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Abstract

Numerical weather prediction (NWP) is an initial-value

problem for a system of nonlinear partial differential

equations (PDEs) in which the initial values are known

only incompletely and inaccurately. Data at initial time

can be supplemented, however, by observations of. the system

distributed over a time interval preceding it. Estimation

theory has been successful in approachinq such problems

for models governed by systems of ordinary differential

equations and of linear POEs. We develop methods of

sequential estimation for NWP.

A model exhibiting many features of large-scale

atmospheric flow important in NWP is the one governed by

the shallow-fluid equations. We study first the estimation

problem for a linearized version of these equations. The

vector of observations corresponds to the different

atmospheric quantities measured and space-time patterns

associated with conventional and satellite-borne meteorological

observing systems. A discrete Kalman-Bucy (K-B) filter

is applied to a finite-difference version of the equations,

which simulates the numerical models used in NWP.
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The specific character of the equations' dynamics

gives rise to the necessity of modifying the usual K-B filter.

The modification consists in eliminating the high-frequency

inertia-gravity waves which would otherwise be generated

by the insertion of observational data. The modified filtering

procedure developed here combines in an optimal way dynamic

initialization (i.e., elimination of fast waves) and

four-dimensional (space-time) assimilation of observational

data, two procedures which traditionally have been carried

out separately in NWP. Comparisons between the modified

filter and the standard K-B filter have been made.

The matrix of weighting coefficients, or filter,

applied to the observational corrections of state variables

converges rapidly to an asymptotic, constant matrix. using

realistic values of observational noise and system noise,

this convergence has been shown to occur in numerical experi

ments with the linear system studied; it has also been

analyzed theoretically in a simplified, scalar case.

The relatively rapid convergence of the filter in our simula

tions leads us to expect that the filter will be efficiently

computable for operational NWP models and real observation

patterns.

Our program calls for the study of the asymptotic filter's

dependence on observation patterns, noise levels, and the

system's dynamics. Furthermore', the covariance ma trices of

system noise and observational noise will be determined

from the data themselves in the process of sequential estima

tion, rather than be assigned predetermined, heuristic values.

Finally, the estimation procedure will be extended to the

full, nonlinear shallow-fluid equations.
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1. INTRODUCTION

One of the main reasons we cannot tell what the weather

will be tomorrow is that we do not know what the weather is

oday. In other words, numerical weather prediction (NWP)

s an initial-value problem for which initial data are not

~ v a i l a b l e in sufficient quantity and with sufficient

I curacy.

Numerical forecasts are produced now routinely on a

llily basis by a number of weather services in different

'lIotries. The models used in NWP are discretized versions

he partial differential equations (PDEs) governing large

',lIe atmospheric flow. The discretization is performed by

nite differencing, finite element or spectral representa-

11 ns. The number of degrees of freedom of the discretized

Is is typically of the order of 10
5
-10

6
. The spatial

om in of the models is the entire globe or at least an entire

",j·phere.

A large number of observations is made by the conven

11.l' ground-based meteorological network, coordinated

h World Weather watch (I*/w). They consist of point

1 I of temperature, humidity, pressure and horizontal

,Ily. These observations, of the order of 10
5

in number,

It duced at the so-called synoptic times, 0000 GMT and

.MT. It is customary therefore to choose a synoptic

initial time for a numerical forecast. Conventional

.••••• v .. l! ns are insufficient in number in order to determine



characteristics.

A number of additional observations are made at the

model state at the initial instant, NWP centers use the
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(Fleming et al., 1979 a,b,

model atmosphere. Furthermore,

the best available data at some preceding instant, e.g., 24 h

reaches the initial instant for the next scheduled forecast,

Additional data replace the model values as they become

available: the model is updated. When the model integration

or 48 h earlier, and is integrated forward in time.

In order to obtain the best possible estimate of the

was suggested by Charney et al. (1969). The model is provided

The most common procedure to use such data, called updating,

form a rather bewildering array by their uneven distribution

in space and time, as well as by their different error

by the l ~ network, is gathered in an essentially time-

data available over a time interval preceding that instant.

non-conventional measuring platforms

and references therein). All these observations together

so-called subsynoptic times, 0600 GMT and 1800 GMT. A still

continuous manner from polar-orbiting satellites and other

Hemisphere (Fig. l).

the initial state of the

larger number of observations, exceeding by now that given

concentrated over the continents of the Northern Hemisphere,

and much sparser over the oceans and over the Southern

they are very unevenly distributed in space, being

its guess of the initial state is blended with the data

available at that instant to produce the desired estimate.

Thus the model itself is used to assimilate the data
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available up to the initial instant. variations of this

procedure, as well as other procedures for the four

dimensional (4-0), space-time assimilation of meteorological

observations are reviewed in Bengtsson (1975).

The blending of observations and model forecast values

has been made most recently using in an explicit manner

the error structure of the data (Phillips, 1976; Rutherford,

1972). This error structure is determined from past data

and the resulting linear regression coefficients are computed

once and for all, their constant values being used all along

the assimilation cycle of the model (McPherson et al., 1979;

Schlatter et al., 1976). A modification of this approach,

which combines more intimately the dynamics of the model with

the time-continuously changing observation patterns, appears

in Ghil et al. (1979).

Clearly, a mathematical framework well suited for the 4-0

assimilation problem of NWP is the state-space approach

of estimation theory. It deals with the estimation of

stochastic processes which are generated by randomly perturbed

differential or difference equations. This approach was

first formulated for processes governed by linear systems of

ordinary differential equations (OOEs: Kalman, 1960; Kalman

and Bucy, 1961); its results are widely known as the Kalman

or the Kalman-Bucy (K-B) filter. We expect that applications

of the K-B filter, with suitable modifications, to 4-0 data

assimilation will provide additional physical insight into

146

'hls field's outstanding problems and eventually lead to

IJ ter practical algorithms for solving them.

The purpose of the present article is to apply the

-a filter to the linearized shallow-water equations and

learn as much as possible from this application about

h properties of the filter relevant to operational 4-0

assimilation. This linear system already contains

I' rtant features of the equations used in operational

models, and our application should be instructive.

We present a brief review of the K-B filter in Section 2.

dynamical model and observing pattern studied are presented

, ction 3, along with the modification of the K-B filter

111' ted by the system's dynamics. Numerical results

me analytical ones follow in Section 4. A discus-

It E the results, comparison with operational practice

nclusions follow in Section 5.
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2. A REVIEW OF THE STATE-SPACE APPROACH Ta ESTIMATION E(X
l

- x) = E(X
2

- x) o ,

The intent of this section is to familiarize the

reader with the ideas and methods of sequential estimation.

Systematic, more or less rigorous expositions of the theory

are in existence for the interested reader (Bucy and Joseph,

1 9 6 ~ ; Curtain and Pritchard, 1978; Davis, 1977; Gelb, 1974;

and we say the measurements are unbiased. It is natural to

require that the estimate x also be unbiased:

E ( ~ - x) = 0

this requirement is equivalent to

Jazwinski, 1970). Here we shall stay on the purely formaI,

and hopefully intuitive, level. so that (2.la) becomes

(2.1b)

2.1 Statistical Considerations in Estimation: A Simple Illustration x = (2.lc)

and that their variances

Given a quanti ty X, suppose tha t two independent measure-

ments of this quantity, xl and x
2

' are available. For

instance x could be the temperature in a room and xl and x
2

the readings of two thermometers placed in the room. In

the absence of any additional information about x, it is natural to

seek an estimate of x, x say, as a linear function of xl and x
2

'

x = alx
l

+ a
2

x
2

. (2.1a)

The function itself is called an estimator; the estimate is

Next it is assumed that the measurement errors xl-x

and x
2

- x are uncorrelated:

E (xl - x) (x
2

- x) = 0 ,

2 2
al and a 2 '

are known from previous measurements, viz. from instrument cali-

its value. bration. Then the variance of the estimation error,

We wish to determine al and a7. so that the estimate x will

be optimal in sorne sense. The conditions to achieve such

optimality depend on the nature of the measurements.

;2 = E(~ - x)2 , is given by

~ 2

a (2.2)

Let us assume first of aIl that there are no systematic

errors in the measurements xl and x
2

' i.e. that if we

repeat our measurements many times then their average would

equal the true value x. In terms of the expectation operator

E, this is written as

Suppose for the moment that in addition to satisfying

Eq. (2.1b), al and a
2

are nonnegative but otherwise arbitrary;

the linear combination in Eq. (2.la) is then said to be

convex. Convexity will imply that x always lies between

xl and x
2

' and furthermore t h ~ t

148
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While property (2.3a) is reassuring, one should be able to

do better. We expect to be able to achieve

(2.3b)

Notice also that formula (2.4c) for the optimal error

variance irnmediately implies property (2.3b). In particular,

when 01 = 02 = 0, one obtains ; = 0/12 , which generalizes

to ° = o/IN for N independent measurements of equal variance.

requirement.

otherwise there would be no point in making more than one

fact yield (2.3b); it is accomplished by our optimality
The purpose of sequential estimation theory for dynamic

systems is to extend the simple ideas outlined above to the

Estimation for Stochastic-Oynamic Systems2.22 2
The assumed knowledge of 01 and 02 will inmeasurement.

This requirement can now be formulated precisely:
case in which the quantity x of interest evolves in time

is, in fact, convex. Moreover, the optimal weights (2.4a,b)

Notice that al and a
2

are nonnegative, so that the optimal

to al and a
2

' subject to (2.1b). The resultinq optimal

weights are

(2.5a)k = 0,1,2, ... ;~k+l = 'l'~k + ~k '

randomly perturbed difference equations for the state vector x:

according to a given (system of ordinary or partial)

differential or difference equation(s). In this case, xl

will represent the state Df the system as determined from

previous observations (measurements), while x
2

represents

observations at the current time.

To stress the analogy, let us consider here a system of

~ and ç have dimension n, and 'l' is a constant nXn matrix.

(See Appendix A for a list of reçurring syrnbols.) In our

application, ~ k will stand for the meteorological variables

at time k at the grid points of a global atrnospheric predic

tion model; 'l' stands for the finite-difference operator

which advances the variables by one time step. The random

(2.4c)-2 -2
= ° 1, + °2 .

2 A2
°2

° (2.4a)al
0

2 2 2"
l + °2 °1

and
2 A2

°1
° (2.4b)a

2 2 2 2"
,

°1 + °2 °2

A

where the optimal error variance ° is given by

estimator,

x

x should be a minimum variance estimate, which in our case

means that ~ 2 in Eq. (2.2) should be minimized with respect

satisfy the intuitive requifement that they should reflect

our relative confidence in xl and x
2

: if 01 is smaller than ° 2 ,

for example, then xl is weighted more heavily.
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vector sequence {:k: k = O,1,2, ••. } is assumed to be a

white noise sequence with mean zero and covariance matrix Q,

(2.5b,c)

uncorrelated with ~ ,

T
E~k~2 = 0 . (2.6d)

The zero-mean assumptions (2.5b, 2.6b) are made for convenience

onlYl they are not essential for the theory we describe here.

The transpose of a vector or matrix is indicated

by ( )T and ô
k2

is the Kronecker delta, ôk2 = a if k ~ 2

and ô
k2

= l if k = 2. The white noise s represents

dynamical and physical processes not described by the model

~ , especially smaller-scale phenomena not resolved by

The observation vectors ~ k have dimension p ~ n,

and H is a pxn matrix. This formulation describes in

particular the meteorological situation in which the

observations at any time k are incomplete; measurements

are made over some areas (continents) and not over others

the grid. (oceans) 1 at a given location some variables are measured

suppose for the moment that an initial unbiased estimate and not others, e.g., geostationary satellites de termine

~ O E ~ O is available from observations at time zero, and

that no further observations are available at later times.

winds but not temperatures. Finally, sorne functional of

the variables may be observed rather than a variable itself,

In this case the best estimate of ~ k ' ~k say, would be the

mean of x ,x = Ex , and is computed according to (2.5),
-k -k -k

by the recursion

e.g., polar-orbiting satellites measure radiances, which

depend on vertical temperature profiles. Thus the entries

of H need not be only zero or one, i.e., H is not necessarily

available.

We have seen in the introduction that the description of

0, and R, need not be

In particular, the rank of H, i.e., the effective

In fact, H, as weIl as ~ ,

simplicity.

discussed in Sec. 5.

and even fewer in between, at intermediate times.

constant in timel they are only taken constant here for

times, with fewer observations provided at subsynoptic times,

dimension of ~ k ' can change from one time to the next:

the largest number of observations are available at synoptic

The linearity assumption that ~ and H are independent of x

is, however, important for the theory we shall use here. This assump

tionis essential in guaranteeing the optimality of the filtering

algorithm (2.11) below. Extensions to the nonlinear case will be

a permutation matrix.

(2.6b,c)

~ O = E~O~k+l

this estimate can be improved if further observations become

the atmospheric state at a given synoptic time from observations

at that time is entirely inadequate and that we are interested

in using observations at other times as weIl. This situation

is modeled by assuming a co~tinuous stream of observations

~ k = H~k + ~k' k = 1,2,3,... (2.6a)

~ k models observational errors and is also assumed to be a

white noise sequence,

Having described our stochastic-dynamical model ( ~ , H ) ,



Eqs. (2.5, 2.6), we are now in a position to make the

connection with (2.1-2.4). Given an estimate ~ k ( + ) based

on all the observations up to and including the time k,

the best prediction at time k+l, ~ k + l ( - ) ' is simply

(2.7)

~ k + l ( - ) will be the analogue of xl in Section 2.1. The analogue

of x 2 is the actual observation ~ k + l at time k+l. We

wish to combine ~ k + l ( - ) and ~ k + l in order to obtain an

estimate ~ k + l (+), which we require

which is analogous to (2.1b). Our estimator is therefore

f the form

~ k + l (+) = ~k+l (-) + Kk +l (~k+1 - H~k+l (-»); (2.9)

the analogy with (2.1c) is obvious. It remains for the

gain matrix K
k

+
l

to reflect the relative uncertainties in

~ k + l and ~ k + l ( - ) ' This will be achieved by imposing the

optimality requirement (c), and will yield formulae analogous

to (2.4).

In order to formulate the optimality criterion, we

to be: (a) linear, (b) unbiased, and (c) optimal in define first the estimation error covariance matrices

some suitable :sense.

In Sec. 2.1, we discussed the simple illustrative

example of estimating the room temperature x from the

readings xl and x
2

of two thermometers. In that situation,

the requirements (a) and (b) lead to formulae (2.1).

The optimality condition was expressed in (2.4), which

yields the minimum 0 among all linear, unbiased estimators.

For our dynamic system ( ~ , H ) , requirement (a) leads

to the formula

2 A2
r

k
+

l
(-) is the counterpart of 0

1
and P

k
+

l
(+) is that of 0 •

lJ ing Eqs. (2.5) and (2.7), one finds that P
k

(+) is advanced

by one time step to P
k

+
l

(-) according to

) _ T )P
k

+
l

(- - 'P
k

(+), + Q ; (2.10a

h derivation of (2.10a) depends on the fact that

A T
E:k (~k - ~k) = 0

(f. (2.5c». Eqs. (2.6) and (2.9) imply that, in the presence

~ k + l (+) (2.8a)
f observations ~ k + l ' Pk +l (+) is found from P

k
+

l
(-) by the formula

which is analogous to (2.1a), while requirement (b) leads to

(2.8b)
n Lhe total absence of observatiOlE at time k+l, we have instead

11 (+) = ~k+l(-) and Pk+l (+) = P
k

+
l

(-).

The estimation error covariance matrices

Ilcitly contain all relevant information

I lit he error structure of the current estimate.

155
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Using Pk+l (+) from Eq. (2.10b) and setting the derivative

of J with respect to each element of K
k

+
l

equal to zero,

one f i n d ~ that a unique, absolute minimum is attained at

The statistics of all errors committed up to and including

time k are accumulated in P
k

(+). FOrmula (2.10a) shows how

this information is advanced to the next time step. For

example, this equation determines how the presumably small

errors committed over a continent, or other data-rich region,

J
T

trace CP
k

+
l

(+) C

propagate over an ocean, or other data-sparse region.

Equation (2.10b) then determines precisely the extent to which

the estimate is improved by the new observations.

We have defined the estimation error covariance matrices

and considered their changes in time. We are ready now to

derive the optimal gain matrix by imposing the optimality

requirement (c): it is required that ~ 1(+) be a minimum_k+

variance estimate in the sense that

This result is valid independently of C, and hence is the

ame for all possible positive definite matrices S. In

other words, Kk+ l above minimizes simultaneously all reason

'Jble measures, or norms, of the expected estimation error.

The formula above gives the so-called Kalman-Bucy (K-B)

.ptimal gain matrix, or filter. Substituting this into (2.10b)

yields the optimal error covariance matrix

J

be minimized with respect to each element of Kk+
l

' for all

sYmmetric, positive definite matrices S. In particular,

for S = I, we see from the definition of P
k

+
l

(+) that the

trace, or sum of the diagonal elements, of P
k

+
l

(+) is to be

minimized. The trace of P
k

+
l

(+) is the expected mean-square

(m-s) estimation error.

We recall that a symmetric matrix S, ST = S, is positive

T
definite if, for any vector x t 0, the scalar product ~ S ~ > o.

Since every such matrix has a factorization S = CTc, one finds

Assuming the availability of an unbiased initial estimate

~ O = ~O(+) = E~O

ncl an initial estimation error covariance matrix

It description of the Kalman filtering algorithm is now

'm 1 te: for k = 0,1,2, ... , one computes in order

that in general

15

8k +l (-)

Pk+l (-)

Kk+1

'!'~k (+) ,

'!'Pk(+)'!'T + Q ,

T T-l
P

k
+

l
(-) H (HP

k
+

1
(-) H + R) ,

157
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In the absence of observations at time k+l, EqS. (2.11c,d,e)

Pk+l (+)

~ k + l (+)

(I - Kk+1H) Pk+l (-)

~ k + l (-) + Kk +l (::k+l - H~k+l (-))

(2.11d)

(2.11e)

are weighted more (less) heavily than the predictions ~ k + l (-) .

2.3 General Remarks on the K-B Filter.

Before proceeding with the description of our dynamical and

observational model ( ~ , H ) , a number of theoretical remarks are in order.

are replaced by
Recall first that ~ k + l ( + ) was chosen to be the optimal,

Kk +l
0 (2 .llc')

P
k

+
l

(+) Pk+l (-) (2.11d' )

~k+l(+) = ~k+l (-) (2 .lle')

Actually, the gain matrix sequence {K
k

: k = 1,2,3, ... } may be

precomputed once and for all, i.e., for all realizations of the

minimum variance, unbiased estimate among all estimators of

the form (2.8a). It is not clear that in computing 8k+l(+)

all past observations ::j , j = 1,2, ... ,k, have been fully

utilized. It can be shown, however (e.g. Jazwinski, 1970,

Sec. 7.3), that our estimate is in fact the optimum unbiased

t'stimate among all estimators which are linear combinations

This wider optimality is due to assumptions (2.5c, 2.6c,d)

hat system errors and observational errors are uncorrelated in

state and noise processes, ~ k ' ~k' ~k' Indeed, (2.11b,c,d) do not

depend on the estimates (2.11a,e). This is a result of the assumed

linearity of the model ( ~ , H ) .

To complete the analogy with our earlier i l l u s t r a ~ i v e example,

f all the available data

A. z ..
J-J

(2.13)

P ~ ~ l (-) + HTR-IH

P (+)HTR- l
k+l

notice that Eqs. (2.11c,d) can be rewritten as

-1
P

k
+

l
(+) (2.12a)

(2.12b)

lime. It can sometimes still be achieved without these assumptions

(Jazwinski, 1970, Sec. 7.3, Examples 7.5-7.7). Carrying the

timation error covariance matrices along in the computation

In our analogy, (P
k

+
l

(-) ,R,P
k

+
l

(+) ,Kk +
l

) correspond to

( O i , o ~ , & 2 , a 2 ) ; Eqs. (2.12a,b) are analogous to (2.4c) and

(2.4b ), respectively.

Some intuitively appealing results follow, as in the

simple example. For instance, Eq. (2.12a) implies that

Pk+l (+) ::. Pk +l (-) ;

the matrix inequality A ::. B means that C = B - A is

nonnegative semidefinite, xTCx > 0 for all x. Eq. (2.12b)

implies that if R is small (large) then the observations zk+l

158

m.kes it possible for the filtering algorithm to be sequential,

r recursive: each observation is discarded as soon as it is

lr essed. This sequential nature of the estimation makes the

Iq rithm conceptually simple, as well as having great practical

lv, ntages. It is one of the major reasons for the broad

plicability of Kalman filtering.

Another important feature of the filtering algorithm (2.11)

Ih fact that only first-order statistics, i.e" means,

cond-order statistics, i.e., covariance matrices, of the

159



synoptic time of interest. Then the forecast model is

the best prediction is simply given by (2.11a, 2.11e'):

nly the assimilation and initialization problem, over an

(2.l4a)

(2.l4b)

N, N+l, N+2, ... ,k

interval k = 0,1,2, •.. ,N .

~k+l

The sequential nature of the filter implies in particular

that, in the absence of further observations at times k > N,

The covariance of this predictor is then given by (2.11b, 2.11d').

This corresponds roughly to what is done in operational

practice: an initial state EN is determined by 4-D data

assimilation from all observations up to and including the

integrated forward in time from the initial state obtained,

without further use of the dcta. We intend therefore to study

.Issimilation

vector processes of interest are involved. In other words,

it suffices to know these statistics for the system noise ~ ,

is well nigh impossible to obtain more, i.e., to prescribe

higher-order statistics. Moreover, the first-order and second

order statistics of the error processes can be determined

adaptively, i.e., by the filtering algorithm itself (Chin, 1979,

and references therein).

Gaussian processes are in fact completely determined by

their first and second-order statistics. Furthermore, the

Central Limit Theorem (e.g. Parzen, 1960, Sec. 8.5 and 10.4)

observational noise 1;, and initial error ~ O - ~O. These

will provide the estimate x as well as its error covariance

P at all future times. This property is important since in

practice it is usually difficult to obtain even this much

information about the random errors one wishes to filter: it

states, in its various forms, that the superposition of a

large number of random effects is approximately Gaussian,

regardless of the distribution of the individual effects. It

is reasonable, therefore, to expect our errors, which come from

a large number of sources, to be approximately Gaussian. It

follows that retention of only first and second-order statistics

in the filtering algorithm (2.11) should be rather s a t i ~ f a c t o r y .

The framework of estimation theory can provide also insight

Into the nature of the system noise ( ~ , Q ) and ways to its

d termination. It could lead to improvements in modeling

"'d hence forecasting, by helping to pinpoint deterministic

,ornponents o f ~ . This, however, is not our purpose here. With

h e remarks, we turn to the description of the dynamic

y tern to which the theory outlined in this section will be

Actually, when ~ , ~ , and ~ O are Gaussian, it is known

(e.g. Jazwinski, 1970, Sec. 5.2) that the best possible nonlinear

estimate of x, i.e., one whiyh might depend nonlinearly on all

the observations, is still our linear estimate x.

1'1 lied.
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3. ESTIMATION FOR THE SHALLOW-WATER EQUATIONS

3.1 The Equations

The shallow-water equations are a simple system whose

solutions exhibit some of the properties of large-scale

Ut + UU + vu + ~x - fv 0 , (3.2a)x y

v
t

+ uv + VV + ~y + fu = 0 , (3.2b)x y

~t + u~x + V~y + ~(ux+Vy)= 0 , (3.2c)

atmospheric flow. They have certain important characteristics

in common with the more complicated, three-dimensional systems

currently used in NWP models.

We shall study here a linear, spatially one-dimensional

version of the equations, written in cartesian coordinates

by linearization around a solution (u = U, v = 0, ~ = ~) satisfy

ing fU = -~y= const. We assume in this derivation that

the perturbation q u a n t ~ t i e s , i.e., the deviations from

equilibrium values of ( u , v , ~ ) , do not depend on y.

It is advantageous to work with a constant-coefficient

for a plane tangent to the Earth at latitude 6
0

: system, as long as the basic phenomena of interest are

The coordinate x points eastward, in the zonal direction,

along the circle of latitude 6 = 6
0

' while y points north-

ward, in the meridional direction; u and v are velocity

components in the x and y directions, f = 2\1 sin 6
0

is the

Coriolis parameter, with \1 the angular velocity of the Earth.

The geopotential ~ = gh measures the deviation of the height

not obscured by this simplification. Hence f, U and ~

in (3.1) are taken to be constants. The variation with

latitude of the CoriOlis parameter

f, however, has an important effect on planetary flows. This

so-called a-effect, a = f
y

(6
0

) I 0, is equivalent to the

ffect of bottom topography, ~ y I 0, in the tangent-plane

approximation (Pedlosky, 1979, Sec. 3.17 and Ch. 6). The

erm (- fUv) in (3.1c) introduces this effect into the

.olutions of the system considered, without sacrificing the

implicity of constant coefficients.

(3.1c)

(3.1b)

(3.1a)

o

o

o

+ fuv
t

+ uv
x

~t + U~x + ~ux-fUv

~ = gH, U is a constant zonal mean flow velocity. All quantities

h+H of the free surface from its equilibrium value H , with All the solutions ~ = (u,v,~) of (3.1) can be expressed

a superposition of plane waves:

"'h re ,Q. is the wave number. For each ,Q., the speed of the

n ividual waves, c,Q. ,is given by the dispersion relation

are independent of y.

These equations are d ~ r i v e d from the full, nonlinear

shallow-water e q u a t i o ~ s on a tangent plane,

H(x-c,Q.t)
e (3.3a)
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o . (3.3b)
modified by the presence of the Coriolis force. Their disper-

sion and dissipation plays a role in the mechanism of

f , Which has three real roots,This is a cubic equation or c ~

(m) 3 It turns out that (3.1) has two types ofcJl, , m = 1,2, .

solutions: slow waves, corresponding to

geostrophic adjustment, which maintains the atmosphere in

a quasi-geostrophic state, in which the Coriolis force nearly

balances the pressure-gradient force. But they carry very

(1)
c ~

(3.4a) little energy at any given time, and appear mostly as

higher frequency oscillations superimposed on the meteoro-

and fast waves, with logically significant ones, i.e., as meteorological noise.

+ 2 2
2 (~ <I> + f )

u . (3.4b) An important problem in NWP is the filtering of the

fast waves in large-scale numerical forecast& in order to

The need forhose found in the atmosphere.

v (Browning et al., 1979; Bube and Ghil, 1980).

riods of time comparable to the evolution time of the slow

, rCormed, the fast waves will not grow excessively over

nltialization procedure (Bengtsson, 1975; Leith, 1980; and

rences therein). Once such an initialization has been

J ion. In particular, the fast waves can be eliminated

I reduced at the initial time of the forecast by an

his filtering is different from that discussed in the previ-

prevent their spurious growth to amplitudes larger than

0US section: it stems from the two time scales of the

(I extraneous, random noise perturbing the deterministic

.( terministic motion itself, rather than from the presence

second

These slow, retro-

waves are named after Rossby, and they are an

atmospheric dynamics.

-4 -1
than f = 0(10 sec ).

gressing

important feature of mid-latitude

Their frequency is always smaller

The speed of the fast waves is dominated by the

relative to the mean flow is westward.

U = 0(10 m/sec), and they retorogress:

1 t el ;ng of planetary waves
which correspond to the s ow rav ~

h systems are superimposed. Their
on which synoptic weat er

comparable to that of the mean zonal current,
speed is

their propagation

. t (fU) in (3.1c), the lastIn the absence of the 8 - 1 ~ k e erm - v

term in (3.4a), as well as in (3.4b), would not be present.

. (3.4) are actually exact to first order inThe expressions ~ n

the small nondimensional parameter U / ~ .

The slow waves are the meteorologically important ones,

being O ( l O ~ m / s e c ) . They are calledterm in (3.4b),

inertia-gravity waves, since they are

gravity waves of shallow-water theory,

the familiar

for which c ~ = U ~ ~ ,
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Clearly, the two problems of: a) determining a solution

to the forecast equations from a continuous stream of noisy

data (4-D data assimilation) and b) rendering this solution

The grid

j , A J'X = JUX, 1,2, ... ,M, t
k

= kt::.t, k 0,1,2, ••. (3.5a)

as free of fast waves as possible (initialization) are

related. The connection was stressed and a first step in

the direction of their joint solution taken in Ghil (1980)

and Leith (1980), among others.

We shall present in the sequel a systematic way of

combining the two aspects of filtering within our framework.

This will involve a modification of the standard K-B filter

is introduced, with ~ ~ approximating ~ ( j t : : . x , k t : : . t ) . Then the

state vector ~ k of Sec. 2 corresponds simply to ~ ~ ' with

so that n = 3M.

We used the Richtmyer two-step formulation of the

Lax-Wendroff scheme (Richtmyer and Morton, 1967, Sec. 12.7

(3.5b)

outlined in the previous section. Before proceeding with and 13.4). Let A and B denote the matrices of system (3.1),

this modification, we shall discretize the equations. This

corresponds to what is done in operational practice and will

bring the problem to the form (2.5a).

~ t = A~x + B~

The scheme can then be written as

3 •. 2 Discretization

Wj +l / 2
-k+1/2

,

j+l/2

+ t::.t W
2 -t

k

The discretization chosen for (3.1) is in terms of finite

differences. Finite-difference models are still the most

widely used in NWP. They also facilitate somewhat the assimila

tion of observations made in irregular patterns. Spectral

models, on the other hand, have certain advantages with regard

to the initialization aspect of our problem. An analysis

similar to the present one should be easy to reproduce for

j

~k+l ~~ + (t::.tlwtl

j

- k+l/2

j t::.t j+l/2

~ k + t::.x A(~k+l/2
j-l/2 t::.t j -1/2

~ k + l / 2 ) + 2' B ( ~ k + 1 / 2

(3.Ga)

j +1/2

+ ~k+l/2)

(3.6b)

spectral, finite-element or hybrid models.
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Eqs. (3.6) define the dynamics f of our system for

state vector ~ k which is given by (3.5) in terms of ~ k '
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The discrete system (3.6) has the same type of slow and fast

plane wave solutions as the continuous system (3.1). Their

dispersive properties are similar. The Lax-Wendroff (L-W)

scheme was used because its numerical dissipation is very

useful in our simple model in order to simulate the physical

dissipation mechanisms active in the atmosphere. Such

mechanisms are also present in more complex NWP models, and

they are essential for geostrophic adjustment to occur.

solutions with fast components which are vanishing or small.

Obtaining a best estimate in the presence of such a

constraint corresponds to a constrained optimization problem.

We shall study in this subsection an appropriate modification

of the standard K-B filter described in Sec. 2.

All solutions of (3.6) can be represented as a super

position of plane waves, similar to (3.3a). For the purposes

of this discussion it is actually more convenient to think

of ~ k in its physical interpretation ~ k ' so that we write

The plane waves of the continuous system (3.1) are better

approximated by those of the Richtmyer two-step version of

~ ( j t o x , ktot)

the L-W scneme (3.6) than by those of the standard, one-step

slow, quasi-geostrophic wave of (3.6) satisfies u ~ = ~ as

that of (3.1) satisfies u(x,t) = O. This turned out to be a

version. [n particular, in the absence of the B-term, the

For each wave number R-, there is a slow wave w(l) eiR-jtox with
-R-

speed c!l), and two fast waves (2,3) iR-jtox . (2 3)
~ ~ R - e w~th speeds cR- '

of opposite signs. The decay factors A ~ m ) , I A ~ m ) I < 1, are

present due to the dissipation in the difference

useful check on the departure of solutions W
j

from geostrophy.
-k

cheme (3.6).

Denote by R (for Rossby waves), the span of the real

p rts of all compound n-vectors, n = 3M, of the form

3.3 The Modified K-B Filter

In the absence of any constraints on the dynamics, it is (3.7b)

clear from Sec. 2 that the K-B filter corresponds to the

solution of an optimization problem: obtaining a minimum

variance estimator for the system (o/,H). We have seen in

Sec. 3.1 that, in the application of interest here, it is

desirable to select among the solutions of the discrete

evolution operator 0/ defined by (3.5, 3.6) a special subset

(m) iR-Mtox
~R- e

I r m = 1, as R- ranges over all possible wave numbers.

rh1 is the slow wave space. The fast wave space is denoted

Iy G (for gravity waves), and is defined as the span of the

1 parts of all n-vectors of the form (3.7b) for m = 2,3,

~ gain ranges over all possible wave numbers.
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The spaces Rand G are subspaces of Euclidean n-space En,

and they span En, R ~ G = En. Furthermore, Rand G are

Having defined the operator IT, we are now ready to

describe the modified filter. Let

invariant under the matrix ~ , defined by (3.6), i.e., they

are invariant subspaces of the system's dynamics.
T) = z - H ~ (-)_k _k _k (3.9a)

Indeed, the eigenvectors of 'I' are precisely the set of
denote the innovation vector at time k. This vector

all vectors of the form (3.7b). Hence any vector x in R will
carries the new information contained in the observations

in R after a time step ~ t . Similarly, a vector y in G will

be advanced by the unperturbed system (3.6) to a vector ~ x

evolve to ~ y in G. Notice, however, that Rand G are not

at time k; ~ k ( - ) carries all the previously accumulated

information, as propagated by the dynamic system.

The filtering step (2.11e) is now written

orthogonal to each other. (3.9b)

performing three inverse FFTs.

Given any n-vector x, there is a unique vector y in

R which is closest to x in the sense that II ¥. - ~1I2 = (y-x) T (y-x)

is minimized. This vector y is called the orthogonal

projection of ~ onto R, and is denoted by y = ITx.

The orthogonal projection operator IT is a symmetric matrix,

IT
T = IT, and satisfies IT

2 = IT. The orthogonal projection

y = IT~ is found in O(n log n) arithmetic operations by

performing three Fast Fourier Transforms (FFTs) on the

vector ~ (one for each component ~ , ~ , ~ ) , then multiplying

by a block diagonal matrix comprised of M 3x3 blocks, then

tor lie in R. A Lagrange multiplier method was used

solve this constrained optimization problem. The result is

What is desired is that, for all k, ~ k + l ( + ) lies in R.

rt is clear by inspection of Eqs. (2.11 a,e,e') that, under

assumption (3.8), this will be the case provided that,

or all k, K k + l ~ k + l lies in R. As the observation vector

zk+l is a noisy perturbation of the noisy true state ~ k + l '

cf. Eqs. (2.5a, 2.6a), the correction vector K k + l ~ k + l does

not, in general, lie in R.

What we seek, then, is a modified filter K;+l ' possibly

,!I-pending on ~ k + l ' which has the property that K ~ + l ~ k + l

--! lie in R. This filter is found by minimizing trace P
k

+
l

(+),

before, but subject now to the constraint that the correction

(3.8)IT ~O~O

We assume in the sequel that

i.e., that initialization has been performed and ~ O lies

in R already. These concepts are discussed and similar

mply that

(3.10a)

notation is used in Leith (1980). 1\1 pendently of ~ k + l ' where Kk +
l

is the standard Kalman-Bucy
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Eq. (2.11e) by

filter. For the modified filter, therefore, we replace

~ k + 1 (+) (3.l0b)

Our physical domain is an interval of the x-axis of

length 2L. It is meant to correspond to a circle of latitude

near 45° N. Hence f = 10-4sec-l and L = 14000 km. The

Since this filter is no longer optimal, we must also

replace (2.11 d) by (2.10 b), in which K
k

+
l

is replaced by

actual distribution of land and ocean at this latitude has

to be covered by land, and the right half to be covered by

and half by land (North America or Eurasia). It is reasonable

to consider, therefore, only 2-periodic solutions of (3.1),

been simplified to be 2-periodic, so that in each interval

of length L, half is covered by ocean (Pacific or Atlantic) ,

and consequently our computational domain is of length L.

We consider the left half of the computational L-domain

ocean, so that our observation matrix is

We shall see in Sec. 4 that the IT-filterthe K-filter.

IT Kk+l •

In the sequel we shall call the modified algorithm

IT-filter, while the standard algorithm will be calledthe

produces optimal estimates of the slow waves at the expense

of estimation errors only slightly larger than the fast-wave

contaminated estimates produced by the K-filter.

H = (I 0) •

and time.

1 . 11 familiar situation.tion of K-B filtering in a meteoro oglca y

Clearly, the power of this approach lies in its ability to

handle observations which are arbitrarily distributed in space

In the present article we shall restrict ourselves to

the study of a "classical" observational pattern, corres-

h conventional meteorological upper-air network:ponding to t e

.. ( u , v , ~ ) are obs,srved over "land", and none overall quantltles 'I'

Observational Pattern and Choice of Parameters.

orresponds to an equivalent depth for a homogeneous

lmosphere of H ~ 3 km, which gives realistic phase speeds

(3.1) which we wish to estimate will travel across the

The mean flow about which (3.2) is linearized was

ken to have U = 20 m/s and ~ = 3xl04m2/s2. The value of U

typical for mid-tropospheric flow at this latitude;

'r hoice of L, U, ~ and t, is roughly 12 days.

o inertia-gravity waves. The slow waves in the solution

lnd mental L-domain of one continent and one ocean in a

• 110 of approximately L/U; cf. (3.4a), the actual time, for

This is only meant to serve as an illustra-"ocean ll
•the

3.4

17:1
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For a single wave number!, initial data for the

continuous system (3.1) which lead only to slow waves

are, to first order in the small parameter u/Ii,

.Q.2 U
.Q.2U<j>

u(x,O) <P(x,O) ° sin .Q.x
i,2<1> + f2 .Q. 2<1> + f2

,

v(x,O)
1 .Q.~O

cos .Q.xf <Px(x,O) -f-

<P (x, 0) <Po sin .Q.x , (3.lla)

(3.llb)

(3.llc)

~

errors are added to ~ O ( + ) (cf. Eqs. (3.12 b,c) below).

Due to the linearity of the problem, the gain matrices

K
k

+
l

' or II Kk +
l

' are independent of both the "true"

atmospheric state x and the estimated state ~ : Eqs. (2.11a,e)

are decoupled from Eqs. (2.11b,c,d). In particular, the

gain matrices are independent of the initial data ~ O

~ o ( + ) . Thus the choice of initial data (3.11) has been

made only for orientation purposes, and similar results

~ o ( x )The solution W(x,t) of (3.1) with initial data W(x,O)

given by (3.11) is, to first order in U / ~ ,

W(x,t) ~ o ( x - c P ) t ) , with c ~ l ) given by (3.4a).

We chose initial data corresponding to a single Rossby

wave of wave length L/2, i.e., .Q. = 4rr/L, and amplitude

4> = 2.5 x 103m2/s 2 .. The latter is in accordance with a
()

typical ridge-to-trough difference of 500 m in the height

of the 500 mb pressure surface (Palmen and Newton, 1969,

Sec. 6.6). lt follows that <Po/<I> = 1/12, which partially

justifies the linearization of (3.2). It follows also that

the amplitude of v(x,O), v
max

= t<PO/f, is roughly equal to U,

a realistic value. Note, however, that u
max

= .Q.
2u<P o /(.Q.2<1>+f2)

is relatively small, u
max

~ 0.053 v
max

' for our choice of

parameters.

Initial data for the discrete estimation problem, ~ o ( - ) ,

were computed by evaluating (3.11) at the grid points x
j

= j6x,

while 8
0

(+) = IT ~o(-), in accordance with (3.8). The projec

tion is desirable because the slow waves of (3.6) are

slightly different from those of (3.1). To obtain ~ O ' random

174

will obtain for any initial estimate satisfying (3.8).

The discretization used the minimum number of grid

points which would resolve our wave, namely 16, for the

L-domain of interest. This left a computational problem

(2.11) of easily manageable size, and it was deemed suffi-

ient for a preliminary illustration of the method. One

Ilumerical experiment was performed with a total of 32

I ~ i n t s for the computational L-domain; such a spatial

solution of 0(400 km) is close to that used in operational

NWP models. The results were quite similar to those of

he comparable experiment with 16 points.

With a resolution of 6x = L/16, the stability criterion

r the difference scheme (Richtmyer and Morton, 1967, Sec.

~ . 7 ) imposes a limit of approximately 47 min on the

'm step, when using (3.4b) for the maximum wave speed.

much more stringent limit on 6t, closer to the value of 6t used

most primitive-equation NWP models, in which inertia-

, vity waves are present, would be imposed if our spatial

lution 6x were closer to the resolution of such models.

c ually took 6t = 30 min. This results in two time steps

f h ur, or 24 steps per synoptic period.
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noise-free model.

after we describe first the experiments with a perfect,

The initial error covariance matrix Po also has the form

with 01 and D
2

diagonal. The choice of D
l

and D
2

involves

further dynamical considerations, and will be discussed

(3.12b)Po = IT D 2 ITT + (I - IT) D 2(I - IT)T ,
3 4

Observations are made over the 8 grid points located

on data from McPherson et al. (1979, Table 2). The standard

diagonal, with equal entries at all grid points. The

values assigned to the diagonal entries of R are based

The observation error covariance matrix R is taken

on "land" at every synoptic time, that is twice per day.

deviation of conventional temperature observations used which results from the assumption that geostrophic and

there is 1°c. This can be converted, based on the customary ageostrophic errors are uncorrelated. This assumption is

be easily removed as further information becomes available.

on the cross-correlations of the two types of errors; it can

only made for convenience, and because of lack of information

l.et D be the diagonal matrix with the elements ( v m a x , v m a x ' ~ O )

epeated on the diagonal; then

(3.l2c)D
3

= 0.4 D, D4 = 0.1 D .

slightly larger than the value of 1.5 m/s used by McPherson

et al. (1979). We took the standard deviation in observa

tions of ~ to be 200 m
2
/s

2
, and that in observations of u

hydrostatic assumption, to a' 500 mb level geopotential error

of approximately 200 m
2
/s

2
. This value results. for our

choice of ~ o ' in an error of about 0.1 ~ o ' A corresponding

10% error in the wind components is roughly 2 m/s; this is

and v to be 2 m/so Relative errors in all observations are
For simplicity, we have taken the initial error covariances

thus about 10%.
f. (3.12 b,c)) to be uniform over the entire L-domain.

The system noise covariance matrix Q is taken to be
~ i s choice results in initial errors which are much larger

the sum of a geostrophic and an ageostrophic part
h n the observational errors over land, although they are

Q (3.12a)
fproximately equal to the expected mean forecast errors

I r the ocean. This uniform distribution of initial errors

k 8 it easier to visualize the initial error reduction

ynoptic information over land and the propagation

information from land to ocean, as

11 as the effect of high errors over the ocean

17R
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3.5 Previous Work

propagating inland. Eventually, we shall be interested in

the asymptotic state which corresponds to a stationary,

continuous assimilation cycle; hence, the choice of initial

errors will ultimately be immaterial.

meteorological literature. He applied these ideas to a

linear form of the quasi-geostrophic barotropic potential

vorticity equation (Petersen, 1976), in which fast waves

do not appear. The estimation is carried out in terms of

spectral transforms and the dynamics incorporated in the

form of Green's functions. This approach to estimation

does not seem to extend easily to non linear dynamics. Its

implementation in linear cases is also hampered by not

exploiting the sequential aspect of K-B filtering, nor

the use of asymptotic filter values.

A variational approach to updating, which bears certain

imilarities to sequential estimation, appears in Tadjbakhsh

(1969) and Phillips (1971). It was also implemented for

real satellite sounding data by Ghil and Mosebach (1978).

This approach, however, does not include explicitly the

tatistical optimality considerations of K-B filtering.

Miyakoda and Talagrand (1971) discussed the

possibility of blending forecasts from previous synoptic

tlmes with current observations, by averaging. Theyanalyzed

this possiblity for the linear, one-dimensional vorticity

quation and carried out numerical experiments for the same

luation in its nonlinear, two-dimensional form. They did

, ~ use a sequential filter or statistically determined

hts. Still their work showed the importance of using

t observations, as carried forward by the dynamical model

t plf, in obtaining a better estimate for the current state

• the atmosphere.

Phillips (1976) developed an estimation procedure for

n(-dimensional, linear, two-level quasi-geostrophic

I. The model uses fairly realistic flow quantities,

tional patterns and error variances. This procedure,

those of Petersen (1976) and of Miyakoda and Talagrand

of estimation ideas in the

The realities of 4-D data assimilation have suggested

to p r a c t i ~ i o n e r s , as well as theoreticians, ideas related

to those presented here. A number of authors have

preceded us on this ground, and we shall mention their work

at least briefly.

Jones (1965a,b) seems to have been the first to bring

the formalism of K-B filtering to the a t t e ~ t i o n of the

meteorological community. Jones (1965a) is an excellent

compendium of the formulae for the discrete-time filter,

including results on the asymptotic filter. Jones (1965b)

is an attempt at nonlinear filtering for a single, scalar

quantity; an improvement over direct insertion obtains

when statistical ideas are included.

Petersen (1968, 1970, 1973a,b,c, 1976) offers the

most comprehensive treatment

17
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(1971) is not sequential; it requires, in particular, the 4. RESULTS

specification of the actual solutions' statistics; rather

than solely observational and forecast error

covariances. Since the model only admits slow waves, no

modifications were necessary to eliminate the fast waves

present in operational, primitive-equation models.

Phillips' work stressed the importance of statistical

concepts in 4-D data assimilation and had a considerable

influence in their operational implementation. We hope in turn

that our results will lead to a better theoretical understanding

of. ,the interaction of statistics and dynamics in meteoro-

logical data assimilation and also help practitioners in

optimizing further its operational applications.

We wish to stress here again that these results are

preliminary. They present an illustration of our estima-

tion approach for a very simple model with some

nontrivial features of operational NWP models. The main

feature of interest is the presence in the model of

travelling large-scale waves with different speeds.

Optimal estimates of the slow waves are obtained, while

'liminating the fast waves.

4.1 Estimation for a Perfect, Noise-Free Model

We study first the way in which the K-filter, using partial

lbservations over land, reduces the initial error in a system

hout noise, Q = O. Fig. 2 shows the components of the expected

1/2
lot-mean-square (rms) estimation error(trace P

k
) ,over a 10

y numerical experiment, or run. Fig. 2a shows the expected rms

"or over "land", Fig. 2b over "the ocean", and Fig. 2c over the

01 Ire L-domain. The individual curves correspond to the errors

n 1I(U), v(V), <j>(P) , and the total error (T).

Obviously, sharp error reduction occurs at the observation

rn' over land (Fig. 2a). The more interesting fact is that

able error reduction occurs at synoptic times also over

n (Fig. 2b). The latter reduction is due to the

ons applied to ocean grid points by the filter. In this,

'11\0

lter acts like current objective analysis schemes, in

lit r those using linear regression: the new information
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realization decreases to the observational noise level in

of the continent, labeled SF (for San Francisco), one on the

c)

RMS £RIlOJl OVER TQTAl REGIOtl

a)

'K. 3 Components of the actual Toot-mean-square (rms) estimation error and the

relative mean-square (m-s) estimation error, for two realizations of the

experiment whose Erms errors appear io Fig. 2. The two realizations

correspond to two different random choices of inl tial eondi ticn ;.0 and

observational noise ~ k ' sampled from the same respective probability

distributions, with covariance matrices Po and R, respectively.

a) The rms errors for a realization of the run whose Erms errors are given

in Fig. 2. The curves have the same labels, and are plotted on the same
scale, as in Fig. 2.

b) Relative m-s errors for the same realization. The tb.r-ee panels give

the ratio of total m-s error over land, ocean, and the entire region,

respectively, to the corresponding expected m-s error.

.) Same as Fig. 3a, for a different realization.

d) Same as Fig. 3b, for the run in Fig. 3c. Notice the difference between

Fig. 3a and Fig. 3c: the actual rms estimation error in two realiza-

tions of the filtering process can be qui te different. Figs. 3b and 3d

Dhow the variation of the relative m-s error: equality of absolute m-s

orror and expected m-a error corresponds to a value of 1 in these figures.

RKS ERROR OVER TOTJl. REGION

,
TlII(I~1

.. ~,.,I.. b)
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show that the

Note that "Tokyo"

It would be interesting, in general,

estimation errors about their expected

For a different random choice of ~ O

We chose to show a point on the West Coast

After that time, however, it continues to

by periodicity.

Our experimental results (Figs. 3b,d)

= "New York"

grid points for the estimated solution corresponding to the

realization in Figs. 3a,b; ~ is shown in Fig. 4a, v in Fig. 4b

and ~ in Fig. 4c.

of the ocean, labeled HA (for Hawaii)

value is not too large.

to know a priori how large this spread is expected to be, and

we intend to study this question further.

zero.

East Coast, labeled NY (for New York), and one in the middle

Components of the actual rms error in the estimation of

We show in Fig. 4 the actual time histories at a number of

spread of individual

fluctuate near zero, rather than decaying monotonically to

with Fig. 2c).

about the same time as its expected value (compare Fig. 3a and 3c

are given in Fig. 3b.

and sequence ~ k ' the same plots appear in Figs. 3c, 3d.

It is easy to see that the rms error in an individual

an individual realization of our system, with given initial

data ~ O and observation error {5
k

: k = 1,2, ..• }, appear in

Fig. 3a. The corresponding components of relative m-s error,

A 2
lI~k - ~kll Itrace P

k
' where lIyll is the length of the vector y
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4.2We see that for each curve, small, fast oscjllations

are superimposed on a smooth, slowly varying wave pattern.

The fast oscillations are caused by the aqeostrophic

component of the initial error, cf. (3.12 b,c), and of

the observations. They are especially apparent in the

u-component of the estimated solutions. These oscillations

are partially damped between synoptic times by the dissi-

Estimation in the Presence of System Noise

In the previous subsection we saw that, for a perfect

model, the estimation error covariance matrix P
k

(+) tends

to zero, and hence so does K
k

(Eq. (2.12 b».

We shall study now the case in which, due to the simultaneous

presence of system noise Q and observation noise R, the gain

matrix K will tend to a nonzero, asymptotic constant value.

pativity of the model. 4.2.1

A run identical in every other respect to that in discuss at the heginning our formulation

Fig. 4 was made using the IT-filter instead of the K-filter. of Q, cf. (3.12a), in particular the choice of the

The time histories of the corresponding estimates at the same

points are shown in Figs. 5a,b,c. They are perfectly smooth,

except for the jumps due to observations, which are rather

large in the SF and NY curves and very small in the HA curve.

In other runs without the S-term (not shown) one had in

particular u = 0 , to within machine accuracy. Notice the

periodicity of approximately 6 days, due to the passage of

the 2-wave we are estimating.

The expected error reduction for the IT-filter (not shown)

was only slightly smaller than that for the K-filter. Thus a

slowly varying estimated solution was obtained without

sacrificing the optimality of the estimate.

We have thus studied error reduction, information

propagation and filtering of fast waves in the perfect model.

We shall turn our a t t e n ~ i o n presently to the more realistic

model with system noise in it.

188

diagonal matrices D
l

and D
2

' left open in Sec. 3.4. This

choice has to reflect the error growth properties of

NWP models. The overwhelming dynamical consideration in

this context is the inherent unpredictability of the

atmosphere.

Numerous studies (cf. Lorenz, 1969, and references

therein) have shown that realistic models of the

~ t m o s p h e r e , subject to a small random perturbation, will

volve in a finite amount of time to a state which is

tatistically independent of the corresponding unperturbed

tate. This amount of time depends upon the scales of

motion of interest, and for synoptic scale motions is

bout two weeks. unpredictability is a decidedly nonlinear

fect: perturbations at any given scale of motion are

nonlinearly fed into all the scales and eventually grow

!lough to completely contaminate the state.
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Cl =- 0.3. This was easily achieved by trial and error,

At that time, forecast error growth levels off (Phillips,

1976). Energy conservation implies in fact that such leveling

off must occur in a nonlinear realistic model of the atmosphere.

In our linear model, the estimated state ~ is governed,

in the absence of observations, by

lnd

ince P
k

evolves simply according to (2.11b, 2.11d').

tound y= 0.028 when lit = 30 min.

(4.3 )

We

The reason Cl = 0.3 was chosen instead of the

In this linear model, ~ k and ~ k will never become actually

uncorrelated when they start from the same initial state,

while ~ k is the atmospheric state, governed by

r dictability limit N and is in fact much larger. Our

tually level off also, as a result of dissipation.

lIS leveling-off time, however, is not related to the

continues to grow after time N. It doesdel (4.1)

1 = 1 suggested by predictability theory, cf.

q. (4.2), is that trace P
k

in the linear, observation-free

(4.1b)

(4.1a)

0,1,2, ...

0,1,2, ... ,

k

k

~k+l = o/~k + ~k '

~O = ~O ' and hence have the same mean. However, t h ~

variance of their difference will grow with time due to

empt to account for loss of predictability in our

periments results, therefore, in a choice of Q which,

the system noise ~ k '

We would like to choose Q, i.e., D
l

and D
2

in (3.12a),

so as to have

v n with Cl = 0.3, is considerably larger than the Q

h would appear in a nonlinear model.

We expect actually that the estimation-theoretical

(4.2)

at time N, which would correspond to ~ N and :eN being

uncorrelated. We prescribed N, in rough agreement with

predictability estimates, to be N = 10 days. If the, model

I mework, applied to experiments with a nonlinear model,

lead to new insights into the nature of atmospheric

dictability. One possible approach is the adaptive

, rmination of Q, in which Q is actually determined from

observations themselves (Chin, 1979;

(4.1a) were conservative, (4.2) would be equivalent to nd Stubberud, 1976).

trace P
N

In fact, we set D
l

= yD, D
2

= 0.25yD, similarly to Eq. (3.l2c),

with y chosen so as to satisfy

lit actual experiments with a noisy system. Fig. 6 shows

cted rms error for a run with the K-filter. As in

, (a) shows "land", (b) the "ocean", and (c) the

region.
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At the first synoptic time, t h ~ total expected rms error

(T) over land drops below the observational error level, which

in our nondimensional units is 0.088. It grows much more sharply

EXPECTED RJiS ERROR OVER UN)

'''c
''',1

:: ~ 1...

to the next is even more striking in Figs. Gb,c. We notice,

synoptic time is smaller than just after the previous synoptic

.02

" . L ~ - ' - ~ - - ' - - - ~ - - - ' - - ~ - - ' - ~ - - - ' , ~ ~ ' - - ~ - ' - ~ - - ' - - - ~ - - - ' - - ~ . . J I O
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.DO
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tutE: 10llYS1
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.n

l
~:~ ~
i ...

1/2
of the components of (trace P

k
(-» ,

1/2
P

k
(+) , from one synoptic period

The monotone decrease

total error (T) over the ocean, nor that over the entire region

The convergence occurs within 1-2 days over land, and within

4-5 days over the ocean. In particular, the values of

trace P
k

(±) at synoptic times tend to a constant. This

leads us to suspect that in fact the matrices P k ( ~ ) them

selves, and hence the f i ~ t e r K
k

, tend to a constant.

ever drop below the observational error level. The expected rms

errors now increase between synoptic times instead of decreas-

ing: the effect of the system noise ~ is stronger than the

effect of dissipation in f.

What does happen is t h ~ t the expected rms errors very

quickly settle into an asymptotically periodic pattern

with the synoptic interval of 12 h as the period.

however, that in contradistinction to Figs. 2b,c, neither the

time; the same is true, moreover,of the error just before

as well as those of (trace

between synoptic times than in Fig. 2a, due to the presence

successive synoptic times.

the ocean. However, the estimation error just after each

of system noise, which is added to the error advected from

192

t ~ . 6 This figure and the following ones show the properties of the estimated

algorithm (2.11) in the presence of system noise, Q f O. This figure gives

the Erms estimation error, and is homologous to Fig. 2. Notice the sharper

iner as of orror over land between synoptic times, and the convergence of

ach curv to a p riodlc, nonzero function.



4.2.3 ~ s y m E t Q t ! c _ f ! 1 ~ e E : _ P E o E e E t ! e 2 ' Examining the behavior

of all entries of the gain matrix K as a function of time

confirmed our conjecture. Moreover, the

To visualize better the behavior of K
k

in time and to

study the structure of K
oo

' we considered contour plots of

the elements of K (not shown), and selected cross-sections

asymptotic matrix K
oo

' to which K
k

tends, is banded. Recall

that P is an n x n matrix, with n = 3M = 48, H is a p x n

of these plots. The cross-sections correspond to the

influence functions of observations at the selected location.

matrix, with p n/2 24, and R is p x p: In other words, they show the weight given to an observation

P H (I 0) (4.4a)

at such a location when updating a point situated a certain

distance away from it.

The chosen locations, or "upper-air stations", were

Here PR, is the submatrix of the auto-covariances for estima-

tion errors over land, pT
PR, P the autocovariance ofR, 0

errors over the ocean, pT p while PR,-o is the cross-
0 0

K

covariance of errors over land and over the ocean, with

By (2.12b) and (4.4a),

[

p R-
l

]

P:_R,R-
l

which is n x p.

(4.4b)

SF, SL (for Saint Louis) and NY. There is no influence function

(or mid-ocean points, like HA, since no observations are made

there; Cross-sections were plotted at every synoptic time,

i.e., every 24 time steps. It was clear that convergence

occurred within 4-5 days, as it did for trace P
k

over the

ntire region.

Fig. 7 shows the influence functions for the selected

locations at the end of day la. Fig. 7a marked (u-u) gives

the influence of a u observation at the selected stations

All entries away from the diagonal of the upper block

in K
oo

become rapidly smaller with distance from the diagonal. Period

icity in x leads to the appearance of a few larger elements

in the corners of both blocks, the upper and the lower.
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n ~ updates at any grid point in the L-domain. Fig. 7b,

m rked (u-v), gives the weight of a v observation at a

ation in a u update at every grid point, and so on;

iq. 7i gives the influence of ~ on ~ .

All the weighting coefficients involving u are rather

m 11 (Figs. 7a,b,c,e,h). This is due to our choice of the
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chosen small, cf. (3.12a) and the 4-to-l ratio of D
l

to D
2

•

This choice entails relatively good predictions of ~ , which

have to be corrected only to a small extent by the observations. The

located one grid point West of SF, rather than at SF itself,

(u-u) coefficients (Fig. 7a) are the largest of the coefficients

m v o l v i n g ~ ; they still do not exceed 0.125. The (u-u) influence

functions are approximately equal for SF, SL and NY, positive

and symmetric in the E-W direction. They are the only ones

system noise covariance matrix Q: its y-components were

The influence function for ( ~ - ~ ) centered at SL is the

to have the latter properties.

The peaks of the ( ~ - ~ ) influence functions centered at

smallest one Shown in Fig. 7g. It is positive over land,

becoming nearly zero at SF and NY and slightly negative out

this function is due to its station, SL, being located

into the ocean. The relative small size and symmetry of

in the middle of a data-dense region: neighboring stations

lS due to the absence of Observations on ·the ocean side of

receive almost equal weights and advection plays but a small role.

NY and at SF are considerably higher than the SL peak. This

these stations. In fact, the peak for the SF influence func-

tion is slightly higher than the NY peak. Moreover, the former

while the NY peak is at NY. Both data density and advection

hus play a role.

i t hieh observations are made. The

I n t l ~ e n c e fu1ncttiodns O f S L · e l ( e f : ; e ~ a ~ ~ : ~ L : : : S 8 a: interior continental location). SF

statIons se ec e are . . f th K-B

and NY (see Fig. 4). These functions are simply c ~ ~ : s ~ ~ e ~ ~ : o : : i ; h t g ' ~ v e n an

a l g o r i t h ~ ' s gain m a ~ r i x K at day l ~ ~ m ~ : ~ ~ c : r ~ : : ~ e c t i o n to the fOrecast field at

observatlon at s t a t ~ o n S ~ , s a ~ . wh _ ma~n The nine panels, 7a-71, give the

anyone of the M grl.d pOlnts 10 the L do . f n u c) 4> on u d) v on

influence of a) ~ observations OD ~ correct10oq,S' ~ ) b) o ~ ; - ~ h e partic;iar1ttes

v e) u on v, f) :; on~. g) 4> OD $, h) :!. on , ~ ~ .

.~~ the curves are discussed 1n the text.
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Fig. 7

It makes sense for the point upstream of SF to give even

re weight to SF information than SF itself: SF is closer
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to inland points and their information is also weighted heavily.

Due to the advection of error, the forecast error at synoptic

time for this ocean point is considerably larger than that for

the point downstream from New York, although they are equi

distant from land. Hence the larger weight given to adjacent

land observations for the Pacific point than for the Atlantic

point.

As in Fig. 7g, the (v-v), (v-<j» and (<j>-v) influence

functions (Figs. 7d,f,i) all show strong inhomogeneity

differences between the SF, SL and NY functions, as well

as anisotropy-differences in the East and the West direction.

Our (v-<j» and (<j>-v) influence functions for SF and NY,

however, are far from being antisymmetric: they do not even

qual zero at SF or NY, respectively. We conclude that it is

reasonable to use the geostrophy assumption for wind-height

correlations (cf. also Bergman, 1979) in data-dense regions,

where the estimation error covariance, i.e., the covariance

of forecast-minus-observed fields, is nearly homogeneous

nd isotropic. Close to the borderline of d a t a - d e n a ~ and

data-poor regions, this assumption will seriously distOrt

the optimal weighting coefficients.

In fact, the influence functions determined by the

The SL function for (v-<j» and (<j>-v) is very nearly liltering procedure at the first synoptic time (Fig. 8)

a·ntisYmmetric. This anti sYmmetry reminds us of the same

feature being exhibited by the (v-<j» and (<j>-v) correlations

in Schlatter (1975, Fig. 3). The latter were based on assump

tions of geostrophy and verified against the network of U. S.

radiosonde stations.

Notice from (4.4) that P
oo

(+) and K
oo

have similar

sYmmetry properties, since we took R to be diagonal. The

diagonal elements of R-
l

simply multiply the columns of P ~ and

P o - ~ , yielding the influence functions in Fig. 7. Hence it is

legitimate to compare the sYmmetry properties of the asymptotic

influence functions in the case at hand with those of the

steady-state covariance matrices in some current objective

analysis schemes.
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are either perfectly sYmmetric ((u-u), (v-v) and (<j>-<j») at

SL, or perfectly antisYmmetric for that station (all six

wind-wind and wind-height cross-sections). Furthermore,

n all nine panels of Fig. 8, the influence function of NY

ls either the mirror image ((u-u), (v-v) and (<j>-<j») of

the one of SF, or the inverted mirror image thereof

(all other cross-sections) .

The comparison of Fig. 8 with Fig. 7 allows us to

listinguish between the effect of inhomogeneous data density

nd the effect of advection on the optimal K-B filter.

g. 8 shows the effect of data distribution only, since

t the first synoptic time no information has been advected

, t from previous data insertions. Fig. 7 shows the combination

the two effects.

Different data densities result in different influence

1111 tions according to station location (Fig. 8): stations

199



as SF and NY, have more influence than inland stations (SL);

We used the gain matrix K at day 10 from this run

their influence out to sea is also greater than their

to the difference between the influence functions of

(NY = Tokyo). The latter difference was discussed in connection

influence inland. It is advection, however, which leads

stations on the West Coast (SF) and East Coast of continents

with Fig. 7g, and can also be found in Figs. 7d,f,i.

located in sharp gradients of observation availability, such

was otherwise identical to the previous one. This

as a time-invariant gain matrix for another run which

matrix is a very good approximation to the exact asymptotic
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t every synoptic time: the approximate computation of the

filter K oo' Estimation errors after 1-2 days were practically

indistinguishable from those obtained when using the

time-varying K-B filter, K
k

• There is therefore no need,

in our constant-coefficient system, to compute the filter K

ymptotic filter Koo once and for all is sufficient for any

practical purposes. Furthermore, K
oo

is independent of Po As

ndicated in Sec. 4.3, it depends only on ~ , Q and R.
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Same as Fig. 7, but for K used at the first synoptic time.

here are much more symmetric than in Fig. 7.

The asymptotic filter is sometimes called the Wiener

, Iter (W-filter). Wiener (1949) in fact solved the

imation problem for stationary time series, using all

t information. It was the contribution of Kalman (1960)

devise a practical sequential filter for stochastic
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Expected rms errors (not shown) with the IT-filter were, for the

tional noise, though.

estimated solution is perfectly smooth.

the K-filter. This is still well below the level of observa-

instead of the K-filter, are shown in Fig. 10. Clearly the

in Fig. 4. The time histories for a run with the IT-filter,

fast waves have been removed, and the evolution of the

The individual rms errors in estimation for the

10 days, they were about twice the corresponding errors with

v- and !-components, almost indistinguishable from those with

the K-filter. Expected rms errors for the ~ - c o m p o n e n t , however,

were significantly greater in the case of the IT-filter: after

in the solution even more than observational noise alone did

tional noise alone in the perfect model. The same remarks

System noise clearly excites the fast, inertia-gravity waves

around their mean apply.

as in Sec. 4.1 about the actual spread of estimation errors

causes fluctuations of higher frequency than did the observa-

We plotted the ratios of individual m-s errors to the expected

m-s error (given in Fig. 6). A comparison of these ratios with

Figs. 3b,d showed that the system noise between observations

processes governed by differential equations and using only

run (not shown), are even noisier than those in Fig. ).

4.2.5 ~ i ! t ~ r ! n g Q f _ f ~ s ~ ~ a y e § . Fig. 9 gives the time

histories of the estimated solution at HA, SF and NY.

past information over a finite time interval.

K-filter run with system noise, as well as for the W-filter
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I'll!. 9 Same as Fig. 4, but for Q 'f O. The fast oscillations are larger than in

the noise free case.
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The larger u-component errors for the IT-filter are

A run with the asymptotic form of the IT-filter, which

is simply ITK
oo

' gave practical¥ the same results as the

n-filter itself.

the system noise ~ cannot be counteracted therefore by

the observations.

explained by the fact that the IT-filter allows almost no

(cf. Eg. (3.11)). The estimation errors in u produced by

our slow wave subspace R has very small u-components

observational correction to be performed on the u-components:
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Fig.IQ Same as Fig. 9, but for a run using the TI-filter, rather than the K-filter.

The fast oscillations have been eliminated.
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4.3 Theoretical Analysis of the Scalar Case

In order to help explain some of the qualitative

observation times.

Defining S. ,
J

features of the numerical results in Sec. 4.1 and 4.2,

we perform an asymptotic analysis of the filtering
j = 0,1,2, ... ,

equations for a scalar state x. The matrices of interest

will now actually be scalars·, and we assume 'I' f 0,

to be the estimation error variance after the jth observa

tion, and the quantities

H = 1, Q ~ 0, R > 0 , and Po > O. The positivity

assumptions on Q, R, and Po are due to the fact that

they are variances. We assume furthermore that the

A 'I'2r , B
r-l
I 'I'2p,

p=o

observation is performed only every E time steps; in the

numerical experiments reported herein we would have

r = 24, as ~ t = 30 min. and observations are taken at

Eqs. (4.5.a,b) can be converted into a nonlinear difference

equation for Sj:

the standard 12 hour synoptic intervals.

The filtering algorithm (2.11) yields in this case

2
'I' Pk - l (+) + Q , (4.5a)

S. = g (S. 1) (4.6 a)
J J-

where

(As + BQ) R

g (s) (4.6 b)
As + BQ + R

= 0, the solution of (4.6) may be written explicitly as

To determine the asymptotic behavior of Eq. (4. 6), and

hence of the filter K, we now distinguish between the two

J Pk(-)R/(Pk (-)

1P
k

(-)

p. (+)/R.
Jr

+ R) , when k=jr, j=1,2,3, ..• ,
(4.5b)

, otherwise,

(4. Sc)
ases Q o and Q > O. In the case of a perfect model,

error variance drops below the observational noise level

at each observation time, although it may grow in between

(4.7a)

(4.7b)

(4.7c)

1 .

if I'!' I f 1,

if I'l'l < 1 ,

S.
Aj(A-l)SOR

J A(ALl)s + (A-I) R
0

r

S.
SOR

J jSO + R
,

• j ++00, therefore,

S. + 0 ,
J

(4. Sdlmin<

From Eq. (4.5b), one immediately finds that

an analogue of Eq. (2.3b,J. In particular, the estimation

?-06
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Eq. (4.7C) states that for stable dynamics, i.e.,

S + (1 - !.) R
j A

if 1'1'1 > 1. (4.7d)
and tending to zero as s + +00. It follows that the root

S+ of (4.8) is approached monotonically by the solutions

of the recursion (4.6a) (Isaacson and Keller, 1966, Ch. 3.1,

1'1'1 2 1, the estimation error variance, and hence the
Fig. 2a),

filter K. = S./R,
Jr J

always tend to zero. System (3.1) as

itself is conservative, while our difference scheme (3.6)

is dissipative. Hence all eigenvalues of the difference

scheme matrix 'I' have modulus less than or equal to unity.

We are thus in the stable case (4.7c) and it is only to

be expected that our estimation error covariance matrices

If So is greater than (less than) S+ ' then Sj will

decrease (increase) monotonically to S+ . Since K
jr

= Sj/R,

we have also

K, + S+/R as j + + 00,
Jr

and filter K
k

approach zero in the absence of system noise.

This is in accordance with our discussion of Fig. 2

We wish to determine now the asymptotic nature of Sj

in the case Q > 0, i.e. , in case system noise is present.

The quadratic equation

in Sec. 4.1.

s = g (s)

has a positive discriminant, hence it has real roots.

(4.8)

the convergence being monotone as well. This is in

accordance with the monotone decrease of trace P
jr

(+)

in Fig. 6; in fact P
jr

(-) decreases also monotonically.

Furthermore, 5+ is independent of So = Po ' and hence the

asymptotic filter Koo = S+/R is independent of Po as well.

To find an approximate value for S+ ' we now assume that

1'1'1 < 1 and r »1, so that A = 'l'2r « 1. Then the quadratic

term in Eq. (4.8) is negligible and we have, approximately,

Its free term is negative, hence the roots are of opposite

sign. Let S+ denote the unique positive root of (4.8).

S = QR
+ Q+(1_'I'2)R·

(4.9a)

Notice that It follows in general, by analogy with (2.3b) and (4.5d), that

dg/ds AR2/(AS+BQ+R)
2

> 0 . S+ 2 min {R, Q/(1_'I'2)} ,

t least approximately. In particular, when the observational
Therefore g(s) is a monoto~e increasing function of s,

with g(O) > 0, while its derivative is monotone decreasing
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error variance R is small enough, so that

then S+ is roughly equal to R, and the size of Q has little

influence. If, on the other hand, the observational error

variance is large enough so that

(4.9bl

(4. 9 cl

The asymptotic properties of P and K discussed above

have counterparts in the full, vector-matrix case, under

the assumptions of complete observability and complete

·ontrollability. These assumptions concern properties

f the matrices ~ and H; they are satisfied for our model.

The interested reader is referred to Bucy and Joseph

(1968, Ch. 5) and to Jazwinski (1970, Sec. 7.6) for a full

discussion of the general results.

then S+ is roughly proportional to Q, and the size of R

has little influence.

The two extreme cases (4.9b,o) explain much of the

qualitative nature of the results in Sec. 4.2. Indeed,

a matrix version of Eq. (4.9b) is satisfied over land,

and we see that the expected m-s errors at observation

times are approximately equal to the observational error

variances. In fact, they are slightly smaller than R ;

this is in accordance with (4.5d), as well as ( 4 . 9 ~ , b ) .

It also agrees with operational experience, as stated

in Sec. 3.4.

Over the ocean, we can write R = 00 , so that a matrix

version of (4.9c) is satisfied. Experiments with different

magnitudes of Q (not shown), h a v ~ confirmed that the size

of Q is indeed the determining factor in the size of P

over the ocean. This also agrees with operational experi

ence: analysis error in, data-poor regions is essentially

equal to the error in forecasts from one analysis time

(synoptic or subsynoptic) to the next.
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5. CONCLUDING REMARKS

We have shown the ways in which the concepts and

formalism of sequential estimation theory are relevant to

the 4-D assimilation of meteorological data, by applying

them to a simple model. The stochastic-dynamic model

used for the illustration of the theory was governed by

the linear shallow-water equations, including the B-effect

of latitudinal changes in planetary vorticity. The

dynamics of this model are similar to those of operational

NWP models in that they admit as solutions slow,

quasi-geostrophic Rossby waves, as well as fast

inertia-gravity waves.

We have modified the standard Kalman-Bucy (K-B) filter

in order to obtain optimal estimates of the slow, meteorologically

significant waves, while eliminating entirely the fast,

undesirable waves. In this way, our modified K-B filter

achieves simultaneously the optimal 4-D assimilation of data

and the initialization of model states for the purpose of

noise-free forecasts.

It was shown that the optimal filter for the linear

problem converges rapidly to an asymptotic matrix, the

Wiener filter. Furthermore, the asymptotic filter (W-filter)

performs nearly as well as the exact, time-varying filter

(K-B filter). The wiener filter depends on system dynamics

~ , observational pattern H, system noise covariance Q and

212

observational noise covariance R; it does not depend on the

initial errors, PO. The rapid convergence and good performance

of the W-filter for the linear problem hold hope for the

filtering of nonlinear problems with similar dynamic and

tochastic properties.

Nonlinear estimation theory is not completely understood

m thematically, at least not in a practically applicable

form. The filter which is most widely used in engineering

pplications is the extended K-B filter (EKF: Bucy and Joseph,

1968, Ch. 8; Gelb, 1974, Ch. 6; Jazwinski, 1970, Ch. 6

nd Ch. 9). The principle of the EKF is simple: linearize

!he problem around an estimated state, and apply the

rresponding linear filter over a time interval, T say,

v r which the solution of the nonlinear problem is not

Kpected to change much. In large-scale NWP this time could

'Iual 6 h to 24 h. After time T, relinearize around the new

te and proceed. Clearly, T is limited by the dynamics

the system in the problem. When choosing T, a trade-off

Iween accuracy and expediency has to be made.

The EKF gives good results when the true characteristic

r lation time T of the perturbations, which we model

white noise, i.e., T = 0, is actually short compared to T,

T. This is certainly the case in NWR Moreover, it

rs from our experienc,e with linear problems that:

the asymptotic filter for each one of the successive

rizations will work sufficiently well, and there is no

o compute time-varying filters over a time interval T;

he dependence of the W-filter on (linear) system

mic ~ is rather weak.
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We conclude that the W-filter for the succeeding T-interval

will be easily computable from the W-filter valid over the

preceding T-interval by a perturbation procedure.

It is more realistic in NWP to let the observation m a t r b ~

Different observations are made at the synoptic times,

0000 GMT and 1200 GMT, the subsynoptic times, 0600 GMT and

1800 GMT, and in between. The distribution of observations,

how,ever, is not too far from being time-per iodic. Let H* (t)

be a periodic matrix function of time, with period 24 h,

and assume that the actual observation matrix, H(t), differs

from H*(t) at every t only by a matrix of small rank, i.e.,

only by the presence, absence or location of relatively

few observations.

The asymptotic filter corresponding to ('I' (t) ,H* (t)),

K*(tl say, should also be periodic, with a period of 24 h,

rather than constant. We expect some easily computed modi

fication of K*(t) to be a good approximation to the optimal

filter for ('I'(t) ,H(t)). We plan to study, therefore,

time-periodic observation patterns and their modifications.

Sequential estimation accounts explicitly for the fact

that the system whose state we wish to estimate is governed

by certain dynamics. It is this aspect of the theory which

distinguishes it from the so-called "optimal interpolation"

currently used in operational NwP. The latter essentially

assumes that the system obeys trivial dynamics, 'I' = I.

We saw already that taking into account the dynamics

llowed us to unify the assimilation and intialization

spects of preparing initial data for numerical weather

orecasts. Furthermore, it allows us to account in a

ystematic way for the advection of information from data-rich

o data-poor areas, and of "negative information", i.e.,

I. rge errors, from data-poor to data-rich regions.

In particular, the theory shows that weighting

efficients for observations should be skewed in the

irection of the prevailing winds, with larger weights

lpstream; the amount of skewness should depend on average

nd intensity, i.e., on season. Also weights used on

h Western edge of the continents should be different

lom those used on the Eastern edge. The present results

the anisotropv and inhomogeneity of estimation error

'lucture in the zonal direction should also be supplemented

he results on inhomogeneity in the latitudinal direc-

n of Ghil et al. (1980). It is this aspect of the

• ry which we expect to have the largest impact in terms

Improving operational procedures.

One further aspect of the theory merits attention: the

riance matrices Q and R do not need to be prescribed

r ori. They can be determined in the estimation process

(e.g., Chin, 1979; Ohap and Stubberud, 1976) by using an

The determination of system noise would

mportant consequences for predictability theory, as

for stochastic modifications of numerical schemes

nd Schemm, 1977). The determination of observational

l"minating the well known problem of "ground truth",

H(t), rather than a constant.H be a function of time, H
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would also help greatly in improving operational objective

analysis and data assimilation.
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Appendix A. List of Major' Symbols

(m)
c ~ for solutions of the continuous system (3.1), the three

E

f

phase speeds, m = 1,2,3, corresponding to wave number ~ ,

as defined by Eq. (3.3b). The same notation is used for

the phase speeds of solutions of the discrete system

(3.6), which agree with the phase speeds of solutions of

the continuous system to order (6t)2.

expectation, or ensemble averaging, operator

Coriolis parameter, f = 10-4 s -1 ~ 2 ~ sin 45°

p

Q

R

R

t

u

u

number of observations at a synoptic time;

the dimension of z

covariance matrix of the system noise

slow wave subspace

covariance matrix of the observational noise

time

temporal increment in the discrete system (3.6)

mean zonal wind component in the linearization of (3.2)

perturbation zonal wind component

at time k

wj l' (j j jk a so ut10n u k , v k ' ~ k ) of the discrete system (3.6)

distance along the spatial L-domain

perturbation meridional wind component

initial amplitude of v

a solution ( u , v , ~ ) T of the continuous system (3.1)

x spatial increment in the discrete system (3.6)

"true" atmospheric state given by the stochastic model (2.5)

k(-) estimated atmospheric state just prior to observations

v

w

fast wave subspace

combinations of state variables

superscript indicating the spatial grid point, x
j

Kalman gain matrix, defined by (2.11c)

subscr ipt indicating the time, t
k

= k 6 t

length of the computational domain, about half the

circumference of the Earth at 45°N

gravitational acceleration constant of the Earth

observation matrix; defines the observed linear

j

L

g

k

K

H

G

M

wave number; ~ L / 2 T I is an integer,

number of grid points in the L-domain

k(+) estimated atmospheric state just after observations

at time k

n number of state variables, n = 3M; the

dimension of x

vector of observations, given by (2.6)

observational noise, or random part of the observation

P
k

(-) estimation error covariance matrix just prior to

observations at time k

P
k

(+) estimation error covariance matrix just after

observations at time k

model (2.6)

system noise, or random part of the atmospheric model (2.5)

orthogonal projection operator onto the slow wave

subspace R
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mean geopotential at 45°N in the linearization of (3.2),

i.e., g times the mean equivalent atmospheric height

at 45°N

~ p ~ r t u r b a t i o n geopotential

~ O initial amplitude of ~

~ matrix defining the atmospheric dynamics, given for our

model by Eqs. (3.6)

angular rate of rotation of the Earth
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