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Abstract

This review describes approaches to the analysis of fractal properties of physiological

observations. Fractals are useful to describe the natural irregularity of physiological systems

because their irregularity is not truly random and can be demonstrated to have spatial or temporal

correlation. The concepts of fractal analysis are introduced from intuitive, visual, and

mathematical perspectives. The regional heterogeneities of pulmonary and myocardial flows are

discussed as applications of spatial fractal analysis, and methods for estimating a fractal dimension

from physiological data are presented. Although the methods used for fractal analyses of

physiological data are still under development and will require additional validation, they appear

to have great potential for the study of physiology at scales of resolution ranging from the

microcirculation to the intact organism.
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The Intent of this Review is to provide physiologists with the basic tools for working with

fractals, by use of intuitive, visual, and formal mathematical definitions of the concepts of

fractal geometry, self-similarity, scale independence, and fractal dimensions. Although the

concepts underlying fractals are new, mathematical sophistication is not a prerequisite for a

working knowledge of fractal applications. Applications of fractal analysis in physiology

will be reviewed with examples from pulmonary morphology, pulmonary and

cardiovascular circulation, and time-dependent analysis of physiological measurements.

APPENDICES A and B include a glossary of terms and variables, a listing of the equations,

and an illustrative analysis of a simple data set.

Fractal analysis is still in the formative stages of development, and its ultimate importance

as an investigative tool in physiology is not fully established. Nevertheless, it is providing

new perspectives into the physiology of cells, organs, and intact organisms, with

mathematical models of branching structures and with descriptors of spatial and temporal

correlation. The robust descriptive properties of this approach in the analysis of
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physiological variability suggest that it may signal the development of a new paradigm (16)

compelling the attention of investigators from diverse areas of physiological inquiry.

Self-Similarity and Fractal Dimensions

A fractal structure or fractal process can be loosely defined as having a characteristic form

that remains constant over a magnitude of scales. A structure is fractal if its small-scale form

appears similar to its large-scale form. Similarly, a process is fractal if a variable as a

function of time undergoes characteristic changes that are similar regardless of the time

interval over which the observations are made. In the parlance of fractal analysis, this is the

quality of self-similarity, also termed scale independence. Because fractal analysis is not a

familiar tool to most physiological investigators, we will systematically develop these

principal definitions and concepts. Concurrently we will derive numerical methods to

determine whether a structure or process is fractal and to estimate a fractal dimension.

The Koch curve (Fig. 1), created by the Swedish mathematician Helge von Koch in 1904, is

a fractal structure that provides a simple introduction to the concepts of self-similarity and

fractal dimensions. This curve is defined by the following iterative transformations.

Beginning with a straight line of length l0 (Fig. 1, top line), the middle third of the line is

replaced with two segments of length 1/3 l0, forming part of an equilateral triangle (Fig. 1,

second line). The next iteration repeats the same procedure on each of the four resultant

straight-line segments. Subsequent generations are formed in an identical fashion, and the

completed figure represents the infinite expression of this iterative procedure. The

completed Koch curve exemplifies the properties of self-similarity because, regardless of the

scale used to examine any portion of the Koch curve, it maintains its characteristic form.

Examples of self-similar structures abound in the natural world. A tree maintains a quality of

self-similarity independent of the perspective or scale from which it is viewed. The

branching angles and proportionate diameters of branches appear to remain constant

regardless of whether we are looking at the main trunk or the terminal branches. Clouds are

fractal, with each billowing appendage similar in form to its entirety. In fact, without a

reference scale, it is not possible to estimate the size of a cloud from a photograph (4). The

classic example of fractal structures is a coastline, which appears to maintain the same

degree of irregularity regardless of the size or detail of the map studied (23).

The bronchial tree can be visualized as a fractal structure, the final form of which is

generated by an iterative process akin to that described above for the Koch curve (8, 24, 28,

42). The primordial lung bud initially undergoes a bifurcation to form the right and left

bronchi, and subsequent generations are formed by a repetitive bifurcation of the most distal

airways (18). In this manner, a dichotomously branching network is produced, filling the

available space. In his initial description of potential fractal structures in nature, Mandelbrot

(24) described a simple rectangular branching algorithm that bore a striking resemblance to

the bronchial tree (Fig. 2, left). Since that first model, more realistic two-dimensional

iterative transformation algorithms have been implemented on computers to simulate the

growth and geometry of the bronchial tree (29). All these models exhibit the necessary

Glenny et al. Page 2

J Appl Physiol (1985). Author manuscript; available in PMC 2014 June 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



quality of self-similarity to be deemed fractal, in that each generation appears similar to

previous generations, regardless of the level of bifurcation examined.

Contour-measuring method

A second principle of fractal structures and processes is a corollary of self-similarity:

because the underlying form of a structure or process remains similar through successive

magnifications of scale, it follows that a measured length of its form cannot approach a

limit. Remembering the Koch curve, we can expand indefinitely the set of segments that

contributes to its length. Although this property is a necessary requirement for a structure or

process to be fractal in a strict mathematical sense, it is possible to discuss fractal properties

of natural objects over a limited range of scales.

The Koch curve (Fig. 3, left) is a good model to formally examine the characteristic of the

scale-dependent length of fractal structures. Because of its jaggedness, the apparent length

[L(l)] of the curve will be dependent on the length (l) of the measuring device chosen. If we

use a stick of length l0, equal to the straight-line distance from one end to the other of the

curve, none of the protruding structures will be measured and the apparent length of the

entire line is l0. If the measuring stick length l is decreased to 1/3 l0 and then 1/9 l0, the

apparent contour length increases to 4/3 l0 and 16/9 l0, respectively. Generalizing this

process for n iterations and a measuring stick of length l = (l/3)nl0, the corresponding

measured length would be (4/3)nl0. Therefore, as l becomes infinitely small, or as n → ∞,

the apparent contour length of the Koch curve becomes infinite. As increasing magnification

reveals more detail, the overall appearance of the new segment examined remains similar to

that of the previous segment.

Mandelbrot (23) derived an “exponent of similarity,” which he later renamed the fractal

dimension (D), to characterize the complexity of fractal figures. D can be related to the

Euclidean dimension (E). A line segment of E = 1 can be cut into N identical pieces. The

ratio of the piece lengths (l) to l0 is l/l0 = N−(1/1). A square of E = 2 can be partitioned into N

identical squares, and in an analogous fashion the ratio of the side lengths of the smaller

squares to the initial square will be expressed by l/l0 = N−(1/2). By the same process, a solid

divided into N identical cubes will have side lengths that are scaled down from the original

by a factor l/l0 = N−(1/3). In each case, the ratio of the lengths is scaled down by l/l0 =

N−(1/E), where E represents the Euclidean dimension of the subdividing unit.

Similarly, a fractal figure will have a constant relationship between the number of pieces

into which the figure is cut (N) and the ratio of the piece length to the total length measured

at that particular choice of l, expressed again by

(1)

where in this instance D is a fractal dimension (39). If N is expressed as [L(l)/l]/[L(l0)/l0] in

Eq. 1 and both sides of the equation are raised to the D power, Eq. 1 can be rewritten as

(l0/l)D = [L(l)/l]/[L(l0)/l0] or
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(2)

For the Koch curve, in which L(l)/L(l0) = 4/3 and l/l0 = 1/3 for each iteration, D can be

determined by substitution and solving the equation 1 − D = ln (4/3)/ln (1/3). The Koch

curve therefore has a D = ln (4)/ln (3) = 1.261. … Unlike E, D is not usually an integer, but

a fractal structure will always have a dimension equal to or less than the space in which the

structure is defined (D < E).

Taking the logarithm of both sides of Eq. 2 and rearranging the terms yields

(3)

In this form, a log-log plot of L(l) vs. l/l0 produces a line with a slope of (1 − D) and an

intercept of ln [L(l0)]. Figure 3, right, shows such a plot for the Koch curve, demonstrating a

slope of −0.261 … or D = 1.261. … The value of the intercept is dependent on the arbitrary

choice of l0 and does not affect the determination of D. Equation 3 thus provides a working

definition of a fractal process or structure. A process or object may be fractal if the

logarithm of the measured value is linearly related to the logarithm of the scale of

measurement. D is 1.0 minus the slope of this linear relationship.

An intuitive grasp of the meaning of a fractal dimension can be obtained from examination

of some different fractal figures. A straight line has properties of self-similarity, in that at

higher and higher resolutions it continues to show its same straight shape. It has a

topological, fractal, and Euclidean dimension of 1. For different fractal line algorithms

generated in two space, a topological dimension of 1 and a Euclidean dimension of 2 are

maintained, but the more complex line figures have progressively increasing fractal

dimensions. When the line becomes so complex that it nearly fills the plane, Ds approaches

2.0. Figure 4 illustrates some fractal curves that are iteratively produced by different rules,

yielding different fractal dimensions (38). Even at the limited level of iteration illustrated in

Fig. 4 the curves with higher fractal dimensions are more space filling. The fractal

dimension therefore serves as a measure of complexity that is independent of the scale of

magnification. As we will show later, this measurement of complexity can be used to

characterize physiological structures and processes that have fractal properties.

Objects described by Euclidean geometry are not fractal. For example, a semicircle has no

repeating characteristic form at different scales of inspection. Application of the contour-

measuring method described for the Koch curve to the semicircle (Fig. 5, left) demonstrates

that a semicircle is not fractal. For an initial measuring stick of l0, if the distance around the

semicircle is cut in half at each iteration (n), the apparent contour of the semicircle, L(n), is

dependent on n by the relationship
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As n → ∞, L(n) → πl0/2. Hence the semicircle is not fractal because its length approaches a

limit as the scale of measurement decreases. Applying the log-log plot of contour length vs.

measuring stick length (see Fig. 3) to the example of the semicircle shows that the slope of

the plot rapidly approaches zero and therefore is not fractal (Fig. 5, right).

A measuring stick of length (1/3)nl0 was initially chosen to measure the Koch curve because

it produces easily analyzed contour lengths. Another choice of measuring stick length would

have been (l/3)(n−1/2)l0, which produces apparent contour lengths of 4(n−1/2)l0 and D = 1.262.

… A less optimal choice of measuring stick length yields a less accurate estimate of D. For

example, measuring stick lengths of (1/2)nl0 and (2/3)nl0 produce estimated D of 1.216 …

and 1.262 …, respectively. Figure 6 demonstrates the measurements on a Koch curve

obtained from a stick length of (2/3)nl0, with the results plotted on a log-log plot as was done

in Fig. 3. Note that, particularly at the larger stick lengths, more scatter is produced if only

the first eight measurements of the apparent contour length are utilized. The least-squares

estimate of D is accordingly incorrect, although it is apparent that this error will become less

important if the measurements are continued with smaller measuring sticks. If finer

measurements are made with smaller measuring stick lengths, the estimate of D will

approach the theoretical D of 1.262. …

The accuracy of the measured contour length of a fractal line improves as the measuring

stick gets smaller. The best estimate of D therefore should be determined from the

measurements obtained using the smaller measurement segments, particularly in those

circumstances where the optimal length of subdivision of the measuring stick is not known.

Thus when working with experimental data, there is a rationale for excluding those

measurements that were obtained using the largest measuring sticks and then fitting a least-

squares regression line to the log-log plot of L(l) vs. l/l0. This approach ignores the

information present in the larger measurements. Another approach is to fit a weighted least-

squares linear regression to the entire data set. By weighting those measurements obtained

using the smaller measuring sticks more heavily, a better estimate of D is obtained.

The confidence in an estimated value of D is dependent on the fit of the data to the

regression line and the number of data points determining the line. Increasing the number of

observations will improve the estimate of D by decreasing the variability in the

measurement as the scale of measurement decreases. A statistical description of our

confidence in the slope of the regression line can be determined from the standard deviation

(SD) from the regression and arbitrary confidence intervals. The SD from the regression will

actually be underestimated in these analyses because the observations are not independent of

each other. When a measuring stick length of (1/3)nl0 is used to measure the Koch curve as

in Fig. 3, right, we are certain that the slope of this line is −0.262 because of the perfect fit

of the data to the line. However, we are only 95% confident that the slope of the line in Fig.

6 lies between −0.365 and −0.165 and that D is between 1.165 and 1.365. These issues
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emphasize two important points about the experimental estimation of D. First, even for

measurements on theoretically constructed fractal figures, the estimate of D is dependent on

measurement sampling. Second, the confidence in the estimate of D can be strengthened by

increasing the number of measurements obtained or using the optimal measuring stick,

which decreases the variation of the measurements.

Finally in any real system, there will be measurement error, and this error will become more

troublesome at the smaller measuring stick lengths. The effect of random noise

superimposed on a fractal signal is to reduce the correlation. How this affects the estimate of

D depends on the noise characteristics.

A relatively good linear fit between a variable and a measuring scale length on a log-log plot

is not adequate proof that the variability of a process is explained only by its fractal

properties. Such an observation does not exclude other nonfractal models, and it cannot

establish whether a fractal model is better than any other. It is also important to recognize

that a nonlinear relationship between two variables on a log-log plot does not prove that the

relationship is not fractal. As shown in Fig. 6, a poor choice of measuring stick lengths or

scale of measurements for a fractal structure may produce observations that do not appear

linear. Rigaut (32) has proposed an alternative method for determining the D of log-log plots

that are not linear. When the log-log plot is linear, Rigaut's method provides the same D as

the least-squares regression method. However, if the line is curved, Rigaut's approach

invokes a continuum of D values. The utility of his approach needs further exploration.

Box-counting method

Other methods for determining D use similar iterative scaling algorithms. A common

method is the box or grid approach in which a fractal figure is covered with a grid or boxes

of side length l (Fig. 7) and the number of boxes in which part of the figure is present is

Nbox(l). By use of this technique, D can be determined from the slope of the log-log plot of

Nbox(l) as a function of l. The advantage of this approach is that it can be efficiently coded

as a computer algorithm and adapted to measure objects or processes in multiple (Euclidean)

dimensions (20a). In practice, as was apparent with the measuring stick method, it is useful

to examine as large a range of l as possible and to average D over a number of different

placements of the grid or boxes (39). D is again usually determined from the slope of a log-

log plot (L. S. Liebovitch and T. I. Toth, unpublished observations). The boxes do not have

to be arranged on the rectangular grid but can be slid to minimize the number of boxes used

at each level. This will merely shift the position of the line on the log-log plot and will not

affect the estimate of D. Using this approach to determine D for the Koch curve in Fig. 7

yields an estimate of 1.23. Although close, this estimate differs from the theoretical value of

1.261 … because only a finite number of boxes and sizes can be used to measure a line that

has infinite length.

A strict mathematical definition of a fractal structure has been offered by Mandelbrot (24) as

a set for which the Hausdorff-Besicovitch dimension strictly exceeds the topological

dimension. It is impossible to apply this definition to a set of physiological measurements

where the mathematical structure of the variable of interest is not known. We have therefore

chosen to define a structure or process as potentially fractal if it maintains a characteristic
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form over many orders of magnitude of scale. A fractal structure or process can be tested for

self-similarity by using the contour-measuring or box-counting method to determine

whether there is a linear relationship obtained from Eq. 3. Although this definition cannot

prove that a structure or process is fractal, it provides an estimate of D that can be used to

characterize the irregularity or spatial and temporal correlation of a structure or process.

Although this approach using log-log plots provides an easily implemented means of testing

whether a structure or process is fractal, uncertainties concerning the procedure remain.

How sure are we that the structure or process is truly fractal as opposed to some other model

such as an exponential decay process? There are not necessary and sufficient conditions to

prove that the variability in real data sets is only fractal. A log-log linear relationship may be

a necessary but insufficient requirement for some structures or processes to be characterized

as fractal. Theoretical fractal structures have been described that have curved log-log plots,

and the significance of this curvature and other nonlinear forms of these plots is not known.

These issues are not resolved and will obviously be central to the future development of

these approaches as a means of testing experimental hypotheses. Nevertheless, interesting

preliminary results have been obtained in a number of physiological examples, as will be

shown in subsequent sections.

Fractal Structures, Spatial Heterogeneity, and Spatial Correlation

Fractal analysis of morphology

Tree structures display self-similar characteristics, with their small-scale structures

branching in a manner similar to their large-scale form. The mammalian bronchial and

pulmonary vascular trees are richly arborizing structures that, despite their complexity, have

a simple underlying order that spans many orders of magnitude in scale. A number of

investigators have attempted to characterize this complexity and order in mathematical

models with limited success. The self-similar nature of the bronchial and vascular trees

suggests that fractal analysis may afford better mathematical models and provide some

insight into their structure and morphogenesis.

Weibel and Gomez (41) used a simple exponential model to describe a unifying scaling

relationship between the change in airway dimension and branch order. They collected

morphometric data from casts of human lungs and found that an exponential relationship fit

their data well up to the 10th generation but deviated significantly thereafter. The data of

Weibel and Gomez have been reanalyzed by West et al. (42) using fractal analysis to show

that their data can be better fit over the entire range of measurements by a fractal

relationship between branch generation and branch diameter. Independent of scale or branch

generation, the relationship of diameters between parent and daughter branches remains

similar throughout all levels of the bronchial tree, demonstrating fractal properties of the

airways. Fractal analysis in this particular example clearly provides a superior model in

comparison to the original exponential model, inasmuch as the bronchial tree is more

accurately represented over the entire range of the morphometric data.

Nelson and Manchester (29) have also used fractal analysis to explore the morphometric

data obtained by others on the human airways. They used an approach similar to the
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contour-measuring method in which their scale of measurement was the average branch

length at a given level of the tree and the contour length was the total branch length of all

segments for that level. Using data from Horsfield and Cumming (11) and Raabe et al. (31),

they estimated D to be 2.64 and 2.76, respectively. In their analysis, the bronchial tree was

modeled as a stick figure with no volume (topological dimension of 1) filling a three-

dimensional space (E = 3). D = 2.64 and 2.76 therefore appear to be appropriate, inasmuch

as these values lie between the topological and Euclidean dimensions.

Self-similarity has been recognized within the topology of the bronchial and pulmonary

vascular trees for some time (9, 12, 22, 34). Using topological branching and ordering

schemes developed for geographical stream analysis (Strahler ordering), Horsfield has

shown that the ratio of mean diameters and lengths between parent and daughter branches

remains relatively constant throughout all generations of the bronchial and pulmonary

vascular trees. Excluding the 3 initial generations of 17 total generations in a human

pulmonary vascular tree, the mean ratio of diameters between parent and daughter branches

was 1.60 with a SD of only 0.056 (9).

With the advent of fractal analysis, Horsfield has reanalyzed his own data and confirmed

that the bronchial tree is fractal; with the diameter and lengths of branches related to the

branch generation by a log-log relationship (10). He compared fractal analysis of the

bronchial tree with an exponential fit and concluded that the differences in the models are

due primarily to the ordering system used to identify the branch generations. He also

compared his analysis with West's and noted a difference in the linearity of their fractal

models. West and associates (42) noted a sinusoidal variation in their data about a linear log-

log relationship between the generation and the branch diameter and introduced a variable

with a harmonic oscillation to improve the fit of their data. On the other hand, Horsfield

found that his data nicely fit a linear relationship between the generation and the branch

diameter. Horsfield (9) again ascribed this difference to the ordering system used to identify

branch generations. The Strahler ordering system used by Horsfield is believed to be more

correct for asymmetrically branching trees, and the fact that the fractal model provides a

better fit to this ordering scheme may be evidence for this assertion (22).

Another interesting observation from Horsfield's data (9) and from Nelson's analysis of

bronchial tree morphometric data (28) is that the first three generations of the trees do not

conform to the fractal pattern of the rest of the lung. This suggests that the initial branchings

of the pulmonary vasculature and bronchial tree are either not fractal or may have a different

fractal dimension. Recent embryologic observations by Massoud and associates (26) have

demonstrated that in fact there are two different branching patterns in the rat fetal lung,

peripheral and central. The central branches of the pulmonary bronchial tree exhibit

monopodial branching, while the rest of the tree divides dichotomously. This does not mean

that the initial branches of the bronchial tree are not fractal, but rather they may follow a

different fractal pattern of growth with a different fractal dimension.

Nelson and Manchester (29) have applied the concepts of fractal growth patterns to the

embryologic development of the pulmonary vascular tree. They have developed two-

dimensional models to study the effects of boundaries that limit the growth of the vascular
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tree. They have shown that the development of the vascular tree can be modeled by fractal

branching algorithms and boundaries that change as the embryo develops. These models

develop strikingly realistic vascular patterns as shown in Fig. 2, right. With these models,

simulations can be performed to study the effects of varying boundaries on developmental

and morphologic structures (29). All these models are limited to two-dimensional space.

More realistic models will have to branch into three dimensions. Although the

computational effort will be greatly increased, the same fractal concepts that have been

developed for two dimensions will be applicable to three dimensions.

Fractal structures are not confined to the pulmonary bronchial and vascular trees. Rigaut and

associates (32) have used various magnifications and measuring lengths to estimate the

boundary lengths of alveoli and found them to be fractal over a certain range. They also

noted that their log-log plots of boundary lengths were not linear but tended to be convex

upward. They interpreted this to show that the alveolar boundaries did not have a constant

fractal dimension but rather what they termed a continuous fractal dimension transition (32).

Fractal patterns have been used to characterize the complexity of neuronal cellular profiles

(35). Smith and associates (35) used methods similar to the box-counting algorithm

described above to characterize the contours of spinal cord neurons at different stages of

maturity. They found that as the cells developed, they became more complex with D

progressively increasing from 1.1 to 1.5. Sander (33) has shown that crystal growth patterns

can be modeled and characterized by fractal analysis. In a process called diffusion-limited

aggregation, a crystal starts as a seed point in the middle of a space. Particles are then

introduced into the space and allowed to randomly move through the space until they touch

the initial seed or a new part of the crystal. They stick to the crystal wherever they touch it

and thus cause the crystal to grow. The structure of the resultant crystal can be characterized

by fractal analysis. Other authors have used fractal growth patterns or diffusion-limited

aggregation to describe the growth of the microvascular system (27, 36).

Fractal characterization of spatial heterogeneity using relative dispersion (RD) analysis

The observation that the vascular structures distributing flow to an organ are fractal suggests

that the distribution of flow within the organ may be fractal as well. Although the small-

scale variability in organ flow has been described as random, the branching structure of

vascular anatomy suggests that regional flow is also best described by fractal measures.

Heterogeneity of regional blood flow in an organ can be characterized by measuring the RD

(SD/mean) of the regional flows when the organ is divided into a number of pieces. The

observed RD is a sum of the spatial variation and the fluctuation of local flows over time (1,

3). When the distribution of flows is measured by a single rapid injection of a deposited flow

marker, there is little contribution from the temporal fluctuations to the total heterogeneity.

When the heterogeneity of organ blood flow is characterized by this means, the calculated

spatial RD (RDs) is dependent on the size of the sampled pieces (1). If the blood flow in

each of four pieces of an organ is measured, one can obtain the mean, SD, and hence RD of

flow in the organ. If these same pieces are progressively subdivided, then for 8, 16, 32, 64,

or more regions, the mean remains constant but the estimate of the SD and RD increases.
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Even after appropriate corrections for experimental error, the largest estimate of RDs will be

obtained from the finest subdivisions of the organ (1).

The heterogeneity of organ blood flow can be characterized independently of scale by

employing fractal analysis (1, 3, 5). The fractal equation describing the RD of flows for a

given spatial resolution (piece size) is given by rephrasing Eq. 2, using RDs as a function of

a volume of size v

(4)

Here RDs(v) is the measured relative dispersion when the organ is partitioned into regions of

volume v, RDs(v0) is the RDs found for an arbitrarily chosen piece size, and Ds is the

derived spatial fractal dimension. Multiplying both sides of Eq. 4 by RDs and taking the

logarithms, we obtain

(5)

If the slope of log RDs(v) vs. log (v/v0) is constant over a range of partitions, the system is

said to behave fractally within that range. The greater the rate of increase in observable

heterogeneity with an increase in resolution, the greater is the fractal dimension. The fractal

dimension therefore serves as a measure of the scale-independent irregularity, roughness, or

variation of a system (1). An advantage of this analytic approach is that it provides an

estimate of Ds from easily obtained measurements of the RDs of regional organ flow during

successive subdivisions of the tissue pieces down to v0.

Although regional blood flow to an organ is distributed in three-dimensional space, when

characterized as a RD, the heterogeneity of flow is one dimensional (1, 3, 5). The limits of

RDs that are imposed by the analytic procedure can be explored by inspecting the two

extremes of blood flow distribution: uniform flow and randomly distributed flow. In the

instance of complete homogeneity, RDs(v) = 0. Solving for Ds in Eq. 4 provides us with the

lower boundary of 1.0 for Ds. For the case of random flow distribution, let there be distinct

regions of flow that are distributed with a SD σ and mean μ. If the whole organ is partitioned

into m pieces of volume v0 = v/m, where v is the volume of the entire organ, the calculated

. If the organ had been divided into n larger pieces of volume, v = m/n · v0,

, or RDs = (v/v0)−1/2(σ/μ). Taking the logarithm of both sides

yields the fractal form of the equation for a random flow distribution with a slope of −0.5

and thus a Ds of +1.5. In RD analysis a Ds of 1.0 indicates totally correlated magnitudes of

flow between neighboring regions of the organ in that the flow is the same everywhere,

while a Ds of +1.5 indicates that the magnitude of flow is uncorrelated or randomly

distributed among neighboring pieces of the organ. Ds values ≥ 1.5 indicate inversely or

negatively correlated flows.
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Pulmonary blood flow distribution can be characterized by fractal methods (5). A composite

fractal plot of the RDs(v) for six supine dogs is presented in Fig. 8. Ds for these animals

ranged from 1.07 to 1.12 with an average of 1.09. The data fit the fractal model well, with an

average correlation coefficient (r) of 0.98. It is interesting to note that the observed measures

of RDs appear to oscillate about the linear regression line. As discussed earlier, this may be

due to the fact that the lung pieces (measuring stick) are not the proper shape or orientation

for our measurement. The appropriate sectioning of the organ would be along the vascular

tree, with regions of common perfusion being grouped together. The data points shown in

Fig. 8 do not include the first four subdivisions of the lungs, because those measurements

are disproportionately smaller.

The heterogeneity of myocardial blood flow has been characterized by fractal analysis as

well (2, 3). The distribution of radiolabeled microspheres to the heart was analyzed by

progressively subdividing the heart into finer pieces. In this original application of the RD

approach, regional flows were normalized to mass rather than to volume. The spatial

heterogeneity of cardiac blood flow in baboons, sheep, and rabbits, as characterized by the

fractal dimension, is shown in Table 1, along with the fractal dimensions for pulmonary

blood flow in dogs. Although the number of pieces in the cardiac data sets is relatively

small, the fractal dimensions are significantly different between some of the species and

organs. This indicates that the spatial distribution of flow is different among these organs

and suggests that this is necessary for their different functions or is due to dissimilar

morphogenesis.

This comparison demonstrates an advantage of fractal analysis in that comparisons of

measurements can be made between experiments, species, and laboratories, regardless of

units or scales of measure. The heterogeneity of blood flow in the hearts of baboons and

sheep measured by one technique can be compared with the heterogeneity of blood flow in

dog lungs measured in another laboratory by use of very different methods.

Blood flow heterogeneity can be fractal only over a limited range. If smaller and smaller

pieces are used to measure flow to a region of tissue, eventually the flows will become more

similar as the anatomic limit of a capillary is reached (1). As long as heterogeneity is fractal,

the log of RDs will remain linear with respect to the log of the volume of pieces. However,

as the functional unit of perfusion is approached with smaller piece sizes, RD will stabilize,

causing a plateau in the fractal plot (1). Theoretically, fractal analysis could identify the size

of the functional unit of flow in a lung by finding the piece size where there is an inflection

in the slope of the fractal plot (1). The method we used to measure regional blood flow

distributions could be used to examine 24-mm3 pieces of lung. No inflection point could be

detected, suggesting that the unit of uniform perfusion is <24 mm3. However, registration

error between the true vascular boundaries and the imposed partitioning may cause the

plateau to be slurred and produce an underestimate of the size of the unit of perfusion (5).

Fractal analysis of spatial correlation

The measurement of spatial blood flow heterogeneity implies a measure of correlation as

well. The fractal dimensions of regional pulmonary and myocardial blood flow indicate that

flow is not randomly distributed but rather has some spatial organization. The spatial
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correlation of flow is a measure of the similarity of flow magnitudes between neighboring

regions of the organ. This spatial correlation is apparent when the local blood flow

distributions are examined in isogravitational lung slices (5), in that high-flow regions tend

to be near areas of high flow and low-flow regions usually are adjacent to other low-flow

areas. The RD method used to characterize the spatial heterogeneity of organ blood flow

maintains spatial information by always aggregating nearest neighbors. Van Beek et al. (37)

have shown that the spatial correlation of flows within an organ can be determined from Ds.

The relationship between the spatial correlation of blood flow and Ds can be ascertained by

exploring the expected RD of flow to combined neighboring regions of an organ. If adjacent

pieces, Y1 and Y2, are combined, the expected flow, , and the variance of the

aggregated regions, Var (Y1 + Y2) = Var (Y1) + Var (Y2) + 2 Cov (Y1, Y2), where Cov is the

covariance. Because Var (Y1) = Var (Y2) = Var (Y) the RD of the combined pieces is

(6)

RDs(Y1 + Y2) can also be defined by the fractal Eq. 4

(7)

If the correlation of flows between adjacent regions is the same correlation used for the

linear regression of two variables, then the spatial correlation rs = Cov (Y1, Y2)/Var (Y).

Equations 6 and 7 can be rewritten in terms of rs

(8)

where Ds is bounded by 1.0 and 1.5.

As predicted by Eq. 8, a uniform blood flow distribution to neighboring pieces of tissue (Ds

= 1.0) is perfectly correlated with rs = 1.0, while a random blood flow (Ds = 1.5) is

completely uncorrelated with rs = 0.0. When the D for baboon heart, sheep heart, and dog

lung blood flows are substituted into this equation, regional rs = 0.49, 0.58, and 0.76,

respectively, (Table 1).

Equation 8 tells us that if blood flow distribution in an organ is fractal, then, regardless of

the location of the region examined, blood flow to neighboring regions of tissue is also

correlated. In Fig. 9, a schematic representation of regional vascular perfusion to an organ,

the correlation of blood flow between pieces AAA and AAB, is the same as between pieces

ABA and ABB. A second consequence of Eq. 8 is that if the blood flow distribution is fractal,

blood flow to neighboring pieces of an organ is correlated regardless of the size of the

pieces. This means that in Fig. 9 the correlation of blood flow between pieces A and B is the

same as between AA and BB as well as between AAA and AAB.
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A similar derivation of rs can be done for pieces of tissue formed by aggregating more than

two neighboring pieces. This is the extended-range correlation technique of

Bassingthwaighte and Beyer (44), which is given as the last equation in the APPENDIX and

can be applied to isotropic or anisotropic spatial intensities. The correlation between regions

falls off with increasing separation between them. The rate of fall off of rs is exactly the

same for all sample sizes, a fractal “self-similarity,” and asymptotically follows a power law

with a log-log slope of 2.0(1 − D) for 1.0 ≤ D ≤ 1.5. The fall off is less rapid than an

exponential; i.e., the correlation extends over a longer range of separation.

Fractal modeling of vascular trees

Let us return to our original assertion that the regional distribution of organ blood flow may

be fractal because the vascular structures distributing the flows are fractal themselves. We

can test this hypothesis by modeling the pulmonary vasculature as a fractal structure and

examining the distribution of flows produced by such a model.

A simple vascular model can be depicted by a main stem vessel with repetitively bifurcating

daughter branches (Fig. 10). At each generation the number of branches doubles, producing

2n terminal branches after n generations. If the diameters and lengths of daughter branches

are recursively defined by the parent branch, the vascular structure will be fractal with

respect to the diameters and lengths (37). If the relative fraction of flow distributed to each

of the daughter branches remains constant throughout all generations, the fraction of flow to

one daughter branch can be represented by γ and the fraction of flow to the other branch is

therefore 1 − γ. If the flow in the main stem vessel is F0, the flow at any branch can be

determined and the flows emerging after n generations have the values

(9)

where k assumes integer values from 0 to n. The flow distribution in this model is skewed to

the right and is similar to that seen in hearts and lungs. If γ = 0.5, the branching is

symmetrical and flows are uniform, while deviations of γ away from 0.5 produce

heterogeneity. Fixed values of γ differing by 0.03 or 0.04 from 0.5 and random values for γ

= 0.5 ± 0.04 give good fits to organ flow data. All these values are slightly curved on log-log

plots. As noted previously, the significance of this curvature is a theoretically fractal

structure is not clear.

When the observed distributions of blood flow in an organ are modeled by this

asymmetrically bifurcating network, a γ can be determined for the best fit to the actual RD

data. The observed RD and the theoretical RD for the best-fitting γ are shown in Fig. 11 as a

function of the piece size for a given dog lung. The mean coefficient of variation between

this model and the experimental data was 0.070 ± 0.042 (6). The γ that best fit the RD data

for baboon hearts, sheep hearts, and dog lungs are 0.461 ± 0.007, 0.451 ± 0.022, and 0.459 ±

0.009, respectively (37). It is evident that this simple fractal network accurately models the

observed RD values over a large range of piece sizes.

Glenny et al. Page 13

J Appl Physiol (1985). Author manuscript; available in PMC 2014 June 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The estimated branching asymmetry of this fractal network can be compared with the

branching asymmetry of the human pulmonary vasculature quantitated by morphological

techniques. Horsfield and Woldenberg (13) measured the diameters of parent and daughter

branches at 1,937 bifurcations in casts of saline-filled fully inflated lungs. They determined

that the mean ratio of daughter diameters was 1.274. Using Poiseuille's law, this would be

equivalent to γ = 0.365. This degree of asymmetry would produce a flow distribution with

RD = 136% after only 15 generations. This appears to be unreasonably large compared with

the measured RD of ∼35% in dog lungs after a similar number of generations (5). A

possible explanation for this discrepancy is that the morphological measurements were made

on saline-filled fully inflated lungs with casting resin injected at a pressure of 40 cmH2O,

while the measurement of flow distributions in the dogs was made on intact animals at

functional residual capacity. The observation that the physiologically measured

heterogeneity of flow is less than predicted by anatomic measurements may also suggest

that, in intact animals, local regulatory mechanisms could limit the heterogeneity of blood

flow.

The fractal branching model is not meant to be a precise representation of anatomic

structures. Rather it emphasizes the concept of how small degrees of asymmetry in flow can

produce heterogeneous blood flow distributions similar to those seen in experimental

studies. The precise value of γ or σ is of little importance relative to this idea. The fractal

branching model offers a possible mechanism to explain the observed heterogeneity of

pulmonary blood flow within isogravitational planes. By use of the concepts of fractals, this

model is able to relate the function and structure of the pulmonary vascular tree and offer an

explanation for the spatial distribution and gravity-independent heterogeneity of blood flow.

Fractal Process, Temporal Heterogeneity, and Temporal Correlation

The concepts of self-similarity and fractal dimensions can also be applied to observations

made over time. Examples of appropriate time-dependent variables abound in physiological

studies, including fluctuating ionic currents, blood flows and pressures, and ventilatory

excursions. Several methods of eliciting the underlying dimensionality of such

measurements have been developed for time series data. These fall into two classes: 1)

dispersion analysis, which gives a measure of local correlation, and 2) minimal order

analysis, which defines the minimal order of a set of differential equations describing the

chaotic dynamic behavior of the system that is fluctuating unpredictably while remaining

bounded and self-correlated. Although each of these approaches defines fractal measures,

described by a fractal dimension, they are quite different. Dispersion analysis reduces the

complexity of the system, regarding it as one-dimensional, while the time series analysis for

the dimension of a chaotic signal attempts to define the minimal degree of complexity or

order of the system. Minimal order analysis is not discussed here.

Dispersion analysis

Three basic methods of dispersion analysis can be applied to temporal observations, one

using the RD (RDτ), the second using Hurst's rescaled range, and the third being the

measure of extended-range correlation. The simplest analysis is the application of RD

described above for spatial variation (3). The application to a signal V(t) is shown in Fig. 12,
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where V(t) may be any measure such as voltage, velocity, or position. A digitized signal

measured at uniform intervals (τ0) can be considered as a population of observations in one

dimension. RDτ(τ0) is initially calculated for all the sampled data in the upper row of Fig.

12. Pairs of neighboring points are then averaged to obtain the second row, and RDτ(2τ0) is

calculated. Recursive pairing to double the interval length and recalculation of the SD on the

combined data points gives RDτ(4t0), RDτ(8t0), … RDτ(Nτ0) for each row of “observations”

in Fig. 12. When RDτ(Nτ0) and N are plotted on logarithmic scales, they are well

characterized by a fractal relationship, which is a straight line

(10)

Dτ for this random signal is 1.5, so the exponent of N is −0.5. This result indicates that with

each doubling of the averaging interval to 2t0, 4t0, etc., the RDτ scales down by , i.e.,

to 0.707 of the RDτ at the next smaller interval duration. As was the case with the measuring

stick length for the contour length method, there is no particular need to use interval

doubling, because any increment will give a similar Dτ, provided enough data points are

available. The Dτ of 1.5 is that expected for any random signal. In this case, the random

signal was Gaussian with a mean of 1.0 and an SD of 0.3. The r, given by Eq. 8, is zero in

this case. The same Dτ would be found for other random signals, uniform over an interval

such as Poisson or random walk. The information from this analysis is limited to the

variance and does not characterize the form of the distribution or higher moments such as

skewness and kurtosis.

Fractal analysis of time-dependent observations provides a means for characterizing

temporal correlation in a fashion similar to that of spatial correlation. Correlation over time

is also described as memory. If a fractal process with positive correlation is trending

upward, adjacent observations in time will also tend to increase, and similarly if the process

is trending downward, neighboring observations in time will likely be decreasing as well. In

other words, the state or position of a process, V(t), is influenced by its previous values V(t

− 1). Negative temporal correlation signifies that adjacent values in time tend to move away

from each other.

When the RDτ analysis was applied to the time series data on erythrocyte velocities from

Kislyakov et al. (15), a Dτ of 1.37 was found. The more extensive data of Oude Vrielink et

al. (30), shown in Fig. 13, left, allow a more accurate test for a fractal relationship. The RDτ

vs. τ relationship (Fig. 13, right) gives a Dτ of 1.16, indicating correlation with the

coefficient r = 0.60. The fact that there is correlation is intriguing and invites further

experimental work and other analyses to determine the basis of the correlation. It is

important to emphasize that this similarity of adjacent observations over time holds true over

the entire range of the time intervals examined. The statement that observations adjacent in

time are similar is not the important conclusion of this analysis but, rather, that this is a

fractal process in which the relationship between successive measurements is consistent on

all time scales.
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Hurst's (14) “rescaled range analysis” is similar to the RD analysis and can be applied to

spatial as well as temporal data. In the simplest version of this method (4), the SD is

normalized by dividing it into the local range (R) of the cumulative differences from the

mean over the interval of length τ, rather than by the mean as in the RD analysis. R

generally increases with the interval duration, but SD changes little. The approach is to plot

the log R/SD vs. log τ. The slope is H − 1, where H is the Hurst coefficient

(11)

The R/SD grows with the interval length τ, as might be expected because the dispersion is in

the denominator. The values of R/SD are very scattered for short τ or few observations, but

the information content is very similar to that provided by the RD analysis, and H is related

to D

(12)

The approach is good when H = 0.5 (random, no correlation) and when H > 0.5 (correlated

functions with “memory”). The r between adjacent intervals is 22H−1 − 1, the same as in Eq.

8.

Both the RD analysis and rescaled range analysis need to be carefully evaluated by

extensive testing. The RD analysis appears more robust, particularly for smaller data sets,

and may be less subject to the skewing attendant on dividing by individual values of SD

within each interval, as in the rescaled range analysis. Hurst's original method is more

precise than described above or by Feder (4) in that it accounts for local trends in the data.

The extended-range correlation technique of Bassingthwaighte and Beyer (44) is a test of the

fractal nature of a time series. The two-point autocorrelation is determined for units

separated by n units, giving a statistical measure of r(n) for any n

(13)

The theoretical fractal curve for the correlation is

(14)

which for n > 3 follows a simple relationship that is a straight line on a log-log plot, r(n)/[r(n

− 1)] = [n/(n − 1)]2H−2. Thus H can be calculated directly from the slope, H = (slope + 2)/2.

These methods bear a relationship to Fourier analysis where one obtains the relative power

and phase at each frequency. When the logarithm of the amplitude of the individual

frequency components of the signal vs. the logarithm of the frequency is plotted for fractal

signals, the slope of the relationship between the two components can be a straight line with
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slope −β (39). The fractal self-similarity demonstrated in this analysis is the constant ratio of

power at any two frequencies, independent of the resolution (the position of the frequency

scale). In this context, white random noise (all frequencies with equal power) has β = 0 and

so-called Brownian noise has β = 2. Sets of noise with amplitude proportional to f−β exhibit

memory. Over this limited range

(15)

Goldberger et al. (7) have used frequency analysis to characterize the fractal nature of the

electrocardiographic signal. They argued that an electrical stimulus passed through a fractal

network should result in a voltage-time pulse with a power spectral density that has a linear

relationship on a log-log plot. They asserted that the His-Purkinje conduction network is a

fractal structure and should therefore produce a fractal process. In testing this hypothesis,

using a fast Fourier transformation, they examined a single QRS complex from 21 resting

subjects. When they plotted the logarithm of the mean square of the amplitudes against the

logarithm of the frequency for the mean data of 21 subjects, they found a power-law

relationship.

Many natural signals including ionic channel noise (20), speech intensities (39), Nile River

flood levels (14, 25), and rain (21) are analogous to correlated noise, with 0.5 < β < 1.5.

Most interestingly, music of almost all cultures (40) shows frequency and intensity changes

with β = 1. These have been characterized by how the amplitude of V(t) varies between

points in time, such that

(16)

For H = 0.5, ΔV is typical Brownian motion, and for 0.5 < H < 1.0, there is positive

correlation between neighboring points. Commonly, natural phenomena show H's of 0.7–0.8

(14).

Utility of Fractal Analysis, Structures, and Processes

One advantage of applying fractal analysis to biological systems relates to the analogy

between the mathematical structure of fractals and the patterns of growth of the neural,

vascular, and airway pathways. The evolution of multicellular organisms has mandated the

development of connections between the environment and each individual cell. These

branching connections must make the transition from large to small and simple to complex

as efficiently as possible. An example is the transport of respiratory gases between the

environment and alveoli along the dichotomous fractal branching of the airways, which

transforms a simple 3-cm2 tracheal cross section to a complex 70-m2 alveolar surface area.

The blood reaching the alveolar capillaries undergoes a similar transformation from a single

large vessel to a complex capillary network by means of fractal branching. The fractal

description of these network patterns is logical and based on the scale-independent similarity

of these systems over several orders of magnitude.
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With increasingly greater spatial and temporal resolution of physiological measurement, it is

becoming evident that biologic systems are not smooth continuous processes. They do,

however, maintain a degree of spatial and temporal correlation. Fractal analysis permits the

characterization of these processes or structures that are not easily represented by the

traditional analytic tools. By providing a geometric framework for the description of

apparently irregular patterns, fractal analysis is able to characterize natural structures (36).

Biological structures as diverse as protein surfaces, neuronal cell contours, and the bronchial

tree can be succinctly characterized by fractal analysis (19, 35, 42). This unifying strategy

allows characterization and comparison of a vast array of physiological systems.

The construction of self-similar structures reveals a potential advantage in coding for the

growth and development of the necessarily complex vascular, neural, and airway networks.

Complex mathematical fractal figures can be constructed from simple recursive algorithms

(39). This recursive quality of the mathematical kernel permits a concise description of

remarkably complex structures (43). Because there cannot possibly be a complete genetic

description for the construction of every alveolus and capillary, it seems logical to propose

that there are elementary recursive rules to guide their construction. These construction

codes are probably not fractal themselves but are likely deterministic rules defining basic

elements that are influenced by the environment in which the structure grows. The

branching structures of the vascular system and the bronchial tree are such examples, where

it is not known whether the branching angles and diameters are determined by the parent

branch or by the similar environment in which they are constructed. Although the

mechanisms by which these rules operate are speculative, a coding for self-similar structures

is clearly the most efficient and appropriate algorithm to explain both the order and

complexity of ontogeny. The efficiency of the finalized structures is also of importance to

the organism. Lefèvre (18) has shown that a self-similar branching model of the pulmonary

vascular system optimizes the cost-function (energy-materials) relationship while closely

approximating physiological and morphometric data. Tsonis and Tsonis (36) have related

fractal patterning to minimal energy consumption as well. If the development of biologic

trees such as the bronchial and vascular systems can be modeled by fractal structures, then

these models can also be used to investigate the effects of boundary limitation on these trees

(29).

With these new analytic methods for characterizing physiological systems, physiologists are

faced with a problem similar to that in the parable of the blind men attempting to describe an

elephant. Although we can accurately describe single characteristics, we lack the perspective

to determine the best approach for characterizing complete systems. Fractal analysis using

the RD or frequency domains can be applied to any spatial or temporal physiological

measurement. At present, we need to explore each of the different techniques to determine

the relative advantages and limitations of each when applied to physiological systems. Our

recommendations to those wishing to use these methods is to try them all, because each

approach may provide unique information. From a practical standpoint, the limiting factor

with these analytic methods is data set size. As a first approximation, at least a few hundred

data points are required for the dispersional analysis and more would obviously improve the

dimensional estimates obtained.
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In this review we have focused on the various fractal measures of correlation in spatial

properties and temporal fluctuations. Physiologists seek insight into biological mechanisms

from the variable signals of life processes such as measurements of pressures, frequencies,

and flows. The traditional analytic tools have been measures of means and variances with

statistical approaches based on the assumption of random error in the measurements. The

fractal revolution has brought the realization that this “error” can be analyzed as a

fundamental property of the biological system that may include complex information with

structure defined by these new analytic techniques.
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Appendix A

Definitions

Box measurement A method of estimating fractal dimension by covering the structure to be analyzed with
boxes of various side lengths

Contour measurement A method of estimating fractal dimension using measuring sticks of various lengths

Euclidean dimension Integer representing the fewest coordinates required to represent an object in traditional
Euclidean geometry. Euclidean dimension of a straight line is 1, that of a curved line or
plane is 2, and that of a curved surface or sphere is 3

Fractal dimension An estimate of the scale-independent complexity or irregularity of a system over space or
time. It can assume all real values greater than or equal to the topological dimension and less
than or equal to the Euclidean dimension

Fractal structure An object that has a characteristic form that remains constant over a magnitude of scales, an
object with small-scale structure similar to its large-scale structure

Fractal process A variable as a function of time with fluctuations over a short time scale similar to those over
a longer time scale

Heterogeneity A measure of nonuniformity

Hurst exponent A measure of complexity or irregularity of a system over space or time determined from
rescaled range analysis. It can assume all real values between 0.5 and 1.0 and is related to the
fractal dimension (D) by the equation H = 2 − D, where D is either Ds or Dτ

Koch curve A self-similar geometric structure defined by a series of repeated transformations first
described by Helge von Koch in 1904 (see Fig. 1)

Memory Characteristic of a time-dependent variable that has temporal correlation. It signifies that a
positively correlated process will tend to continue moving in the same direction. V(t) is
influenced by V(t − 1)

RD analysis A method of estimating a fractal dimension using the measure of relative dispersion (RD) of
a variable for varying scales of space or time

Relative dispersion A measure of heterogeneity of a distribution (SD divided by mean of distribution)

Rescaled range analysis Method of determining whether a structure or process is fractal and estimating the Hurst
exponent. It is similar to RD analysis, in which the scale of measurement is a time period (τ)
and the observed measurement is the local range divided by SD (R/SD) of observations.
Hurst exponent is slope of log-log plot of τ vs. R/SD

Scale independence A characteristic of fractal structures or processes where characteristic forms or fluctuations
remain constant independent of the scale of measurement (self-similarity)

Self-similarity A characteristic of fractal structures or processes where characteristic forms or fluctuations
on a small scale of measurement are similar to those on a larger scale of measurement (scale
independence)

Spatial correlation A measure of the similarity in an observed variable between 2 adjacent regions. It can
assume all real values between −1.0 and 1.0. A value of −1.0 indicates complete negative
correlation, 0.0 represent a random relationship, and 1.0 indicates complete uniformity.
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Temporal correlation A measure of similarity in an observed variable between 2 adjacent observations in time. It
can assume all real values between −1.0 and 1.0. A value of −1.0 indicates complete negative
correlation, 0.0 represents a random relationship, and 1.0 indicates complete uniformity

Topological dimension Smallest Euclidean dimension that an object can be reduced to by a 1:1 continuous point
mapping (i.e., stretching but not tearing), e.g., a curved line can be reduced to a straight line
of 1 dimension, and a curved surface can be reduced to a flat plane of 2 dimensions. It can
assume only integer values. A branching line is topologically 1-dimensional but may require
embedding in a plane or 3-dimensional space to reveal its form

Variables

β Power spectrum exponent as measured by spectral analysis; β = 0.0 for white noise and β = 2.0 for Brownian
motion

Ds Spatial correlation as measured by RD analysis; 1.0 ≤ Ds ≤ 1.5

Dτ Temporal correlation as measured by RD analysis; 1.0 ≤ Dτ ≤ 1.5

E Euclidean dimension

H Hurst exponent

l Measuring stick of a given length, l

l0 Initial measuring stick length

L(l) Apparent contour length of a structure using a measuring stick of length l

m Mass of observed piece

m0 Mass of reference piece, arbitrarily chosen

Nbox(l) Number of boxes of side length l covering the structure

R Local range in Hurst analysis

RDs Relative dispersion of spatially oriented observations

RDτ Relative dispersion of temporally oriented observations

rs Spatial correlation between adjacent regions; −1.0 ≤ rs ≤ 1.0.

rτ Temporal correlation between observations adjacent in time; −1.0 ≤ rτ ≤ 1.0

r(n) Correlation between observations separated by n units of space or time

SD Standard deviation of observations

v Volume of observed region

v0 Volume of reference region, arbitrarily chosen

Equations
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Appendix B

Figure 14 is an example of the RD method of fractal analysis for a time course signal. The

demonstration data set is smaller than the recommended minimal size to facilitate working

through the example with a hand calculator.
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FIG. 1.
Generation of Koch curve produced by a simple iterative transformation beginning with a

straight line (top). At each step, middle third of each line segment is replaced with 2

segments, one-third of the length of the line, forming part of an equilateral triangle.

Completed curve has an infinite number of iterations. Regardless of magnification of scale,

any part of the curve resembles the whole (bottom). [From Glenny and Robertson (5).]
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FIG. 2.
Two-dimensional representations of bronchial tree. Left: symmetrical bifurcating network

with 90° branching angles and length segments scaled proportionally from parent branch

(similar to Mandelbrot's model of the lung). Right: more realistic model in which branching

segments fill a predetermined boundary. [From Nelson and Manchester (29).]
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FIG. 3.
Apparent contour length of Koch curve is dependent on length of measuring stick. Left: the

finer the scale (greater magnification), the greater the apparent length of the curve. Right:

fractal (log-log) plot of apparent length, L(l), of Koch curve as a function length of

measuring device, l relative to l0. Line through points represents least-squares linear

regression fit. Relationship appears linear with a slope of −0.2618 … and thus a fractal

dimension (D) of 1.2618. …
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FIG. 4.
Lines of topological dimension 1 with different fractal dimensions. Fractal dimension is

bounded by topological dimension and Euclidean dimension (in this case, dimensions 1 and

2). The greater the irregularity of the line, or the more space it fills, the greater the fractal

dimension. [From Glenny and Robertson (5).]
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FIG. 5.
Fractal analysis of a semicircle, which is not fractal. Left: apparent contour length of curve is

initially determined by a measuring stick of length l0 equal to diameter of semicircle.

Measuring stick is then repeatedly shortened so that at each iteration (n) it bisects distance

around curve between prior cords. Apparent length of curve, L(l), at each iteration can be

determined, and as n increases, L(l) goes to πl0/2. Right: fractal plot of L(l) as a function of

length of measuring stick, l relative to l0. Line represents weighted least-squares fit to data;

slope of this line is −0.0009.
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FIG. 6.
Apparent contour length of Koch curve where measuring stick, l, is two-thirds the length of

previous measuring stick. Linear fit to log-log data of apparent contour length L(l) as a

function of measuring stick length is not as good as in Fig. 3 (right), where a different

measuring stick length was used.
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FIG. 7.
Box or grid approach to determining fractal dimension of an object. Number of boxes

containing a portion of curve, Nbox(l), is determined for progressively smaller box

dimensions, l. Top: Nbox(l) = 23 of the 44 boxes. Bottom: when l is decreased by one-half,

Nbox(l/2) = 56 of the 176 boxes. Fractal dimension can be determined from log-log plot of

Nbox(l) as a function of l.
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FIG. 8.
Relative dispersion (RD) of regional pulmonary blood flows plotted as a function of volume

of aggregated lung pieces. Smallest regions (v0) are “voxels” from a planar gamma camera

in which voxels are 1.5 × 1.5 × 11.5 mm or 24 mm3. [From Glenny and Robertson (5).]
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FIG. 9.
Schematic representation of regional vascular perfusion to an organ. If blood flow

distribution is fractal, then blood flow in adjacent pieces will have the same correlation

regardless of size.
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FIG. 10.
Asymmetric fractal branching network in which relative fraction of blood flow from parent

segment to daughter branches is γ and 1 − γ. Flow at each segment of network can be

determined given flow into network (F0), and RD of blood flow can be calculated as a

function of γ.
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FIG. 11.
Optimized fit of modeled data to actual RD data from a dog lung. Best fit of branching

network model to data yields a γ of 0.457. Note slight downward concavity of

dichotomously branching network model (v0 = voxel size = 24 mm3).
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FIG. 12.
Top curve: V(t) as a function of time at uniform intervals, τ = 8 s. Bottom 2 curves:

successive averages over intervals (τ) of double the length. Note diminution in dispersion

with successive lumpings.
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FIG. 13.
Fractal (RD) analysis of vasomotion. Left: erythrocyte velocities (Veryth) in a 7-μm arteriole

of rabbit tenussimus muscle with Δt = 0.1 s. [Data from Oude Vrielink et al. (30).] Right:

RD of velocities averaged over intervals of length τ decreases with increasing τ and has an

apparent D of 1.162.
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FIG. 14.
RD method of fractal analysis for a time course signal. Columns t (in arbitrary units) and

V(t) (value of signal at time t) represent original time course signal sampled at given

temporal resolution. Top right: 64 observations presented in graphical form. Bottom right:

mean, SD, RD (RD% = 100 · SD/mean), and other necessary calculations. Column to the

right of V(t) is obtained by averaging 2 adjacent measurements of original data to make 1

observation. N has now been reduced to 32, and time interval has increased to 2. Mean, SD,

and RD are again calculated for a new grouping of data with RD = 74.88%. If scale of time
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interval is increased again by averaging every 2 points of the new data set (τ = 4), a new RD

can be calculated. This process is continued until there are only 2 data points and τ = 32,

which results in 6 measurements of RD at 6 different scales of resolution. Dτ is obtained by

plotting logarithm of RD against logarithm of time interval (τ). At bottom right, a least-

squares linear fit to data and slope of line used to calculate fractal dimension (slope = 1 −

Dτ) are obtained. Fractal dimension of observations presented is 1.19 and, as expected, 1.0 ≤

Dτ ≤ 1.5.
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TABLE 1
Spatial heterogeneity of cardiac blood flow and fractal dimensions for pulmonary blood
flow

No. of Animals Ds Mean rs

Baboon hearts 10 1.21+0.04 0.49

Sheep hearts 11 1.17±0.06 0.58

Rabbit hearts 6 1.25±0.07 0.41

Dog lungs 6 1.09±0.02 0.76
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