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0e experimental design of high-strength concrete (HSC) requires deep analysis to get the target strength. In this study, machine
learning approaches and artificial intelligence python-based approaches have been utilized to predict the mechanical behaviour of
HSC. 0e data to be used in the modelling consist of several input parameters such as cement, water, fine aggregate, and coarse
aggregate in combination with a superplasticizer. Empirical relation with mathematical expression has been proposed using
engineering programming. 0e efficiency of the models is assessed by statistical analysis with the error by using MAE, RRMSE,
RSE, and comparisons were made between regression models. Moreover, variable intensity and correlation have shown that deep
learning can be used to know the exact amount of materials in civil engineering rather than doing experimental work. 0e
expression tree, as well as normalization of the graph, depicts significant accuracy between target and output values. 0e results
reveal that machine learning proposed adamant accuracy and has elucidated performance in the prediction aspect.

1. Introduction

High-strength concrete (HSC) production in the con-
struction industry has been adamantly upsurge in recent
years for use in modern construction work [1–3]. Im-
proving concrete performance ultimately enhances the
overall effectiveness of modern concrete structures. HSC
has significant strength in concrete media, greater than
40MPa compared with the conventional concrete system
[4]. HSC is a modified form of concrete that requires vi-
brating media and nonvibrating media for its placement;
moreover, it is dense and homogenous concrete with ad-
amant high strength and superior durability properties as

compared with traditional concrete making it extensively
applicable to the concrete industry [5, 6]. For example, it is
adamantly used for high-rise buildings, long-span bridges,
piers, etc. American Concrete Institute (ACI) defines HSC
as “concrete that possesses specific requirement for its
working which cannot be achieved by conventional con-
crete” [7].
0eir use in construction improves the working envi-

ronment and unlocks the way for concrete construction
automation. However, the major problem lies with its design
procedure due to the complex nature of HSC. Various re-
searchers have reported different guidelines and standards
for design mixture, which compromises the use of chemical
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and mineral admixtures [8–10]. Due to its complex nature
rather than conventional strength concrete, it requires ex-
perience and adamant knowledge of the constituent used in
the mixture process. 0e HSC complex structure requires an
arduous mix design procedure for attaining its essential
properties. Concrete strength is an important aspect in high-
strength concrete; however, variation in constituents,
chemical and mineral admixtures, and design specifications
may vary from source to source [11–14]. 0is creates am-
biguity in the general relationship between cement ratio to
mineral admixtures, chemical admixtures, w/b ratio, and
aggregate grain sizes. 0ese variations in constituent
somehow, if not properly managed, will produce deficiency
in concrete strength. 0ese constituents can be properly and
adamantly managed by using their desire (optimized)
quantities that will produce the utmost aspect of strength
rather than using experimental work. As these experimental
works cost resources and time by using hit and trial of taking
desire quantities to achieve maximum effect on ultimate
strength. In this aspect, numerous researchers have used
traditional methods by using linear and nonlinear equations
to give prediction measures of (HPC) strength. 0ese
methods were based on statistical analysis; however, accu-
rate prediction from equation-based approaches is difficult
and thus requires a lot of research to overcome these ob-
stacles. In recent years, concepts of machine learning neural-
based approaches overwhelm these difficulties and provide
an accurate prediction of concrete strength.
Machine learning approaches such as genetic engi-

neering programming (GEP) [15–17], artificial neural
networks (ANN) [18–21], support vector machine
(SVM), decision tree (DT), adaptive boost algorithm
(ABA), and adaptive neuro-fuzzy interference (ANFIS)
[22–26] have been widely used and publicized in civil
engineering domain [27]. Dong et al. used machine
learning approaches like ANN and ANFIS for prediction
of compressive strength of geopolymer concrete at 28
days with 210 data samples. 0e authors concluded that
these approaches give better prediction; however, ANFIS
approach outbreaks with the coefficient of determination
(R2) and model performance from ANN [28]. Nour and
Güneyisi [29] used genetic engineering programming
(GEP) for prediction of compressive strength of recycled
aggregate (RA) concrete filled with steel tube columns
with 97 test datasets and concluded that GEP provides an
accurate prediction of (RACFSTC) with empirical rela-
tion. 0e authors observed and concluded the coefficient
of determination (R2) for testing and training is 0.996
and 0.995, respectively, providing accurate behavior of
model [29]. Bingöl et al. model the compressive strength
of lightweight exposed to high temperature by employing
ANN approach [30]. 0e authors concluded that ANN is
an advanced predictive approache; however, the model
predicts the strength with adequate accuracy. Moreover,
researchers used ANN and other machine learning ap-
proaches for the prediction properties of recycled ag-
gregate concrete and high-performance concretes
[31–36]. Pala et al. investigated the long-term impact of
replacing silica and fly ash on cured concrete

performance. 0eir experiments included concrete
mixtures of different water-cement ratios, including the
lowest and highest fly ash concentrations, with or
without additional small silica fume amounts. Based on
the results, ANNs have tremendous potential as a suit-
able means to examine the effect of secondary raw ma-
terials on the compressive strength of concrete [37].
Iqbal et al. used genetic engineering programming ma-
chine learning approach for the prediction of green
concrete with 234 data samples. 0e authors reported
that gene programming gives adamant prediction ac-
curacy with an empirical relationship [32]. Javed et al.
[15] conducted experimental program predict the
strength of sugarcane bagasse ash using different ma-
chine learning approaches. 0e authors obtained a strong
correlation between input and output by using GEP
approach. Moreover, the same trend was also observed
by Azim et al. [31]. 0e authors used GEP for the pre-
diction of reinforced concrete structure with adamant
accuracy. GEP is superior to existing methods like fea-
ture selection, ANN, and M5P methods.
0e choice of features is an essential step in data

processing and is seen in many areas, like genetics, med-
icine, and bioinformatics. 0e selection of the key elements
(genes) is necessary in order to uncover new information
concealed inside the genetic code and to recognise relevant
biomarkers. Although the proposed algorithms can help
sort by large numbers of genes relating to the problem at
hand, the results generated appear to be unstable and thus
cannot be reconstructed in other studies. It is vital to
emphasize that the two most widely employed Machine
learning models in previous studies, i.e., the ANN and the
M5P models, sometimes face challenges to reliably predict
outcomes in data domains that have complicated input(s)-
output(s) feature(s) (i.e., highly nonlinear or non-
monotonic) [17, 38–41]. 0at is because the ANN models,
as well as their variants such as MLP-ANN, are predicated
on local optimization and search algorithms (e.g., the back-
propagation technique used in many neural ML-models
based on a network to maximize the activation function
parameters), which are highly susceptible to local (or
around) minima instead of converging to the globally
relevant.
0is paper aims to build a GEP-based model for accurate

prediction for high-strength concrete with an empirical
equation. For this aspect, data have been acquired from
previously published work compromising of 357 data points
as shown in Table 1. It is worth mentioning that this research
is primarily based on estimating the compressive strength of
the high-strength concrete using a genetic engineering ap-
proach. 0e parameters used in the modelling of HSC
consist of (cement, water, fine aggregate, coarse aggregate,
and superplasticizer). Section 2 represents data input to
output (strength) with optimal quantities with graphical
representation (Kde contour graph), which was done by
using python programmable software. Section 3 then shows
the importance of each variable on its output by conducting
sensitivity analysis (SA) or permutation features importance
(PFI). Section 4 represents the statistical measures for model
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Table 1

S. no Cement Coarse aggregate Fine aggregate Water Superplasticizer Compressive strength

(1) 360 845 900 160 1.5 48
(2) 320 950 782 160 1.5 46.1
(3) 356 845 951 160 1 46
(4) 463 845 750 180 0.75 52.7
(5) 300 720 787 168 4.8 52.7
(6) 486 950 714 170 1 56.1
(7) 360 950 797 160 1.5 48.7
(8) 500 769.18 740.16 154 10.5 86.99
(9) 510 950 628 170 2 61.7
(10) 400 950 811 160 1 49.4
(11) 284 898 874 160 1.5 43.8
(12) 356 898 899 160 0.5 44.5
(13) 330.85 739.44 857.57 180.05 6.02 57.3
(14) 350 500 1050 178.5 3.8 49.5
(15) 425 845 868 170 0 47.7
(16) 193 900 1024 136.89 2.808 44
(17) 340 845 838 170 1 45
(18) 331.33 739.44 875.16 180.05 6.02 57.3
(19) 302 845 880 170 0.5 41.5
(20) 411 898 680 180 0.25 47.3
(21) 486 898 766 170 1.5 57.8
(22) 360 898 738 180 0 43.2
(23) 160 900 886 156 3.2 44
(24) 160 900 886 156 3.2 44
(25) 330.85 768.88 840 180.05 6.08 58.45
(26) 340 898 786 170 1 45.1
(27) 360 898 848 160 1.5 48
(28) 567 898 700 170 1 63.9
(29) 284 845 926 160 1.5 43.7
(30) 567 845 751 170 1.5 64.6
(31) 383 950 749 170 0 45
(32) 320 950 835 160 0.5 42.6
(33) 480 898 604 180 1.75 57
(34) 340 950 734 170 0.5 43.3
(35) 320 687 1016 174 5.21 53.6
(36) 220 900 916 156 3.2 47
(37) 220 900 916 156 3.2 47
(38) 350 883 815 183.54 3.864 55.3
(39) 320 845 938 160 1.5 45
(40) 425 845 853 170 0 47.1
(41) 427 844 779 194.578 4.336 59.4
(42) 540 845 677 180 1.25 61.1
(43) 411 845 732 180 1.25 51
(44) 279.5 630 1135 200 2.1 44.344
(45) 320 898 886 160 0.5 42.6
(46) 302 950 776 170 0.5 41
(47) 237 900 960 159.1 2.96 46
(48) 237 900 960 159.1 2.96 46
(49) 400 845 914 160 1 49.6
(50) 365.5 630 1135 200 3.11 50.982
(51) 180 829 788 198 3 42.5
(52) 198 900 874 146.2 3.44 46
(53) 400 989 863 160 1 49.1
(54) 340 950 790 170 0 41.3
(55) 302 898 828 170 0.5 40.8
(56) 540 950 573 180 0.75 60
(57) 350 621 939 173.5 6.75 57.3
(58) 383 898 801 170 0.5 45.7
(59) 540 898 625 180 0.75 59.9
(60) 514 898 717 180 0.25 54.6
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Table 1: Continued.

S. no Cement Coarse aggregate Fine aggregate Water Superplasticizer Compressive strength

(61) 340 845 893 170 0 41.1
(62) 320 845 834 180 0 40.3
(63) 360 750 900 200 12 70.67
(64) 284 950 822 160 1 42.9
(65) 356 950 847 160 0.5 43.6
(66) 463 898 698 180 0.25 50.3
(67) 540 898 625 180 1.25 59.9
(68) 248 900 808 175.89 3.608 50
(69) 248 900 808 175.89 3.608 50
(70) 350 500 1050 143.5 8.9 60.1
(71) 387 630 1135 200 3.29 51.039
(72) 360 950 686 180 0 42.4
(73) 378 845 907 170 0.5 44.9
(74) 540 845 677 180 1.75 61.1
(75) 552 1486 342 160 5.52 91.3
(76) 514 845 769 180 0.25 54.2
(77) 340 898 842 170 0 40.8
(78) 383 898 801 170 0 45.7
(79) 320 898 782 180 0 40
(80) 540 950 573 180 1.25 60
(81) 284 950 822 160 1.5 42.9
(82) 458 698 748 190 8.4 68.2
(83) 467 762 865 182 8.53 74.2
(84) 408.5 630 1135 200 3.68 53.006
(85) 302 898 828 170 0 40.8
(86) 400 845 914 160 1.5 49.6
(87) 258 630 1135 200 1.68 43.184
(88) 480 898 604 180 1.25 57
(89) 440 927 721 176 9.78 79.6
(90) 567 845 751 170 1 64.6
(91) 301 630 1135 200 2.26 44.003
(92) 320 845 938 160 1 45
(93) 302 950 776 170 0 41
(94) 320 898 886 160 1 42.6
(95) 567 950 648 170 1 62.4
(96) 567 898 700 170 1.5 63.9
(97) 340 950 734 170 0 43.3
(98) 360 845 789 180 0 42
(99) 302 845 880 170 1 41.5
(100) 330.36 768.88 857.57 179.74 6.02 56.6
(101) 383 950 749 170 0.5 45
(102) 400 989 863 160 0.5 49.1
(103) 340 898 786 170 0.5 45.1
(104) 340 845 838 170 0.5 45
(105) 425 845 868 170 0.5 47.7
(106) 360 898 848 160 1 48
(107) 486 845 818 170 1.5 58.8
(108) 463 845 750 180 0.25 52.7
(109) 463 845 750 180 1.25 52.7
(110) 425 950 764 170 0 46
(111) 425 898 816 170 0 46
(112) 320 950 835 160 1 42.6
(113) 220 900 916 156 3.2 45
(114) 220 900 916 156 3.2 45
(115) 330.36 754.18 840 180.38 6.02 59.26
(116) 275 900 827 184.9 3.44 48
(117) 438 723 774 191 8.1 69.5
(118) 510 950 628 170 1.5 61.7
(119) 356 898 899 160 1 44.5
(120) 360 845 900 160 1 48
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Table 1: Continued.

S. no Cement Coarse aggregate Fine aggregate Water Superplasticizer Compressive strength

(121) 356 845 951 160 0.5 46
(122) 356 845 951 160 1.5 46
(123) 440 924 720 176 8 76.9
(124) 486 950 714 170 1.5 56.1
(125) 378 898 855 170 0 42.5
(126) 348 848 783 174.46 4.576 58.6
(127) 411 898 680 180 0.75 47.3
(128) 302 845 880 170 0 41.5
(129) 400 950 811 160 0.5 49.4
(130) 344 630 1135 200 2.75 50.37
(131) 360 898 738 180 0.5 43.2
(132) 486 950 714 170 0.5 56.1
(133) 480 950 552 180 1.75 59.6
(134) 360 845 848 180 0 41.5
(135) 486 898 766 170 1 57.8
(136) 320 950 782 160 1 46.1
(137) 284 898 874 160 1 43.8
(138) 437 950 697 170 1.5 55.9
(139) 567 845 751 170 2 64.6
(140) 360 950 797 160 1 48.7
(141) 510 898 679 170 2 63.4
(142) 540 845 677 180 0.75 61.1
(143) 411 845 732 180 0.75 51
(144) 400 950 811 160 1.5 49.4
(145) 284 845 926 160 1 43.7
(146) 250 853 787 192.66 4.056 51.5
(147) 425 845 853 170 0.5 47.1
(148) 237 900 1034 133.2 2.96 49
(149) 360 750 900 200 12 73.7
(150) 350 840 768 207.872 4.096 51.7
(151) 320 845 886 160 1.5 47.7
(152) 340 950 734 170 1 43.3
(153) 400 845 914 160 0.5 49.6
(154) 320 845 834 180 0.5 40.3
(155) 302 898 828 170 1 40.8
(156) 302 950 776 170 1 41
(157) 514 898 717 180 0.75 54.6
(158) 331.33 768.88 857.57 179.74 6.08 55.9
(159) 328.5 533.7 625.1 225 0 40
(160) 383 898 801 170 1 45.7
(161) 220 881 686 176 4.4 47.5
(162) 340 845 893 170 0.5 41.1
(163) 340 950 790 170 0.5 41.3
(164) 220 900 916 156 3.2 49
(165) 220 900 916 156 3.2 49
(166) 220 900 916 156 3.2 49
(167) 220 900 916 156 3.2 49
(168) 220 900 916 156 3.2 49
(169) 220 900 916 156 3.2 49
(170) 378 950 803 170 0 41.8
(171) 417 759 828 182.4 4.56 61.82
(172) 463 898 698 180 0.75 50.3
(173) 220 900 916 156 3.2 44
(174) 540 898 625 180 1.75 59.9
(175) 400 989 863 160 1.5 49.1
(176) 330.36 768.88 840 180.05 5.97 55.3
(177) 514 845 769 180 0.75 54.2
(178) 427 844 779 243.9 4.336 59.4
(179) 510 750 900 209 12 77.15
(180) 378 845 907 170 1 44.9
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Table 1: Continued.

S. no Cement Coarse aggregate Fine aggregate Water Superplasticizer Compressive strength

(181) 405 845 805 180 0 43.6
(182) 533 950 701 160 2 67.8
(183) 411 950 628 180 0.5 45.7
(184) 320 898 834 160 1.5 48.5
(185) 320 898 782 180 0.5 40
(186) 360 950 686 180 0.5 42.4
(187) 333 500 1050 158 7.3 52.9
(188) 284 950 822 160 0.5 42.9
(189) 540 950 573 180 1.75 60
(190) 340 898 842 170 0.5 40.8
(191) 480 898 604 180 0.75 57
(192) 356 950 847 160 1 43.6
(193) 180 828 788 198 4.8 44.9
(194) 220 896 697 176 8 64.3
(195) 350 500 1050 161 6.9 58.7
(196) 437 898 749 170 1.5 56.6
(197) 360 845 789 180 0.5 42
(198) 412.5 520.1 612.7 203.5 0 44
(199) 320 845 938 160 0.5 45
(200) 322.5 630 1135 200 2.58 43.984
(201) 330.85 768.88 875.16 180.38 6.02 61.1
(202) 567 898 700 170 2 63.9
(203) 340 845 838 170 0 45
(204) 425 845 868 170 1 47.7
(205) 486 845 818 170 1 58.8
(206) 320 898 886 160 1.5 42.6
(207) 567 950 648 170 1.5 62.4
(208) 340 898 786 170 0 45.1
(209) 514 950 665 180 0.25 52.1
(210) 300 618 935 162 6.75 52.3
(211) 405 898 754 180 0 43
(212) 383 950 749 170 1 45
(213) 425 898 816 170 0.5 46
(214) 360 898 848 160 0.5 48
(215) 275 840 775 183.75 4.2 54.5
(216) 326 500 1050 158 5.1 54.3
(217) 425 950 764 170 0.5 46
(218) 510 845 731 170 2 64.4
(219) 330 898 699 176 9.11 67.2
(220) 360 898 797 180 0 40
(221) 330.36 754.18 875.16 180.05 6.08 61.3
(222) 411 898 680 180 1.25 47.3
(223) 360 845 848 180 0.5 41.5
(224) 437 845 801 170 1.5 56.8
(225) 360 845 900 160 0.5 48
(226) 360 898 738 180 1 43.2
(227) 500 788.07 758.33 140 10.5 88.98
(228) 320 950 835 160 1.5 42.6
(229) 333 766 835 180.84 4.384 50.24
(230) 510 950 628 170 1 61.7
(231) 378 898 855 170 0.5 42.5
(232) 315 673 1025 173 5.51 50.7
(233) 411 845 732 180 0.25 51
(234) 356 898 899 160 1.5 44.5
(235) 220 900 916 156 3.2 43
(236) 480 950 552 180 1.25 59.6
(237) 440 916 713 176 8.22 79.2
(238) 325 777 611 221 5.2 50.07
(239) 350 883 815 251.16 3.864 55.3
(240) 486 898 766 170 0.5 57.8
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Table 1: Continued.

S. no Cement Coarse aggregate Fine aggregate Water Superplasticizer Compressive strength

(241) 401.5 518.6 610.9 203.5 0 50
(242) 510 898 679 170 1.5 63.4
(243) 330.85 739.44 840 179.74 5.97 53.6
(244) 425 845 853 170 1 47.1
(245) 220 880 685 176 8.89 59.9
(246) 480 845 655 180 1.75 60.8
(247) 357 742 878 182 7.98 67.5
(248) 437 950 697 170 1 55.9
(249) 399 882 814 174.65 3.992 55
(250) 389 950 680 170 1.5 54.3
(251) 284 898 874 160 0.5 43.8
(252) 284 845 926 160 0.5 43.7
(253) 400 950 759 180 0 42.1
(254) 320 845 834 180 1 40.3
(255) 330 913 711 176 7.5 62.2
(256) 320 950 782 160 0.5 46.1
(257) 500 769.52 740.48 154 10.5 90.99
(258) 360 950 745 180 0 39.5
(259) 310 667 1018 170 6 51.2
(260) 500 769.85 740.8 154 10.5 83.15
(261) 360 950 797 160 0.5 48.7
(262) 220 900 982 132 3.2 51
(263) 514 898 717 180 1.25 54.6
(264) 320 845 886 160 1 47.7
(265) 350 840 768 302.08 4.096 51.7
(266) 340 845 893 170 1 41.1
(267) 407 761 815 181 7.5 70.4
(268) 225 652 908 175 4 41.42
(269) 514 845 769 180 1.25 54.2
(270) 463 898 698 180 1.25 50.3
(271) 540 750 900 209 12 77.82
(272) 405 845 805 180 0.5 43.6
(273) 340 950 790 170 1 41.3
(274) 378 845 907 170 1.5 44.9
(275) 440 775 866 182 9.35 77.9
(276) 378 950 803 170 0.5 41.8
(277) 300 613 927 175.5 6.75 59.1
(278) 320 898 782 180 1 40
(279) 411 950 628 180 1 45.7
(280) 400 898 811 180 0 41.5
(281) 360 950 686 180 1 42.4
(282) 360 845 789 180 1 42
(283) 340 898 842 170 1 40.8
(284) 320 898 834 160 1 48.5
(285) 457 950 764 160 1.75 61.5
(286) 600 898 646 180 0.75 60.5
(287) 533 950 701 160 1.5 67.8
(288) 400 845 863 180 0 41.3
(289) 437 898 749 170 1 56.6
(290) 331.33 754.18 840 179.74 6.02 53.1
(291) 533 898 753 160 2 69.4
(292) 280 900 946 156 3.2 45
(293) 486 845 818 170 0.5 58.8
(294) 405 950 702 180 0 41.5
(295) 356 950 847 160 1.5 43.6
(296) 453 950 608 170 2 61.9
(297) 405 898 754 180 0.5 43
(298) 450 845 821 180 0 44.5
(299) 330 899 700 176 4.4 60.9
(300) 360 845 848 180 1 41.5
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Table 1: Continued.

S. no Cement Coarse aggregate Fine aggregate Water Superplasticizer Compressive strength

(301) 514 950 665 180 0.75 52.1
(302) 567 950 648 170 2 62.4
(303) 510 845 731 170 1.5 64.4
(304) 330.85 754.18 875.16 179.74 6.08 52.9
(305) 425 898 816 170 1 46
(306) 360 898 797 180 0.5 40
(307) 437 845 801 170 1 56.8
(308) 300 663 923 175 4 54.69
(309) 412 752 887 182 8.25 73.4
(310) 480 845 655 180 1.25 60.8
(311) 378 898 855 170 1 42.5
(312) 480 950 552 180 0.75 59.6
(313) 389 845 783 170 1.5 55.3
(314) 453 898 659 170 2 62
(315) 377 562 861 227 3.7 56.1
(316) 510 898 679 170 1 63.4
(317) 350 500 1050 196 3.2 43
(318) 600 845 698 180 0.75 59.5
(319) 540 750 900 200 12 78.05
(320) 457 898 816 160 1.75 62.1
(321) 600 950 594 180 0.75 59.7
(322) 400 950 759 180 0.5 42.1
(323) 360 812 813 168 6 56
(324) 198 900 872 154.8 3.44 52
(325) 198 900 872 154.8 3.44 52
(326) 437 950 697 170 0.5 55.9
(327) 389 950 680 170 1 54.3
(328) 570 750 900 200 12 80.42
(329) 450 898 770 180 0 43.8
(330) 360 950 745 180 0.5 39.5
(331) 275 880 691 187 4.4 57.9
(332) 320 845 886 160 0.5 47.7
(333) 405 845 805 180 1 43.6
(334) 457 845 867 160 1.75 62
(335) 500 753 820 192.32 4.808 70.93
(336) 540 750 900 192 12 79.18
(337) 450 950 718 180 0 43.5
(338) 400 898 811 180 0.5 41.5
(339) 411 950 628 180 1.5 45.7
(340) 378 950 803 170 1 41.8
(341) 290 837 913 175.5 3.12 42.7
(342) 400 845 863 180 0.5 41.3
(343) 331.33 739.44 840 180.38 6.08 63.8
(344) 600 898 646 180 1.25 60.5
(345) 440 917 714 176 4.4 69.8
(346) 331.33 768.88 875.16 180.38 5.97 51.53
(347) 320 898 834 160 0.5 48.5
(348) 437 898 749 170 0.5 56.6
(349) 344 881 814 171.85 3.928 48.75
(350) 457 950 764 160 1.25 61.5
(351) 405 950 702 180 0.5 41.5
(352) 533 898 753 160 1.5 69.4
(353) 405 898 754 180 1 43
(354) 533 950 701 160 1 67.8
(355) 510 845 731 170 1 64.4
(356) 375 673 938 175 4 60.8
(357) 360 898 797 180 1 40
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performance, and in the end, an empirical model for pre-
diction of strength is also developed.

2. Research Methodology

2.1. Genetic Programming Machine Learning Approach.
GP was firstly developed by Jone Koza in 1988, which
generates a computer-based model to solve the problem by
using the Darwinian selection principle [42]. GP is a
predictive tool based on artificial intelligence that develops
a program by emulating the progression of living organ-
isms [42]. GP is the generalization form that comes from
the genetic algorithm (GA) [43]. 0ese two approaches are
somehow different from one another, which is dis-
tinguishing based on solution representation. GA repre-
sents the solution in the form of a string of numbers
(chromosomes), whereas GP represents the solution of
given data in the form of a tree-like structure by using the
programming language [44]. GA provides linear fixed-
length binary strings (chromosomes), whereas GP provides
alternative strings of different shapes and sizes of nonlinear
entities, thus making GP a versatile approach in the pre-
diction of properties. In other words, the solution of the
representation is expressed in the form of a parse tree with
varying string size and shape. 0e hierarchy of problems in
GP is similar to GA. 0e computer program then searches
for the optimized solution of the problem in an inde-
pendent manner [45–47].
0e overall chain of GP in solving a problem by pro-

gramming language consists of the following steps:

(1) Generate and produce individual chromosomes
(population set) by selecting in the random way of
the problem in the form of function sets and terminal
sets.0ese sets chose their individuals at random and
build computer models in tree form with roots
(branches) reaching to the end in the terminal set as
shown in Figure 1.

(2) 0e GP algorithm than performing iteratively
measures for the selection of best fitness chromo-
somes and generates new individual chromosomes
by three measures, namely, reproduction, mutation,
and crossover. GP works in the same way as a human
analogy.

(A) Reproduction: During this procedure, the parts
of individuals (chromosomes) are copied
without any modification into the next process
in a new population [44].

(B) Crossover: During this operation, a node is
randomly selected on one of the roots of each
program and the function set with the terminal
set of each program is then swapped to create a
new offspring program as shown in Figure 2. It
can be seen that two new offsprings are gener-
ated from two parental computer-based pro-
grams [42, 44].

(C) Mutation: During this procedure, node of in-
dividuals in terminal sets and function sets are
selected at random and replaced by same parity.

0is creates new offsprings by randomly
choosing sets and best generation appeared in
the form of tree as shown in Figure 3 [46].

(3) Genetic programming then finalized its best solution
to problem by solving computer based program
[48, 49].

In recent years, approaches like linear genetic program-
ming (LGP), multi expression programming (MEP), and
genetic expression programming (GEP) have been used in
prediction properties of many domains including civil en-
gineering. 0ese approaches are mainly roots of genetic al-
gorithms and genetic programming. Moreover, these
processes diminish the limitation like genetic operation on
tree, code growth with complexity, and implementation
difficulties. Owing to their extreme benefits, these methods
are a favourable candidate in execution complex forecast
problems. However, in this paper, genetic expression pro-
gramming was used for prediction of high-strength concrete.

2.2. Genetic Expression Programming (GEP) Approach.
Ferreira [50] proposed a new algorithm, which is the
modified development form of GA and GP known as GEP. It
incorporates both the linear string of fixed length and parse
tree. 0e linear variant utilizes same genetic operator as used
in GP with some minor modifications. 0e GEP model
consists of five parameters having same analogy to GP, i.e.,
fitness function, terminal set, control parameters, terminal
conditions, and function set. GEP algorithm creates pop-
ulation set of randomly selected individual chromosomes
and afterward converts each individual into expression tree
of different forms (shapes and sizes) to represent its solu-
tions with mathematical expression. Later the target is then
compared with the predicted one, and the fitness score of
each individual entity is determined. 0e model stops if it
gives best fitness; otherwise, individuals are selected on the
basis of roulette wheel sampling. 0is then extracts the best
survival chromosomes from individuals and passes them to
the next generation. 0is loop goes on until the best survival
chromosome with adamant fitness score is achieved. 0e
basic step involves in representation of solution is shown in
Figure 4.
Each chromosome (gene) of GEP contains a list of

symbols with fixed-length variable, arithmetic operations {+,

Log

+

X

a1b

√

Figure 1: Representation of class tree of GP (Log (sqrt(b) + (1× a))).
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×, − , /, sqrt} as set of functions, and constants as terminal sets
like {A, B, C, D, 4}. 0ere exists a linear relationship between
individual (chromosomes) and function set and terminal set
in the genetic code operator. GEP gene with the given
function and terminal sets is

+.x.
��
A

√
.A. − . + .B.A.C.3.B.C.4, (1)

where A, B, C, D are variables (terminal set) and 3, 4 are
constants. 0is term is expressed as K expression (Karva
notation) which is used to develop empirical relationship
between sets and individual chromosomes [51]. 0is Karwa

expression can also be represented by expression tree (ETs)
diagram [52]. For example, the ETs diagram of above
mentioned expression is expressed in Figure 5. 0e trans-
formation of K-notation to ETs starts from the first position
which resembles to the roots of ETs and continues through
the string [29]. Similarly ETs also transform into K-ex-
pression by recording the ties from the base level to the
adamant deepest layer. 0e GEP gene in mathematical form
can also be expressed as

A(A + 3) − (BXC) +
�������
(B + A)

√
. (2)

–

∗

a +

a b

–

∗

a +

a b

a b

E

b

√a

/

∗

E

a b

b

b

b

a √

/

∗

–

a ∗

a

–

∗a

a

Figure 2: Crossover example based on genetic programming.
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}{ ∗ + – /

Figure 3: Mutation example based on genetic programming.
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3. Representation of Experimental Data

3.1. Experimental Datasets. In this paper, 357 data samples
have been utilized in modelling of high-strength concrete,
which was acquired from previously published papers (see
Table 1). However, the aim is to utilize these values to predict
the optimized quantities rather than going for hit and trial in
experimental work. 0e database consisting of 357 samples
is randomly divided into sets of training, validation, and
testing. 0is scaling is mainly done in machine learning
approaches to avoid the overfitting of data, giving us more
reliable results in the determination of coefficient (R2).
Moreover, training is done to train the model for the up-
coming validation aspect, and in the end, testing was mainly
done on unseen data for forecasting of high-strength

concrete properties. Out of 357 datasets, 251 (70% data) were
assigned to training set and remaining 53 (15%) data to
testing and validation sets [53, 54].

3.2. Python Measures for Presenting Database. Representa-
tion of the database was done by using anaconda based
python programming version 3.7. 0e data obtained from
literature consist of five parameters starting from cement,
water, fine aggregate, and coarse aggregate with super-
plasticizer concentration in the modelling of strength.
Every parameter has an influence on strength properties.
Python measures were done to find the correlation of each
variable to its compressive strength and also to find the
optimal dosage and influential effect of variables by conducting

Execute

Creation chromosomes of 
initial population

Express chromosomes as 
expression tree (s)

Execute expression Tree

Estimate �tness

Prepare new chromosomes 
for next generations

Genetic modi�cation

Replication

End

Select best tree (s)
Iterate

Terminate

Terminate or 
iterate?

Figure 4: Schematic flowchart of the GEP algorithm [15, 16].

+

√x

Ax

+–

3

+
B

C

A

CB

Figure 5: Example tree-expression (ETs).
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permutation features importance. 0e correlation and distri-
bution with of the variables are shown in Figure 6. It is well
stated that model performance is adamantly affected by its
variables [55]. Deep leaning is a handful tool in neuron-based
artificial approach to predict the mechanical properties by
knowing its actual concentration of variables. Python deals
with machine learning approach and this correlation plot is
made by using seaborn command. 0e description of data
variable used in model is listed in Table 2.

3.2.1. Design of HSC Using Python. 0is section deals with
the parameters in the process of gaining its optimal goal. It is
important to state that variables in the modelling of any
model have an adamant and significant role in determining

its goal. So, the variable study is conducted by using python
programming.

(1) Contour Maps. Five contour plots obtained from the
python model is illustrated in Figures 7(a)–7(j). As pre-
viously mentioned, that model performance is dependent
on its variables, so the optimal quantity of variables is
important to know rather than using experimental work.
0is provides us a useful graph to predict the strength at
28 days.

(a) Effect of Binder on Compressive Strength. Binder is an
adamantly important variable in the domain of civil
engineering. It provides strength and setting to ce-
ment. Figure 7(a) shows the effect of binder to
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Table 2: Statistical description of data in model (kg/m3).

Parameters Cement Fine/coarse aggregate Water Superplasticizer

(a) Total data
Mean 384.35 0.964 173.57 2.35
Standard error 4.92 0.014 0.82 0.14
Median 360 0.922 170 1.25
Mode 360 1.018 170 1
Standard deviation 93.01 0.261 15.56 2.69
Sample variance 8650.50 0.068 242.20 7.25
Kurtosis 0.36 6.453 15.59 2.88
Skewness 0.15 2.129 2.46 1.80
Range 440 1.870 170.08 12
Minimum 160 0.230 132 0
Maximum 600 2.1 302.08 12
Sum 137212.84 344.08 61963.8 837.61
Count 357 357 357 357

(b) Train data
Mean 383.29 0.971 173.73 2.43
Standard error 6.07 0.017 1.09 0.17
Median 360 0.922 170 1.38
Mode 320 1.018 170 1
Standard deviation 95.95 0.276 17.18 2.75
Sample variance 9206.58 0.076 295.08 7.55
Kurtosis 0.60 5.826 14.42 2.97
Skewness 0.20 2.089 2.49 1.83
Range 420 1.870 170.08 12
Minimum 180 0.230 132 0
Maximum 600 2.1 302.08 12
Sum 95823.1 242.79 43431.75 606.44
Count 250 250 250 250

(c) Validation data
Mean 387.04 0.922 172.19 1.98
Standard error 12.47 0.025 1.35 0.33
Median 400 0.903 170 1
Mode 360 0.756 170 1
Standard deviation 95.76 0.189 10.36 2.56
Sample variance 9170.57 0.036 107.26 6.55
Kurtosis 0.23 6.821 0.18 4.75
Skewness 0.18 1.663 0.34 2.19
Range 440 1.221 45.2 12
Minimum 160 0.581 154.8 0
Maximum 600 1.802 200 12
Sum 22835.54 54.380 10159.18 117.09
Count 59 59 59 59

(d) Test data
Mean 390.53 0.909 173.07 2.11
Standard error 12.58 0.022 1.21 0.35
Median 378 0.903 175 1
Mode 360 1.041 180 0.5
Standard deviation 89.87 0.156 8.67 2.47
Sample variance 8076.30 0.024 75.21 6.12
Kurtosis 1.08 0.527 − 0.18 2.17
Skewness 0.17 0.612 − 0.63 1.66
Range 440 0.733 38.32 10.5
Minimum 160 0.661 154 0
Maximum 600 1.394 192.32 10.5
Sum 19916.87 46.346 8826.8 107.57
Count 51 51 51 51
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compressive strength in the form of contour giving us
the required quantity of cement and Figure 7(f) shows
the regression graph of cement versus strength. It can
be seen that maximum data point used in the liter-
ature lies between 300 and 400 kg/m3. However,
significant strength was also achieved by the binder in
a range of 500 kg/m3. Moreover, the deep contour of
cement lies in the range of 300 to 400 kg/m3. It is
worth mentioning here that machine deep learning
provides us the range in achieving our desire goal.

(b) Effect of Fine and Coarse Aggregate on Compressive
Strength. Fine and coarse aggregate is used to fill the
void and to impart strength in making concrete,
however, their concern dosage, type, and condition
will affect concrete strength. It is clear from
Figures 7(b) and 7(c) that maximum strength was
achieved, when using coarse and fine aggregate in the
range of about 800 to 1000 and 800 to 900 kg/m3,
respectively. Moreover, Figures 7(g) and 7(h) cor-
relate strength with aggregate.

(c) Effect of Water and Superplasticizer on Compressive
Strength. Water and superplasticizer have major in-
fluence on its strength. Water quantity has direct and

indirect relation to strength.Moreover, superplasticizer
dosage is used to alter the quantity of water in strength
achievement. Figures 7(a)–7(j) represent the required
values graphs and these values with their range are also
reported in Table 3. In other words, using this much of
concentration in HSC yields maximum output, thus
eliminating its need for using experimental work.

4. Development of Model Using
Gene Expression

0is paper aims to develop a generalized equation for the
compressive strength of high-strength concrete. 0erefore, a
set of terminals and function set is used. 0ese variables and
function sets have an adamant effect on the performance of
the model. For modelling strength of HSC, four variables are
selected as input parameters in gene expression program-
ming d0: cement, d1: fine to coarse aggregate, d2: water, and
d3: superplasticizer. Simple division multiplication sum-
mation and subtraction operation are used as the function
set in model setup. 0erefore, the mechanical strength of
HSC is dependent on the given relation (see equation (3)):
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Figure 7: (a–j) Contour plots of input variables with the regression graph.

Table 3: Range of input and output variables.

Parameters Abbreviation Minimum Maximum

Input variables
Cement CEM 160 600
Fine/Coarse aggregate ratio F/C ratio 0.23 2.1
Water W 132 302.08
Superplasticizer SP 0 12

Output variable
Compressive strength Fc 39.5 91.3
Predicted compressive strength Fc 38.33 92.8
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fc′ � f cement,
fine aggregate

coarse aggregate
,water, superplasticizer( ).

(3)

0e selection of variables has significant effect in gen-
eralization fitness of the GEP-based model. 0e variables
used in the model are presented in Table 4.0emodel time is
controlled by the basic arithmetic process, head size,
chromosomes, population size, and complexity. It is better
to select those sets which will give a generalized model in due
time. Furthermore, the selection of these sets was deter-
mined by using hit and trial basis. 0e model performance is
done by utilizing (RMSE) error. Afterward, GEP evaluates its
model by presenting architectures structure with head size
and number of genes [53].

5. Model Performance Analysis

0e performance of any model in learning, training, and
testing set is evaluated by the coefficient of determination (R2)
and also by using regression measures and error like relative
root mean square error (RMSE), means absolute error (MAE),
relative mean square error (RSE), and relative root mean
square error (RRMSE).0e calculated expressions are given as
equations for these error functions which are listed below:

RMSE �

��������������∑ni�1 exi − moi( )2
n

√
,

MAE �
∑ni�1 exi − moi∣∣∣∣ ∣∣∣∣

n
,

RSE � ∑ni�1 moi− exi( )2∑ni�1 ex − exi( )2,

RRMSE � 1
e

��������������∑ni�1 exi − moi( )2
n

√
,

R � ∑ni�1 exi − exi( ) moi − moi( )����������������������������∑ni�1 exi − exi( )2∑ni�1 moi − moi( )2√ ,

ρ � RRMSE
1 + R ,

(4)

where exi , moi are experimental actual strength and model
strength, whereas exi and moi are average values of ex-
perimental and predicted outcome, respectively. 0e accu-
racy of the model is defined by its determination of
coefficient (R2). For the effective model, its value should be
close to 1 and a value greater than 0.8 presents a high

accuracy of the model [56]. 0is value shows the correlation
between experimental and predicted outcomes. An R2 value
close to 1 and lower values of errors (MAE, RRMSE, RMSE,
and RSE) indicate higher accuracy of the model. Moreover,
an output index or performance index (ρ) is proposed to
measure model efficiency as a result of both R2 and RRMSE
[55]. Lower value of the index indicates better performance
of the model between experimental and prediction
outcomes.
In deep and machine learning approaches, overfitting of

data is a major concern. To counter fall this, researchers used
objective function (OBF) for their model accuracy (equation
(5)) OBF takes the overall data with error and regression
coefficient into it to give the best-generalized model [55].
0is is achieved by the following equation as presented by
Gandomi et al. higher value of R and lower values of errors
result in a significantly lower value of index and OBF.

OBF �〈nTrain − nTest
n
〉ρTrain + 2

nTest
n

( )ρTest. (5)

6. Results and Discussion

6.1. Formulation of Compressive Strength of HSC Using GEP.
Genetic expression algorithm is used to predict the me-
chanical response of HSC in the form of empirical rela-
tion. 0is formulation is the function of variables
expressed in equation (6). Expression resulting in the
form of a relationship comes from expression trees as
shown in Figure 8. It can be seen that GEP used both linear

Table 4: Input parameters assigned in GEP model.

Parameters Settings

General fc′
Genes 4
Chromosomes 30
Linking function Addition
Head size 10
Function set +, − , ×, ÷
Numerical constants
Constant per gene 10
Lower bound − 10
Data type Floating number
Upper bound 10

Genetic operators
Mutation rate 0.00138
Inversion rate 0.00546
RIS transposition rate 0.00546
IS transposition rate 0.00546
One-point recombination rate 0.00277
Gene recombination rate 0.00277
Two-point recombination rate 0.00277
Gene transposition rate 0.00277
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as well as nonlinear algorithms by forming a tree struc-
ture. Moreover, this complex architectural tree utilizes
arithmetic operators, variables, and somehow constants in
prediction of strength. Basic operator is employed by GEP

in solving three sets of expressions. Each sub program or
chromosomes reflect specific features of the problem,
which in turn develops functionalized solution to the
problem [50].

fc(MPa) � X + Y + Z, (6)

X � ((9.77 + 15.30) +(− 5.11))∗ cement
(water + superplasticizer) + 15.30( ) + Y

� (− 5.30 +(− 2.40)) − (− (0.59/(F/C) agg)) + superplasticizer
− 0.50 ∗ F

C
agg( )( )( ) + Z

� − 0.76∗ − 4.76
cement + 32.4 ∗ ((water + superplasticizer)∗ 8.65 )( ) + superplasticizer( ).

(7)

0e structural gene, number of chromosomes, and op-
erators are selected prior running the GEP algorithm.0e best
selection of model is based on several trials by varying its head

size, gene numbers, and chromosomes with operational
operators. 0e GEP algorithm selects the best generation and
gene within the population set. Figure 8 presents the best
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Figure 8: Gene expression tree on high-strength concrete. (a) Sub-ET 1. (b) Sub-ET 2. (c) Sub-ET 3.
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outcome of fc. It can be seen that linkage function employed
in GEP is the basic operator in which c represents constant
values and d represents the input variables. 0e basic fitness
function used in modelling perspective is RMSE.

6.2. Evaluation of Model and Analysis. 0e evaluation of
model between actual and predicted one is shown in Fig-
ure 9. It is clear that the GEP-based algorithm in prediction
aspect is a prominent tool in assessment of strength. It can be
seen that the regression line for data samples in training set,
testing, and validation set approaches to 1. Model accuracy
and validity can be judged by its coefficient of determination
(R2). Figures 9(a)–9(c) represent the model accuracy by
depicting its R2 value greater than 0.8; however, in our case,
it is 0.910, 0.914, and 0.9 for testing training and validation
set, respectively.0ese sets consist of approximately 360 data
samples, out of which testing training and validation set
consist of 70/15/15 data points. 0is outfitted data modelled

in the GEP algorithm indicate good relation between output
and target values. Moreover, normalization of data was also
done to give a generalized relation in the range of 0 and 1.
0e model accuracy of overall data can also be seen in the
normalized graph as shown in Figure 9(d).

0e model performance can also be evaluated by
checking from statistical analysis such as MAE, R2, and
RRMSE with RSE. 0e statistical measures of the proposed
GEP-based model for testing, training, and validation set are
shown in Table 5. Moreover, further analysis can be done by
determining covariance (COV) and standard deviation (SD)
of predicted to actual targets. Values of covariance and SD of
training set are 0.16 and 0.059, respectively. 0e statistical
analysis gives an accurate idea of model accuracy by its R2

and error values with the adamant low objective function.
Furthermore, the model accuracy can also be judged from its
R2 and statistical error values of all sets. 0us, proposed
model give high accuracy of actual and predicted values.
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Figure 9: (a–c) Regression analysis of model; (d) normalized graph of all data.
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0e accuracy of the proposed model in a broader
aspect can also be evaluated by checking the absolute error
difference between predicted and actual targets as shown
in Figure 10. It is adamantly clear from the figure showing
its accuracy between predicted and actual ones with
maximum average error of 2.64. Majority of the predicted
data lie in the range of 0.029MPa to 7.5MPa. 0ese values
are of absolute error with minimum and maximum of
predicted datasets. Moreover, adamant difference between
experimental and model values with less error depicts the
adaptive nature of gene expression programming.
0e reliability of any model is greatly dependent on its

data set. Adamant data point increases the accuracy of the
model with input variables. However, the validity of data to
variables in relation making is quite a major concern in its
modelling. To counter fall and to check the validation of the
dataset, Frank and Todeschini [57] stated that the ratio of
input data set to its variables should be equal to 5. 0is
scenario presented by the author is for an ideal model.
However, the current paper significantly outfits this ratio
which is equal to 357/4� 89.25 as compared to the available
literature. Moreover, validation of the GEP model can also
be checked by external statistical measures on the testing set.
Golbraikh and Tropsha [58] proposed a generalized rela-
tionship that the slope of line regression (k′ or k) in the

model should approach to 1. Similarly, various scholars have
suggested that the squared relationship coefficient (origin)
between the output and target values (Ro′2) or the coefficient
amongst expected and tentative values (Ro2) should be near
to 1 [44]. 0ese external checks on the GEP-based model are
presented in Table 6. Hence, it can be concluded that the
models hold the expectation capability which is not just a
connection amongst the input and output variables.
0e prediction of themechanical behaviour of high-strength

concrete by genetic expression algorithm is adamantly reliable in
using data samples to its variables. 0e behaviour of the GEP
basedmodel can also be comparedwith the linear and nonlinear
based model by presenting an empirical relationship between
predicted and experimental results. 0e empirical relation of
both results in the form of expression is shown in equations (5)
and (6). Moreover, Figure 11 represents the behaviour of
modelled data. It can be seen that GEP based model outfits in
data presentation of testing, validation, and training set from
linear and nonlinear ones with R greater than both modelled
[59].0is is due to one of the advantages of GEP, as it takes both
linear and nonlinear data into its database which ultimately
generates accuracy of predicted data by showing expression tree
and then simplified its data by decoding it in the form of the
generalized equation as shown in Figure 8. Moreover, its
simplest nature can help researchers to calculate the compressive

Table 5: Statistical calculation of the proposed models.

Model
RMSE MAE RSE

Training Validation Testing Training Validation Testing Training Validation Testing
3.057 1.42 1.62 2.602 0.575 0.595 0.089 0.092 0.023

Fc

RRMSE R2 P (row)
Training Validation Testing Training Validation Testing Training Validation Testing
0.058 0.0286 0.031 0.954 0.957 0.031 0.03 0.014 0.015
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Figure 10: Relation of actual target to outcome values of strength.
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strength by doing hand calculations. 0ese algorithms help in
predesign design to forecast prediction close to experimental
work [56]. 0e accuracy of this can also be checked by residual

error as shown in Figure 12. It represents the accuracy of data
with frequency of data present in GEP model and its regression
accuracy.

Table 6: Statistical variables of GEP models from externally validation.

S. no Equation Condition Model

1 k � ∑ni�1(ei ×mi)/e2i 0.85< k< 1.15 0.98
2 k′ � ∑n

i�1(ei ×mi)/m2i 0.85< k< 1.15 1.00
3 R2o − (∑ni�1 (mi − eoi )

2/∑n
i�1 (mi − mo

i )
2), eoi � k ×mi R2o � 1 0.97

4 R′2o − (∑ni�1 (ei − mo
i )
2/∑n

i�1 (ei − eoi )
2), mo

i � k′ × ei R2o � 1 0.99
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Figure 11: (a) Evaluation of sets with experimental and model data. (b) Evaluation of sets with model set with linear as well as nonlinear
approach.
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fc′ � 0.065 cement − 4.9
fine

coarse
aggregate − 0.089water − 2.95 superplasticizer + 40.1,

fc′ � 0.0042 cement
1.41 − 27.7 fine

coarse
aggregate0.16 − 0.5water0.73 + 5.03 superplasticizer0.77 + 72.6.

(8)

6.3. Compression of GEP Model with Other Model. 0e
performance of the GEP model is compared with other
models available in the literature [7, 60, 61]. Al-Shamiri
et al. [61] used extreme learning machine (ELM) and
compared its model prediction accuracy with back-
propagation neural network (BP-NN). 0e authors
predict R2 of testing set of about 0.9937 and 0.9938 for
ELM and BP-NN [61]. Similarly, Öztaş et al. [7] predicted
the compressive strength and slump of HSC using neural
network. 0e author reported strong correlation between
input and output result of testing set which is about 0.99
for both slump test and compressive strength. Bayka-
soǧlu et al. [60] predicted the parameters of high-
strength concrete using machine learning techniques.
Regression analysis, genetic engineering programming,
and neural network were first employed to make gen-
eralized equation. Afterwards, a multiobjective optimi-
zation model is made to predict the outcome and

comparison was also made between prediction and op-
timization results. Singh et al. [62] predicted the com-
pressive strength of HSC using random forest and M5P
techniques. 0e authors achieved a good relation by
using random forest rather than M5P which is R2 � 0.876
and 0.814 for testing set, respectively. It can be seen that
prediction of HSC was evaluated using different ap-
proaches but none of the method give a diesrable
equation which predicts the strength by using hand
calculation. 0us, employing GEP approach gives not
only R2 � 0.90 but also an equation with parameters
involved.

7. Conclusion

0e machine learning approach provides adamant accuracy
between the modelled and experimental data. 0is will help
in the predesign phase rather than conducting experimental
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Figure 12: Accuracy of GEP based model with less residual error.
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tests by doing trials. 0e following conclusion has been
drawn by utilizing GEP.

(i) Artificial intelligence using anaconda Jupiter
notebook python-based is conducted on the input
variables with compressive strength. 0is pro-
gramming technique provides the optimal values of
all these influential variables which will help the
researcher to design their experimental work by just
taking these optimized values.

(ii) GEP approach provides a simplified formulation of
compressive strength with adamant accuracy be-
tween modelled and experimental results. 0is
shows its diversity by considering linear and non-
linear data.

(iii) 0e statistical analysis gives significant accuracy
between training, testing, and validation set with the
coefficient of determination greater than 0.9.
Moreover, an error like MAE, RSE, and RRMSE
shows low value with highR-value.0is contra values
adamantly provides the accuracy of modelled data.

(iv) 0e GEP model is compared with linear analysis
and nonlinear analysis. However, GEPmodel outfits
both analyses. Moreover, the current model was also
compared with other published models, but GEP
model gave us the required equation which helps in
prediction with current parameters via hand
calculations

(v) Permutation feature importance was done by using
python on variables to show the influential one in
the modelling aspect. In another word, which pa-
rameter influences the compressive strength of HSC
is check by PMI.
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