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Applications of Effective Probability Theory
to Martin-Lof Randomness

Mathieu Hoyrup and Cristébal Rojas

Abstract

We pursue the study of the framework of layerwise computability introduced in
[HR09a] and give three applications. (i) We prove a general version of Birkhoff’s ergodic
theorem for random points, where the transformation and the observable are supposed
to be effectively measurable instead of computable. This result significantly improves
[V'y97, Nan08]. (ii) We provide a general framework for deriving sharper theorems
for random points, sensitive to the speed of convergence. This offers a systematic
approach to obtain results in the spirit of Davie [Dav01]. (iii) Proving an effective
version of a theorem of Ulam, we positively answer a question raised in [Fou08]: can
random Brownian paths reach any random number? All this shows that layerwise
computability is a powerful framework to study Martin-Lof randomness, with a wide
range of applications.
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1 Introduction

Algorithmic randomness emerged as an early achievement of Kolmogorov’s program to base
probability theory on the theory of computing. Yet a framework allowing the combination
of these two theories is still lacking: for instance, computable analysis is mainly concerned
with effective versions of topological notions, and not probabilistic/mesure-theoretic ones.
For this reason, the study of algorithmic randomness has not reached its expected range of
application: general probability theory. Let us recall the main contributions of algorithmic
randomness to probability theory developed so far.

Theorems for random points. The main novelty brought by algorithmic randomness is
that probabilistic laws can be strengthened in principle, holding at every random point and
not only with probability one. Classical examples can be found in [ML66, Vov87, V’y97| for
instance. When proving this kind of result the key hypothesis is the computability of the
random variables involved. However, it is well-known that computability notions are the
effective versions of topological ones (the computable functions are precisely the effectively
continuous ones, the semi-decidable sets are precisely the effectively open sets, and so on).
Hence the computability assumption on random variables is (i) inappropriate in principle,
as probability theory is grounded on measure theory and not on topology; (ii) a priori too
strong, as in the classical setting only properties as measurability, integrability are required.
This leads to the following:

Problem 1. Theorems for random points should hold for “effectively measurable” objects
and not only computable ones.

This problem has already been independently investigated in [Nan08, GHR10] where
ergodic theorems for random points are proved for different types of “almost everywhere
computable” functions. These works are, however, still far from catching the effective version
of measurable functions. For instance in Birkhoff’s ergodic theorem, nothing can be said
about the mean sojourn time of algorithmically random points in fractal sets having effective
constructions, as the Smith- Volterra-Cantor (or fat Cantor) set'.

IThe Smith-Volterra-Cantor set A C [0, 1] is homeomorphic to the Cantor set and has Lebesgue measure



Information given by the randomness degree. A further contribution of algorithmic
randomness to probability theory consists in making use of the “randomness degree” of a
random point x to get additional information about the way x satisfies a given probabilistic
law. For instance in [Dav01], the speed of convergence in the Strong Law of Large Numbers
is computed from the “compressibility coefficient” of each random sequence. This kind of
result gives a much sharper insight into probabilistic phenomena and, we believe, new tools
are needed in order to make this approach systematic and applicable on abstract spaces:

Problem 2. Having a general framework to get sharper theorems for random points, using
the information given by the randomness degree.

Layerwise computability. In [HR09a], working in the context of computable probability
spaces (to which Martin-Lof randomness has been recently extended, see [Gac05, HR09b]),
effective versions of measure-theoretic notions were examined and another contribution of
algorithmic randomness to probability theory was developed: the setting of a new framework
for computability adapted to the probabilistic context. This was achieved by making a
fundamental use of the existence of a universal Martin-Lof test to endow the space with
what we call the Martin-Léf layering. In this new framework, which we call layerwise
computability, the layerwise versions of virtually all computability notions can be naturally
defined. The contributions of this setting can be summarized in the following principle,
supported by the main results in [HR09al:

Correspondence Principle (CP). Under effectivity assumptions, measure-theoretic no-
tions correspond exactly to layerwise versions of topological ones.

Intuitively, this gives evidence that the layering structure grasps a large part of the
probabilistic phenomena: each probabilistic notion, that by nature intimately depends on
the underlying measure p, can be expressed without referring to p but only to its imprint on
the space, captured by the layering. In this paper, elaborating on [HR09a] and developing
layerwise computability further, we give solutions to Problems 1 and 2. The CP is at the
core of these solutions, that we briefly present now.

Solution to Problem 1. We prove general versions of theorems for random points and
effectively measurable random variables, in particular Birkhoff’s ergodic theorem. This is a
significant improvement of [Nan08, GHR10] as it implies in particular a positive result for
the Smith-Volterra-Cantor set. To prove these results we develop tools allowing to adapt the
existent techniques (used in the computable context) to the layerwise computable context.
Then, the results for effectively measurable objects follow from the CP. This strategy is very
general and applicable in a wide range of situations.

1
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Solution to Problem 2. As a further illustration of the CP we prove that under effectivity
assumptions, almost everywhere convergence corresponds to the layerwise version of uniform
convergence. This result gives evidence that the layering encodes information from which
sharper results can be stated, providing a systematic approach to obtain results in the spirit
of [Dav01]. In particular, we use it to compute the speed of convergence of random points
(in a given layering) in both the Strong Law of Large Number and the Ergodic Theorem,
in their general versions. The explicit connection between our framework and the results in
[Dav01] is also given.

As a preliminary step, we use Martin-Lof randomness and an isomorphism theorem to
derive an effective version of Ulam’s theorem about tightness of probability measures. This
gives yet another tool to solve problems related to algorithmic randomness, as it enables us
to give a positive answer to a question raised in [Fou08] for algorithmically random Brownian
motion (see Sect. 5.3).

In Sect. 2 we recall the background on computable probability spaces and Martin-Lof
randomness and prove the effective version of an Ulam’s result. In Sect. 3 we set the frame-
work for layerwise computability and state the results relating it to effective measurability.
In Sect. 4 we study the convergence of random variables from the effective point of view. We
finish in Section 5 by applying all this machinery to obtain the general results announced
above, giving solutions to Problems 1 and 2.

2 Preliminaries

2.1 Computable probability spaces

We work on the well-studied computable metric spaces (see [Wei00]).
Definition 2.1.1. A computable metric space is a triple (X, d,S) where:
1. (X,d) is a separable metric space,
2. § ={s; : i € N} is a countable dense subset of X with a fixed numbering,
3. d(s;, s;) are uniformly computable real numbers.

S is called the set of ideal points. If x € X and r > 0, the metric ball B(x,r) is defined
as {y € X :d(z,y) <r}. Theset B:={B(s,q):s€S,qe Q,q> 0} of ideal balls has a
canonical numbering B = {B; : i € N}. An effectively open set is an open set U such that
thereis ar.e. set £ C Nwith U = (J,.; Bi- A compact set K is effectively compact if the
set {(i1,...,4,) : K CB;,U...UB; } CNisr.e. Let K C X. A set V is effectively open
in K if there is an effective open set U such that VN K = UN K. A set V is decidable
in K if V and X \ V are effectively open in K. A function f: X — Y is computable on
K if the preimages of effectively open sets are effectively open in K, in a uniform way. A
real function f : X — [—o0, +00] is lower semi-computable if the sets f~1(q;, +00) are
uniformly effectively open, it is upper semi-computable if — f is lower semi-computable.



Any object that has some effectivity can be naturally encoded into a (possible more than
one) integer, called its Gddel number.

Remark 2.1.1. Let K be effectively compact. It is not difficult to see that the complement
X \ K is an effective open set, uniformly in K, and that if U is an effective open set, then
K\ U is effectively compact, uniformly in U, K.

Several approaches to the computability of Borel probability measures have been pro-
posed and happen to give the same notion, which can then be considered as a robust one.

Definition 2.1.2 (from [Eda96, Sch07, HR09b]). Let (X,d,S) be a computable metric
space. A Borel probability measure p on X is computable if u(B;, U...U B;,) are lower
semi-computable, uniformly in 7,...,%,.

Definition 2.1.3 (from [HR09b]). A computable probability space is a pair (X, i) where
X is a computable metric space and p is a computable Borel probability measure on X.

2.1.1 Algorithmic randomness.

Martin-Lof randomness was first defined in [ML66] on the space of infinite symbolic se-
quences. Its generalization to abstract spaces has been investigated in [ZL70, HW03, Gac05,
HRO9b]. We follow the approaches [Gac05, HR09b] developed on any computable probability
space (X, ).

Definition 2.1.4. A Martin-Lof test (ML-test) V is a sequence of uniformly effective
open sets V,, such that p(V,,) < 27". A point x passes a ML-test V if x ¢ [ V,. A point
is Martin-Lof random (ML-random) if it passes all ML-tests. The set of ML-random
points is denoted by ML,,.

Theorem 2.1.1 (adapted from [ML66]). Every computable probability space (X, u) admits
a universal Martin-Lof test, i.e. a ML-test U such that for all x € X, x is ML-random <=
x passes the test U. Moreover, for each ML-test V' there is a constant ¢ (computable from
any Gadel number of V') such that V, . C U, for all n.

From now and beyond, we fix a particular universal ML-test U. One can assume w.l.o.g.
that U,+1 C U,.

When the underlying space is complete, even if is is unbounded the finite character
of probability measures makes the probabilistic phenomena concentrate in a small region.
This is formally expressed by Ulam’s theorem: on a complete separable metric every Borel
probability measure is tight. We prove its effective version:

Theorem 2.1.2 (Effective Ulam’s theorem). On a complete computable metric space, every
computable Borel probability measure is effectively tight: the sets K,, := X \ U, are uniformly
effective compact sets and u(K,) >1—27".

The proof of this result uses the following theorem taken from [HR09b] (Thm. 5.1.1 and
Cor. 6.2.1).



Theorem 2.1.3. For every (X, u) computable probability space there is a computable mea-
sure v on the Cantor space {0,1} such that ML, and ML, are computably homeomorphic,
i.e. there 1s a computable bijection F : ML, — ML, with computable inverse. This homeo-
morphism pushes v to .

2.1.2 Effective measurability.

The following is an adaptation of [HR09a] to complete spaces. Let [&], be the set of Borel
subsets of X quotiented by the equivalence relation A ~, B <= d,(A, B) :== u(AAB) = 0.
d, is a metric on [G],, which has a natural computable metric structure.

Definition 2.1.5. A Borel set A is p-recursive if [A], is a computable point of [G],. A
measurable function f : (X, ) — Y is p-recursive if there is a basis B = {By, Ba, ...} of
Y effectively equivalent to B such that f~1(B;) are uniformly p-recursive.

Definition 2.1.6. A set A is effectively p-measurable if there are uniformly effective
compact sets C, and open sets U, such that C;, C A C U, and u(U, \ C,) < 27". A
function f : X — Y is effectively p-measurable if there is a basis B = {By, By,...} of Y
effectively equivalent to B such that f ’1(3) are uniformly effectively p-measurable.

In the original definition the sets C),, are complements of effective open sets. When
the space is complete, requiring C), to be effectively compact gives the same notion, using
effective tightness (Thm. 2.1.2) and Rmk. 2.1.1.

Theorem 2.1.4 (from [HR09a]). 1. A is p-recursive <= A is equivalent to an effec-
tively p-measurable set.

2. f is p-recursive <= f is equivalent to an effectively p-measurable function.

3 Layerwise computability

Now we enter in the main novelty of this article. With effective versions of measure-theoretic
notions at our disposal, one can hope to solve Problem 1. However the notions developed
so far are difficult to handle (and rather heavy, see Def. 2.1.6) or even not well-defined
on algorithmically random points (see Def. 2.1.5). It was demonstrated in [HR09a] that
algorithmic randomness and the universal test offer an alternative elegant way of handling
effective measurability notions. Let (X, ) be a complete computable probability space. It
comes with a canonical universal ML-test U,, with U,,; C U,. We proved that the sets
K, := X \ U, are uniformly effective compact sets (Thm. 2.1.2). Hence the set of ML-
random points is layered by an increasing sequence of effective compact sets: ML = |J,, K,,.

Definition 3.0.7 (Martin-Lof Layering). Let (X, u) be a computable probability space. We
call the sequence (K, )nen the Martin-Léf layering of the space.

Definition 3.0.8 (Layerwise computability notions).
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1. A set A C X is layerwise semi-decidable if for all n, A is effectively open on K,,,
uniformly in n, i.e. there are uniformly effective open sets U, such that AN K, =
U,NK,,

2. A set A C X is layerwise decidable if for all n, A is decidable on K, uniformly in
n, i.e. both A and X \ A are layerwise semi-decidable,

3. A function f: (X, pu) — Y is layerwise computable if for all n, f is computable on
K,,, uniformly in n, i.e. f~!(B;) are uniformly layerwise semi-decidable.

More generally, every computability (or effective topological) notion has its layerwise
counterpart?. For instance, the layerwise counterpart of effective uniform convergence (i.e, in
the sup norm) of functions will be examined in section 4. In general, layerwise computability
is not stable under composition, simply because layerwise computable functions may not
preserve randomness. This can be overcome under measure presevation:

Proposition 3.0.1 (from [HR09al]). Let (X, ) be a computable probability space and T :
X — X a layerwise computable function which preserves p (i.e. wo T = ). Then:

1. T preserves ML-randomness. Moreover there is a contant ¢ such that T(K,) C K, .
for all n.

2. If f: X =Y is layerwise computable then so is f o T, uniformly in f and T.

3.1 Relation with effective measurability

If T: X — X is measurable and preserves y, then 771 : [&], — [&], is well-defined and
continuous. In [HR09a], we prove the following equivalences:

Theorem 3.1.1. Let A C X be a set, f: X — Y a function and T : X — X a measure-
preserving function.

1. A is effectively p-measurable <= A is layerwise decidable.
2. f: X =Y is effectively p-measurable <= [ is layerwise computable.
3. T7Y is computable <= T is equivalent to a layerwise computable function.

Therefore, under effectivity assumptions measure-theoretical notions are the layerwise
versions of topological ones. Observe that the latter are expressed without referring to p but
only to the Martin-Lof layering. In other words, the layering catches the essential part of
the probabilistic features. This is the first illustration of the Correspondence Principle (see
Introduction).

2Layerwise computable functions should not be confused with compact-computable functions as defined
in [Mor01]. Indeed, the compact sets involved in [Mor01] are not only effectively compact but also effectively
closed, i.e. they contain a dense sequence of computable points (which is of course not the case for the K,,’s,
as random points are generally not computable).



3.2 Layerwise tests

We now state the theorem which will allow to solve Problem 1: making theorems on random
points hold under effective measurability assumptions. The point is that some classical
results underlying the practice of algorithmic randomness have — surprisingly — they layerwise
counterpart.

Definition 3.2.1. A layerwise Martin-Lof test A is a sequence of uniformly layerwise
semi-decidable sets A,, such that pu(A,) < 27". A layerwise integrable test is a layerwise
lower semi-computable function ¢ : X — [0, 4-00] such that [tdu < cc.

Theorem 3.2.1. Let U be a layerwise semi-decidable set, A a layerwise ML-test and t a
layerwise integrable test.

1. If u(U) =1 then ML, C U.

2. If x is ML-random, then x ¢ (), An. Moreover, there is a constant ¢ (computable from
a Gadel number of the sequence A) such that A,y N K, =0 for all n.

3. If x is ML-random, then t(x) < co. Moreover, there is a constant ¢ such that t < 2"*¢
on K,,.

4 Convergence of random variables

In [V'y97] the following result for convergence of random variables on random points is
stated: if computable functions converge almost everywhere in an effective way then they
converge on ML-random points. Here we improve this in several ways:

e using layerwise tests, we weaken the hypothesis: the functions are now assumed to be
effectively measurable only, which gives a solution to Problem 1,

e using the layering, we get information about the speed of convergence on random
points, providing a solution to Problem 2,

e under effectivity assumptions, we get a characterization of a probabilistic notion (namely,
almost everywhere convergence) as the layerwise version of a topological one (namely,

uniform convergence), which further illustrate the Correspondence Principle, beyond
Theorem 3.1.1.

e we give other results for random points under different types of assumptions on the
convergence of the sequence.

Observe that what follows works on any computable probability space (algorithmic ran-
domness was only developed on the Cantor space when [V'y97]| was written). Let f; : X — R
be a sequence of random variables and f another random variable (expected to be the limit
of f;). Let D, (9) := {x : i >n,|fi— f| > d}. It is a standard observation that the sequence
fi converge almost everywhere to f if and only if the measure of the sets D, (d) tends to
zero, for each 9. This motivates the following:



Definition 4.0.2. Functions f, converge effectively almost everywhere (effectively
a.e.) if p(D,(5)) converge to 0, effectively from 0. In other words there is a computable
function n(d, €) such that (Dye.(0)) < e.

As already said, V’yugin [V'y97] proved that if f,, are uniformly computable functions
that converge effectively a.e. then they converge at each ML-random point. Actually, the
result also holds when the functions f, are uniformly effectively p-measurable. Indeed, for
each § the sets D,,59-n)(9) form a layerwise ML-test hence by Thm. 3.2.1 we directly get
the convergence at every ML-random point. We can even go further: the layering gives
information about the speed of convergence at each random point. By Thm. 3.2.1 again
there is a constant ¢ (computable from a Gédel number of the sequence f, and the function
n(d,e)) such that, for € K,, we have x ¢ Dy(d), with N = n(6,27"7°). In other words,
if we know that x € K, we can compute a number N such that for all i > N we have
|fi(z) — f(z)| < §. This motivates the following, which is the layerwise version of effective
convergence for the uniform norm:

Definition 4.0.3. Functions f; converge layerwise effectively uniformly to f if for
each k, the restrictions of f; to K} converge to the restriction of f to K} for the uniform
norm, effectively from k. In other words, there is a computable function n(d, k) such that

£ = i = supse 1fi — FI < 6 for all i > n(5, k).

In the same way that uniform convergence implies pointwise convergence, such functions
converge on each ML random point.

Proposition 4.0.1. If f; are uniformly layerwise computable functions that converge layer-
wise effectively uniformly to f then f is layerwise computable.

As said above, effective a.e. convergence implies layerwise effective uniform convergence.
Actually this is a characterization, which provides another illustration of the Correspondence
Principle:

Theorem 4.0.2. Let f,, be uniformly effectively p-measurable functions. Then f, converge
effectively a.e. if and only if f, converge layerwise effectively uniformly.

At the same time, this result gives evidence that layerwise computability is a solution
to Problems 1 and 2: this convergence for random points holds for effectively p-measurable
functions and not only computable ones, and the speed of convergence can be computed from
the layer a random point belongs to.

Corollary 4.0.1. If f; are uniformly effectively p-measurable functions that converge effec-
tively a.e. to f, then f is effectively pu-measurable.

The simplicity of this proof shall be very general, as soon as the Correspondence Principle
holds: a result about effective measure-theoretical notions can be split into two parts (i)
the layerwise version of the corresponding result for effective topological (i.e. computability)
notions (as Prop. 4.0.1) and (ii) the characterizations of effective measure-theoretical notions
as layerwise topological ones (as Thm. 3.1.1 and 4.0.2).

9



4.0.1 Monotone convergence.

The sequence f; is monotonic if f;,1 < f; for all . When the sequence is monotonic Thm.
4.0.2 can be proved with weaker effectivity assumptions:

Proposition 4.0.2. Let f; be a monotonic sequence of uniformly layerwise lower semi-
computable. Then the following statements are equivalent:

1. f; converge effectively a.e. to 0,
2. f; converge layerwise effectively uniformly to 0.

It is an interesting fact that for monotonic upper semi-computable sequences, the almost
everywhere convergence to 0 is always effective:

Proposition 4.0.3. Let f; be a monotonic sequence of uniformly layerwise upper-computable
functions which converge a.e. to 0. Then f; converge effectively a.e. to 0.

4.0.2 Non-effective convergence.

When the convergence a.e. is not effective we can still say something concerning random
points.

Theorem 4.0.3. Let f,, f be uniformly layerwise computable functions, and ¢ some (not
necessarily computable) constant.

o [f f, converge a.e. to a constant ¢ then liminf f,(z) < ¢ < limsup f,(x) for allx € ML.

o [f f, converge a.e. to a layerwise computable function f, then liminf f,(z) < f(x) <
limsup f,,(x) for all x € ML.

5 Applications

5.1 Ergodic theorems for effectively measurable functions

We now apply the developed tools to solve Problem 1 for ergodic theorems, namely Poincaré
recurrence theorem and Birkhoff’s ergodic theorem. Let us first recall the first version of
Birkhoff’s theorem for random points, proved by V'yugin [V'y97].

Theorem 5.1.1 (Ergodic theorem for random points, V'yugin). Let p be a computable
probability measure on X = {0,1}N, T: X — X a computable measure-preserving map and
f € LYX,u) a computable function (called observable). Then:

(i) For every ML-random sequence x, the limit f(z) := lim, .., 1 S foTi(x) emists.

(ii) If the system is moreover ergodic, then f(x) = [ fdu for every ML-random .

10



This theorem embodies several probabilistic laws. For instance, if we consider the system
to be (o, \) where o is the shift transformation® and A is the uniform measure, and take as
observable the indicator function T[l] (which is computable since the cylinder [1] is a decidable
set), we get the Law of Large numbers for random sequences. Let us point out some facts
about the hypothesis of this theorem:

1. Tt is established for Cantor space X = {0, 1},
2. the transformation 7" and the observable f are supposed to to be computable.

The first point is not a real restriction, as the proof for general spaces remains unchanged.
However the second condition is an unnatural restriction as the classical Birkhoff’s result,
belonging to the measure-theoretic setting, is stated for measurable functions whereas com-
putability corresponds to the effective version of continuity. Moreover, when passing to
general (usual) spaces, this restriction becomes much more important since the theorem
cannot be applied to indicators of sets anymore (in connected spaces only trivial sets are
decidable). In [Nan08], the Ergodic theorem is extended to include functions having some
discontinuities at computable points®. A further step is given in [GHR10] where the result
is proved to hold for the indicator functions of every (not necessarily constructive) set of
continuity®. Yet, nothing can be said about some natural sets having effective constructions,
like the Smith- Volterra-Cantor set (or fat Cantor set) whose Lebesgue measure is % but
has empty interior, so it is not a continuity set.

In what follows we give a definite solution by proving the Ergodic Theorem for effectively
measurable functions. In particular, indicator functions of sets like the fat Cantor set fall
in this class. As an introductory result, let us do so with Poincaré recurrence theorem first,
whose proof is simpler.

Theorem 5.1.2 (Poincaré recurrence theorem for random points). Let (X, ) be a com-
putable probability space, T : X — X an effectively p-measurable ergodic measure-preserving
map and A a layerwise semi-decidable set with positive measure. Then every ML-random
point falls infinitely often in A by iteration of T.

Theorem 5.1.3 (Ergodic theorem for random points). Let (X, i) be a computable probability
space, T : X — X an effectively p-measurable measure-preserving map and f € L' (X, ) be
an effectively p-measurable observable. Then:

(i) For every ML-random point x, the limit f(z) := lim, .o 2 S foTi(x) emists.
(ii) If the system is moreover ergodic, then f(z) = [fdu for every ML-random x.

Proof. (i) The tools developed in section 3.2 allow to prove the first point by following the
original V’yugins’s proof. Given f and 7', he constructs an integrable function o(7T, f, x)

3Defined by (0(w)); = wit1
4These functions belong to the class of Braverman’s “graph computable functions”.
5A set A is a set of u-continuity if its boundary has p-measure zero.
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which is finite iff % Z?:_ol foT!(x) converge. When f and T are computable, o is lower semi-
computable hence it is an integrable test, which proves the convergence at each random
point. Actually the definition of o makes sense on any computable probability space. When
f and T are only effectively measurable, they are layerwise computable by Thm. 3.1.1 hence
all foT™ are uniformly layerwise computable (Prop. 3.0.1). In this case, o is then layerwise
lower semi-computable so it is a layerwise integrable test; as a result, it is finite on all ML-
random points by Thm. 3.2.1, from which (i) follows. (ii) By Thm. 4.0.3, the limit is the
expected limit [ f du when the system is ergodic. O]

5.2 Layerwise computable speed of convergence on random points

In this section we show how the framework developed so far provides a solution to Problem
2. Let us first recall some results established by Davie [Dav01].

5.2.1 Davie’s results.

To state them some background is needed first. On the Cantor space, implicitely endowed
with the uniform measure X\, the compressibility coefficient of a sequence w is defined as
dy(w) = sup,{n — H(w.,)} where H(w) is the Kolmogorov-Chaitin complezity of the finite
word w. A fundamental result from algorithmic randomness and information theory is that
a sequence is ML-random w.r.t. A if and only if d)(w) is finite. Davie defines K¢ := {w :
dy(w) < ¢} and proves:

Theorem 5.2.1 (Davie, 2001). If A; are uniformly effective open sets such that ). j1(A;)
is a finite computable real number, then there is a computable function n(c) such that for all
we K and allm >n(c), w ¢ A,.

Theorem 5.2.2 (Davie, 2001). There is a computable function n(c,e) such that for all

S”T(w) — %‘ < € where S,(w) is the number of ones in the prefix

w € K¢ and all n > n(c,e),

of w of length n.

The equivalence between the paradigm of effective measure theory (Martin-Lof’s ap-
proach) and the paradigm of compressibility (Chaitin’s approach) is a strong non-trivial
result, partly based on the technical coding theorem. Davie’s results follow this line as
they relate the compressibility coefficient of a sequence to the way the sequence satisfies a
probability law, and thus their proofs consist in a finer use of the coding theorem. In our
framework, we stay on the side of effective measure theory. In this way, the relation between
the layer a random point belongs to and the way it satisfy laws is much simpler to derive, as
it is essentially already contained in the existing proofs. This provides a solution to Problem
2. At the same time, as layerwise computability provides a solution to Problem 1 too, our
results hold for effectively measurable sets/functions. As an illustration, we first state here
the refined version of classical results in algorithmic randomness due to Solovay. The proofs
are straightforward combinations of the usual proofs together with Thm. 3.2.1. Note that
the first one is the generalization of Thm. 5.2.1 due to Davie.

12



Proposition 5.2.1 (Borel-Cantelli 1). There is a computable function n(c,p) such that
if A, are uniformly layerwise semi-decidable sets such that o := ) u(A,) is finite and
computable, then there is a constant ¢, computable from a Godel number of the sequence A,
and «, such that if x € K, then x ¢ A,, for alln > n(c,p).

We can also get a weaker result when the sum is not computable.

Proposition 5.2.2 (Borel-Cantelli 2). Let A; be uniformly layerwise semi-decidable sets
such that ), i(A;) < oo. There is ¢, computable from a description of the sequence A;, such
that avery x in K, falls in the A;’s at most 2""¢ times.

5.2.2 (Very) Strong Law of Large Numbers.

We can now easily prove:

Theorem 5.2.3. Let X; : (X,pu) — R be i.i.d. effectively pu-measurable random variables
such that f\Xi]4 dp < 400. Let S, := Xo+---+X,,_1. Hence, there is a computable function

n(c,e) such that if x € K, then for all n > n(c,¢), S”T(x) - [ X dp,’ < €.

Proof. All what we need is the convergence in the SLLN to be effective. This easily follow
from the classical estimate (see [Bil79] for instance) p{z : 3i > n,|n"1S,(z) — [ Xodu| >
0} < o 1) 51, Where C'is a constant independent of n and ¢. The result now follows from
Theorem 4.0.2.

O

5.2.3 Effective convergence in Birkhoff’s theorem

The convergence of the Birkhoff averages is not effective in general. In [V’y97], on the Cantor
space V’yugin builds a computable probability measure which is invariant under the shift
transformation, and such that the convergence of the averages of T[l] is not effective. This
measure is an infinite combination of ergodic measures and it is still an open question if a
computable ergodic measure could be built for which the convergence is not effective.

However, in [GHRO09] it is shown that for a class of ergodic systems, the convergence in
Birkhoff theorem is effective. Let us recall that a system is ergodic if and only if for any two
integrable functions f and g, the quantity v,(f,g) :== |23, [foT .gdu— [fdu [gdpu|
goes to 0. A system is said to be In?-ergodic for (f,g), if there is a constant cfg > 0 such
that v, (f, 9) < =L for all n > 2.

Theorem 5.2.4 (Ergodic theorem for random points). Let (X, i) be a computable probability
space, T : X — X be an effectively measurable measure-preserving map and f € LY(X, i) be
an effectively measurable function. If T is In*-ergodic for (f, f), then there is a computable
function n(c,e) such that if v € K. then for alln > n(c,e), |23, f(x) o T (z) — [ fdpu| <

E.
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5.2.4 Relation between K, and K"

Let X be the Cantor space endowed with a computable Borel probability measure p. The
compressibility coefficient can be adapted to u: it is known as the randomness deficiency
d,(w) = sup,{—log p[wi.,] — H(wi.,)}. This function is known to be the logarithm of a
universal integrable u-test, which means that for every integrable u-test t there is a constant
a such that logt < a+d,. On the other hand, every computable probability space admits a
universal integrable test t,, (see [Gac05, HR09b]). Generalizing Davie, let us define K¢ := {z :
tu(x) <2°}. As ML, = |, K¢, the sequence (K€).cn can be used as an alternative layering
and underly alternative versions of Def. 3.0.8 and 4.0.3. Actually, this would lead to the same
notions. Indeed, using classical results from algorithmic randomness and information theory
(see [GacT9, LVI3, Géc]), it can be proved that there is a constant ¢ such that K, C K¢
and K" C K, 1210gn+c for all n. Hence K™ are also uniformly effective compact sets and all
layerwise computability notions relative to K™ are equivalent to the notions relative to K,,.

5.3 An application to Brownian motion

The study of Brownian motion from the algorithmic randomness point of view is carried
out in [Fou00, Fou08]. Algorithmically random paths, called complex oscillations as they
are defined in terms of Kolmogorov-Chaitin complexity, are the Martin-Lof random points
of the computable probability space (C([0,1]), W), where C([0, 1]) is the space of continuous
functions z : [0,1] — R with the uniform norm and W is the Wiener probability measure.
In [Fou00] it is proved that if ¢ € [0, 1] is computable and x is a complex oscillation then x(?)
is not computable. At the end of [Fou08] the following question is raised: can it be lower
semi-computable?

We say that y € R is A-ML-random if y = n+ z where n € Z and z € [0, 1] is ML-random
w.r.t. the Lebesgue measure A on [0, 1]. As noticed in [Fou08], it is a corollary of [KHNO7]
that x(t) is actually A-ML-random. But then can it be a Chaitin’s 2 (which are lower semi-
computable A-ML-random reals)? The compactness of the layers (Thm. 2.1.2) enables us to
give a positive answer. Indeed, Prop. 3.0.1 can be reinforced using Thm. 2.1.2:

Proposition 5.3.1. Let (X, u) and (Y,v) be computable probability spaces such that X is
complete. Let T : X — Y be a layerwise computable function which maps p to v. Then
T(ML,) = ML,, i.e. T preserves randomness but it is also onto.

Now, given a computable ¢ € [0, 1], the function 7; : C([0, 1]) — R mapping = to =(t) is
computable. It pushes the Wiener measure W to a gaussian measure G. As G has bounded
density w.r.t. the uniform measure and vice versa, MLg is exactly the set of A-ML-random
reals. Hence,

Corollary 5.3.1. Let z be a complex oscillation. For each computable t € [0,1], x(t) is
A-ML-random. Moreover, given any \-ML-random y and any computable t, there exists a
complex oscillation x such that z(t) = y.
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A  Proofs

Proof of Thm. 2.1.2

First, this is true on the Cantor space C' with a computable Borel probability measure v: C'is
known to be effectively compact, so K? := C\U,, is effectively compact, uniformly in n (Rmk.
2.1.1). Now, we use Thm. 2.1.3, which provides a computable function F' : ML, — ML,,. The
sets K], := F(K?) are then uniformly effectively compact, with measures u(K}) > 1 —27".
By the universality of U,, there is a constant ¢ such that X \ K. C U, for all n. In other

words, K, = X\ U, C K, .so K, = K\ U, is effectively compact, uniformly in n.

Proof of Thm. 3.2.1

We use the following corollary of Kurtz’ theorem: if K is an effective compact set which has
measure zero, then it contains no ML-random point.

1. Let n € N. There is an effectively open set U, such that AN K, = U, N K,,. As

w(A) =1, W(K,\U,) = u(K,\ A) = 0. But K,,\ U, is an effective compact set so it contains
no random point. As K, C ML, it follows that K, \ U, = 0, so K,, C A. And this is true
for every n.
2. Let UP be uniformly effective open sets such that A,NK,, = UPNK,,. Let C, = K,\ 4, =
K, \UP: this is an effective compact set and u(C;,) > 1— 2771 50 by using universality of K,
there is a constant ¢ such that K, C Cp. for all p. As aresult, K, N A, = K, \ Cpie = 0.
3. We can suppose w.l.o.g. that [tdu < 1. Let A, = {z : t(z) > 2"}. As usual, u(4,) <
27" Now, A, = t7}(2",+o0] is a layerwise semi-decidable set by definition of layerwise
lower computability. So A, is a layerwise ML-test, so there is ¢ such that A, . N K, = 0.
Hence, t < 2"*¢ on K,,.

Proof of Thm. 4.0.2

First, we need some preparation. Given a sequence of random variables f;, we define the
deviation sets:

Aii(0) =i = f1 > 6] and D,(8) == [ Ai () .

L,j=zn
If f is another function (expected to be their limit in some sense), we also define:

Al(0) =1fi— fI >3] and DJ(s):=JA/©) .

i>n

We remark that one could replace D,(§) by DI(8) := {x : 3i > n,|fi — f| > 6} where f
is the almost sure limit. Indeed, one easily has D(§) C D, (§) C D/(5/2) mod 0. Hence,

e let n(d,¢) be adapted to D: it is adapted to D/.
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e let n(d,¢) be adapted to D/: n(§/2,¢) is then adapted to D.

We now prove the result. We first use Thm. 3.1.1: the functions f, are uniformly lay-
erwise computable. Suppose f, converge effectively a.e. Let U, := Up21 Dy a-» 2-5-(277).
This is a layerwise semi-decidable set and, by definition of n(d, ), u(Uy) < 37 o, 27F77 <27,
By Thm. 3.2.1 there is ¢ such that for all k, Ky N Ugye = 0. Let m(p, k) = n(27P,27FP=¢):
it is a computable function and if z € K}, x ¢ Uy, which means that for all p > 1, for all
i,j > m(p, k), |fi(x) — fj(x)| < 27P. Hence, for all p, k,

1fi = fillg, <277 foralli,j > m(p, k).

Conversely, suppose that there is a computable function n(d, k) such that for all 4,j >
n(0,k), | fi — fill, < 0. Let m(d,€) be any computable function such that m(d,e) = n(9, k)
with 27% < . One has Kj N Dyy5)(6) = 0, 80 pi(Dimse)(0)) < 1 — pu(Ky) < 27*<e.

Proof of Prop. 4.0.2

(1)= (2) Suppose f; — 0 effectively a.e. There is a computable function m(k) such that
i ({z: fom(x) >27%}) <27 for all k.

Let Uy be this layerwise effective open set. There exists a constant ¢ such that for all &,
Ky N Uy = 0. Hence || follf, < 27F=¢ for all n > m(k + ).
(2) = (1) The same as in Theorem 4.0.2.

Proof of Thm. 4.0.3

Let z € X: liminf f,(z) < ¢ <= Vq > ¢, k,In >k, f(xr) < q. So for each ¢ > ¢ and k,
(U=l fu(r) < q}) = 1. When g is rational, this is moreover a layerwise semi-decidable
set, so it contains all ML-random points. As this is true for every rational ¢ > 0 and every
k, liminf f,(z) < ¢ for every ML-random point x. Replacing f by —f and ¢ by —c¢, one
obtains limsup f,,(z) > ¢. When f,, converge to a layerwise computable function f, the first
result applied to f,, — f gives the second one.

Proof of Prop. 5.3.1

As the image of an effective compact set by a computable function is an effective compact
set, T'(K,) are uniformly effectively compact. As v is the push-forward of u, v(T(K,)) =
wW(T YT (K,))) > u(K,) >1—2"" Using the minimality of the layering K/, of (Y,v), there
is a constant ¢ such that K] C T'(K,4.) for all n. Hence ML, C T'(ML,,).
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