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Abslract: A brief survey of  fractional calculus and fractional differential forms was firstly 

given, The fractional exterior transition to curvilinear coordinate at the origin were discussed 

and the two coordinate transformations for the fractional differentials for three-dimensional 
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particular, for v = m = 1 , the usual exterior transformations, between the spherical 
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coordinate, are found respectively, front fractional exterior transformation. 
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Introduction 

In generalized integration and differentiation the question of extension of meaning is: can the 

meaning of derivatives of integral order d"y/dx"  be extended to have meaning where n is any 

number (e .  g . ,  irrational, fraction or complex)? In 1695 Leibniz invented above notation. Enlar 

and Fourier mentioned derivatives of arbitrary order but they gave no applications or examples. So 

the honor of making the first application belongs to Abel in 1823. Abel applied the fractional 

calculus in the solution of an integral equation which arises in the formulation of the Tautochrone 

problem. Abel' s solution was so elegant that it attempted the attention of LiouviUe who made the 

first major attempt to give a logical definition of a fractional derivative in 1832. Riemann in 1847 

while a student wrote a paper published posthumously in which he gave a definition of a fractional 

operation. A definition named in honor of Riemann and Liouville is 
n 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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By now scientists and applied mathematicians have found the fractional calculus useful in  various 

fields: rheology, quantitative biology, electrochemistry, scattering theory, diffusio n, transport 

theory, probability potential theory and elasticity [1] . In recent years exterior calculus has been 

generalized by basing it on various graded algebras[2 '3] . Other attempts.at generalization are 

based on nonassociative geometries [4'5] . Recently, Cottrill-Shepherd and Naber gave the 

def'mition of a fractional exterior derivative [6] and found that fractional:differential formal space 

generates new vector spaces of finite and inf'mite dimension, the definition of closed and exact 

forms are extended to the new fractional form spaces with closure and integrability condition 

worked out for a special case. Coordinate transformation rules are also computed. 

1 T r a n s i t i o n  to  C u r v i l i n e a r  C o o r d i n a t e s  a n d  T w o  I m p o r t a n t  E x a m p l e s  

In the paper the Rimmann-LiouviUe definition of fractional integration and differentiation will 

be used. /" ( q ) is the gamma function ( generalized factorial) of the ~arameter " q "  [ i. e . ,  

/-' ( n + 1) = rt ! for all whole number, " n "  ] ,  

3 q f ( x )  1 IJ  f ( ~ ) d ~  ( R e ( q )  < 0) (1) 
( ~ ( R :  -- t ~ ) )  q -- / ~ (  q) ( x -  ~)q+l 

aqf(.) a"[ 1 f a ( x f ( ~ ) d ~ ]  R e ( q )  0 
(O(X  - a ) )  q - O-x -n 1~( r t -  q )  - - ~ ) q - n + l  ( n  > q ( n  is whole) ) (2) 

The parameter q is the order of the integral or derivative and allowed to be complex. Positive real 

values of q represent derivatives and negative real values represent integrals, Eq. ( 1 )  is a 

fractional integral and Eq. (2 )  is a fractional derivative. In this paper, only real and positive 

values of q will be considered. If the partial derivative are allowed to assume fractional orders, a 

fractional exterior derivative can be def'med 
n 

d ~ = ~ d x ~  ~" i~, (~(x~ a~))  o (3)  

Note that the subscript i denotes the coordinate number, the superscript v denotes the order of the 

fractional coordinate differential, and al is the initial point of the derivative. For convenience, the 

initial point a i for the fractional derivative is taken to the origin. 

Let { xi } and { Yi } be two coordinate systems with a one to one mapping between them in 

some neighborhood of p E E" �9 Take {x i } again to be Ca_rtesian coordinates and l yi} to be 

curvilinear coordinates. Assume the I xi } can be written smoothly in terms of the { Yi } , 

x i = x i ( y ) .  (4) 

The exterior derivative is then applied to Eq. (4)  giving the following: 

" OX i 
dx i = ~=dy,~= OYi " (5) 

In the two coordinate systems, the fractional exterior derivative d" takes the following forms: 
n ~ t~ 

d ~ = ~ , d x [  Ox v (6) 
i = l  

and 
. 3v 

d v = ~ , d y ~  
X U - ~  . (7)  
i=, 3Yi  
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which gives rise to 
n n 

- dy~ . 
,=, ax~ ,., ay~ 

Consider a function fk that maps points in E = into the complex numbers 

r ( 1 )  l ~ x ~  ) v - % ;  
A -  @ 

It is easily seen that 

( 3 x i ) "  - 0 ( i # k ,  i . e . ,  fk E Ker ) 

and 

(8) 

(9) 

(10) 

- 1 ( i  = k ) .  ( 1 1 )  
( a x i )  v 

Applying the fractional exterior derivative ( 8 )  to both sides of ( 9 )  in two different 

coordinate systems the following coordinate transformation rule can be obtained 

" dy;' 3" " 
dx~ = ~--J/-'(Vi=l "1" 1) ( S y i ) V ( ( j ~  x j ( y ) ) v - ~ x j ' ( y ) ' ) ' . =  . (12) 

In what follows we consider the coordinate transformation for three-dimensional Cartesian to 

cylindrical coordinates and spherical coordinates. 

E x a m p l e  1 Spherical coordinate 

Consider the coordinate transformation of spherical coordinate 

x I = r s i n ( 0 ) c o s ( r  

x, r s i n ( 0 ) s i n ( r  ( r  I> 0, 0 ~< 0 ~< 7r, 0 ~< r ~< 7 ) .  (13) 

x 3 r cos (0 )  

The coordinate transformations for the fractional differentials are then 

v - m  C O S  v P ( 3 v  - 2m + 1) cos___s___(_0) ( r  2,,-2 . . . .  
dx'~ = / - , ( v + ~ - ) p ~ v 2 _ ~ m +  1) s i n~_ , , (0 ) s in  . . . .  ( r  or  + 

P ( v + ] )  ( 00 ) "  s i n~ -2~ (0 ) s in ~ - " ( r  + 

r ( g  +-1) (ar - ( r  (14) 

F ( 3 v  - 2m + 1) cos . . . .  ( O ) c o s ' - ' ( r 1 6 2  + 
dx~_ = F ( v  + 1 ) F ( 2 v -  2m + 1) s in~- ' - ' (0 )  

r 3"-2"~ 3 v [cosV- '~ (O)cos  . . . .  ( r  ( r  
dO"+ 

/- '(v + -1) (80-) ; ~ sin~-2v.(0) 

r 3"-2~ 3" / eos~-~ (0 )cos  . . . .  (r ( r  
de" (15) 

P ( v  + 1) ( 9 r  s i n ~ -2 ~ (0 )  " ' 

P ( 3 v -  2 m  + 1) cos . . . .  ( r  r~_Z,~dr ,, 
dx~3 = f ' ( v  + 1) / " (2v  - 2m § 1) s in~-" ( r  + 

r3"-"z a~ C cos . . . .  ( r  / 
1-'(v + 1) (o0) , [  s i n - a ~ _ . ( r  dO" + 
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r cos . . . .  (4)cosy (0 )  d4 . (16) 
F'(-v + 1) ( 3 4 ) "  s in~-" (4 )s inZ~-zv(0)  

Forv  = m = 1, we from ( 1 4 ) - ( 1 6 )  have 

dxl = s i n ( 0 ) c o s ( 4 ) d r  + r c o s ( O ) c o s ( 4 ) d O  7 r s i n ( 0 ) s i n ( 4 ) d 4 ,  

dx 2 s i n ( 0 ) s i n ( 4 ) d r  + r c o s ( O ) s i n ( 4 ) d O  + r s i n ( O ) c o s ( 4 ) d 4 ,  (17) 

dx3 c o s ( 0 ) d r -  r s i n ( O ) d O ,  

that is, l xi ,cos O cos    - ,sin O  in   lldr I 
dx,  = | s i n ( 0 ) s i n ( r  r c o s ( 0 ) s i n ( r  rs in(0)COS(r dO (18) 

| 

dx 3 t. cos(O) - r s in ( r  0 de  

which is the same as the usuall exterior transformation between the spherical coordinate and 

Cartesian coordinate in three-dimensional space. 

E x a m p l e  2 Cylindrical coordinate 

Consider the coordinate transformation of cylindrinal coordinate 

{ x i =  rcos(r 
x2 = r s i n ( r  (19) 

X 3 = Z .  

From 12),  it is easy to see that the coordinate transformations for the fractional differentials are 

[ ' ( 2v  - m + 1) z ~ - ' ~ c o s V ( 4 )  r . . . .  d r  v + 
dx'~ = F ( v  + 1 ) F ( v  - 2m + 1) sin'~-~(4 ) 

r 2 V - ' z  v -= 8 v ( c o s ' ( 4 ) ) d r  + 
p - ~  + ] )  ( 3 4 )  v s i n ' - ~ ( 4 )  

? v - ' r ( v -  m + 1) cosy(4) 
z ' ~ r ( i  - mTPTv +-1) sin . . . .  ( 4 )  dzv'  (20) 

F ( 2 v  - m + 1) z V - ' s i n ' ( 4 ) r  . . . .  dr" + 
dx[ = P ( v  + 1 ) F ( v  - 2m + 1) cos . . . .  ( 4 )  

r2 . . . .  = . . . .  ( s i l O ( 4 )  ) 
; ]Y (04) v t co-~--;~) dOV + 

iv ) r" .... r ' ( v - ~ + l )  ( s ~ ( 4 )  
z " T ( i  - m ) P - ( v  -+-1)-[ cos~-:G"(r d z ' ,  (21) 

F ( 2 v  - m + 1) zV-"cos . . . .  (r + 
d x ;  = 1- '(v + 1 ) / ' ( v  - 2m + 1) s i n ' - v ( 4 )  

r2"-Z'~z v 8 v (cos . . . .  - (~ ) /d4"  + 

P ( v  + 1) ( 3 r  s in '~ -v (4 ) ]  

r2"-2m e~ m ( r ) dz v . (22) 
sin ~-v ( 4 )  

Forv  = m = 1 ,  we from ( 2 0 ) - ( 2 2 )  have 

fdxl = c o s ( 4 ) d r -  r s i n ( 4 ) d r  
! 

, 'dx,  s i n ( 4 ) d r  + r e o s ( 4 ) d 4 ,  (23) 

ld,s &, 
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that is ,  

I 
dxl  ( c o s ( ~ )  - r s i n ( ~ ) O ~ ( d r ~  

dx2 sin ~) r c o s ( ~ )  olld  I (24)  

dx3 = ~ ~ 0 l ) ~ , d z )  

which is the same as the usual exterior transformation between the spherical coordinate and 

Cartesian coordinate in three-dimensional space.  

In su!mnary,  we have found the two coordinate transformations for the fractional differentials 

for three-dimensional Cartesian coordinates to spherical and cylindrical coordinates.  In particular, 

for m = v = 1, the two above-mentioned coordinate transformations are the same as the standard 

results obtained from the exterior calculus. 
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1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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