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Abstract: A brief survey of fractional calculus and fractional differential forms was firstly

given . The fractional exterior transition to curvilinear coordinate at the origin were discussed

and the two coordinate transformations for the fractional differentials for three-dimensional

Cartesian coordinates to spherical and cylindrical coordinates are obtained , respectively . In

particular, for v = m =1, the usual exterior transformations, between the spherical

coordinate and Cartesian coordinate, as well as the cylindrical coordinate and Cartesian

coordinate , are found respectively , from fractional exterior transformation .
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Introduction

In generalized integration and differentiation the question of extension of meaning is: can the
meaning of derivatives of integral order d"y/dx" be extended to have meaning where n is any
number (e.g., irrational, fraction or complex)? In 1695 Leibniz invented above notation. Eular
and Fourier mentioned derivatives of arbitrary order but they gave no applications or examples. So
the honor of making the first application belongs to Abel in 1823. Abel applied the fractional
calculus in the solution of an integral equation which arises in the formulation of the Tautochrone
problem. Abel’s solution was so elegant that it attempted the attention of Liouville who made the
first major attempt to give a logical definition of a fractional derivative in 1832. Riemann in 1847
while a student wrote a paper published posthumously in which he gave a definition of a fractional
operation. A definition named in honor of Riemann and Liouville is
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By now scientists and applied mathematicians have found the fractional calculus useful in various
fields: rheology, quantitative biology, electrochemistry, scattering theory, diffusion, transport
theory, probability potential theory and elasticity!!) . In recent years exterior calculus has been
generalized by basing it on various graded algebras[?'ﬂ . Other attempts-at generalization are
based on nonassociative geomeiries[“’5 I Recently, Cottrill-Shepherd and Naber gave the
definition of a fractional exterior derivative!%! and found that fractionalsdifferential formal space
generates new vector spaces of finite and infinite dimension, the definition of closed and exact
forms are extended to the new fractional form spaces with closure and integrability condition

worked out for a special case. Coordinate transformation rules are also computed .
1 Transition to Curvilinear Coordinates and Two Important Examples

In the paper the Rimmann-Liouville definition of fractional integration and differentiation will
be used. I'(q) is the gamma function (generalized factorial) of the parameter “q” [i.e.,
'(n +1) =n! for all whole number, “n” ],

If(x) _ 1+ f(&)de .
(3(x - a))? ~ T(- q)L (% - g)i+ (Re(gq) < 0), (1)

(=) _ i"_[ 1 = flg)ds ] ( Re(q) = 0 ). ()

(3(x - a))? ~ 3x"LT(n - q)ls (x - £)a-n+1 n > q(nis whole)” "~ 7
The parameter q is the order of the integral or derivative and allowed to be complex . Positive real
values of ¢ represent derivatives and negative real values represent integrals. Eq. (1) is a
fractional integral and Eq. (2) is a fractional derivative. In this paper, only real and positive
values of ¢ will be considered. If the partial derivative are allowed to assume fractional orders, a
fractional exterior derivative can be defined

v ; xlf_____aj_____
d’ = ;d e Ay (3)

Note that the subscript i denotes the coordinate number, the superscript » denotes the order of the
fractional coordinate differential, and a; is the initial point of the derivative. For convenience, the
initial point a; for the fractional derivative is taken to the origin.

Let {x;} and |y, } be two coordinate systems with a one to one mapping between them in
some neighborhood of p € E". Take {x;} again to be Cartesian coordinates and {y;| to be

curvilinear coordinates. Assume the | x;}| can be written smoothly in terms of the {y; |,

% = %,(y). o (4)
The exterior derivative is then applied to Eq. (4) giving the following:
- Ix;
dx; = Zdyl 5. (5)
i=1 Y1 _
In the two coordinate systems, the fractional exterior derivative d” takes the following forms:
a v :
v - )J 6
d ;de nt (6)

and
v
v

(7)
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which gives rise to

zdxtav_zytav'

Consider a function f; that maps points in E” into the complex numbers

rQ : v-m,
e = (v + 1)(11;‘1,‘ )
It is easily seen that

f . . i
EPRE =0 (L;ek,1.e.,fk€Ker((axi)v)?
and
% .
) =1 (i = k).

(8)

(9)

(10)

(11)

Applying the fractional exterior derivative (8) to both sides of (9) in two different

coordinate systems the following coordinate transformation rule can be obtained

dx} = :ZJlﬂ(v D (a ) (( Ii[x (7)) " (3)7).

Jj=Uj=k

(12)

In what follows we consider the coordinate transformation for three-dimensional Cartesian to

cylindrical coordinates and spherical coordinates.
Example 1 Spherical coordinate
Consider the coordinate transformation of spherical coordinate

%, = rsin(§)cos($) »
x5 = rsin(§)sin($) (r=0,0g <m0 d<n).
%3 = rcos(f)
The coordinate transformations for the fractional differentials are then
. '(3v -2m + 1) cos” ™ (6)cos” (P)  2pam 1w
dx = v+ D2y -2m + 1) sin"‘"z”(ﬁ)sin"’""(¢)r dr® +
pe-m o ge ( cos” ™ (6)cos” (¢) )d@" N
F'(v +1) (30)*\sin™ > (§)sin™ " ($)
p3v-2m kg ( cos” ™ (9)cos’ ($) )d¢”
F'(v +1) (3¢)"\sin™ 2 (9)sin™ " ($) ’
d.” _ '(3v - 2m + 1) cos”” ”’(ﬁ)cos” ™ (¢)sin”($) J20-2m g o
2 E T+ DI(2v-2m + 1) sin™ " (9)
piv-im av (cos”’"’(@)cos”’"’(?b)sm (¢))d0” N
T'(v +1) (39)” sin™ 2" (6)
PR J” (cos”'"’(ﬁ)cos”'m(¢)sin”(¢))d¢v
(v +1) (3¢)” sin™ 2 (9) - . ’
dx'é - F(3’U -2m + 1) g’ m(¢)COS (6) ?,:v—lmdrv +

'(v+ 1DI'(2v - 2m + 1) sm”’ " ($)sin™ 2" (0)

L " ( s ™ ($)cos’ (H)
(v +1) (36)" sinm"’(¢)sin3m-20(g)

)d@” +

(13)

(14)

(15)
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o 9" cos”” " ($)cos” (0) )
r(v+1) (9¢)"(sin""”(¢)sin2""2”(6))d¢ (16)

Forv = m = 1, we from (14) - (16) have

dx, = sin(@)cos($)dr + rcos(f)cos($)dd - rsin(6)sin( $)d¢,
dx, = sin(@)sin($)dr + rcos(9)sin($)db + rsin(8)cos($)dé, (17)
dx; = cos(6)dr -~ rsin(6)dé,

that is,
dx, sin(@)cos($) rcos(B)cos($) — rsin(8)sin($)\/dr
dxy | = | sin(@)sin(®) rcos(0)sin($) rsin(@)cos( ) || d6 (18)
dx, cos( ) ~ rsin($) 0 d¢

which is the same as the usuall exterior transformation between the spherical coordinate and
Cartesian coordinate in three-dimensional space.

Example 2 Cylindrical coordinate .

Consider the coordinate transformation of cylindrinal coordinate

X = rCOS(¢)3
%, = rsin(9), (19)
X3 = z.

From (12), it is easy to see that the coordinate transformations for the fractional differentials are
_ I'2v - m + 1) 2 "cos” ($) ni—md v
T (v +, 1) (v -2m + 1) sin™"($) g T
e N L cos”($) v
v +1) (9¢)”(sin"'_”(¢))d¢ *
My -m + 1) eos®($) |, -
2"T(1 - m)T(v + 1) sin"""(?s)dz ’ (20)
v -m+1) z”'"'sinv(‘:‘s)r,,_
(v + )I(v - 2m + 1) cos™ " ($)
premmgem e ( sin® ($)
T(v +1) (3¢)*\cos™ " ($)
My - m o+ 1) sin’(¢) v
"T(1 - m)I (v + 1)(005"’""(51’))dz ’ (21)
. rv-m+1) 2" "cos” " ()
3T Ir(v+ )I(v-2m+1) sin™?(¢)
pIv=imar o gv (eog? (@) v
(v +1) (9¢)”(sin'"‘”(¢))d¢ *
P meog” ™ ($) .,
() dz". (22)
Forv = m = 1, we from (20) - (22) have
dx, = cos($)dr — rsin($)d¢,
dx, = sin($)dr + rcos($)d¢, (23)
dx; = dz,

.
dx!

"dr +

dx'é =

)d@” +

=2
r’oemdrt o+

dx

i}
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that is,
dx, cos($) — rsin($) 0)(dr
dz, |= | sin($) rcos($) O d¢ (24)
dx, .0 0 1/\dz

which is the same as the usual exterior transformation between the spherical coordinate and
Cartesian coordinate in three-dimensional space .

In summary, we have found the two coordinate transformations for the fractional differentials
for three-dimensional Cartesian coordinates to spherical and cylindrical coordinates. In particular,
for m = » = 1, the two above-mentioned coordinate transformations are the same as the standard
results obtained from the exterior calculus.
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