Xt and Yt assume values in R
p

and R
q , respectively. We aim at an analog to the autocorrelation and autocovariance functions

of classical time series analysis in terms of lagged distance correlation and distance covariance.

Specifically, we consider the lagged-distance covariance function T (X0, Yh;μ), h ∈ Z, and its

standardized version that takes values in [0,1]. We refer to these quantities as the auto- and cross-

distance covariance and correlation functions. We provide asymptotic theory for the empirical

auto- and cross-distance covariance and correlation functions under mild conditions. Under er-

godicity, we prove consistency and under α-mixing, we derive the weak limits of the empirical

auto- and cross-distance covariance functions for both cases when X0 and Yh are independent

and dependent.

From a modeling perspective, distance correlation has limited value in providing a clear de-

scription of the nature of the dependence in the time series. To this end, it may be difficult to find

a time series model that produces a desired distance correlation. In contrast, one could always

find an autoregressive (or more generally ARMA) process that matches the ACF for an arbitrary

number of lags. The theme in this paper will be to view the distance correlation more as a tool

for testing independence rather than actually measuring dependence.

The literature on distance correlation for dependent sequences is sparse. To the best of our

knowledge, Zhou [30] was the first to study the auto-distance covariance and its empirical analog

for stationary sequences. In particular, he proved limit theory for Tn(X0,Xh;μ) under so-called

physical dependence measure conditions on (Xt ) and independence of X0 and Xh. Fokianos and

Pitsillou [13] developed limit theory for a Ljung–Box-type statistic based on pairwise distance

covariance Tn(Xi,Xj ;μ) of a sample from a stationary sequence. In both papers, the measure μ

is given by (1.2). The latter paper uses ideas from [16]. He applied the empirical characteristic

function of a strongly mixing time series for testing various hypotheses on the dependence struc-

ture of a time series; he called it a generalized spectral approach. His test statistic bears some

resemblance with the distance covariance: it is an integral of the weighted squared difference be-

tween the Fourier transform of the sequence cov(eiuX0, eivXh) and an empirical analog weighted

by the density of a finite measure μ.

Typically, a crucial and final step in checking the quality of a fitted time series model is to

examine the residuals for lack of serial dependence. The distance correlation can be used in this

regard. However, as first pointed out in his discussion, Rémillard [24] indicated that the behavior

of the distance correlation when applied to the residuals of a fitted AR(1) process need not have

the same limit distribution as that of the distance correlation based on the corresponding i.i.d.

noise. We provide a rigorous proof of this result for a general AR(p) process with finite variance

under certain conditions on the measure μ. Interestingly, the conditions preclude the use of the

standard weight function (1.2) used in [29]. In contrast, if the noise sequence is heavy-tailed and

belongs to the domain of attraction of a stable distribution with index β ∈ (0,2), the distance

correlation functions for both the residuals from the fitted model and the i.i.d. noise sequence

coincide.

The paper is organized as follows. In Section 2, we commence with some basic results for

distance covariance. We give conditions on the moments of X and Y and the measure μ, which
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ensure that the integrals T (X,Y ;μ) in (1.1) are well-defined. We provide alternative representa-

tions of T (X,Y ;μ) and consider various examples of finite and infinite measures μ. Section 3 is

devoted to the empirical auto- and cross-distance covariance and correlation functions. Our main

results on the asymptotic theory of these functions are provided in Section 3.1. Among them

are an a.s. consistency result (Theorem 3.1) under the assumption of ergodicity and asymptotic

normality under a strong mixing condition (Theorem 3.2). Another main result (Theorem 4.2)

is concerned with the asymptotic behavior of the empirical auto-distance covariance function of

the residuals of an autoregressive process for both the finite and infinite variance cases. In Sec-

tion 5, we provide a small study of the empirical auto-distance correlation functions derived from

simulated and real-life dependent data of moderate sample size. The proofs of Lemma 4.1 and

Theorem 4.2, which are significant but very technical, are relegated to the supplement [7].

2. Distance covariance for stationary time series

2.1. Conditions for existence

From (1.1), the distance covariance between two vectors X and Y is the squared L2-distance

between the joint characteristic function of (X,Y ) and the product of the marginal characteristic

functions of X and Y with respect to a measure μ on R
p+q . Throughout we assume that μ is

finite on sets bounded away from the origin, that is, on sets of the form

Dc
δ =

{
(s, t) : |s| ∧ |t | > δ

}
, δ > 0. (2.1)

In what follows, we interpret (s, t) as a concatenated vector in R
p+q equipped with the natural

norm |(s, t)|Rp×Rq =
√

|s|2 + |t |2. We suppress the dependence of the norm | · | on the dimension.

The symbol c stands for any positive constant, whose value may change from line to line, but

is not of particular interest. Clearly if X and Y are independent, T (X,Y ;μ) = 0. On the other

hand, if μ is an infinite measure, and X and Y are dependent, extra conditions are needed to

ensure that T (X,Y ;μ) is finite. This is the content of the following lemma.

Lemma 2.1. Let X and Y be two possibly dependent random vectors and one of the following

conditions is satisfied:

1. μ is a finite measure on R
p+q .

2. μ is an infinite measure on R
p+q , finite on the sets Dc

δ , δ > 0, such that

∫

Rp+q

(
1 ∧ |s|α

)(
1 ∧ |t |α

)
μ(ds, dt) < ∞ (2.2)

and E[|X|α] +E[|Y |α] < ∞ for some α ∈ (0,2].
3. μ is infinite in a neighborhood of the origin and for some α ∈ (0,2], E[|X|α] +E[|Y |α] <

∞ and
∫

Rp+q

1 ∧
∣∣(s, t)

∣∣αμ(ds, dt) < ∞. (2.3)

Then T (X,Y ;μ) is finite.
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Remark 2.2. If μ = μ1 × μ2 for some measures μ1 and μ2 on R
p and R

q , respectively, and if

μ is finite on the sets Dc
δ then it suffices for (2.2) to verify that

∫

|s|≤1

|s|αμ1(ds) +
∫

|t |≤1

|t |αμ2(dt) < ∞.

Proof. (1) Since the integrand in T (X,Y ;μ) is uniformly bounded the statement is trivial.

(2) By (2.1), μ(Dc
δ ) < ∞ for any δ > 0. Therefore, it remains to verify the integrability of

|ϕX,Y (s, t) − ϕX(s)ϕY (t)|2 on one of the sets Dδ . We consider only the case |s| ∨ |t | ≤ 1; the

cases when |s| ≤ 1, |t | > 1 and |s| > 1, |t | ≤ 1 are similar. An application of the Cauchy–Schwarz

inequality yields

∣∣ϕX,Y (s, t) − ϕX(s)ϕY (t)
∣∣2 ≤

(
1 −

∣∣ϕX(s)
∣∣2)(1 −

∣∣ϕY (t)
∣∣2). (2.4)

Since 1 − |ϕX(s)|2 =
∫
Rp (1 − cos〈s, x〉)P(X − X′ ∈ dx) for an independent copy X′ of X,

a Taylor expansion and the fact that X,X′ have finite αth moments yield for α ∈ (0,2] and some

constant c > 0,

1 −
∣∣ϕX(s)

∣∣2 ≤
∫

Rp

(
2 ∧

∣∣〈s, x〉
∣∣2)P

(
X − X′ ∈ dx

)

≤ 2

∫

|〈s,x〉|≤
√

2

∣∣〈s, x〉/
√

2
∣∣αP

(
X − X′ ∈ dx

)
+ 2P

(∣∣〈s,X − X′〉∣∣>
√

2
)

(2.5)

≤ c|s|αE
[∣∣X − X′∣∣α]< ∞.

In the last step we used Markov’s inequality and the fact that |〈s, x〉| ≤ |s||x|. A corresponding

bound holds for 1 − |ϕY (t)|2. Now, T (X,Y ;μ) < ∞ follows from (2.2) and (2.4).

(3) By (2.3), μ({(s, t) : |(s, t)| > 1}) is finite. Therefore, we need to show integrability of

|ϕX,Y (s, t)−ϕX(s)ϕY (t)|2 only for |(s, t)| ≤ 1. Using the arguments from part (2) and the finite-

ness of the αth moments, we have

∣∣ϕX,Y (s, t) − ϕX(s)ϕY (t)
∣∣2 ≤ c

(
|s|α + |t |α

)
≤ c

∣∣(s, t)
∣∣α.

Now integrability of the left-hand side at the origin with respect to μ is ensured by (2.3). �

2.2. Alternative representations and examples

If μ = μ1 × μ2 for measures μ1 and μ2 on R
p and R

q we write for x ∈R
p and y ∈R

q ,

μ̂(x, y) =
∫

Rp+q

cos
(
〈s, x〉 + 〈t, y〉

)
μ(ds, dt),

μ̂1(x) =
∫

Rp

cos〈s, x〉μ1(ds), μ̂2(y) =
∫

Rq

cos〈t, y〉μ2(dt),
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for the real parts of the Fourier transforms with respect to μ,μ1,μ2, respectively. We assume

that these transforms are well-defined. Let (X′, Y ′) be an independent copy of (X,Y ), and let Y ′′

and Y ′′′ be independent copies of Y which are also independent of (X,Y ), (X′, Y ′). We have

T (X,Y ;μ) =
∫

Rp+q

E
[
ei〈s,X−X′〉+i〈t,Y−Y ′〉 + ei〈s,X−X′〉ei〈t,Y ′′−Y ′′′〉

(2.6)
− ei〈s,X−X′〉+i〈t,Y−Y ′′〉 − e−i〈s,X−X′〉−i〈t,Y−Y ′′〉]μ(ds, dt).

Notice that the complex-valued trigonometric functions under the expected value may be re-

placed by their real parts. We intend to interchange the integral with respect to μ and the expec-

tation.

2.2.1. Finite μ

For a finite measure on R
p+q , we may apply Fubini’s theorem directly and interchange integra-

tion with expectation to obtain

T (X,Y ;μ) = E
[
μ̂
(
X − X′, Y − Y ′)]+E

[
μ̂
(
X − X′, Y ′′ − Y ′′′)]

(2.7)
− 2E

[
μ̂
(
X − X′, Y − Y ′′)].

If μ = μ1 × μ2 we also have

T (X,Y ;μ) = E
[
μ̂1

(
X − X′)μ̂2

(
Y − Y ′)]+E

[
μ̂1

(
X − X′)]

E
[
μ̂2

(
Y − Y ′)]

− 2E
[
μ̂1

(
X − X′)μ̂2

(
Y − Y ′′)].

2.2.2. The case of an infinite measure μ

We consider an infinite measure μ on R
p+q which is finite on Dc

δ for any δ > 0. We assume that

T (X,Y ;μ) is finite and μ = μ1 × μ2. In this case, we cannot pass from (2.6) to (2.7) because

the Fourier transform μ̂ is not defined as a Lebesgue integral. We have

T (X,Y ;μ) =
∫

Rp+q

(
E
[
COS(s, t)

]
+E

[
SIN(s, t)

])
μ(ds, dt), (2.8)

where

COS(s, t) = cos
(〈
s,X − X′〉) cos

(〈
t, Y − Y ′〉)+ cos

(〈
s,X − X′〉) cos

(〈
t, Y ′′ − Y ′′′〉)

− 2 cos
(〈
t,X − X′〉) cos

(〈
s, Y − Y ′′〉),

SIN(s, t) = − sin
(〈
s,X − X′〉) sin

(〈
t, Y − Y ′〉)− sin

(〈
s,X − X′〉) sin

(〈
t, Y ′′ − Y ′′′〉)

+ 2 sin
(〈
t,X − X′〉) sin

(〈
s, Y − Y ′′〉).

Using the fact that

cosu cosv = 1 − (1 − cosu) − (1 − cosv) + (1 − cosu)(1 − cosv),
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calculation shows that

E
[
COS(s, t)

]
= E

[(
1 − cos

(〈
s,X − X′〉))(1 − cos

(〈
t, Y − Y ′〉))

+
(
1 − cos

(〈
s,X − X′〉))(1 − cos

(〈
t, Y ′′ − Y ′′′〉))

− 2
(
1 − cos

(〈
t,X − X′〉))(1 − cos

(〈
s, Y − Y ′′〉))].

A Taylor series argument shows that for α ∈ (0,2],

E
[∣∣COS(s, t)

∣∣] ≤ c(E
[(

1 ∧
∣∣〈s,X − X′〉/

√
2
∣∣α)(1 ∧

∣∣〈t, Y − Y ′〉/
√

2
∣∣α)]

+E
[
1 ∧

∣∣〈s,X − X′〉/
√

2
∣∣α]E

[
1 ∧

∣∣〈t, Y − Y ′〉/
√

2
∣∣α]

+E
[(

1 ∧
∣∣〈t,X − X′〉/

√
2
∣∣α)(1 ∧

∣∣〈s, Y − Y ′′〉/
√

2
∣∣α)]).

Under condition (2.2) the right-hand side is integrable with respect to μ if

E
[
|X|α + |Y |α + |X|α|Y |α

]
< ∞. (2.9)

An application of Fubini’s theorem yields

∫

Rp+q

E
[
COS(s, t)

]
μ(ds, dt)

= E

[∫

Rp+q

((
1 − cos

(〈
s,X − X′〉))(1 − cos

(〈
t, Y − Y ′〉))

+
(
1 − cos

(〈
s,X − X′〉))(1 − cos

(〈
t, Y ′′ − Y ′′′〉))

− 2
(
1 − cos

(〈
t,X − X′〉))(1 − cos

(〈
s, Y − Y ′′〉)))μ(ds, dt)

]
.

If we assume that the restrictions μ1,μ2 of μ to R
p and R

q are symmetric about the origin

then we have E[SIN(s, t)] = −E[SIN(−s, t)] = −E[SIN(s,−t)]. Together with the symmetry

property of μ this implies that
∫
Rp+q E[SIN(s, t)]μ(ds, dt) = 0.

We summarize these arguments. For any measure ν on R
d we write

ν̃(s) =
∫

Rd

(
1 − cos〈s, x〉

)
ν(dx), s ∈R

d .

Lemma 2.3. Assume (2.2) and (2.9) for some α ∈ (0,2]. If μ1,μ2 are symmetric about the

origin and μ = μ1 × μ2 then

T (X,Y ;μ) = E
[
μ̃1

(
X − X′)μ̃2

(
Y − Y ′)]+E

[
μ̃1

(
X − X′)]

E
[
μ̃2

(
Y − Y ′)]

(2.10)
− 2E

[
μ̃1

(
X − X′)μ̃2

(
Y − Y ′′)].
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Remark 2.4. For further use, we mention the alternative representation of (2.10):

T (X,Y ;μ) = cov
(
μ̃1

(
X − X′), μ̃2

(
Y − Y ′))

(2.11)
− 2 cov

(
E
[
μ̃1

(
X − X′)|X

]
,E
[
μ̃2

(
Y − Y ′)|Y

])
.

2.2.3. Examples

Example 2.5. Assume that μ has density w on R
p+q given by

w(s, t) = cp,q |s|−α−p|t |−α−q , s ∈R
p, t ∈R

q , (2.12)

for some positive constant cp,q = cpcq . For any d ≥ 1 and α ∈ (0,2), one can choose cd such

that
∫

Rd

(
1 − cos〈s, x〉

)
cd |s|−α−d ds = |x|α. (2.13)

Under the additional moment assumption (2.9), we obtain from (2.10)

T (X,Y ;μ) = E
[∣∣X − X′∣∣α∣∣Y − Y ′∣∣α]+E

[∣∣X − X′∣∣α]E
[∣∣Y − Y ′∣∣α]

(2.14)
− 2E

[∣∣X − X′∣∣α∣∣Y − Y ′′∣∣α].

This is the distance covariance introduced by [29].

The distance covariance T (X,Y ;μ) introduced in (2.14) has several good properties. It is

homogeneous under positive scaling and is also invariant under orthonormal transformations of

X and Y . Some of these properties are shared with other distance covariances when μ is infinite.

We illustrate this for a Lévy measure μ on R
p+q , that is, it satisfies (2.3) for α = 2. In particular,

μ is finite on sets bounded away from zero. Via the Lévy–Khintchine formula, a Lévy measure

μ corresponds to an R
p+q -valued infinitely divisible random vector (Z1,Z2) (with Z1 assuming

values in R
p and Z2 in R

q ) and characteristic function

ϕZ1,Z2
(x, y) = exp

{
−
∫

Rp+q

(
ei〈s,x〉+i〈t,y〉 − 1

(2.15)

−
(
i〈x, s〉 + i〈y, t〉

)
1
(∣∣(s, t)

∣∣≤ 1
))

μ(ds, dt)

}
.

Lemma 2.6. Assume that there exists an α ∈ (0,2] such that E[|X|α] + E[|Y |α] < ∞ and μ is

a symmetric Lévy measure corresponding to (2.15) such that (2.3) holds. Then

T (X,Y ;μ) = ReE
[
− logϕZ1,Z2

(
X − X′, Y − Y ′)− logϕZ1,Z2

(
X − X′, Y ′′ − Y ′′′)

(2.16)
+ 2 logϕZ1,Z2

(
X − X′, Y − Y ′′)].

Remark 2.7. We observe that (2.16) always vanishes if Z1 and Z2 are independent.
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Proof. By the symmetry of the random vectors in (2.6) and the measure μ, we have

Re

∫

Rp+q

E
[
ei〈s,X−X′〉+i〈t,Y−Y ′〉 − 1

]
μ(ds, dt)

= Re

∫

Rp+q

E
[
ei〈s,X−X′〉+i〈t,Y−Y ′〉 − 1

−
(
i
〈
s,X − X′〉+ i

〈
t, Y − Y ′〉)1

(∣∣(s, t)
∣∣≤ 1

)]
μ(ds, dt)

= ReE
[
− logϕZ1,Z2

(
X − X′, Y − Y ′)].

The last step is justified if we can interchange the integral and the expected value. Therefore, we

have to verify that the following integral is finite:

∫

Rp+q

E
[∣∣ei〈s,X−X′〉+i〈t,Y−Y ′〉 − 1 −

(
i
〈
s,X − X′〉+ i

〈
t, Y − Y ′〉)1

(∣∣(s, t)
∣∣≤ 1

)∣∣]μ(ds, dt).

The integrals over the disjoint sets {(s, t) : |(s, t)| ≤ 1} and {(s, t) : |(s, t)| > 1} are denoted by I1

and I2, respectively. The quantity I2 is bounded since the integrand is bounded and μ is finite on

sets bounded away from zero. A Taylor expansion shows for α ∈ (0,2],

I1 ≤ c

∫

|(s,t)|≤1

E
[
2 ∧

(∣∣〈s,X − X′〉∣∣+
∣∣〈t, Y − Y ′〉∣∣)2]μ(ds, dt)

≤ c
(
E
[
|X|α

]
+E

[
|Y |α

]) ∫

|(s,t)|≤1

(
1 ∧

∣∣(s, t)
∣∣α)μ(ds, dt)

and the right-hand side is finite by assumption.

Proceeding in the same way as above for the remaining expressions in (2.6), the lemma is

proved. �

Example 2.8. Assume that μ is a probability measure of a random vector (Z1,Z2) in R
p+q and

that Z1 and Z2 are independent. Then

T (X,Y ;μ) = E
[
ϕZ1

(
X − X′)ϕZ2

(
Y − Y ′)]+E

[
ϕZ1

(
X − X′)]

E
[
ϕZ2

(
Y ′′ − Y ′′′)]

− 2E
[
ϕZ1

(
X − X′)ϕZ2

(
Y − Y ′′)].

For example, consider independent symmetric Z1 and Z2 with multivariate β-stable distributions

in R
p and R

q , respectively, for some β ∈ (0,2]. They have joint characteristic function given by

ϕZ1,Z2
(x, y) = e−(|x|β+|y|β ). Therefore

T (X,Y ;μ) = E
[
e−(|X−X′|β+|Y−Y ′|β )

]
+E

[
e−|X−X′|β ]

E
[
e−|Y−Y ′|β ]

(2.17)

− 2E
[
e−(|X−X′|β+|Y−Y ′′|β )

]
.

Example 2.9. Assume that X and Y are integer-valued. Consider the spectral densities w1

and w2 on [−π,π] of two real-valued second-order stationary processes and assume μ(s, t) =
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w1(s)w2(t). Denote the covariance functions on the integers corresponding to w1 and w2 by γ1

and γ2, respectively. We have the well-known relation

∫ π

−π

eitkwi(t) dt =
∫ π

−π

cos(tk)wi(t) dt = γi(k), k ∈ Z,

where we also exploit the symmetry of the functions wi . If we restrict integration in (2.6) to

[−π,π]2 we obtain, abusing notation,

T (X,Y ;μ) = E
[
γ1

(
X − X′)γ2

(
Y − Y ′)]+E

[
γ1

(
X − X′)]

E
[
γ2

(
Y − Y ′)]

− 2E
[
γ1

(
X − X′)γ2

(
Y − Y ′′)].

The spectral density of a stationary process may have singularities (e.g. for fractional ARMA

processes) but this density is integrable on [−π,π]. If w1,w2 are positive Lebesgue a.e. on [0,π]
then T (X,Y ;μ) = 0 if and only if X,Y are independent. Indeed, the characteristic function of

an integer-valued random variable is periodic with period 2π .

Example 2.10. To illustrate (2.16), we consider a symmetric α-stable vector (Z1,Z2) for α ∈
(0,2) with log-characteristic function

− logϕZ1,Z2
(x, y) =

∫

Sp+q−1

∣∣〈s, x〉 + 〈t, y〉
∣∣αm(ds, dt)

and m is a finite symmetric measure on the unit sphere S
p+q−1 of Rp+q . Then we have

T (X,Y ;μ) =
∫

Sp+q−1
E
[∣∣〈s,X − X′〉+

〈
t, Y − Y ′〉∣∣α +

∣∣〈s,X − X′〉+
〈
t, Y ′′ − Y ′′′〉∣∣α

− 2
∣∣〈s,X − X′〉+

〈
t, Y ′ − Y ′′〉∣∣α]m(ds, dt).

A special case is the sub-Gaussian α/2-stable random vectors with characteristic function

− logϕZ1,Z2
(x, y) = |(x, y)′�(x,y)|α/2, where � is the covariance matrix of an R

p+q -valued

random vector and we write (x, y) for the concatenation of any x ∈ R
p and y ∈ R

q . Then

T (X,Y ;μ) = E
[∣∣(X − X′, Y − Y ′)′�

(
X − X′, Y − Y ′)∣∣α/2

+
∣∣(X − X′, Y ′′ − Y ′′′)′�

(
X − X′, Y ′′ − Y ′′′)∣∣α/2

− 2
∣∣(X − X′, Y − Y ′′)′�

(
X − X′, Y − Y ′′)∣∣α/2]

.

In particular, if � is block-diagonal with �1 a p×p covariance matrix and �2 a q ×q covariance

matrix, we have

T (X,Y ;μ) = E
[∣∣(X − X′)′�1

(
X − X′)+

(
Y − Y ′)′�2

(
Y − Y ′)∣∣α/2

+
∣∣(X − X′)′�1

(
X − X′)+

(
Y ′′ − Y ′′′)′�2

(
Y ′′ − Y ′′′)∣∣α/2

− 2
∣∣(X − X′)′�1

(
X − X′)+

(
Y − Y ′′)′�2

(
Y − Y ′′)∣∣α/2]

,
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and if � is the identity matrix,

T (X,Y ;μ) = E
[∣∣∣∣X − X′∣∣2 +

∣∣Y − Y ′∣∣2∣∣α/2 +
∣∣∣∣X − X′∣∣2 +

∣∣Y ′′ − Y ′′′∣∣2∣∣α/2

(2.18)

− 2
∣∣∣∣X − X′∣∣2 +

∣∣Y − Y ′′∣∣2∣∣α/2]
.

We notice that for these examples, T (X,Y ;μ) is scale homogeneous (T (cX, cY ;μ) =
|c|αT (X,Y ;μ)) and (2.18) is invariant under orthonormal transformations (T (RX,SY ;μ) =
T (X,Y ;μ) for orthonormal matrices R and S), properties also enjoyed by the weight function

in Example 2.5.

3. The empirical distance covariance function of a stationary

sequence

In this section, we consider the empirical distance covariance for a stationary time series

((Xt , Yt )) with generic element (X,Y ) where X and Y assume values in R
p and R

q , respec-

tively. The empirical distance covariance is given by

Tn(X,Y ;μ) =
∫

Rp+q

∣∣ϕn
X,Y (s, t) − ϕn

X(s)ϕn
Y (t)

∣∣2μ(ds, dt),

where the empirical characteristic function is given by ϕn
X,Y (s, t) = 1

n

∑n
j=1 ei〈s,Xj 〉+i〈t,Yj 〉,

n ≥ 1, and ϕn
X(s) = ϕn

X,Y (s,0) and ϕn
Y (s) = ϕn

X,Y (0, t).

3.1. Asymptotic results for the empirical distance correlation

Under the conditions of Lemma 2.1 that ensure the finiteness of T (X,Y ;μ), we show that Tn is

consistent for stationary ergodic time series; see [25], Chapter 2, for a definition of ergodicity.

Theorem 3.1. Consider a stationary ergodic time series ((Xj , Yj ))j=1,2,... with values in R
p+q

and assume one of the three conditions in Lemma 2.1 are satisfied. Then

Tn(X,Y ;μ)
a.s.→ T (X,Y ;μ) as n → ∞.

Proof. For (s, t) ∈ R
p+q the difference between the joint characteristic function with the product

characteristic function and the empirical analog are given by

C(s, t) = ϕX,Y (s, t) − ϕX(s)ϕY (t) and Cn(s, t) = ϕn
X,Y (s, t) − ϕn

X(s)ϕn
Y (t).

Each of the processes ϕn
X,Y , ϕn

X , ϕn
Y is a sample mean of i.i.d. bounded continuous processes

defined on R
p+q . Consider the compact set

Kδ =
{
(s, t) ∈R

p+q : δ ≤ |s| ∧ |t |, |s| ∨ |t | ≤ 1/δ
}

(3.1)
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for small δ > 0. By the ergodic theorem on C(Kδ), the space of continuous functions on Kδ ,

ϕn
X,Y

a.s.→ ϕX,Y as n → ∞; see [18]. Hence,

∫

Kδ

∣∣Cn(s, t)
∣∣2μ(ds, dt)

a.s.→
∫

Kδ

∣∣C(s, t)
∣∣2μ(ds, dt), n → ∞.

It remains to show that

lim
δ↓0

lim sup
n→∞

∫

Kc
δ

∣∣Cn(s, t)
∣∣2μ(ds, dt) = 0 a.s.

If μ is a finite measure, we have

lim
δ↓0

lim sup
n→∞

∫

Kc
δ

∣∣Cn(s, t)
∣∣2μ(ds, dt) ≤ c lim

δ↓0
μ
(
Kc

δ

)
= 0.

Now assume that μ is infinite on the axes or at zero and (2.2) holds. We apply inequality (2.4)

under the assumption that (X,Y ) has the empirical probability measure of the sample (Xj , Yj ),

j = 1, . . . , n. Since the empirical measure has all moments finite we obtain from (2.5) that for

α ∈ (0,2],

1 −
∣∣ϕn

X(s)
∣∣2 ≤ c|s|αEn,X

[∣∣X − X′∣∣α]= c|s|αn−2
∑

1≤k,l≤n

|Xk − Xl |α,

where X,X′ are independent and each of them has the empirical distribution of the X-sample.

The right-hand side is a U -statistic which converges a.s. to E[|X − X′|α] as n → ∞ provided

this moment is finite. This follows from the ergodic theorem for U -statistics; see [1]. The same

argument as for part (2) of Lemma 2.1 implies that on Kc
δ ,

∣∣Cn(s, t)
∣∣2 ≤ cEn,X

[∣∣X − X′∣∣α]En,Y

[∣∣Y − Y ′∣∣α](1 ∧ |s|α
)(

1 ∧ |t |α
)
.

By the ergodic theorem,

lim sup
n→∞

∫

Kc
δ

∣∣Cn(s, t)
∣∣2μ(ds, dt)

≤ cE
[∣∣X − X′∣∣α]E

[∣∣Y − Y ′∣∣α]
∫

Kc
δ

(
1 ∧ |s|α

)(
1 ∧ |t |α

)
μ(ds, dt)

a.s. and the latter integral converges to zero as δ ↓ 0 by assumption.

If the measure μ is infinite at zero and (2.3) holds the proof is analogous. �

In order to prove weak convergence of Tn we assume that the sequence ((Xi, Yi)) with values

in R
p+q is α-mixing with rate function (αh); see [8], p. 18 and [17], p. 305, for the definition.

We have the following result.



Applications of distance correlation to time series 3099

Theorem 3.2. Assume that ((Xj , Yj )) is a strictly stationary sequence with values in R
p+q such

that
∑

h α
1/r

h < ∞ for some r > 1. Set u = 2r/(r − 1) and write X = (X(1), . . . ,X(p)) and

Y = (Y (1), . . . , Y (q)).

1. Assume that X0 and Y0 are independent and for some α ∈ (u/2, u], ǫ ∈ [0,1/2) and

α′ ≤ min(2, α), the following hold:

E
[
|X|α + |Y |α

]
< ∞, E

[
p∏

l=1

∣∣X(l)
∣∣α
]

< ∞, E

[
q∏

l=1

∣∣Y (l)
∣∣α
]

< ∞, (3.2)

and
∫

Rp+q

(
1 ∧ |s|α′(1+ǫ)/u

)(
1 ∧ |t |α′(1+ǫ)/u

)
μ(ds, dt) < ∞. (3.3)

Then

nTn(X,Y ;μ)
d→ ‖G‖2

μ =
∫

Rp+q

∣∣G(s, t)
∣∣2μ(ds, dt), (3.4)

where G is a complex-valued mean-zero Gaussian process whose covariance structure is given

in (3.9) with h = 0 and depends on the dependence structure of ((Xt , Yt )).

2. Assume that X0 and Y0 are dependent and for some α ∈ (u/2, u], ǫ ∈ [0,1/2) and for

α′ ≤ min(2, α) the following hold:

E
[
|X|2α + |Y |2α

]
< ∞, E

[(
1 ∨

p∏

l=1

∣∣X(l)
∣∣α
)(

1 ∨
q∏

k=1

∣∣Y (k)
∣∣α
)]

< ∞, (3.5)

and
∫

Rp+q

(
1 ∧ |s|α′(1+ǫ)/u

)(
1 ∧ |t |α′(1+ǫ)/u

)
μ(ds, dt) < ∞. (3.6)

Then

√
n
(
Tn(X,Y ;μ) − T (X,Y ;μ)

) d→ G′
μ =

∫

Rp+q

G′(s, t)μ(ds, dt), (3.7)

where G′(s, t) = 2 Re{G(s, t)C(s, t)} is a mean-zero Gaussian process.

The proof of Theorem 3.2 is given in the Appendix.

Remark 3.3. We notice that (3.3) and (3.6) are always satisfied if μ is a finite measure.

Remark 3.4. If (Xi) and (Yi) are two independent i.i.d. sequences then the statement of Theo-

rem 3.2(1) remains valid if for some α ∈ (0,2], E[|X|α] +E[|Y |α] < ∞ and
∫

Rp+q

(
1 ∧ |s|α

)(
1 ∧ |t |α

)
μ(ds, dt) < ∞. (3.8)
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Remark 3.5. The distribution of the limit variable in (3.4) is generally not tractable. Therefore

one must use numerical or resampling methods for determining quantiles of nTn(X,Y ;μ). On

the other hand, the limit distribution in (3.7) is normally distributed with mean 0 and variance

σ 2
μ that can be easily calculated from the covariance function of G(s, t) and C(s, t). Notice that

if C(s, t) = 0, the limit random variable in (3.7) is 0 and part (1) of the theorem applies. Again

resampling or subsampling methods must be employed to determine quantiles of nTn.

3.2. Testing serial dependence for multivariate time series

Define the cross-distance covariance function (CDCVF) of a strictly stationary sequence

((Xt , Yt )) by

T X,Y
μ (h) = T (X0, Yh;μ), h ∈ Z,

and the auto-distance covariance function (ADCVF) of a stationary sequence (Xt ) by

T X
μ (h) = T X,X

μ (h), h ∈ Z.

Here and in what follows, we assume that μ = μ1 × μ2 for suitable measures μ1 on R
p and μ2

on R
q . In the case of an ADCVF we also assume μ1 = μ2. The empirical versions T X

n,μ and T
X,Y
n,μ

are defined correspondingly. For example, for integer h ≥ 0, one needs to replace ϕn
X,Y (s, t) in

the definition of Tn(X,Y ;μ) by

ϕn
X0,Yh

(s, t) = 1

n

n−h∑

j=1

ei〈s,Xj 〉+i〈t,Yj+h〉, s ∈ R
p, t ∈R

q , n ≥ h + 1,

with the corresponding modifications for the marginal empirical characteristic functions. For

finite h, the change from the upper summation limit n to n−h has no influence on the asymptotic

theory.

We also introduce the corresponding cross-distance correlation function (CDCF) and auto-

distance correlation function (ADCF) respectively;

RX,Y
μ (h) =

T X,Y
μ (h)

√
T X

μ (0)T Y
μ (0)

and RX
μ (h) =

T X
μ (h)

T X
μ (0)

, h ∈ Z.

The quantities RX,Y
μ (h) assume values in [0,1], with the two endpoints representing indepen-

dence and complete dependence. The empirical CDCF RX.Y
n,μ and ADCF RX

n,μ are defined by

replacing the distance covariances T X,Y
μ (h) by the corresponding empirical versions T

X,Y
n,μ (h).

The empirical ADCV was examined in [30] and [13] as an alternative tool for testing serial

dependence, in the way that it also captures non-linear dependence. They always choose the

measure μ = μ1 × μ1 with density (2.12).

In contrast to the autocorrelation and cross-correlation functions of standard stationary time

series models (such as ARMA, GARCH) it is in general complicated (or impossible) to provide
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explicit (and tractable) expressions for T X
μ (h) and T X,Y

μ (h) or even to say anything about the

rate of decay of these quantities when h → ∞. However, in view of (2.11), we observe that

T X
μ (h) = cov

(
μ̃1

(
X0 − X′

0

)
, μ̃1

(
Xh − X′

h

))

− 2 cov
(
E
[
μ̃1

(
X0 − X′

0

)
|X0

]
,E
[
μ̃1

(
Xh − X′

0

)
|Xh

])
.

While this is not the autocovariance function of a stationary process, it is possible to bound each

of the terms in case (Xt ) is α-mixing with rate function (αh). In this case, one may use bounds

for the autocovariance functions of the stationary series (μ̃1(Xt −X′
t )) and (E[μ̃1(Xt −X′

0)|Xt ])
which inherit α-mixing from (Xt ) with the same rate function. For example, a standard inequality

([8], Section 1.2.2, Theorem 3(a)) yields that T X
μ (h) ≤ cα

1/r

h (E[(μ̃1(X0 −X′
0))

u])2/u for positive

c and r > 0 such that r−1 + 2u−1 = 1. If μ̃1 is bounded we also have T X
μ (h) ≤ cαh for some

positive constant. Similar bounds can be found for T X,Y
μ (h) provided ((Xt , Yt )) is α-mixing.

Next, we give an example where the ADCVF can be calculated explicitly.

Example 3.6. Consider a univariate strictly stationary Gaussian time series (Xt ) with mean

zero, variance σ 2 and autocovariance function γX . We choose a Gaussian probability measure μ

which leads to the relation (2.17). Choose N1,N2,N3 i.i.d. N(0,2)-distributed independent of

the independent quantities (X0,Xh), (X
′
0,X

′
h),X

′′
h . Then for h ≥ 0,

T X
μ (h) = E

[
eiN1(X0−X′

0)+iN2(Xh−X′
h)
]
+
(
E
[
eiN1(X0−X′

0)
])2

− 2E
[
eiN1(X0−X′

0)+iN2(Xh−X′′
h)
]

= E
[
ei(N1X0+N2Xh)−i(N1X

′
0+N2X

′
h)
]
+
(
E
[
eiN1(X0−X′

0)
])2

− 2E
[
ei(N1X0+N2Xh)−i(N1X

′
0+N2X

′′
h)
]

= E
[
eiN3(N

2
1 σ 2+N2

2 σ 2+2γX(h)N1N2)
1/2]+

(
E
[
eiN3(N

2
1 σ 2)1/2])2

− 2E
[
eiN3(N

2
1 σ 2+N2

2 σ 2+γX(h)N1N2)
1/2]

= E
[
e−(N2

1 σ 2+N2
2 σ 2+2γX(h)N1N2)

]
+
(
E
[
e−N2

1 σ 2])2

− 2E
[
e−(N2

1 σ 2+N2
2 σ 2+γX(h)N1N2)

]
.

For the evaluation of this expression, we focus on the first term, the other cases being similar.

Observing that σ 2 ± γX(h) are the eigenvalues of the covariance matrix

(
σ 2 γX(h)

γX(h) σ 2

)
,

calculation shows that

N2
1 σ 2 + N2

2 σ 2 + 2γX(h)N1N2
d= N2

1

(
σ 2 − γX(h)

)
+ N2

2

(
σ 2 + γX(h)

)
.
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Now the moment generating function of a χ2-distributed random variable yields

E
[
e−(N2

1 σ 2+N2
2 σ 2+2γX(h)N1N2)

]
=
(
1 + 4

(
σ 2 − γX(h)

))−1/2(
1 + 4

(
σ 2 + γX(h)

))−1/2
.

Proceeding in a similar fashion, we obtain

T X
μ (h) =

(
1 + 4

(
σ 2 − γX(h)

))−1/2(
1 + 4

(
σ 2 + γX(h)

))−1/2 +
(
1 + 4σ 2

)−1

− 2
(
1 + 4

(
σ 2 − γX(h)/2

))−1/2(
1 + 4

(
σ 2 + γX(h)/2

))−1/2
.

If γX(h) → 0 as h → ∞ Taylor expansions yield T X
μ (h) ∼ 4γ 2

X(h)/(1 + 4σ 2)3. A similar result

was given in [13], where they derived an explicit expression for T X
μ (h) for a stationary Gaussian

process (Xt ) with weight function (1.2).

If ((Xt , Yt )) is strictly stationary and ergodic then ((Xt , Yt+h)) is a strictly stationary ergodic

sequence for every integer h. Then Theorem 3.1 applies.

Corollary 3.7. Under the conditions of Theorem 3.1, for h ≥ 0,

T X,Y
n,μ (h)

a.s.→ T X,Y
μ (h) and T X

n,μ(h)
a.s.→ T X

μ (h),

and

RX,Y
n,μ (h)

a.s.→ RX,Y
μ (h) and RX

n,μ(h)
a.s.→ RX

μ (h).

Applying Theorem 3.2 and Theorem 3.1, we also have the following weak dependence result

under α-mixing. Zhou [30] proved the corresponding result under conditions on the so-called

physical dependence measure.

Corollary 3.8. Assume that X0 and Yh are independent for some h ≥ 0 and the sequence

((Xt , Yt )) satisfies the conditions of Theorem 3.2. Then

nT X,Y
n,μ (h)

d→ ‖Gh‖2
μ and nRX,Y

n,μ (h)
d→

‖Gh‖2
μ√

T X
μ (0)T Y

μ (0)
,

where Gh is a centered Gaussian process on R
p+q .

Remark 3.9. From the proof of Theorem 3.2 (the central limit theorem for the multivariate

empirical characteristic function) it follows that Gh has covariance function

Ŵ
(
(s, t),

(
s′, t ′

))
= cov

(
Gh(s, t),Gh

(
s′, t ′

))

=
∑

j∈Z
E
[(

ei〈s,X0〉 − ϕX(s)
)(

ei〈t,Yh〉 − ϕY (t)
)

(3.9)

×
(
e−i〈s′,Xj 〉 − ϕX

(
−s′))(e−i〈t ′,Yj+h〉 − ϕY

(
−t ′

))]
.
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In the special case when (Xt ) and (Yt ) are independent sequences Gh is the same across all h

with covariance function

Ŵ
(
(s, t),

(
s′, t ′

))
=
(
ϕX

(
s − s′)− ϕX(s)ϕX

(
s′))(ϕY

(
t − t ′

)
− ϕY (t)ϕY

(
t ′
))

.

Since Gh is centered Gaussian its squared L2-norm ‖Gh‖2
μ has a weighted χ2-distribution; see

[19], Chapter 1. The distribution of ‖Gh‖2
μ is not tractable and therefore one needs resampling

methods for determining its quantiles.

Remark 3.10. Corollary 3.8 can be extended to the joint convergence of the function nT
X,Y
n,μ (h)

at finitely many lags h, provided X0 and Yh are independent for these lags.

Remark 3.11. Corollary 3.8 does not apply when X0 and Yh are dependent. Then nT
X,Y
n,μ (h) →

∞ a.s. and nR
X,Y
n,μ (h) → ∞ a.s.

4. Auto-distance covariance of fitted residuals from AR(p)

process

An often important problem in time series is to assess the goodness-of-fit of a particular model.

As an illustration, consider a causal autoregressive process of order p (AR(p)) given by the

difference equations,

Xt =
p∑

k=1

φkXt−k + Zt , t = 0,±1, . . . ,

where (Zt ) is an i.i.d. sequence with a finite moment E[|Z|κ ] < ∞ for some κ > 0. It is further

assumed Zt has mean 0 if κ ≥ 1. It is often convenient to write the AR(p) process in the form,

Zt = Xt − φT Xt−1, where φ = (φ1, . . . , φp)T , p ≥ 1 and Xt = (Xt , . . . ,Xt−p+1)
T . Since the

process is assumed causal, we can write Xt =
∑∞

j=0 ψjZt−j for absolutely summable constants

(ψj ); see [3], p. 85. For convenience, we also write ψj = 0 for j < 0 and ψ0 = 1.

The least-squares estimator φ̂ of φ satisfies the relation

φ̂ − φ = Ŵ−1
n,p

1

n

n∑

t=p+1

Xt−1Zt , where Ŵn,p = 1

n

n∑

t=p+1

XT
t−1Xt−1.

If σ 2 = var(Zt ) < ∞, we have by the ergodic theorem,

Ŵn,p
a.s.→ Ŵp =

(
γX(j − k)

)
1≤j,k≤p

, where γX(h) = cov(X0,Xh), h ∈ Z. (4.1)

Causality of the process implies that the partial sum
∑n

t=p+1 Xt−1Zt is a martingale and applying

the martingale central limit theorem yields

√
n(φ̂ − φ)

d→ Q, (4.2)

where Q is N(0, σ 2Ŵ−1
p ) distributed.



3104 Davis, Matsui, Mikosch and Wan

The residuals of the fitted model are given by

Ẑt = Xt − φ̂
T

Xt−1 = (φ − φ̂)T Xt−1 + Zt , t = p + 1, . . . , n. (4.3)

For convenience, we set Ẑt = 0, t = 1, . . . , p since this choice does not influence the asymptotic

theory. Each of the residuals Ẑt depends on the estimated parameters and hence the residual

process exhibits serial dependence. Nevertheless, we might expect the test statistic based on the

distance covariance function of the residuals given by

T Ẑ
n,μ(h) =

∫

R

∣∣CẐ
n (s, t)

∣∣2μ(ds, dt)

to behave in a similar fashion for the true noise sequence (Zt ). If the model is a good fit, then we

would not expect T Ẑ
n,μ(h) to be extraordinarily large. As observed by [24], the limit distributions

for T Ẑ
n,μ(h) and T Z

n,μ(h) are not the same. As might be expected, the residuals, which are fitted

to the actual data, tend to have smaller distance covariance than the true noise terms for lags

less than p, if the model is correct. As a result, one can fashion a goodness-of-fit test based on

applying the distance covariance statistics to the residuals. In the following theorem, we show that

the distance covariance based on the residuals has a different limit than the distance covariance

based on the actual noise, if the process has a finite variance. So in applying a goodness-of-fit

test, one must make an adjustment to the limit distribution. Interestingly, if the noise has heavy-

tails, the limits based on the residuals and the noise terms are the same and no adjustment is

necessary.

For the formulation of the next result, we need some auxiliary limit theory; the proofs are

given in the supplementary material in [7].

Lemma 4.1. Consider an i.i.d. sequence (Zt ) with finite variance.

1. For every h ≥ 0,

√
n
(
CZ

n , φ̂ − φ
) d→ (Gh,Q),

where the convergence is in C(K) ×R
p , K ⊂ R

2 is a compact set, Gh is the limit process

of CZ
n with covariance structure specified in Remark 3.9 for the sequence ((Zt ,Zt+h)), Q

is the limit in (4.2), (Gh,Q) are mean-zero and jointly Gaussian with covariance matrix

cov
(
Gh(s, t),Q

)
= −ϕ′

Z(s)ϕ′
Z(t)Ŵ−1

p �h, s, t ∈R, (4.4)

where �h = (ψh−j )j=1,...,p and ϕ′
Z is the first derivative of ϕZ .

2. For every h ≥ 0,

√
n
(
CZ

n ,CẐ
n − CZ

n

) d→ (Gh, ξh),

where (Gh,Q) are specified in (4.4) and

ξh(s, t) = tϕZ(t)ϕ′
Z(s)�T

h Q, (s, t) ∈ K, (4.5)
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the convergence is in C(K,R2), K ⊂R
2 is a compact set. In particular, we have

√
nCẐ

n

d→ Gh + ξh. (4.6)

Now we can formulate the following result; the proof is given in the supplementary material

in [7].

Theorem 4.2. Consider a causal AR(p) process with i.i.d. noise (Zt ). Assume

∫

R2

[(
1 ∧ |s|2

)(
1 ∧ |t |2

)
+
(
s2 + t2

)
1
(
|s| ∧ |t | > 1

)]
μ(ds, dt) < ∞. (4.7)

1. If σ 2 = Var(Z) < ∞, then

nT Ẑ
n,μ(h)

d→ ‖Gh + ξh‖2
μ and nRẐ

n,μ(h)
d→

‖Gh + ξh‖2
μ

T Z
μ (0)

, (4.8)

where (Gh, ξh) are jointly Gaussian limit random fields on R
2. The covariance structure of

Gh is specified in Remark 3.9 for the sequence ((Zt ,Zt+h)), ξh and the joint limit structure

of (Gh, ξh) are given in Lemma 4.1.

2. Assume that Z is in the domain of attraction of a stable law of index α ∈ (0,2), that is,

P(|Z| > x) = x−αL(x) for x > 0, L(·) is a slowly varying function at ∞, and

P(Z > x)

P(|Z| > x)
→ p and

P(Z < −x)

P(|Z| > x)
→ 1 − p

as x → ∞ for some p ∈ [0,1] ([10], p. 313). Then we have

nT Ẑ
n,μ(h)

d→ ‖Gh‖2
μ and nRẐ

n,μ(h)
d→

‖Gh‖2
μ

T Z
μ (0)

, (4.9)

where Gh is a Gaussian limit random field on R
2. The covariance structure of Gh is spec-

ified in Remark 3.9 for the sequence ((Zt ,Zt+h)).

Remark 4.3. Rémillard [24] mentioned that T Z
n,μ(h) and T Ẑ

n,μ(h) for an AR(1) process have

distinct limit processes and he also suggested the limiting structure in (4.8).

Remark 4.4. The proof of Theorem 4.2 requires knowledge of the precise form of the AR pa-

rameter estimates. We believe that this result, especially the limit in (4.8) can be extended to

cover ARMA processes and some non-linear processes that are invertible. This is the subject of

ongoing research.

The structure of the limit process in (4.8) is rather implicit. In applications, one needs to rely

on resampling methods. Relation (4.8) can be extended to a joint convergence result for finitely
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many lags h but the dependence structure of the limiting vectors is even more involved. Condition

(4.7) holds for probability measures μ = μ1 × μ1 on R
2 with finite second moment but it does

not hold for the benchmark measure μ = μ1 × μ1 described in (2.12). A reason for this is that

‖ξh‖2
μ is in general not well defined in this case. If Zt has characteristic function ϕZ then by

virtue of (4.5), ‖ξh‖2
μ is finite a.s. if and only if

∫ ∞

−∞

∣∣tϕZ(t)
∣∣2μ1(dt)

∫ ∞

−∞

∣∣ϕ′
Z(s)

∣∣2μ1(ds) < ∞.

Now assume that Zt has a density function f and choose μ1(dt) = c1t
−2 dt . Then by

Plancherel’s identity, the first integral becomes

∫ ∞

−∞

∣∣ϕZ(t)
∣∣2 dt = c

∫ ∞

−∞
f 2(t) dt.

If one chooses f to be a symmetric gamma distribution with shape parameter δ ∈ (0,1/2), that

is, f (z) = 0.5βδ|z|δ−1e−|z|β/Ŵ(δ), then the integral
∫∞
−∞ f 2(t) dt is infinity and hence the limit

random variable in (4.8) cannot be finite.

AR simulation

We illustrate the results of Theorem 4.2. First, we generate independent replications of a time

series (Xt )t=1,...,1000 from a causal AR(10) model with Zt ∼ N(0,1) and

φ = (−0.140,0.038,0.304,0.078,0.069,0.013,0.019,0.039,0.148,−0.062).

In this and the following examples, we choose the weight measure μ = μ1 × μ2, where μi is

the N(0,0.5)-distribution and hence (4.7) is satisfied. From the independent replications of the

simulated residuals, we approximate the limit distribution ‖Gh + ξh‖2
μ/T Z

μ (0) of nRẐ
n,μ(h) by

the corresponding empirical distribution.

The left graph in Figure 1 shows the box-plots for nRẐ
n,μ(h) based on 1000 replications from

the AR(10) model, each with sample size n = 1000. As seen from the plots, the distribution at

each lag is heavily skewed. In the right panel of Figure 1, we compare the empirical 5%, 50%,

95% quantiles of nRẐ
n,μ(h) to those of nRZ

n,μ(h), the scaled ADCF of i.i.d. noise, all of which

have the same limit, ‖Gh‖2
μ/T Z

μ (0). The asymptotic variance of the ADCF of the residuals is

smaller than that of i.i.d. noise at initial lags, and gradually increases at larger lags to the values

in the i.i.d. case. This behavior is similar to that of the ACF of the residuals of an AR process;

see for example Chapter 9.4 of [3].

Theorem 4.2 provides a visual tool for testing the goodness-of-fit of an AR(p) model, by

examining the serial dependence of the residuals after model fitting. Under the null hypothesis,

we expect nRẐ
n,μ(h) to be well bounded by the 95% quantiles of the limit distribution ‖Gh +

ξh‖2
μ/T Z

μ (0). For a single time series, this quantity can be approximated using a parametric

bootstrap (generating an AR(10) process from the estimated parameters and residuals); see for
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Figure 1. Distribution of nRẐ
n,μ(h), n = 1000 for the residuals of an AR(10) process with N(0,1) inno-

vations. Left: Box-plots from 1000 independent replications. Right: 5%, 50%, 95% empirical quantiles of

nRẐ
n,μ(h) based on simulated residuals, on resampled residuals and on i.i.d. noise, respectively. The weight

measure is μ = μ1 × μ2, with each μi ∼ N(0,0.5).

example [23]. In the right graph of Figure 1, we overlay the empirical 5%, 50%, 95% quantiles

of nRẐ
n,μ(h) estimated from one particular realization of the time series. As can be seen in the

graph, the parametric bootstrap provides a good approximation to the actual quantiles found via

simulation. On the other hand, the quantiles found by simply bootstrapping the residuals provides

a rather poor approximation, at least for the first 10 lags.

We now consider the same AR(10) model as before, but with noise having a t -distribution

with 1.5 degrees of freedom. (Here the noise is in the domain of attraction of a stable distribution

with index 1.5.) The left graph of Figure 2 shows the box-plots of nRẐ
n,μ(h) based on 1000

replications, and the right graph shows the 5%, 50%, 95% quantiles of nRẐ
n,μ(h) and nRZ

n,μ(h),

both of which have the same limit distribution ‖Gh‖2
μ/T Z

μ (0). In this case, the quantiles of

‖Gh‖2
μ/T Z

μ (0) can be approximated naively by bootstrapping the fitted residuals (Ẑt ) of the AR

model. The left graph of Figure 2 overlays the 5%, 50%, 95% quantiles from bootstrapping with

those from the simulations. The agreement is reasonably good.

We next provide an empirical example illustrating the limitation of using the measure in (2.12).

Again, we use the same AR(10) model as before, but with noise now generated from the symmet-

ric gamma distribution with δ = 0.2, β = 0.5. The corresponding pair of graphs with boxplots

and quantiles for nRẐ
n,μ(h) is displayed in Figure 3. Notice now that the box plots for the sam-

Figure 2. Distribution of nRẐ
n,μ(h) for residuals of AR process with t1.5 innovations. Left: lag-wise box–

plots. Right panel: empirical 5%, 50%, 95% quantiles from simulated residuals, empirical quantiles from

resampled residuals, and empirical quantiles from i.i.d. noise. The weight measure is μ = μ1 × μ2, with

each μi ∼ N(0,0.5).
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Figure 3. Distribution of nRẐ
n,μ(h), n = 1000 for residuals of AR process with a symmetric

Gamma(0.2,0.5) noise. Left: box-plots from 500 independent replications. Right panel: empirical 5%,

50%, 95% quantiles from simulated residuals and from i.i.d. noise. The measure μ is given by (2.12).

pling distribution of the distance correlation for the first 10 lags are rather spread out compared

to those at lags greater than 10. In particular, the sampling behavior of these distance correlations

is directly opposite of what we observed in Figure 1 where a finite measure was used. To further

illustrate this disparity, the plot on the right in Figure 3 displays the 95%,50%,5% quantiles for

the companion box plots (the dotted lines are the corresponding quantiles for i.i.d. noise with the

Gamma(0.2,0.4) distribution). Now, compared to quantiles of distance correlation based on the

i.i.d. noise, we see a stark difference. The median for the estimates based on the residuals using

the weight function in (2.12) is nearly the same as the 95% quantile for the noise at lags 1–10.

This illustrates the problem with using (2.12) as a weight function applied to the residuals.

5. Data examples

5.1. Amazon daily returns

In this example, we consider the daily stock returns of Amazon from 05/16/1997 to 06/16/2004.

Denoting the series by (Xt ), Figure 4 shows the ACF of (Xt ), (X2
t ), (|Xt |) and ADCF of (Xt )

with weight measure μ(ds, dt) = s−2t−2 ds dt . In the right panel, we compare the ADCF with

the 5%, 50%, 95% confidence bounds of the ADCF for i.i.d. data, approximated by the corre-

sponding empirical quantiles from 1000 random permutations. With most financial time series,

which are typically uncorrelated, serial dependence can be detected by examining the ACF of

the absolute values and squares. Interestingly for the Amazon data, the ACF of the squared data

also fails to pick up any signal. On the other hand, the ADCF has no trouble detecting serial

dependence without having to resort to applying any transformation.

5.2. Wind speed data

For the next example, we consider the daily averages of wind speeds at Kilkenny’s synoptic

meteorological station in Ireland. The time series consists of 6226 observations from 1/1/1961

to 1/17/1978, after which a square root transformation has been applied to stabilize the variance.

This transformation has also been suggested in previous studies (see, for example, [14]). The
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Figure 4. ACF and ADCF of daily stock returns of Amazon (Xt ) from 05/16/1997 to 06/16/2004. Upper

left: ACF of (Xt ); Upper right: ACF of (X2
t ); Lower left: ACF of (|Xt |); Lower right: ADCF of (Xt ), the

5%, 50%, 95% confidence bounds of ADCF from randomly permuting the data.

ACF of the data, displayed in Figure 5, suggests a possible AR model for the data. An AR(9)

model was found to provide the best fit (in terms of minimizing AICC among all AR models)

to the data. The ACF of the residuals (see upper right panel in Figure 5) shows that the serial

correlation has been successfully removed. The ACF of the squared residuals and ADCF of the

residuals are also plotted in the bottom panels Figure 5. For computation of the ADCF, we used

the N(0,0.5) distribution for the weight measure, which satisfies the condition (4.7). The ADCF

of the residuals is well bounded by the confidence bounds for the ADCF of iid noise, shown

by the dotted line in the plot. Without adjusting these bounds for the residuals, one would be

tempted to conclude that the AR model is a good fit. However, the adjusted bounds for the ADCF

of residuals, represented by the solid line in the plot and computed using a parametric bootstrap,

suggest that some ADCF values among the first 8 lags are in fact larger than expected. Hence,

this sheds some doubt on the validity of an AR(9) model with iid noise for this data. A similar

conclusion can be reached by inspecting the ACF of the squares of the residuals (see lower left

panel in Figure 5).

One potential remedy for the lack of fit of the AR(9) model, is to consider a GARCH(1,1)

model applied to the residuals. The GARCH model performs well in devolatilizing the AR-fitted

residuals and no trace of a signal could be detected through the ACF of the GARCH-residuals

applied to the squares and absolute values. The ADCF of the devolatilized residuals, seen in

Figure 6, still presents some evidence of dependence. Here the confidence bounds plotted are

for i.i.d. observations, obtained from 1000 random permutations of the GARCH-residuals and

as such do not include an adjustment factor. Ultimately, a periodic AR model, which allows for

periodicity in both the AR parameters and white noise variance might be a more desirable model.
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Figure 5. ACF and ADCF of Kilkenny wind speed time series and AR(9) fitted residuals. Upper left: ACF

of the series. Upper right: ACF of the residuals. Lower left: ACF of the residual squares. Lower right: ADCF

of the residuals, the 5%, 50%, 95% confidence bounds of ADCF for fitted residuals from 1000 parametric

bootstraps, and that for iid noise from 1000 random permutations.

Appendix: Proof of Theorem 3.2

The proof follows from the following lemma.

Lemma A.1. Assume that
∑

h α
1/r

h < ∞ for some r > 1 and set u = 2r/(r −1). We also assume

the moment conditions (3.2) (or (3.5)) for some α > 0 if X0 and Y0 are independent (dependent).

Figure 6. ADCF of the residuals of Kilkenny wind speed time series from AR(9)-GARCH fitting and the

5%, 50%, 95% confidence bounds of ADCF for i.i.d. noise from 1000 random permutations.
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1. For α ≤ 2 there exists a constant c > 0 such that for ǫ ∈ [0,1/2),

nE
[∣∣Cn(s, t) − C(s, t)

∣∣2]≤ c
(
1 ∧ |s|α(1+ǫ)/u

)(
1 ∧ |t |α(1+ǫ)/u

)
, n ≥ 1. (A.1)

2. If α ∈ (u/2, u] then
√

n(ϕn
X,Y −ϕX,Y )

d→ G on compact sets K ⊂R
p+q for some complex-

valued mean-zero Gaussian field G.

Remark A.2. Notice that C(s, t) = 0 when X0 and Y0 are independent.

Proof. (1) We focus on the proof under the assumption of independence. At the end, we indicate

the changes necessary when X0 and Y0 are dependent.

We write

Uk = ei〈s,Xk〉 − ϕX(s), Vk = ei〈t,Yk〉 − ϕY (t), k ≥ 1,

where we suppress the dependence of Uk and Vk on s and t , respectively. Then

nE
[∣∣Cn(s, t)

∣∣2] = nE

∣∣∣∣∣
1

n

n∑

k=1

UkVk − 1

n

n∑

k=1

Uk

1

n

n∑

l=1

Vl

∣∣∣∣∣

2

≤ 2nE

[∣∣∣∣∣
1

n

n∑

k=1

UkVk

∣∣∣∣∣

2]
+ 2nE

[∣∣∣∣∣
1

n

n∑

k=1

Uk

1

n

n∑

l=1

Vl

∣∣∣∣∣

2]
=: 2(I1 + I2).

We have by stationarity

I1 = E
[
|U0V0|2

]
+ 2

n−1∑

h=1

(1 − h/n)ReE[U0V0UhVh].

Since U0 and V0 are independent E[U0V0] = 0. In view of the α-mixing condition (see [8],

Section 1.2.2, Theorem 3(a)) we have

∣∣ReE[U0V0UhVh]
∣∣ ≤ cα

1/r
h

(
E
[
|U0V0|u

])2/u

= cα
1/r

h

(
E
[
|U0|u

])2/u(
E
[
|V0|u

])2/u
(A.2)

≤ cα
1/r
h

(
E
[
|U0|2

])2/u(
E
[
|V0|2

])2/u
.

In the last step we used that u = 2r/(r − 1) > 2 and that max(|U0|, |V0|) ≤ 2. We have for

α ∈ (0,2]

E
[
|U0|2

]
= 1 −

∣∣ϕX(s)
∣∣2 ≤ E

[
1 ∧

∣∣〈s,X − X′〉∣∣α]≤ c
(
1 ∧ |s|α

)
.

Therefore and since
∑

h α
1/r

h < ∞ we have I1 ≤ c(1 ∧ |s|α)2/u(1 ∧ |t |α)2/u.
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Now we turn to I2. By the Cauchy–Schwarz inequality and since | 1
n

∑n
k=1 Uk| and

| 1
n

∑n
k=1 Vk| are bounded by 2 we have

I2 ≤ 2n

(
E

∣∣∣∣∣
1

n

n∑

k=1

Uk

∣∣∣∣∣

4)1/2(
E

∣∣∣∣∣
1

n

n∑

k=1

Vk

∣∣∣∣∣

4)1/2

≤ c

(
nE

∣∣∣∣∣
1

n

n∑

k=1

Uk

∣∣∣∣∣

2+δ)1/2(
nE

∣∣∣∣∣
1

n

n∑

k=1

Vk

∣∣∣∣∣

2+δ)1/2

,

for any δ ∈ [0,2]. In view of Lemma 18.5.1 in [17], we have for δ ∈ [0,1),

I2 ≤ c

(
nE

∣∣∣∣∣
1

n

n∑

k=1

Uk

∣∣∣∣∣

2)(2+δ)/4(
nE

∣∣∣∣∣
1

n

n∑

k=1

Vk

∣∣∣∣∣

2)(2+δ)/4

.

Similar arguments as for I1 show that

I2 ≤ c
(
1 ∧ |s|α(2+δ)/4

)2/u(
1 ∧ |t |α(2+δ)/4

)2/u
.

Combining the bounds for I1 and I2, we arrive at (A.1).

Now we indicate the changes necessary when X0 and Y0 are dependent. We use the notation

above and, additionally, write W̃k = UkVk − C(s, t). We have

Cn(s, t) − C(s, t) = 1

n

n∑

k=1

W̃k − 1

n

n∑

k=1

Uk

1

n

n∑

l=1

Vl .

Then

nE
[∣∣Cn(s, t) − C(s, t)

∣∣2]≤ 2nE

[∣∣∣∣∣
1

n

n∑

k=1

W̃k

∣∣∣∣∣

2]
+ 2nE

[∣∣∣∣∣
1

n

n∑

k=1

Uk

1

n

n∑

l=1

Vl

∣∣∣∣∣

2]
= 2

(
I ′

1 + I2

)
.

Since E[W̃0] = 0, we have by stationarity

I ′
1 = E

[
|W̃0|2

]
+ 2

n−1∑

h=1

(1 − h/n)ReE[W̃0W̃h].

Observe that E[|W̃0|2] ≤ 2(E|U0|4E|V0|4)1/2 + 2|C(s, t)|2 and

|U0|2 ≤
(∣∣ei〈s,X0〉 − 1

∣∣+E
[∣∣1 − ei〈s,X0〉

∣∣])2

≤ c
(
1 ∧

(
|s||X0|

)α/2)2 + c
(
1 ∧

(
|s|α/2

E|X0|α/2
))2

.
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Since E[|X0|2α] < ∞ we have E[|U0|4] ≤ c(1 ∧ |s|2α) and in a similar manner, E|V0|4 ≤ c(1 ∧
|t |2α). We also have |C(s, t)|2 ≤ c(1 ∧ |s|α)(1 ∧ |t |α). Finally, we conclude that

E
[
|W̃0|2

]
≤ c

(
1 ∧ |s|α

)(
1 ∧ |t |α

)
.

With the α-mixing condition we obtain

∣∣ReE[W̃0W̃h]
∣∣ ≤ cα

1/r

h

(
E
[
|W̃0|u

])2/u ≤ cα
1/r

h

(
E
[
|W̃0|2

])2/u
.

This together with
∑

h α
1/r

h < ∞ yields I ′
1 ≤ c(1 ∧ |s|α)2/u(1 ∧ |t |α)2/u. The remaining term I2

can be treated in the same way as in the independent case. Combining the bounds for I ′
1 and I2,

we arrive at (A.1).

(2) We need an analog of S. Csörgő’s central limit theorem (Csörgő [4–6]) for the empir-

ical characteristic function of an i.i.d. multivariate sequence with Gaussian limit. For ease of

notation we focus on the X-sequence; the proof for the (X,Y )-sequence is analogous and there-

fore omitted. The convergence of the finite-dimensional distributions of
√

n(ϕn
X − ϕX) follows

from Theorem 18.5.2 in [17] combined with the Cramér–Wold device. We need to show tight-

ness of the normalized empirical characteristic function on compact sets. We use the sufficient

condition of Theorem 3 in [2] for multiparameter processes. We evaluate the process on cubes

(s, t] =
∏p

k=1(sk, tk], where s = (s1, . . . , sp) and t = (t1, . . . , tp) and si < ti , i = 1, . . . , p. The

increment of the normalized empirical characteristic function on (s, t] is given by

In(s, t] =
√

n
(
ϕn

X(s, t] − ϕX(s, t]
)

=
√

n

n

n∑

r=1

{ ∑

k1=0,1

· · ·
∑

kp=0,1

(−1)
p−

∑
j kj

(
p∏

l=1

ei(sl+kl(tl−sl))X
(l)
r (A.3)

−E

[
p∏

l=1

ei(sl+kl(tl−sl))X
(l)
r

])}
=: 1√

n

n∑

r=1

Wr ,

where Xr = (X
(1)
r , . . . ,X

(p)
r ) and

Wr =
p∏

l=1

(
eitlX

(l)
r − eislX

(l)
r
)
−E

[
p∏

l=1

(
eitlX

(l)
r − eislX

(l)
r
)
]
.

We apply the sums
∑

kj =0,1 inductively to derive (A.3). Observe that

E
[∣∣In(s, t]

∣∣2]= E
[
|W0|2

]
+ 2

n−1∑

h=1

(1 − h/n)ReE[W0Wh].

By the Lipschitz property of trigonometric functions we have for some constant c > 0 and α ∈
(0,2],

∣∣eislX
(l)
r − eitlX

(l)
r
∣∣2 ≤ c

(
1 ∧ |tl − sl |2

(
X(l)

r

)2
/4
)
≤ c

(
1 ∧ |sl − tl |α

∣∣X(l)
r

∣∣α/4α
)
.
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Proceeding as for (A.2) and noticing that α ≤ 2 ≤ u, we have

∣∣E[W0Wh]
∣∣ ≤ cα

1/r

h

(
E
[
|W0|u

])2/u

≤ α
1/r
h

p∏

l=1

|sl − tl |2α/u

(
E

[
p∏

l=1

∣∣X(l)
0

∣∣α
])2/u

.

Using the summability of (α
1/r

h ) and the moment condition on X0, we may conclude that

E
[∣∣In(s, t]

∣∣2]≤ c

p∏

l=1

|sl − tl |2α/u.

If 2α/u > 1 the condition of Theorem 3 in [2] yields that the processes (
√

n(ϕn
X − ϕX)) are tight

on compact sets. �

Proof of Theorem 3.2(1). Recall the definition of Kδ from (3.1) and that X0 and Y0 are inde-

pendent. From Lemma A.1 and the continuous mapping theorem, we have

∫

Kδ

∣∣√nCn(s, t)
∣∣2μ(ds, dt)

d→
∫

Kδ

∣∣G(s, t)
∣∣2μ(ds, dt), n → ∞.

From (3.3), (A.1) and the dominated convergence theorem, for any ε > 0, some ǫ ∈ (0,1/2] and

α′ ≤ min(2, α),

lim
δ↓0

lim sup
n→∞

P

(∫

Kc
δ

∣∣√nCn(s, t)
∣∣2μ(ds, dt) > ε

)

≤ ε−1 lim
δ↓0

lim sup
n→∞

∫

Kc
δ

E
[∣∣√nCn(s, t)

∣∣2]μ(ds, dt)

≤ lim
δ↓0

∫

Kc
δ

c
(
1 ∧ |s|α′(1+ǫ)/u

)(
1 ∧ |t |α′(1+ǫ)/u

)
μ(ds, dt) = 0.

�

Proof of Theorem 3.2(2). Now we assume that X0 and Y0 are dependent. We observe that

√
n
(
Tn(s, t;μ) − T (s, t;μ)

)
=
∫

Rp+q

√
n
(∣∣Cn(s, t)

∣∣2 −
∣∣C(s, t)

∣∣2)μ(ds, dt).

In view of Lemma A.1(2) and the a.s. convergence of Cn on compact sets the continuous mapping

theorem implies that for some Gaussian mean-zero process G′,
∫

Kδ

√
n
{(

Cn(s, t) − C(s, t)
)
Cn(s, t) + C(s, t)

(
Cn(s, t) − C(s, t)

)}
μ(ds, dt)

d→
∫

Kδ

G′(s, t)μ(ds, dt), n → ∞,
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where G′X(s, t) = 2 Re{G(s, t)C(s, t)}. We have

∣∣|Cn|2 − |C|2
∣∣=

∣∣|Cn − C|2 + 2 Re
(
C(Cn − C)

)∣∣≤ c|Cn − C|.

By Markov’s inequality, (A.1) and (3.3),

lim
δ↓0

lim sup
n→∞

P

(∫

Kc
δ

√
n
∣∣∣∣Cn(s, t)

∣∣2 −
∣∣C(s, t)

∣∣2∣∣μ(ds, dt) > ε

)

≤ c lim
δ↓0

lim sup
n→∞

∫

Kc
δ

(
nE
[
|Cn − C|2

])1/2
μ(ds, dt)

≤ lim
δ↓0

∫

Kc
δ

c
(
1 ∧ |s|α′(1+ǫ)/u

)(
1 ∧ |t |α′(1+ǫ)/u

)
μ(ds, dt) = 0.

�
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