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Summary

The spread of event-driven asynchronous vision sensors during the last years has

increased significantly the industrial interest and the application scenarios for them.

This article reviews the main fields of application that event-based image sensors

have found during the last twenty years. We focus in the description of applications

where such devices can outperform conventional frame-based sensors. The practical

functions of the three main families of asynchronous event-based sensors are ana-

lyzed. The article also studies what are the factors that increase nowadays the demand

of sensors that minimize the power and bandwidth consumption. Moreover, the tech-

nological factors that have facilitated the development of asynchronous sensors are

discussed.
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1 INTRODUCTION

Since Mahowald and her colleagues published in the early nineties the first integrated asynchronous bio-inspired vision sen-

sor1, the spread of event-driven devices has grown significantly2. Depending on the information from the visual scene that is

processed, there are three main categories of event-based (also known as event-driven or just spiking) vision sensors. The first,

and the oldest group, corresponds to sensors that detect spatio-temporal contrast within the visual scene. In their origins, they

were bio-inspired sensors that try to emulate the early processing of the visual scene that is performed in the human retina. The

second and the most successful category so far corresponds to Dynamic Vision Sensors (DVS). These are devices whose pix-

els spike whether they detect transient illumination changes. They can track very fast moving objects with very low power and

bandwidth data consumption. Finally, the third category corresponds to spiking luminance sensors, also known in the literature

as octopus retinas. Although they just perform a light-to-frequency conversion, they preserve the asynchronous communication
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part by Junta de Andalucía CEICE under Grant TIC 2012-2338 (SMARTCIS-3D); and in part by ONR under Grant N000141410355 (HCELLVIS).
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based on spikes to encode the illumination levels. Only illuminated pixels can send information off-chip. Their dynamic range

and their latency are quite competitive. Thus, they are attractive for applications where is necessary to detect illumination levels

of certain regions with low resources consumption.

Although the commercial success of asynchronous vision sensors is still far away from frame-based sensors, there are several

companies like Prophesee or Inilabs dedicated to the fabrication of event-based cameras. The rise of the demand of vision sensors

with low power and bandwidth consumption, and the capability of processing the visual scene has put spiking sensors into the

scene. Drone vision and autonomous vehicles prefer devices with such features instead ones that provide high image quality. For

these reasons, asynchronous image sensors find accommodation and are highly competitive in situations where image quality is

not a must.

There are several reviews and comparisons between the different event-based sensors published so far2,3. However, to the best

of our knowledge, still there is not still published a review of the specific fields of application where they have been employed. In

this article, we will focus on a description of a the fields of application where event-based vision sensors have been successfully

accommodated. We will pay special attention to applications of the family of spiking luminance sensors in which the authors

have made relevant contributions during the last years.

2 SENSORS BASED ON SPATIAL CONTRAST DETECTION

Spatial contrast detection is the very first-processing of the visual scene performed by the human visual system4. It is imple-

mented by the cells that compound the retina. Their outputs are transmitted as train of spikes through the optic nerve. The

detection of spatio-temporal contrast allows to detect edges, and shapes. That is crucial for an early interpretation and classifica-

tion of the elements within the scene. At first instance, spiking sensors capable of computing spatial contrast on the focal plane

pursue to mimic a biological modelling of the human retina4. The first silicon retina chip was proposed by Mahowald,1. The

original pixel topology is shown in Fig. 1 . Pixels detect light with a photoreceptor circuit which output is a voltage that is aver-

aged within a neighborhood with a diffusive resistive network that interconnects all the pixels. If the average illumination value

in the neighborhood, V pneigℎb.
, differs from the pixel’s local illumination value, Vpi,j

, the pixel will spike, indicating the detection

of spatial contrast. These circuits, in the literature, still they are known as silicon retinas due to their biological inspiration. There

are improved versions of this preliminary approach5,6,7. This family of sensors opened a field of research that lead to ulterior

development of event-based vision sensors. They also put emphases in the development of asynchronous circuitry to implement

the well-known AER (Address Event Representation) communication protocol8,1,9. Modern arbitration schemes10,11 are based

on the early versions implemented on the first asynchronous bio-inspired vision sensors.
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FIGURE 1 Retina contrast detection pixel according to1. Average illumination values within a pixel neighborhood (V pneigℎb.
)

are computed with a diffusive resistive network. The average illumination value in the neighborhood (V pneigℎb.
) is compared to

the local pixel illumination (Vpi,j
). If both values differ, the pixel spikes, with a frequency proportional to the spatial contrast

magnitude.

Once the possibility of implementing these sensors was demonstrated, the community drew its attention about how to improve

the quality of their images. Particularly, mismatch was an important challenge associated to the first generation of bio-inspired

sensors, operating with transistors in subthreshold region. Several authors pointed out the need of reducing pixel Fixed-Pattern-

Noise (FPN) associated to transistor mismatch. In that sense, calibration procedures and circuitry robust to mismatch were

developed12,7. Nowadays, the event-driven spatial contrast computation is not highly competitive in terms of spatial noise against

the traditional method: read-out an entire pixel matrix illumination values and process them on the digital domain to detect

edges and shapes. The main reason is that asynchronous computation of spatial contrast on the focal plane requires non-linear

operations that are difficult to implement precisely in the analog domain. However, they deserve to be mentioned in this survey

because they led to the development of other families of asynchronous sensors whose applications will be described in the next

sections.
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3 DVS SENSORS

The pixel’s architecture of a Dynamic Vision Sensor (DVS) sensors is depicted in Fig. 2 . Light is processed by a logarithmic

photoreceptor. Its output voltage, vi, feds a differencing circuit that computes and amplifies its temporal derivative, vdiff . If the

transient variation of differencing voltage exceeds a programmable threshold (either positive or negative), and event is sent off-

chip, indicating a pixel’s illumination change, its coordinates, and the sign of the temporal contrast. DVS sensors can detect fast

changes of illumination, with low power and data bandwidth consumption. Movement detection is outperformed over transitional

procedures, based on frame processing. Proof of that is the fact that several companies like Inilabs or Prophesee have put on

their scope the development of these family of sensors.

The first functional DVS sensor was presented by Lichtsteiner et al. in 200813. In this first publication, the authors already

devised possible applications for the sensor, i.e. traffic monitoring, gaming, sleep monitoring, etc. In more recent publications,

several authors presented improved versions of the original DVS sensor14,15,16,17.

Regarding the application fields of these sensors, we can highlight the same examples:

1. Datasets for implementation and training of spiking neural networks for object tracking, action recognition and/or object

recognition. Spiking neural networks needs to be fed with spiking inputs. Images generated with asynchronous image sensors

are ideal for this purpose. The spread and popularization of DVS sensors among the community has driven the creation of

event-based image datasets recorded with DVS sensors18,19.
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2. Traffic monitoring. The control of moving objects is an ideal task for DVS sensors. Only pixels that detect illumination

changes send data off-chip, minimizing the bandwidth and the power consumption. There are specific papers addressing this

topic, for instance,20. Also DVS sensors have been used to implement proximity detectors,21.

3. Fall detectors. Processing the output data flow of a DVS sensor, the authors propose a fall detector22. It was intended for home-

care of elder people. In can be integrated among the sensors of an intelligent house. Gesture recognition is also possible,23.

4. Robotics integration, control and navigation24. The idea is to provide images of visual scenes with cameras that are mounted

on systems that are continuously moving or observing a non-static visual scene.

5. Tracking and particles detection on fluids. The excellent temporal resolution of DVS sensors has made possible to track fast

movements of particles in fluids reducing the data throughout25.

6. Color change detection26. Combining the pixel architecture of a DVS sensor with stacked photodiodes at different depths in

standard silicon, it was possible to create an image sensor whose pixels only reacts to color changes (transient shifts within

the spectrum).

7. Stereo vision27,28. The combination of two or more DVS sensors recording images from different localizations allows deter-

mine distances and depth, after processing their outputs. The DVS sensor reduced output data flow allows to alleviate the

bandwidth and power processing consumption with regards to classic frame-based processing algorithms.

4 SPIKING LUMINANCE SENSORS

In this paper, we will focus on summarizing practical applications where asynchronous spiking sensors have been employed.

These devices, also known as octopus retinas, perform a light-to-frequency conversion to encode luminance levels within the

visual scene29. Their operation principle is depicted in Fig. 3 . Pixel operation is initiated by reseting the voltage at the integration

capacitance, C . Then, its voltage decreases linearly with a slope that is proportional to the pixel’s photocurrent until it reaches a

programmable analog voltage, Vref . Thereafter, the pixel self-resets and starts integrating charge again. The pixel’s oscillation

period is approximately given by this expression:

fosc ≈
Ipℎ

C ⋅

(

VDD − Vref

) =
Ipℎ

C ⋅ ΔV
(1)

Where Ipℎ is the pixel photocurrent and C is the integration capacitance. Vref is a voltage threshold to control the pixel

sensitivity to light. Although these sensors do not implement any kind of processing, just measuring luminance levels, they

have inherent advantages over conventional frame-based image sensors. The first one is speed; pixel spiking frequency can
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FIGURE 3 Integrate-and-fire (I&F) pixel block diagram. Pixels spike with a frequency proportional to light intensity. Every
time that this occurs, pixels’ addresses are transmitted asynchronously off-chip. Asynchronous digital signals involved in the
data transmission are displayed on the right.

easily reach KHz rates in indoor environments30,29. This implies an equivalent temporal resolution in the order of Kilo-frames

per second. The second advantage is their autonomous operation. Pixels have not to be scanned periodically to gauge their

illumination values. They pulse continuously whenever they are illuminated. If they are dark, they do not send any data. That is

also an advantage for application scenarios where dark pixels are meaningless. Another strength of them is their High Dynamic

Range (HDR) operation. Pixel spiking frequencies can spam more than five decades31,29. This implies the capacity of detecting

intra-scene illumination levels with a dynamic range higher than 100dB. Also, their power consumption is reduced with respect

frame-based sensors.

Their main penalty is image quality. FPN noise is typically higher with these sensors30,31. However, there many applications

that can sacrifice image quality in benefit of speed, HDR operation, and low power consumption. We summarize and explain

some of them in the next subsections.

4.1 Sun Sensors

Sun sensors detect the sun position (azimuth and latitude) referred to their centroid. They are demanded for green energy pro-

duction in solar plants and to develop navigation systems for spacecrafts and sounding rockets, that take the sun as a reference

for orientation. There are two main classic families of sun sensors: analog33 and digital34,35. Analog ones are more simple and
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FIGURE 4 (a) Operation of a sun sensor32 built with a pinhole lens. (b) Snapshot of an asynchronous sun sensor implemented
with a pinhole lens. (c) Sensor’s output data. The sun position is calculated computing the centroid of a certain number of
incoming events. With only one event, it is possible to gauge the sun position with an error lower than 2.2%.

easy to design, but they are more prone to noise and sensitive to scene distractors. Digital ones are the most extended ones nowa-

days. They are reliable and easy to build. Deploying a dedicated optics on top of a frame-based sensor, it is possible to convert

it into a sun sensor. Depending on the sun position, a group of pixels will be illuminated. Its centroid will depend on the sun

localization. By processing the output data, the centroid is calculated. Then, establishing basic trigonometric relations, the sun

position can be determined.

The main limitations of this approach are the data redundancy and the limited operation speed. Data redundancy is an impor-

tant drawback because dark pixels needs to be readout and are useless to compute the sun position. This also drives to high

bandwidth and power consumption derived of the data readout and the data processing. The second limitation is the operation

speed. Since the entire pixel matrix has to be readout, every time that the sun position has to be updated, the operation speed is

conditioned by the frame rate. Several authors have proposed strategies to avoid reading dark pixels34. However, still some of

them have to be readout periodically.

A recent alternative to build digital sun sensors is the usage of octopus retinas36,32. By placing a dedicated optic over them,

only pixels exposed to sunlight will send data. Therefore, data redundancy is avoided, simplifying the data processing, the sensor

operation and reducing power consumption. Moreover, the excellent temporal resolution of octopus retinas make these devices

suitable for space navigation. In Fig. 4 .a, we display the architecture of a spiking sun sensor with a pinhole lens on top of it.

In Fig. 4 .b, the fabricated spiking sun sensor is displayed. Data recorded with the sensor is provided in Fig. 4 .c. The centroid

computation of the illuminated region is fast and simple. Just computing the centroid of the pixels that fires, it is possible to do

that. The operator has freedom to decide how many spikes are employed to compute it. Usually the centroid is closer to the highest
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FIGURE 5 Flames monitoring with an asynchronous NIR spiking sensor38,39. (a) Snapshot of a flame taken with a luminance
asynchronous sensor with an optical NIR filter. (b) Top: Transient NIR levels variations detected with the sensor in a visual
scene with a flame. Bottom: FFT of the previous data to study the flame frequency components.

illuminated pixel that spikes first than the others. Thus, just taking into account its coordinates, it is possible to gauge the sun

position with acceptable precision. In terms of dynamic range, spiking sensors allow to encode the illumination levels without

saturating. Usually, frame-based sensors dynamic range is limited to 70dB37, that is not enough to detect illumination levels

inside very bright light sources like the sun that require sensors with more than 100dB dynamic range to be characterized37.

4.2 Flame monitoring

Asynchronous spiking sensors can be used in the detection and the analysis of flames activity,38,39. Flame flickering and flame

emissions have to be monitored in some industrial processes40,41. These tasks were implemented, at first instance, with infrared

(IR) cameras or microbolometers. Their main limitations are the high cost, the limited frame rate, the need of calibration in

some cases, and their fragility42.

As alternative to them, CMOS or CCD cameras working in the Near Infrared Band (NIR) have been employed. By placing

a NIR filter over them, the become NIR imagers. Radiation inside this band is emitted by flames. Hence, with adequate image

processing, flames activity can be monitored43,44,45. Flames flicker with frequency components that range between DC and

100Hz40. Thus, the analysis of their transient activity requires sensors with good temporal resolution. This requirement also
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FIGURE 6 Asynchronous color sensor implementation,46. (a) Stacked photodiodes to achieve spectral selectivity within the
visible spectrum. Each one is connected to integrate-and-fire (I&F) block as the one depicted in Fig. 4 . (b) Input stimulus and
color images rendered with an asynchronous sensor implemented with the proposed pixel architecture.

implies that, operating with a frame-based camera, the amount of data to be processed is be very high, limiting the data analysis

to off-line operation40.

Recently, the authors advanced how octopus retinas can used to monitor flame activity,39. The excellent temporal resolution

of these sensors can be exploited to track their transient activity efficiently. Filtering the radiation below the NIR band, the output

data is limited to the regions exposed to NIR radiation. Hence, their output data flow can be processed real-time39, outperforming

the operation obtained with classic NIR imagers40. In Fig. 5 .a, a snapshot of a flame taken with an octopus asynchronous sensor

fabricated in standard CMOS technology is displayed. An optical filter was placed over the sensor to remove the radiation outside

the NIR band. Results are alike the ones that can be obtained with a commercial infrared camera. It is possible to identify the

main regions inside the flame. On the top of the right plot in Fig. 5 .b, we have plotted the transient NIR levels detected by the

sensor in a visual scene with flames. Flames provoke fast variations of the NIR levels. On the bottom of the same plot, the Fast

Fourier Transform (FFT) of the previous data is displayed. Main frequency components range from DC to 30Hz, for this flame.

4.3 High speed color detection with stacked photodiodes

Currently, standard CMOS technologies offer the possibility of incorporating a deep n-well or a deep p-well to the chip design.

These layers allow to stack photodiodes at different depths, placing a deep n-well beneath an n-well, as it is depicted in Fig.

6 .a. Stacked photodiodes have different sensitivity to light wavelength, depending on their depth47,48. Hence, similar spectral

discrimination can be achieved than employing traditional methods with discrete optical filters. In this previous work46, there

diodes were stacked to encode color at high speed. In Fig. 6 .a, there is a sketch of the color pixels. Each one is connected to an

integrate-and-fire (I&F) module with the same architecture than an octopus sensor as the one shown in Fig. 3 . Processing the
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outputs of each I&F block, it is possible to render real time images,46. On the right of Fig 6 .b, there is an input stimulus that

was recorded with the sensor and the image captured with it. Although it was not possible to tune the depth of the photodiodes to

adjust the peak of sensitivity of each one, tri-chromatic images could be rendered, demonstrating the feasibility of this approach.

5 HYBRID SENSORS

Another tendency on the design of asynchronous sensors is the implementation of hybrid devices. These combine frame-based

operation and event-based asynchronous operation. The approach aims to merge the advantages of both families of sensors

in one unique design. The development of specific technologies for image sensor design that permit the layout of pixels with

reasonable pitch, and the demand of sensors that can implement image processing on the focal plane, justifies this trend. Posch

et al. implemented the ATIS sensor16. The device has pixels that detect motion, operating as a DVS sensor, and also measures
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FIGURE 8 Sensor with dual operation modes and dual readout modes31. (a) Pixel’s digital signals exchanged with the neigh-
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bined with AER readout. (f) Snapshots taken with the sensor in contrast detection mode combined with TFS readout. The output
image is rendered with different number of events.

their luminance levels whether they detect transient illumination variations. The design permits to measure all the illumination

levels of the visual scene and the time stamps where they changed, minimizing the output data flow. Every time that a pixel

illumination value changes, its new luminance value is gauged.

The DAVIS sensor14 reported by Delbruck et al. combines DVS and/or APS operation. The user can toggle between the two

operation modes, depending on the information of the visual scene to be captured. Pixel pitch is competitive, 18.5µm×18.5µm,

for many applications, as drone vision or autonomous vehicles control, that do not require high resolution images.

The authors of this article, contributed in 2016 with a HDR image sensor (known as HDRLVS sensor) with linear operation30.

The device has an output data format identical to any APS sensor. However, internally, its pixels combine classic APS readout

with event operation. In Fig. 7 .a, pixel schematics of the HDRLVS sensor are displayed. In Fig. 7 .b, the sensor operation

principle is depicted. The pixel has a light-to-frequency conversion module that generates spikes whenever the voltage at the

integration capacitance, Cpℎ, reaches a voltage threshold. The coordinates of the pixel that spikes are transmitted off-chip every

time that this occurs. At the end of an integration time, the remaining voltage is digitized and readout with APS circuitry.
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Combining the number of events associated to each pixel (more significant bits) and the digital word that represents the remaining

voltage at the integration capacitance (less significant bits), pixel illumination levels are encoded linearly with a 24-bit word.

Therefore, an intra-scene dynamic range of 130dB can be achieved. In Fig. 7 .c, there is a custom interface that was programmed

to test and demonstrate the sensor operation. The measured illumination levels in a visual scene with large intra-scene dynamic

range are displayed. A color scale was used to represent the illumination levels encoded with 24-bit depth. A video showing the

device capabilities is available on the net,49.

There are situations where it is advantageous to trade between image quality and power and data consumption. For instance,

surveillance cameras would not need to send detailed images of the visual scene as long as an intruder or a transient illumination

change are detected. The authors reported an asynchronous sensor31,50 that has two operation modes, namely luminance and

spatial contrast detection. These two operation modes can be combined with two readout schemes. The first one corresponds to

a classic asynchronous readout mode based on the AER communication protocol10,11 and the second one implements (Time-

to-First-Spike) TFS operation51,52,53. In this operation mode, the sensor’s pixels are released after a global reset signal. The

operator can decide how many events (spikes) are used to render one image.

The sensor allows to toggle instantaneously between the operation and the readout modes, depending on the requirements of

image quality, latency, power, and bandwidth consumption. In Fig. 8 .a, pixel digital signals exchanged with its neighbors are

illustrated. Pixel spikes are sent to the neighbouring pixels. Analogy, spikes coming from the neighbors are received. There is

a competition between the pixel and its neighbors to charge/discharge a reference integration capacitance (Cref in Fig. 8 .c).

Every time that the pixel fires, a packet of charge is transferred to a capacitance. When neighbors spike, a packet of charge is

subtracted from the same capacitance. If the pixel activity is higher than the neighborhood, the voltage at the capacitance will

reach a voltage threshold and an spike will be sent, indicating the detection of spatial contrast. The strength of the neighbors

influence can be adjusted by the user. Inhibiting the influence, the sensor behaves as an octopus retina whose pixels spike with a

frequency proportional to illumination. In Fig. 8 .b and 8 .c, the pixel’s schematics and its operation are depicted. In Fig. 8 .d,

we display snapshots in the contrast detection and in the luminance mode, combined with classic AER readout. In Fig. 8 .e, the

TFS readout mode is illustrated. A different number of events was used in each snapshot to reconstruct the resultant image in

the Contrast Detection (CD) mode. It is demonstrated, that with a reduced number of events, it is possible to interpret the visual

scene.
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6 COMPARISON BETWEEN DIFFERENT SENSORS FAMILIES

We summarize on Table 1 main sensor parameters for each sensor family. The key initial contribution for each sensor category

and its first author are mentioned. Furthermore, we highlight the main aforementioned applications associated to each sensor

type.

7 ANALYSIS AND EXPECTATIVES

There are two main factors that facilitate the spread of asynchronous vision sensors. The first one is technology development.

Transistor scalability and the development of CMOS fabrication technology makes possible to reduce significantly the pixel

pitch when designing asynchronous sensors. To illustrate this, we can take as reference the first functional DVS sensor reported

by Lichtsteiner et at.13. Its pixel pitch was 40µm×40µm. Recent improved versions, i.g. the DAVIS14, has a pixel pitch of

18.5µm×18.5µm, including extra functionalities as APS luminance sensing. The recent publication of Son et al.54 from Samsung

reflects the growing industry interest in DVS sensors and the real possibility of fabricating DVS pixels with a competitive pitch.

Modern fabrication technologies have larger number of routing metals and allow to place MiM capacitors on top of the transistor

layout without requiring extra area. In connection with the technology development, the spread of 3D fabrication technologies

opens a new horizon of pixel design possibilities55. Functional processing units could be placed in different layers than the one

dedicated to light sensing. In consequence, pixel focal plane processing capabilities can be increased without reducing the pixel

pitch.

Another factor that increases the development of asynchronous vision sensors is the demand of vision sensor for autonomous

vehicles and drone vision. The specifications for theses systems are driven to interpret the visual scene with low consumption of

power and bandwidth. Hence, asynchronous image sensors find a perfect field of application in these scenarios. Hybrid operation

sensors facilitate the incorporation of spiking sensors to the market. The main reason is that their output data format can be

compatible with classic frame-based image processing algorithms and displays. Thus, there is no required a deep knowledge of

the sensor’s inner operation from the operator’s side.

8 CONCLUSION

Applications fields for the different kinds of asynchronous vision sensors have been presented and explained. We have reviewed

the main families of asynchronous sensors: vision sensors for spatial contrast detection, DVS sensors, spiking luminance sensors,

and devices with hybrid operation. For each one, the most relevant application scenarios have been mentioned and analyzed. In

the manuscript, we have paid special attention to the applications of spiking luminance sensors, explaining in more detail some
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of the contributions made by the authors. The expectations for the further development of asynchronous sensors have been also

discussed.
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TABLE 1 Comparative between different spiking sensor families

Type of sensor/
Functionality

Author / Year
/ Key first
implementation

Key parameters Key applications

Spatial contrast
detection

Mahowald 1991,1 Spatial contrast sensitiv-
ity

Bio-inspired modelling, applications with
reduced output data flow, surveillance, early
scene interpretation

DVS sensors Lichtsteiner
2008,13

Temporal contrast sen-
sitivity

Datasets for spiking neural networks, traf-
fic monitoring, robotic integration, domotic
systems, stereo vision

Octopus sensors Culurciello 2003,29 Dynamic range and
latency

Light-to-frequency conversion, sun sensors,
flame monitoring, fast color encoding

Hybrid sensors Several authors
2010,16,14,30

Dynamic range, latency,
power consumption,
spatio-temporal contrast
detection

Combinations of features from different
sensors families, HDR imagers, motion
detection
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