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By making use of the concept of fractional �-calculus, we 	rstly de	ne �-extension of the generalization of the generalized
Al-Oboudi di
erential operator. �en, we introduce new class of �-analogue of �-valently closed-to-convex function, and,
consequently, new class bymeans of this new general di
erential operator. Ourmain purpose is to determine the general properties
on such class and geometric properties for functions belonging to this class with negative coe�cient. Further, the �-extension of
interesting properties, such as distortion inequalities, inclusion relations, extreme points, radii of generalized starlikeness, convexity
and close-to-convexity, quasi-Hadamard properties, and invariant properties, is obtained. Finally, we brie�y indicate the relevant
connections of our presented results to the former results.

1. Introduction

�e formulation of fractional calculus began shortly aer
the classical calculus was established. Since its de	nition is
based on the concept of a noninteger order either integral or
derivative, the fractional calculus had been considered as a
subject in pure mathematics with no real applications for a
long time. However, the role of fractional calculus has been
changed in recent decades. Its applications take place inmany
	elds of mathematical sciences. Extended from the fractional
calculus, the fractional �-calculus is the �-extension of the
ordinary fractional calculus. Many results of the study on
theory of �-calculus operators in recent decades have been
applied in various areas such as problems in the ordinary
fractional calculus, optimal control, solutions of �-di
erence
equations, �-di
erential equations, �-integral equations, and�-transform analysis and also in the geometric function
theory of complex analysis.

In the 	eld of geometric function theory, various sub-
classes of analytic functions have been studied from di
erent
viewpoints. �e fractional �-calculus is the important tools
that are used to investigate subclasses of analytic functions.
For example, the extension of the theory of univalent func-
tions can be described by using the theory of �-calculus.

In [1], Ismail et al. introduced the generalized class of starlike
functions by using the �-di
erence operator and replaced
the right-half plane by a suitable domain. In a similar way,
Agrawal and Sahoo [2] introduced the generalized class of
starlike functions of order � and Raghavendar and Swami-
nathan [3] also introduced the class of �-analogue to close-to-
convex functions.Moreover, the �-calculus operators, such as
fractional �-integral and fractional �-derivative operators, are
used to construct several subclasses of analytic functions (see,
e.g., [4–8]).

In addition, the di
erential operators have been exten-
sively investigated in the 	eld of geometric function theory.
�e well-known di
erential operator de	ned on the class
of analytic functions is introduced by Salagean [9]. �is
operator was successfully used by many authors and it led to
the investigation of several properties of certain known and
new classes of analytic functions (see, e.g., [10–14]). However,
there are many generalized Salagean operators de	ned by
several authors. In [15], Al-Oboudi de	ned the generalized
Salagean operator by using the technique of convolution
structure. In [16], Al-Oboudi and Al-Amoudi used the
extension of fractional derivative and fractional integral to
de	ne linear multiplier fractional di
erential operator which
yields the Al-Oboudi operator [15] and fractional di
erential
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operator. Moreover, Bulut [17] modi	ed the Al-Oboudi
and Al-Amoudi operator [16] by introducing nonnegative
parameter � in that operator. Recently, Selvakumaran et al. [8]
introduced the fractional �-di
erintegral operator by using
the fractional �-calculus operators involving the generalized
Al-Oboudi and Al-Amoudi operator [16]. For some recent
investigations of these operators on the classes of analytic
functions and related topics, such as coe�cient estimate,
distortion theorem, extreme points, and subordination, we
refer to [18–23] and the references cited therein.

�is paper is organized as follows. In Section 2, we
propose the �-extension of the Bulut operator [17] which
generalized Selvakumaran et al. operator [8]. We also de	ne

new class toR�,��,�,�,�(�) by using this new general di
erential

operator together with �-analogue to �-valent closed-to-
convex function. In Section 3, we give linear combination
property and coe�cient estimate for function belonging to

R
�,�
�,�,�,�(�). By making use of the coe�cient estimate, the �-

extension of geometric properties for function with negative

coe�cientsTR
�,�
�,�,�,�(�) is given in Section 4.�en, we 	nish

our paper by observations and concluding remarks.

2. Preliminaries and Definitions

Let � be a positive integer, and letA� be the class of analytic
functions and �-valent in the unit disk D = {� ∈ C : |�| < 1}
that are of the form

� (�) = �� + ∞∑
	=�+1


	�	. (1)

LetT� be a subclass ofA� consisting of functions�(�) of the
form

� (�) = �� − ∞∑
	=�+1

����
	���� �	. (2)

In particular, we set A1 ≡ A and T1 ≡ T. For 0 ≤ � <1, let R(�) be the subclass of A consisting of all functions
which satisfy Re{�
(�)} > � in D. �e functions in R(�)
are called functions of bounded turning. All of those are
univalent and close-to-convex in D (see [24]). Similarly, we
denote byR�(�), where 0 ≤ � < 1, the class of all functions
inA� which satisfy Re{�
(�)/���−1} > � (see more details in
[25, 26]).

For the convenience, we provide some basic de	nitions
and concept details of �-calculus which are used in this paper.
In the theory of �-calculus, the �-shied factorial is de	ned
for �, � ∈ C, � ∈ N0 ≡ N ∪ {0} as a product of � factors by
(�; �)� = {{{

1, � = 0;
(1 − �) (1 − ��) ⋅ ⋅ ⋅ (1 − ���−1) , � ∈ N, (3)

and in terms of the basic analogue of the gamma function

(��; �)� = Γ� (� + �) (1 − �)
�

Γ� (�) , (� > 0) , (4)

where the �-gamma function [27, 28] is de	ned by

Γ� (�) = (�; �)∞ (1 − �)1−(�; �)∞ , (0 < � < 1) . (5)

We note that if |�| < 1, the �-shied factorial (3) remains
meaningful for � = ∞ as a convergent in	nite product:

(�; �)∞ = ∞∏
	=0
(1 − ��	) . (6)

Here, we recall the following �-analogue de	nitions given
by Gasper and Rahman [27]. �e recurrence relation for �-
gamma function is given by

Γ� (� + 1) = [�]� Γ� (�) , (7)

where [�]� = (1 − �)/(1 − �), and is called �-analogue of �.
It is well known that Γ�(�) → Γ(�) as � → 1−, where Γ(�) is
the ordinary Euler gamma function.

In view of the relation

lim
�→1−

(��; �)�(1 − �)� = (�)� , (8)

we observe that the �-shied factorial (3) reduces to the
familiar Pochhammer symbol (�)�, where (�)� = �(�+1)(�+2) ⋅ ⋅ ⋅ (� + � − 1).

Let � ∈ C be 	xed. A set � ⊂ C is called a �-geometric
set if, for � ∈ �, �� ∈ �. Let � be a function de	ned
on a �-geometric set. Jackson’s �-derivative and �-integral of
a function on a subset of C are, respectively, given by (see
Gasper and Rahman [27], pp. 19–22)

 �� (�) = � (�) − � (��)� (1 − �) , (� ̸= 0, � ̸= 0) ,
∫�
0
� (#) $�# = � (1 − �) ∞∑

	=0
�	� (��	) . (9)

In case �(�) = ��, the �-derivative of �(�), where � is a
positive integer, is given by

 ��� = �� − (��)�(1 − �) � = [�]� ��−1. (10)

As � → 1− and � ∈ N, we have [�]� = (1 − ��)/(1 − �) =1 + � + ⋅ ⋅ ⋅ + ��−1 → �.
We now recall the de	nition of the fractional �-calculus

operators of a complex-valued function �(�), which were
recently studied by Purohit and Raina [29].

De�nition 1 (fractional �-integral operator). �e fractional �-
integral operator %��,� of a function �(�) of order & (& > 0) is
de	ned by

%��,�� (�) =  −��,�� (�) = 1Γ� (&) ∫
�

0
(� − #�)1−� � (#) $�#,

(11)
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where �(�) is analytic in a simply connected region in the �-
plane containing the origin. Here, the term (� − #�)�−1 is a�-binomial function de	ned by

(� − #�)�−1 = ��−1 ∞∏
	=0
[ 1 − (#�/�) �	1 − (#�/�) ��+	−1]

= �� 1Φ0 [�−�+1; −; �, #��� ] .
(12)

According to Gasper and Rahman [27], the series

1Φ0[&; −; �, �] is single-valued when |arg(�)| < 3. �erefore,
the function (� − #�)�−1 in (12) is single-valued when|arg(−#��/�)| < 3, |#��/�| < 1, and |arg(�)| < 3.
De�nition 2 (fractional �-derivative operator). �e fractional�-derivative operator  ��,� of a function �(�) of order & (0 ≤& < 1) is de	ned by

 ��,�� (�) =  �,�%1−��,� � (�)
= 1Γ� (1 − &) � ∫

�

0
(� − #�)−� � (#) $�#, (13)

where�(�) is suitably constrained and themultiplicity of (�−#�)−� is removed as in De	nition 1 above.

De�nition 3 (extended fractional �-derivative operator).
Under the hypotheses of De	nition 2, the fractional �-
derivative for a function �(�) of order & is de	ned by

 ��,�� (�) =  ��,�%�−��,� � (�) , (14)

where4 − 1 ≤ & < 4, 4 ∈ N0.
In addition, the extension of �-di
erintegral operatorΩ�� :

A� → A�, for & < �+ 1, 0 < � < 1, and � ∈ N, is de	ned by
Ω��� (�) = Γ� (� + 1 − &)Γ� (� + 1) �� ��,�� (�)

= �� + ∞∑
	=�+1

Γ� (6 + 1) Γ� (� − & + 1)Γ� (� + 1) Γ� (6 − & + 1)
	�	,
(15)

where  ��,� in (15) represents, respectively, a fractional �-
integral of �(�) of order &when −∞ < & < 0 and a fractional�-derivative of �(�) of order & when 0 ≤ & < � + 1. We note

that when � → 1−, the operator Ω�� reduces to the operatorΩ� introduced by Owa and Srivastava [30].

Now, we de	ne the �-extension of Al-Oboudi type di
er-

ential operator D�,��,�,�,� : A� → A�, for �, 7 ≥ 0, & < � + 1,
and4 ∈ N0, which is de	ned by

D
�,0
�,�,�,�� (�) = � (�) ,

D
�,1
�,�,�,�� (�) = [�]� − 7 [�]� + �[�]� + � Ω��� (�)

+ 7[�]� + �� � (Ω��� (�)) ,
D
�,2
�,�,�,�� (�) = D

�,1
�,�,�,� (D�,1�,�,�,�� (�)) ,

...
D
�,�
�,�,�,�� (�) = D

�,1
�,�,�,� (D�,�−1�,�,�,�� (�)) .

(16)

We note that if � ∈ A is given by (1), then by (16) we have

D
�,�
�,�,�,�� (�) = �� + ∞∑

	=�+1
Ψ�,��,�,�,� (6) 
	�	, (17)

where

Ψ�,��,�,�,� (6)
= [[

Γ� (6 + 1) Γ� (� − & + 1)Γ� (� + 1) Γ� (6 − & + 1)
[�]� + ([6]� − [�]�) 7 + �[�]� + � ]]

�

.
(18)

We note that, by setting appropriated values for the param-

eters in the operator D�,��,�,�,�, this operator reduces to many

known di
erential operators. For example, in case � = 0 the
operator D�,��,�,0,� is exactly the Selvakumaran et al. operator

D
�,�
�,�,� in [8]. Also, when � → 1− the operatorD�,��,�,� reduces

to the operator introduced by Bulut [17]. Moreover Bulut
[17] noticed that, for suitable parameters �, 7, &, �, and 4,
the operatorD�,��,�,� generalizes many operators introduced by

several authors, for instance, Salagean [9], Al-Oboudi [15],
Al-Oboudi and Al-Amoudi [16], Acu andOwa [31], Acu et al.
[32], Cătaş [33], Cho and Srivastava [34], Cho and Kim [35],
Kumar et al. [36], Owa and Srivastava [30], and Uralegaddi
and Somanatha [37].

Next, we de	ne the �-analogous to the function class
R�(�) by R�,�(�). A function � ∈ A� is said to be in the
class R�,�(�) of �-valently closed-to-convex with respect to�-di
erentiation if and only if

Re{  �� (�)[�]� ��−1} > �, � ∈ D, (19)

where 0 < � < 1. In particular, we set R�,1(�) ≡
R�(�). Note that the class R�(�) generalizes the class K�
(with the function I(�) = �) which was introduced by
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Raghavendar and Swaminathan [3]. Moreover, we see that ��(�) → �
(�), as � → 1−. �is implies that an inequality

Re{ ��(�)/[�]���−1} > � becomes Re{�
(�)/���−1} >�. Hence, the class R�,�(�) clearly reduces to R�(�) and
satis	es

⋂
0<�<1

R�,� (�) ⊂R� (�) ⊂R�. (20)

Furthermore, by using the operator D
�,�
�,�,�,� de	ned by

(16) and �-di
erentiation, we introduce a new classR�,��,�,�,�(�)
as follows.

Let & < � + 1, 7, � ≥ 0, 0 ≤ � < 1, and 4 ∈ N0. Denote
byR�,��,�,�,�(�) the class of all functions � ∈ A� satisfying the

condition

Re
{{{
 � (D�,��,�,�,�� (�))[�]� ��−1

}}} > �, � ∈ D. (21)

Denote by TR
�,�
�,�,�,�(�) the class obtained by taking

intersection of the classR�,��,�,�,�(�) with the classT�. �at is,

TR
�,�
�,�,�,� (�) ≡R

�,�
�,�,�,� (�) ∩T�. (22)

In particular, we set TR
�,0
�,�,�,�(�) ≡ TR�(�). �e special

cases of the class R�,��,�,�,�(�), as � → 1−, have been studied

by Bulut [38], Al-Oboudi in [15], and Tăut et al. [39] and the

special cases of the classTR
�,�
�,�,�,�(�), as � → 1−, have been

proved by Altintas [40].

3. Main Results

3.1. General Properties. We begin to derive the linear combi-

nation property onR
�,�
�,�,�,�(�) in the following result.

�eorem 4. �e classR�,��,�,�,�(�) is convex.
Proof. Let �, I ∈R�,��,�,�,�(�) of the form

� (�) = �� + ∞∑
	=�+1


	�	,
I (�) = �� + ∞∑

	=�+1
O	�	.

(23)

It is su�cient to show that the function ℎ(�) = ��(�) + (1 −�)I(�), where 0 ≤ � ≤ 1, is in the class R�,��,�,�,�(�). By (23),
we see that

ℎ (�) = �� + ∞∑
	=�+1

[�
	 + (1 − �) O	] �	. (24)

Hence

 � (D�,��,�,�,�ℎ (�))[�]� ��−1
= 1 + ∞∑

	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) [�
	 + (1 − �) O	] �	−�

= �Re{{{1 +
∞∑
	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) 
	�	−�
}}}

+ (1 − �)Re{{{1 +
∞∑
	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) 
	�	−�
}}} ,

(25)

whereΨ�,��,�,�,�(6) is de	ned by (18). Since�, I ∈R�,��,�,�,�(�), we
have

Re
{{{
 � (D�,��,�,�,�� (�))[�]� ��−1

}}}
= Re

{{{1 +
∞∑
	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) 
	�	−�
}}} > �,

Re
{{{
 � (D�,��,�,�,�I (�))[�]� ��−1

}}}
= Re

{{{1 +
∞∑
	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) O	�	−�
}}} > �.

(26)

Applying (26) to (25), we obtain

Re
{{{
 � (D�,��,�,�,�ℎ (�))[�]� ��−1

}}} > �� + (1 − �) � = �. (27)

Now, the proof is completed.

Remark 5. In case � = 1, by letting � → 1−, we obtain
�eorem 4.1 in [38]. For � → 1− with & = 0, we obtain
�eorem 2.11 in [15]. Moreover, for & = 0, 7 = 1, and� → 1−, we obtain�eorem 2.1 in [39].

Next, we derive some sharp coe�cient inequalities con-
tained in the following theorem that are useful in the main
results.

�eorem 6. Let � ∈ A� be de�ned by (1) and satisfy the
inequality

∞∑
	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) ����
	���� ≤ 1 − �, (28)

where Ψ�,��,�,�,�(6) is de�ned in (18). �en, � ∈ R
�,�
�,�,�,�(�).

Moreover, the converse also holds if� ∈ T�.�e result is sharp.
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Proof. Let the function � ∈ A� be de	ned by (1). To prove
this, we consider�������������

 � (D�,��,�,�,�� (�))[�]� ��−1 − 1
�������������

= �����������
∞∑
	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) 
	�	−�
�����������

≤ ∞∑
	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) ����
	���� ������	−������ .
(29)

By assumption (28), (29) can be rewritten as

�������������
 � (D�,��,�,�,�� (�))[�]� ��−1 − 1

�������������
≤ ∞∑
	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) ����
	���� ≤ 1 − �.
(30)

�erefore, we infer that � ∈ R
�,�
�,�,�,�(�). To prove the

converse, we let function� ∈ T� be de	ned by (2) and belong
to the classR�,��,�,�,�(�). �en, we have

R
{{{
 � (D�,��,�,�,�� (�))[�]� ��−1

}}}
= R

{{{1 −
∞∑
	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) ����
	���� �	−�
}}} > �.

(31)

Or, equivalently,

R
{{{
∞∑
	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) ����
	���� �	−�
}}} < 1 − �. (32)

In (32), by letting � → 1− on the real axis, we obtain
inequality (28) as desired. Finally, we note that assertion (28)
is sharp, the extremal function being

� (�) = �� − [�]� (1 − �)[� + 1]�Ψ�,��,�,�,� (� + 1)��+1. (33)

Now, the proof is completed.

Corollary 7. If � ∈ TR
�,�
�,�,�,�(�), then for 6 = �+1, �+2, . . .,

����
	���� ≤ 1 − �[6]�Ψ�,��,�,�,� (6) , (34)

where Ψ�,��,�,�,�(6) is de�ned in (18).

4. Geometric Properties for the Class
TR
�,�
�,�,�,�(�)

By observation, �eorem 6 gives the necessary and su�cient
conditions via coe�cient bounded for functions to be in the
multivalently analytic function classTR

�,�
�,�,�,�(�). Using this

result, we will discuss standard properties for that class in
sense of �-theory, such as distortion inequalities, inclusion
relations, extreme points, radii of close-to-convexity, starlike-
ness and convexity, quasi-Hadamard property, and invariant
properties. However, some of the mentioned properties can
be obtained only in case 0 ≤ & < � + 1 because the

monotonicity of the sequence Ψ�,��,�,�,�(6) is required to prove

those results. �e following lemmas guarantee the monotone

increasing property for the sequence Ψ�,��,�,�,�(6) in case 0 ≤& ≤ � + 1 and monotone decreasing in case & < 0.
Lemma 8. Let the sequence (
	)+∞	=� be de�ned by


	 = Γ� (6 + 1) Γ� (� + 1 − &)Γ� (� + 1) Γ� (6 + 1 − &) . (35)

(i) If 0 ≤ & < � + 1, then (
	)+∞	=� is a nondecreasing

sequence and 1 ≤ 
	 for 6 ≥ �.
(ii) If & < 0, then (
	)+∞	=� is a decreasing sequence and 
	 ≤1 for 6 ≥ �.

Proof. It is clear that the sequence (
	)+∞	=� is nonnegative for& < � + 1. We have that


	+1
	 =
Γ� (6 + 2) Γ� (6 + 1 − &)Γ� (6 + 1) Γ� (6 + 2 − &) . (36)

So, by using (7), we get


	+1
	 =
[6 + 1]�[6 + 1 − &]� = 1 − �	+11 − �	+1−� . (37)

Since 0 < � < 1, we see that
1 − �	+11 − �	+1−� < 1, for & < 0,

1 − �	+11 − �	+1−� ≥ 1, for 0 ≤ & < � + 1.
(38)

�en, for 0 ≤ & < � + 1, we conclude that (
	)+∞	=� is a
nondecreasing sequence and satisfying 1 = 
� ≤ 
	 for all6 ≥ �. Also, for & < 0, the sequence (
	)+∞	=� is a decreasing
sequence and satisfying 
	 ≤ 
� = 1 for all 6 ≥ �.
Lemma 9. If 0 ≤ & < � + 1, then the sequence Ψ�,��,�,�,�(6)
de�ned in (18) is an increasing sequence and satisfying 1 ≤Ψ�,��,�,�,�(6) for all 6 ≥ �.
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Proof. �e result is directly obtained by Lemma 8 and the
following inequality:

1 ≤ [�]� + ([6]� − [�]�) 7 + �[�]� + � , (39)

where �, 7 ≥ 0 and 6 ≥ �.
4.1. Distortion Inequalities. Next, we derive the distortion
inequalities for functions in the multivalently analytic func-

tions class TR
�,�
�,�,�,�(�) that will be given by the following

results.

�eorem 10. For 0 ≤ & < � + 1, suppose that � ∈ T� is

de�ned by (2). If � ∈ TR
�,�
�,�,�,�(�), then

����� (�)���� ≤ |�|� + [�]�[� + 1]� (1 − �)Ψ�,��,�,�,� (� + 1) |�|�+1 ,
����� (�)���� ≥ |�|� − [�]�[� + 1]� (1 − �)Ψ�,��,�,�,� (� + 1) |�|�+1 .

(40)

Generally,

����� ��� (�)�����
≤ [�]�![� − �]�! |�|�−�

+ [�]� [�]�![� − � + 1]�! (1 − �)Ψ�,��,�,�,� (� + 1) |�|�−�+1 ,
(41)

����� ��� (�)�����
≥ [�]�![� − �]�! |�|�−�

− [�]� [�]�![� − � + 1]�! (1 − �)Ψ�,��,�,�,� (� + 1) |�|�−�+1 ,
(42)

where [�]�! = [�]�[�−1]� ⋅ ⋅ ⋅ [1]�.�e estimations in (40)–(42)
are sharp.

Proof. Let the function � ∈ T� be de	ned by (2) and belong

to the classR�,��,�,�,�(�). In virtue of �eorem 6 and Lemma 9,

we have

[� + 1]�[�]� Ψ�,��,�,�,� (� + 1) ∞∑
	=�+1

����
	����
≤ ∞∑
	=�+1

[6]�[�]�Ψ�,��,� (6) ����
	���� ≤ 1 − �.
(43)

From (43), the consequence is that

∞∑
	=�+1

����
	���� ≤ (1 − �) [�]�[� + 1]�
1Ψ�,��,�,�,� (� + 1) . (44)

Since � ∈ T�, it is easy to see that
|�|� − |�|�+1 ∞∑

	=�+1

����
	����
≤ ����� (�)���� ≤ |�|� + |�|�+1 ∞∑

	=�+1

����
	���� .
(45)

�e conjunction of (44) and (45) yields assertions (40) of
�eorem 10. Hence, (41) and (42) follow from����� ��� (�)�����

≤ [�]�![� − �]�! |�|�−� +
[� + 1]�![� − � + 1]�! |�|�−�+1

∞∑
	=�+1

����
	���� ,
����� ��� (�)�����
≥ [�]�![� − �]�! |�|�−� −

[� + 1]�![� − � + 1]�! |�|�−�+1
∞∑
	=�+1

����
	���� .
(46)

Finally, we note that assertions (40)–(42) are sharp, since
equalities are attained by the function

� (�) = �� − [�]�[� + 1]� (1 − �)Ψ�,��,�,�,� (� + 1)��+1. (47)

Now, the proof is completed.

Remark 11. By letting � → 1−,�eorem 10 demonstrates that
the disk |�| < 1 is mapped onto a domain that contains the
disk

|R| < 1 − [�]�[� + 1]� (1 − �)Ψ�,��,�,�,� (� + 1) , (48)

under any multivalently analytic function � ∈ TR
�,�
�,�,�,�(�),

and onto a domain that contains the disk

|R| < 1 − (1 − �) 1 − ��1 − ��+1 , (49)

by any � ∈ TR�,�(�).
4.2. Inclusion Relation. In the following results, we obtain
some inclusion relation for the parameters 4, 7, and � of the
classTR

�,�
�,�,�,�(�).

�eorem 12. If 0 ≤ �1 ≤ �2 and 0 ≤ 71 ≤ 72, then
TR
�,�
�,�2,�2,� (�) ⊂ TR

�,�
�,�1,�1,� (�) , (50)

andTR
�,�
�,�2,�2,�(�) ̸= TR

�,�
�,�1,�1,�(�) if those parameters satisfy

either �1 ̸= �2 or 71 ̸= 72.
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Proof. �e inclusion relation is directly obtained by
�eorem 6 and the inequality

∞∑
	=�+1

[6]�[�]�Ψ�,��,�1,�1 ,� (6) ����
	����
≤ ∞∑
	=�+1

[6]�[�]�Ψ�,��,�2,�2,� (6) ����
	���� .
(51)

In case �1 ̸= �2 or 71 ̸= 72, we see that
�0 (�) = �� − [�]�[� + 1]� (1 − �)Ψ�,��,�1,�1,� (� + 1)�

�+1
(52)

belongs to the class TR
�,�
�,�1,�1,�(�) but does not belong to

the class TR
�,�
�,�2,�2 ,�(�), which implies that TR

�,�
�,�2,�2,�(�) ̸=

TR
�,�
�,�1,�1,�(�). Now, the proof is completed.

Applying �eorem 6 and Lemma 9, we obtain another
inclusion relation as follows.

�eorem 13. If 0 ≤ & < � + 1, then
TR
�,�+1
�,�,�,� (�) ⊂ TR

�,�
�,�,�,� (�) . (53)

4.3. Extreme Points. Now, let us determine extreme points of

the classTR
�,�
�,�,�,�(�).

�eorem 14 (extreme points). Let ��(�) = �� and
�	 (�) = �� − [�]� (1 − �)[6]�Ψ�,��,�,�,� (6)�	, 6 ≥ � + 1. (54)

�en �(�) is in the class TR
�,�
�,�,�,�(�) if and only if it can be

expressed in the form

� (�) = ���� + ∞∑
	=�+1

�	�	 (�) , (55)

where �	 ≥ 0 and ∑∞	=� �	 = 1.
Proof. Let the function �(�) ∈ T� be de	ned by (2). Since∑∞	=�+1 �	 = 1, we then have

� (�) = �� − ∞∑
	=�+1

�	 [�]� (1 − �)[6]�Ψ�,��,�,�,� (6)�	. (56)

Now, we obtain

(1 − �) ∞∑
	=�+1

[6]�Ψ�,��,�,�,� (6)[�]� (1 − �) �	
[�]� (1 − �)[6]�Ψ�,��,�,�,� (6)

= (1 − �) ∞∑
	=�+1

�	 ≤ 1 − �.
(57)

�us, � ∈ TR
�,�
�,�,�,�(�) by �eorem 6. Conversely, suppose

that � ∈ TR
�,�
�,�,�,�(�). We may set

�	 = [6]�[�]�
Ψ�,��,�,�,� (6)(1 − �) ����
	���� , 6 ≥ � + 1 (58)

and �� = 1 − ∑∞	=�+1 �	. �en we have �(�) = ���� −∑∞	=�+1 �	�	(�). �is completes the proof of�eorem 14.

4.4. Radii of Generalized Close-to-Convexity, Starlikeness,
and Convexity. Now, the discussions on radii of generalized
close-to-convexity, starlikeness, and convexity for the class

TR
�,�
�,�,�,�(�) are given by the following results. In order to

establish, we will also require the use of those classes of
functions. First of all, a function � ∈ A� is said to be

in the class S∗�,�(T) of �-valently starlike with respect to �-
di
erentiation of order T (0 ≤ T < �) if it satis	es the
inequality

Re{� � (� (�))� (�) } > T, � ∈ D. (59)

Furthermore, a function � ∈ A� is said to be in the class
C�,�(T) of �-valently convex with respect to �-di
erentiation
of order T (0 ≤ T < �) if it satis	es the inequality

Re{1 + � 2� (� (�)) � (� (�)) } > T, � ∈ D. (60)

Both S
∗
�,�(T) andC�,�(T) were introduced by Selvakumaran

et al. [8]. However, we consider the case 0 ≤ T < [�]� instead
of 0 ≤ T < �. �e de	nition of �-analogous of �-valently
closed-to-convex was already recalled in (19).

�eorem 15. For 0 ≤ & < �+ 1, if � ∈ TR
�,�
�,�,�,�(�), then � is�-valently closed-to-convex with respect to �-di�erentiation of

order �.
Proof. By�eorem 13, we obtain

TR
�,�
�,�,�,� (�) ⊂ TR

�,�−1
�,�,�,� (�) ⊂ ⋅ ⋅ ⋅ ⊂ TR�,� (�) . (61)

�is completes the proof.

In general, for 0 ≤ � < T < 1, the function� ∈ TR�,�(�)
does not necessarily belong to the class TR�,�(T). We then
derive the radii of generalized close-to-convexity order 0 ≤� < T < 1 for the function � ∈ TR

�,�
�,�,�,�(�).

�eorem 16. For 0 ≤ & < �+1, if � ∈ TR
�,�
�,�,�,�(�), then � is�-valently closed-to-convex with respect to �-di�erentiation of

order T in |�| < W1, where
W1 = inf
	≥�+1

(1 − T1 − �Ψ�,��,�,�,� (6))
1/(	−�) . (62)
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Proof. It is su�cient to show that | ��(�)/([�]��� −1)−1| <1 − T. �at is,����������
 �� (�)[�]� ��−1 − 1

���������� ≤
∞∑
	=�+1

[6]�[�]� |
|	 |�|	−� ≤ 1 − T. (63)

Since � ∈ TR
�,�
�,�,�,�(�) and by application of �eorem 6, we

obtain

∞∑
	=�+1

[6]�[�]�Ψ�,��,�,�,� (6) |
|	 ≤ 1 − �. (64)

Hence, (63) is true if

|�| ≤ (1 − T1 − �Ψ�,��,�,�,� (6))
1/(	−�) , 6 ≥ � + 1. (65)

�is completes the proof.

Next, we obtain the radii of generalized starlikeness of
order T in the following result.

�eorem 17. For 0 ≤ & < � + 1, if � ∈ TR
�,�
�,�,�,�(�), then �

is �-valently starlike with respect to �-di�erentiation of orderT (0 ≤ T < [�]�) in |�| < W2 where

W2 = inf
	≥�+1

[[
11 − � ⋅ [6]� ([�]� − T)[�]� ([6]� − T)Ψ�,��,�,�,� (6)]]

1/(	−�)

.
(66)

Proof. Wehave to show that |� ��(�)/�(�)−[�]�| < [�]�−T.
�at is,���������
� �� (�)� (�) − [�]����������

= �����������
� ([�]� ��−1 − ∑∞	=�+1 [6]� ����
	���� �	−1)�� − ∑∞	=�+1 ����
	���� �	 − [�]�

�����������
≤ ∑∞	=�+1 ([6]� − [�]�) ����
	���� |�|	−�1 − ∑∞	=�+1 ����
	���� |�|	−� ≤ [�]� − T.

(67)

Hence, (67) is true if

∞∑
	=�+1

([6]� − T) ����
	���� |�|	−� ≤ [�]� − T. (68)

By using (64), we can say (68) is true if

|�| < [[
11 − � [6]� ([�]� − T)[�]� ([6]� − T)Ψ�,��,�,�,� (6)]]

1/(	−�)

, 6 ≥ � + 1,
(69)

which completes the proof.

Corollary 18. If 0 ≤ & < � + 1, then
TR
�,�
�,�,�,� (�) ⊂ S

∗
�,�. (70)

Proof. By �eorem 17, we see that a function � ∈
TR
�,�
�,�,�,�(�) is �-valently starlike with respect to �-

di
erentiation (T = 0) in |�| < W2 where
W2 = inf
	≥�+1

( 11 − �Ψ�,��,�,�,� (6))
1/(	−�)

≥ inf
	≥�+1

( 11 − �)
1/(	−�) ⋅ inf

	≥�+1
(Ψ�,��,�,�,� (6))1/(	−�) .

(71)

It is easy to see that (1/(1−�))1/(	−�) is a decreasing sequence
and lim	→+∞(1/(1 − �))1/(	−�) = 1. �is implies

inf
	≥�+1

( 11 − �)
1/(	−�) = lim

	→+∞
( 11 − �)

1/(	−�) = 1. (72)

Moreover, by using Lemma 9, we obtain

inf
	≥�+1

(Ψ�,��,�,�,� (6))1/(	−�) ≥ 1. (73)

�en, we have W2 ≥ 1. �at is, � ∈ TR
�,�
�,�,�,�(�) is �-valently

starlike with respect to �-di
erentiation in � ∈ D. �e proof
is completed.

Next, we obtain the radii of generalized convexity of orderT, where T ≤ 2[�]� − [� − 1]� − 1, in the following result.

�eorem 19. For 0 ≤ & < � + 1 and T ≤ 2[�]� − [� − 1]� − 1,
if � ∈ TR

�,�
�,�,�,�(�), then � is �-valently convex with respect to�-di�erentiation of order T (0 ≤ T < [�]�) in |�| < W3, where

W3
= inf
	≥�+1

[[
11 − �

⋅(2 [�]� − [� − 1]� − T − 1)(1 + [6 − 1]� − T) Ψ�,��,�,�,� (6)]]
1/(	−�)

.
(74)

Proof. We have to show that |1 + � 2��(�)/ ��(�) − [�]�| <[�]� − T. �at is,

����������1 +
� 2�� (�) �� (�) − [�]�

����������
= �����������1 + �([�]� [� − 1]� �

�−2

− ∞∑
	=�+1

[6]� [6 + 1]� ����
	���� �	−2)
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⋅ ([�]� ��−1 − ∞∑
	=�+1

[6]� ����
	���� �	−1)
−1

− [�]�
�����������

≤ ([�]� (1 + [� − 1]� − [�]�)
+ ∞∑
	=�+1

[6]� (1 + [6 − 1]� − [�]�) ����
	���� |�|	−�)

⋅ ([�]� − ∞∑
	=�+1

[6]� ����
	���� |�|	−�)
−1

≤ [�]� − T.
(75)

Hence, (75) is true if

[�]� (1 + [� − 1]� − [�]�)
+ ∞∑
	=�+1

[6]� (1 + [6 − 1]� − [�]�) ����
	���� |�|	−�

≤ ([�]� − T)[[[�]� −
∞∑
	=�+1

[6]� ����
	���� |�|	−�]] ,
(76)

or equivalently

∞∑
	=�+1

[6]� (1 + [6 − 1]� − T) ����
	���� |�|	−�
≤ [�]� (2 [�]� − [� − 1]� − T − 1) .

(77)

Since T ≤ 2[�]� − [� − 1]� − 1, by using (64), we can say (77)
is true if

|�| < [[
11 − � (2 [�]� − [� − 1]� − T − 1)(1 + [6 − 1]� − T) Ψ�,��,�,�,� (6)]]

1/(	−�)

,
6 ≥ � + 1.

(78)

�e proof is completed.

4.5. Quasi-Hadamard Properties. In this section, we derive
the quasi-Hadamard (convolution) properties. Before we
derive the result, we recall the de	nition of the quasi-
Hadamard properties. For any functions �� ∈ T�, ` =1, 2, 3, . . . , � of the form

�� (�) = �� − ∞∑
	=�+1

�����
	,������ �	, (79)

the quasi-Hadamard product (�1 ⊗�2 ⊗ ⋅ ⋅ ⋅ ⊗��)(�) is de	ned
by

(�1 ⊗ �2 ⊗ ⋅ ⋅ ⋅ ⊗ ��) (�) = �� − ∞∑
	=�+1

( �∏
�=1

�����
	,������) �	,
� ∈ D.

(80)

Next, we derive the quasi-Hadamard properties for the

classTR
�,�
�,�,�,�(�). Using the techniques of Schild and Silver-

man [41] with�eorem 6, we prove the following results.

�eorem 20. For 0 ≤ & < � + 1, suppose that �� ∈
TR
�,�
�,�,�,�(��), ` = 1, 2, . . . , �; then (�1 ⊗ �2 ⊗ ⋅ ⋅ ⋅ ⊗ ��) ∈

TR
�,�
�,�,�,�(c), where
c = 1 − [[

[�]�[� + 1]�Ψ�,��,�,�,� (� + 1)]]
�−1
�∏
�=1
(1 − ��) . (81)

Proof. To prove this theorem, we use the principle of mathe-
matical induction on `. Let the functions�� ∈ T�, for ` = 1, 2
of the form

�� (�) = �� − ∞∑
	=�+1

�����
	,������ �	, (82)

for ` = 1, 2 and 6 ≥ 2. Since �� ∈ TR
�,�
�,�,�,�(��) for ` = 1, 2,

by �eorem 6, we see that

∞∑
	=�+1

[6]�[�]�
Ψ�,��,�,�,� (6)1 − �� 
	,� ≤ 1, for ` = 1, 2. (83)

According to�eorem 6, it is su�cient to prove that

∞∑
	=�+1

[6]�[�]�
Ψ�,��,�,�,� (6)1 − c 
	,1
	,2 ≤ 1, (84)

where c is de	ned in (81). Applying Cauchy-Schwarz’s
inequality to (83) for ` = 1, 2, we have the following
inequality:

∞∑
	=�+1

[6]�[�]�
Ψ�,��,�,�,� (6)√(1 − �1) (1 − �2)√
	,1
	,2

≤ √ ∞∑
	=2

[6]�[�]�
Ψ�,��,�,�,� (6)1 − �1 
	,1√ ∞∑

	=2

[6]�[�]�
Ψ�,��,�,�,� (6)1 − �2 
	,2 ≤ 1.

(85)

From (84) and (85), if the following inequality

√(1 − �1) (1 − �2)1 − c √
	,1
	,2 ≤ 1, (86)
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for all 6 ≥ �+1, is satis	ed, it can be concluded that (�1⊗�2) ∈
TR
�,�
�,�,�,�(c). Now, applying Corollary 7, inequality (86) will

be held if [�]�[6]� (1 − �1) (1 − �2)Ψ�,��,�,�,� (6) ≤ 1 − c. (87)

By Lemma 9, we see that

[�]�[6]� (1 − �1) (1 − �2)Ψ�,��,�,�,� (6) ≤ [�]�[� + 1]�
(1 − �1) (1 − �2)Ψ�,��,�,�,� (� + 1) := 1 − c.

(88)

�is yields our desired inequality (86). Now, we have (�1 ⊗�2) ∈ TR
�,�
�,�,�,�(c). Next, we let the functions �� ∈ T�, for` = 1, 2, . . . , g+1 and�� ∈ TR

�,�
�,� (��) for ` = 1, 2, . . . , g+1.

Suppose that

�1 ⊗ �2 ⊗ ⋅ ⋅ ⋅ ⊗ �� ∈ TR
�,�
�,�,�,� (c) , (89)

where

c := 1 − [[
[�]�[� + 1]�Ψ�,��,�,�,� (� + 1)]]

�−1
�∏
�=1
(1 − ��) . (90)

�en, by means of the above technique, it can be shown that

�1 ⊗ �2 ⊗ ⋅ ⋅ ⋅ ⊗ �� ⊗ ��+1 ∈ TR
�,�
�,� (c
) , (91)

where

c
 := 1 − [�]�[� + 1]�
(1 − ��+1) (1 − c)Ψ�,��,�,�,� (� + 1)

= 1 − [[
[�]�[� + 1]�Ψ�,��,�,�,� (� + 1)]]

�
�+1∏
�=1
(1 − ��) .

(92)

By Lemma 9, we have 0 < c < 1. �is completes the proof of
the theorem.

4.6. Invariant Properties. In the following results, we discuss

invariant properties of the class TR
�,�
�,�,�,�(�) via �eorem 6.

We consider the formerly studied operators in terms of
the standard convolution formula; we choose I as a 	xed
function in A� such that (� ∗ I)(�) exists for any � ∈ A�.
For various choices of I we get di
erent linear operators that
have been studied in the recent past.

According to �eorem 6, we easily obtain the following
properties.

�eorem 21. For & < � + 1, if the function I ∈ A� is of the
form

I (�) = �� + ∞∑
	=�+1

�����	���� �	, (93)

where |�	| ≤ 1 for 6 ≥ � + 1, then (� ∗ I) ∈ TR
�,�
�,�,�,�(�) for

each � ∈ TR
�,�
�,�,�,�(�).

Next, we recall the de	nition of Bernardi’s integral opera-
tor. For nonnegative real number c and � ∈ A�, Bernardi-
Libera’s integral operator i�� : A� → A� is de	ned as
follows:

i�� (�) = c + 1�� ∫�
0
#�−1� (#) $#, (94)

which was studied by Bernardi in [42]. Also, their properties
for c = 1 are reported in [43, 44]. By using the concept of�-calculus, we introduce �-analogous to Bernardi’s integral
operator de	ned by

i�,�� (�) = [c + 1]��� ∫�
0
#�−1� (#) $�#. (95)

From (95), we have veri	ed that

i�,�� (�) = [c + �]��� � (1 − �) ∞∑
�=0
�� (���)�−1 � (���)

= [c + �]� (1 − �) ∞∑
�=0
���� (���)

= [c + �]� (1 − �) ∞∑
�=0
��� ∞∑
	=�
��	
	�	, 
� = 1

= [c + �]� ∞∑
	=�

∞∑
�=0
(1 − �) ��(�+	)
	�	

= �� + ∞∑
	=�+1

[c + �]�[c + 6]� 
	�	.
(96)

�at is,

i�,�� (�) := (� ∗ I) (�) = �� + ∞∑
	=�+1

[c + �]�[c + 6]� 
	�	, (97)

where I = �� + ∑∞	=�+1([c + �]�/[c + 6]�)�	. It is clear that[c + �]�/[c + 6]� ≤ 1 for 6 ≥ � + 1. �en, we obtain the
invariant properties under integral operator i�,� as follows.
�eorem22. For & < �+1, and c > 0, the classTR

�,�
�,�,�,�(�) is

invariant under the integral operator i�,� de�ned in (95). �at
is,

i�,� [TR
�,�
�,�,�,� (�)] ⊂ TR

�,�
�,�,�,� (�) . (98)

Moreover, in the view of the de	nition of fractional �-
integral and Lemma 8, we obtain the invariant properties
under fractional �-integral.
�eorem 23. For & < �+1, the classTR

�,�
�,�,�,�(�) is invariant

under the integral operator %��,� de�ned in (11). �at is,

%��,� [TR
�,�
�,�,�,� (�)] ⊂ TR

�,�
�,�,�,� (�) . (99)
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5. Observation and Concluding Remark

In this section we brie�y point out some consequences of
the results derived in the proceeding sections. If we let� → 1−, we observe that the function classes R�,��,�,�,�(�)
and TR

�,�
�,�,�,�(�) provide the �-extensions of both known

and newly obtained. By assigning appropriated values to the
parameters4, �, c, &, and �, we can derive the corresponding
results for several simpler subclasses of the class T� from
each of our theorems, especially as indicated in Altintas [40].
�erefore, it leads to the �-extension of the former results.

Furthermore, we let � ∈ T�,�, whereT�,� is a subclass of
T� consisting of functions of the form

� (�) = �� − ∞∑
	=�+�

����
	���� �	. (100)

�eorem 6 can indeed be generalized further by considering
the class of multivalent function T�,� in place of T�. �at
leads to the following corollary.

Corollary 24. Let � ∈ T�,� be de�ned by (100); then � ∈
R
�,�
�,�,�,�(�) if and only if � satis�es the inequality

∞∑
	=�+�

[6]�[�]�Ψ�,��,�,�,� (6) ����
	���� ≤ 1 − �, (101)

whereΨ�,��,�,�,�(6) is de�ned in (18). Moreover, the result is sharp.

By previous argument in this paper, Corollary 24 can
fruitfully be used in investigating the geometric properties for

several subclasses ofR�,��,�,�,�(�) ∩T�,�. �en the �-extension
of the former results, such as Sarangi and Uralegaddi [45],
Aouf et al. [46], and Aouf [47], is obtained.

We conclude this paper by remarking that the results
presented in this paper give various �-extension properties of
di
erent classes of analytic and multivalent function. Here,
our results generalize several formerly known results. We
introduce �-extension of the general di
erential operator,
which is generalized from Bulut operator [17], in sense of �-
theory. �e new subclass of multivalently analytic function
is proposed consequently by joining the class of �-analogue
to close-to-convexity together with our �-extension of Bulut
operator [17]. We discuss the linear combination property

and coe�cient estimate for the class R�,��,�,�,�(�). By making

use of the coe�cient estimate and the concept of �-theory, we
obtain the �-extension of geometric properties for the class

TR
�,�
�,�,�,�(�). We give the �-analogue to distortion properties

and the radii of �-analogue starlikeness and convexity which
were de	ned in [8]. Moreover, we consider the radii of �-
analogue close-to-convexity that replace usual derivative by�-derivative operator. We also use the concept of �-theory
to extend the Bernardi integral operator. As a consequence,

the invariant property forTR
�,�
�,�,�,�(�) under such �-integral

operator is obtained. Finally, the presented results can be
extended to investigate the function on T�,� which gives
generalized formerly known and newly obtained results.
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[21] S. S. Eker and H. Güney, “A new subclass of analytic functions
involving Al-Oboudi di
erential operator,” Journal of Inequal-
ities and Applications, vol. 2008, Article ID 452057, 10 pages,
2008.

[22] E. Kadioglu, “On subclass of univalent functions with negative
coe�cients,” Applied Mathematics and Computation, vol. 146,
no. 2-3, pp. 351–358, 2003.

[23] F. M. Al-Oboudi and K. A. Al-Amoudi, “Subordination results
for classes of analytic functions related to conic domains de	ned
by a fractional operator,” Journal of Mathematical Analysis and
Applications, vol. 354, no. 2, pp. 412–420, 2009.

[24] A. W. Goodman, Univalent Functions, Vols. I and II, Mariner
Publishing, Tampa, Fla, USA, 1983.

[25] T. Umezawa, “On the theory of univalent functions,” Tohoku
Mathematical Journal, vol. 2, no. 7, pp. 212–228, 1955.

[26] T. Umezawa, “Multivalently close-to-convex functions,” Pro-
ceedings of the American Mathematical Society, vol. 8, pp. 869–
874, 1957.

[27] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cam-
bridge University Press, Cambridge, UK, 1990.

[28] F. H. Jackson, “On q-functions and a certain di
erence opera-
tor,” Transactions of the Royal Society of Edinburgh, vol. 46, pp.
64–72, 1908.

[29] S. D. Purohit and R. K. Raina, “Certain subclasses of ana-
lytic functions associated with fractional �-calculus operators,”
Mathematica Scandinavica, vol. 109, no. 1, pp. 55–70, 2011.

[30] S. Owa and H. M. Srivastava, “Univalent and starlike gener-
alized hypergeometric functions,” Canadian Journal of Mathe-
matics, vol. 39, no. 5, pp. 1057–1077, 1987.

[31] M. Acu and S. Owa, “Note on a class of starlike functions,” in
Proceedings of the RIMS, Kyoto, Japan, 2006.

[32] M. Acu, Y. Polataglu, and E. Yavuz, “�e radius of starlikeness
of the certain classes of p-valent functions de	ned bymultiplier
transformations,” Journal of Inequalities and Applications, vol.
2008, Article ID 280183, 2008.
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