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ABSTRACT

Hidden Markov models (HMMs) have been successfully applied to a variety of problems
in molecular biology, ranging from alignment problems to gene � nding and annotation.
Alignment problems can be solved with pair HMMs, while gene � nding programs rely
on generalized HMMs in order to model exon lengths. In this paper, we introduce the
generalized pair HMM (GPHMM), which is an extension of both pair and generalized
HMMs. We show how GPHMMs, in conjunction with approximate alignments, can be used
for cross-species gene � nding and describe applications to DNA–cDNA and DNA–protein
alignment. GPHMMs provide a unifying and probabilistically sound theory for modeling
these problems.
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1. INTRODUCTION

The distinct problems of alignment and gene � nding have been, and continue to be, the impetus
of much fertile research in computational biology. The theoretical framework of Needleman and

Wunsch (1970) was a landmark in the application of mathematics to sequence analysis. In their paper,
they showed that the dynamic programming method (DP) could be applied to the problem of � nding
similarity between sequences. Dynamic programming has since � ourished in the context of biology and
has been applied to a variety of problems with continued success. The problem of annotating translational
and transcriptional features in genomes, the gene � nding problem, has been one of the key bene� ciaries
of dynamic programming. The technique lies at the heart of all the successful gene � nding programs to
date (for a discussion of DP applications to gene � nding see Salzburg [1998]; a partial list of users of DP
is Burge and Karlin [1997], Henderson et al. [1997], Kulp et al. [1996], Pachter et al. [1999], and Wirth
[1988]).

Despite the dynamic programming connection between alignment and gene � nding, the two problems
have traditionally been treated separately by computational scientists, and most programs are developed
with only one of the problems in mind. Current methods for incorporating DNA and protein alignments
into homology-based gene � nders (Krogh, 2000; Kulp et al., 1996; Pachter et al., 1999) treat the alignments
as separate evidence to be used for reweighting candidate gene annotations, rather than tackling the two
problems jointly. On the other hand, the gene-� nding process is generally not used in � nding sequence
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alignments (see Gotoh [2000] for an exception). This is in sharp contrast to biologists who have always
relied on comparisons for annotating biologically important features in genomes and for � nding functionally
signi� cant domains. Indeed, the principle of comparison has been a leitmotif in biology.

A step in the direction of simultaneous alignment and gene � nding was undertaken in the Procrustes
project, initiated by Pevzner, Mironov, and Gelfand (1996). The Procrustes program was based on the
observation that boundary detection for exons in a gene could be signi� cantly enhanced if a protein
homolog for the gene existed. Their method was to � nd the best alignment of the protein homolog to the
DNA sequence subject to splice site constraints. Such constraints had previously played a role only in
gene � nding programs, not in alignment programs. Indeed, they coined the term spliced alignment for the
problem they were solving. Recent approaches to gene � nding are based on using a pair of orthologous
DNA sequences from two organisms to simultaneously annotate both (Bofna and Huson, 2000; Batzoglou
et al., 2000; Korf et al., 2001; Wiehe et al., 1999). Despite the fact that the annotation of orthologous
genes (and their correspondence) elucidates some of the alignment, in these approaches, alignments of the
regions are performed � rst, and then they are used to enhance gene detection.

In this paper, we describe a unifying framework for alignment and gene � nding. Our approach is to
� nd the best alignment between two sequences while simultaneously annotating the regions. Thus, the
identi� cation of transcriptional and translational features aids in the alignment, and the alignment helps
to � nd the genes. Our methods are based on hidden Markov models, which � rst found their way into
computational biology in the context of sequence analysis (Churchill, 1989). One of the bene� ts of using
hidden Markov models is that they are probabilistic, and so their output has a probabilistic interpretation.
For example, using the GENSCAN program (Burge, 1997; Burge and Karlin, 1997), one obtains not just
annotations but also probabilities of the predicted exons being correct, given the input sequence. Hidden
Markov models are also useful for alignments (Searls and Murphy, 1995). In fact, the dynamic programming
algorithm discovered by Needleman and Wunsch (1970) and extended/improved by Smith and Waterman
(1981) is equivalent to the Viterbi algorithm for an appropriate hidden Markov model (Durbin et al.,
1998; Holmes, 1998). The � rst inkling of a marriage between alignment and gene � nding HMMs appeared
recently in the work of Kent and Zahler (2000).

The HMM we develop is both a generalized HMM (the type used for gene � nding) and a pair HMM
(the type used for alignment). We call such an HMM a generalized pair hidden Markov model (GPHMM).
These HMMs are discussed in more detail in Section 2. In Section 3, we describe some applications of
our GPHMM to a variety of annotation and alignment problems:

² DNA–DNA alignments. Here our GPHMM serves to perform both the task of alignment and gene
� nding simultaneously.

² DNA–cDNA alignment. This is a special case of the model used for DNA–DNA alignment. The ad-
vantage of using a GPHMM is that it is possible to obtain gene predictions that take into account exon
lengths, splice site signals, and other features not incorporated in current programs.

² DNA–protein alignment. This is the spliced alignment problem described above. Again, our program
has the advantage that the gene predictions are enhanced by taking into account not just splice sites but
also exon lengths, transcriptional signals, and other biologically important information.

2. GENERALIZED PAIR HIDDEN MARKOV MODELS

Hidden Markov models (HMMs), the main reference often being in the context of speech recognition
(Rabiner, 1989), have become increasingly popular for biological applications. The probabilistic framework
underlying HMMs enables the seamless integration of various biological features into a unifying model in
a way that is both � exible and mathematically rigorous. There are two different kinds of HMMs relevant
to our problem: pair HMMs and generalized HMMs. Pair HMMs are well-suited for modeling alignment
problems. Generalized HMMs are useful for gene � nding. Further details and explanations of HMMs,
these two particular types, and our extension of them are provided in this section.

2.1. Generalized hidden Markov models (GHMMs)

The idea of an HMM is that there is an underlying Markov chain which generates a sequence of states. In
the gene-� nding problem, the states typically include exons, introns, and intergenic regions. The Markovian
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assumption implies that at any point the next state generated in the sequence will depend only upon the last.
The term “hidden” refers to the fact that the sequence of states is not observed; instead, the observables
are outputs from the states. In each state, the output will typically depend on the current state and may
also depend on previous outputs. Referring again to the gene-� nding problem, the output at each state is
one of the four bases A, C, G, or T. The probability of each base will depend on the type of state.

A generalized HMM (Rabiner, 1989), also known as a hidden semi-Markov model, generalizes HMMs
in that each hidden state may generate more than a single base. In a standard HMM, there is an output at
every step in the underlying (hidden) Markov chain, even if that step leaves the chain in the same (hidden)
state. Before moving to a new state, the chain will in general do a number of self-transitions, but after
a random number of steps called the duration time in that state, it will eventually move to a different
state. As a result, the duration time in any state turns out to have an exponentially decaying (geometric)
distribution, and this may not be appropriate in all applications.

In a GHMM there is a duration distribution associated with each state, and a state generates output
by � rst choosing the length according to this distribution, and then producing an output sequence of that
duration. The generalization can improve performance by allowing for more accurate modeling of the
typical duration of each hidden state, in particular in situations where the distribution of the length is
important and signi� cantly different from the exponential distribution.

2.2. Pair hidden Markov models (PHMMs)

One of the main problems in biological sequence analysis is to determine if two sequences, or parts
of them, are functionally related. This is usually done by � rst aligning the sequences and then deciding
whether the similarity in the alignment has occurred because the sequences are related, or just by chance.
For this, a suitable scoring system is necessary to rank the alignments, and an algorithm is needed to � nd
the optimal scoring alignment.

There is a probabilistic approach to this problem that makes use of the notion and algorithms of HMMs
(Durbin et al., 1988). One advantage of such an approach is that by appropriately weighting all alternative
(suboptimal) alignments one can assign a similarity score to two sequences which is independent of any
speci� c alignment. However, instead of generating a single sequence, as in a standard HMM or GHMM,
we now generate an aligned pair of sequences, and we call this type of model a pair HMM (PHMM).
A PHMM starts with an initial distribution and then cycles over the following two steps: 1) given the
current state, pick the next state according to the transition probabilities; 2) pick a symbol pair in the new
state according to an output distribution and add it to the alignment. Because we have probabilities for
each step, we can also derive the probability of generating any particular alignment by taking the product
of the probabilities at each step. One problem in sequence alignment is that when similarity is weak, it
is hard to identify the correct alignment. In PHMMs we can calculate the probability that a given pair
of sequences are related, independent of a speci� c alignment. This is done by summing over all possible
alignments using a procedure called the forward algorithm, which is described below.

2.3. Generalized pair hidden Markov models (GPHMMs)

In this section, we present a model that merges the GHMM and PHMM in a framework we call the
generalized pair HMM. The motivation behind the development of our model is to be better able to
analyze biological sequences in pairs, a problem of increasing importance with the growing abundance of
sequence data from different organisms. Our presentation of the theory is general, in that it can be applied
to problems other than those of interest in biological sequence analysis.

Assume for a moment that our GPHMM is a sequence machine, generating output symbols as it cycles
through a state space, corresponding to the physical output of the system being modeled. The GPHMM
inherits the main features of the GHMM and the PHMM, generating generalized lengths of sequences in
tandem.

Let S D fs1; : : : ; sN g denote the state space, and X1; : : : ; XL the sequence of hidden states that the
GPHMM follows as it generates the output. Examples of various state spaces will be presented in Sec-
tion 3. The � rst state X1 D si is distributed according to some initial distribution .¼i/

N
iD1, and a jump to

a new state sj occurs according to a transition probability distribution aij . With each hidden state Xl , we
associate a pair of duration times .dl; el/, generated from some joint distribution, representing the number
of symbols in each sequence that are generated from that state. Let pl D

Pl
kD0 dk and ql D

Pl
kD0 ek
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denote the partial sums of the durations. In state Xl , the GPHMM generates the sequence pair Y
pl

pl¡1C1 and

Z
ql

ql¡1C1, respectively, according to a joint distribution bXl
.Y

pl

pl¡1C1; Z
ql

ql¡1C1jY pl¡1
1 ; Z

ql¡1
1 / (we are using the

notation Y b
a to represent the subsequence of DNA Ya ; : : : ; Yb). Note that the observations depend only

on the current state, the current durations, and the previously observed data. Though it is mathemati-
cally valid to condition on all previous observations, it rarely makes sense to condition on more than
a handful.

In practice, we observe only the sequences Y T
1 and ZU

1 , where T ; U are the sequence lengths. The
variables L; XL

1 , dL
1 , and eL

1 are hidden from us. We assume that we have all of the observations in both
sequences by the time we reach the � nal state XL, or in other words that pL D T and qL D U . We can
now write down the probability of a particular sequence of hidden and observed data:

Pr.XL
1 ; Y T

1 ; ZU
1 ; dL

1 ; eL
1 / D ¼X1 fX1 .d1; e1/ bX1 .Y

p1
1 ; Z

q1
1 /

LY

lD2

aXl¡1;Xl
fXl

.dl; el/

¤ bXl
.Y

pl

pl¡1C1; Z
ql

ql¡1C1jY pl¡1
1 ; Z

ql¡1
1 /:

The two main problems to be solved when applying the HMM theory are: 1) to compute the probability
of the observed data Pr.Y T

1 ; ZU
1 / and 2) given the observed sequence, to � nd the underlying hidden

sequence X1; : : : ; XL of states that best “explains” the observations. The � rst problem can be solved by a
procedure called the forward algorithm and involves the recursive computation of the forward variables,
de� ned as

®.t; u; i/ ´ Pr
±

Y t
1 ; Zu

1 ; fsome hidden state ends in si at .t; u/g
²

D Pr
±

Y t
1 ; Zu

1 ; [tCu
lD1

¡
Xl D si; pl D t; ql D u

¢²
:

State si can be reached at time .t; u/ from the N possible states sj ; 1·j ·N . The joint probability of
the observed sequences ending in state sj at time .t ¡ d; u ¡ e/, where d and e are the durations of the
previous state in each sequence, respectively, is again a forward variable. By letting D be the maximum
possible duration in any state, we can sum over all previous states and their durations and get

®.t; u; i/ D
NX

jD1

DX

d;eD1

Pr
n

Y t
1; Zu

1 ; [tCu
lD1

¡
Xl D si ; pl D t; ql D u

¢
; [tCu

lD1

¡
Xl D sj ; pl D t ¡ d; ql D u ¡ e

¢o

D
X

j;d;e

®.t ¡ d; u ¡ e; j/ aj;i fsi
.d; e/ ¤ bsi

.Y t
t¡dC1; Zu

u¡eC1jY t¡d
1 ; Zu¡e

1 /:

(A more formal derivation of the above may be found in Cawley (2000)).
The solution to problem (1), the probability of the observed data, follows by de� nition, since

®.T ; U; i/ D Pr.Y T
1 ; ZU

1 ; XL D si/

and hence P .Y T
1 ; ZU

1 / is just the sum of the ®.T ; U; i/’s.
A convenient feature of HMMs is the ability to compute posterior probabilities of hidden states given

the observations. This is made possible by using the forward variables along with closely related quantities
known as the backward variables. The recursion for the backward variables is similar to that for the
forward, the main difference being that they are computed by recursing in the reverse direction over the
data.

The solution of the second problem, that of � nding the “optimal” state sequence giving rise to the
observed data, depends on the de� nition of “optimal.” A natural estimate is the mode of the distribution of
the hidden data conditional on the observed, or in other words, the single most likely sequence of states and
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durations through the model. Maximizing this probability Pr.XL
1 ; dL

1 ; eL
1 jY T

1 ; ZU
1 / over fL; XL

1 ; dL
1 ; eL

1 g,
which has its maximum at the same point as Pr.XL

1 ; dL
1 ; eL

1 ; Y T
1 ; ZU

1 /, can be done by an ef� cient dynamic
programming routine, most commonly known as the Viterbi algorithm. The procedure, based on the
variables

±.t; u; i/ D max
l;Xl¡1

1 ;d l¡1
1 ;el¡1

1

Pr.Y t
1; Zu

1 ; Xl¡1
1 ; Xl D si ; pl D t; ql D u/

is essentially the same as in the forward algorithm with sums replaced by maxima. To actually retrieve
the best underlying state sequence, we need to keep track of the argument that maximized ±.t; u; i/; that
is, we backtrack through argmaxsj ;d;e±.t ¡ d; u ¡ e; sj /, starting in maxsi

±.T ; U; i/.

2.4. Approximate alignments

A naive implementation of the GPHMM described above takes O(TUN) in memory storage and
O.D4N2T U/ time to run, where D is the maximum duration in a hidden state, N the number of hidden
states, and T and U the lengths of the sequences being analyzed. This means that the running time scales
as some constant factor times the product of the lengths of the input sequences. One way of getting around
this is to preprocess the data, producing an approximate alignment such that the problem grows linearly
in the length of the observation sequences.

Under the assumption that there exists a “true” alignment of the sequences (but one which we may not
be able to � nd), an approximate alignment allows us to state bounds on possible matches. Approximate
alignments are necessary in the GPHMM framework described above because they allow for a reduction
in memory (and computational) requirements, rendering large sequences on the order of hundreds of
thousands of base pairs feasible.

An alignment of two sequences of lengths T and U , respectively, can be thought of as a path in Z £ Z
restricted to lie in the subset RT ;U D [1; : : : ; T ] £ [1; : : : ; U ]. The path must consist of steps from the
step set f.0; 1/; .1; 0/; .1; 1/g. A path with a diagonal step entering a vertex .i; j/ is an alignment in which
position i in the � rst sequence is aligned with position j in the second; the vertical and horizontal steps
correspond to gaps. A global alignment path is a path in RT ;U which begins at a vertex .r; 1/ or .1; r/

for some r and ends at a vertex .T ; s/ or .s; U/ for some s. A local alignment path is a contiguous
subsequence of a global alignment path. A global/local alignment set refers to the set of points in RT ;U

appearing in an alignment path.

De� nition. An approximate alignment A is a nonempty subset A µ RT ;U which is a union of global
alignment sets.

A preprocessing step that � nds an approximate alignment between the two sequences allows us to
signi� cantly reduce the computation time. Without loss of generality, let Y T

1 be the longer of the two
observation sequences. An approximate alignment that localizes each base of Y to a window of size h in
Z allows us to set ®.t; u; i/ D 0 if u does not fall within the window for base Yt . It is straightforward to
prove that the recursions for the forward and backward computations in the GPHMM remain correct. These
reductions reduce the memory requirement to O.hT N/ and the number of computations to O.hT N 2D4/.
Smaller values of h reduce the size of the problem, but restrict the set of possible predicted matches more.
The case h D 1 is equivalent to having a global alignment of the two sequences before processing. Small
windows increase the dependency of the GPHMM result on the alignment; any relaxation allows for more
robustness at the expense of computational time.

A natural method by which to � nd approximate alignments is to use an iterative/anchor method for � nding
a global alignment and stopping it before it � nishes. An example of this is the GLASS program (Batzoglou
et al., 2000; Pachter, 1999), which uses � xed-length matches to iteratively build a global alignment. The
program begins by � nding all matches of some length k (k » 35 for BAC-sized sequences). These
k-mer matches are aligned and anchored, after which the process is recursively repeated on the remaining
intervening regions with a successively smaller value of k. To obtain a global alignment, the process is
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terminated when k D 1. Terminating the process at a value of k > 1 results in an approximate alignment.
The lower the terminal value of k, the more resolved the alignment.

It is interesting to note that approximate alignments generalize the notion of a banded Smith–Waterman
problem (Gus� eld, 1997). In particular, our approximate alignments can be thought of as generalized
bands for an alignment problem. The approximate alignment problem is the problem of � nding those
constraints on the alignment that have the property that with high probability the optimal path lies inside
the approximate alignment set.

3. APPLICATIONS

We focus here on the two closely related tasks of gene � nding and of sequence alignment. As mentioned
before, there is much overlap between the two problems, solving one helps substantially in the solution of
the other. We show that the GPHMM framework is well suited to performing both tasks together.

One of the main strengths of GPHMMs for alignment and gene � nding is the ease with which known
biological signals and features can be incorporated into the model. Such features include introns, exons,
promoters, and generally any type of signal for which there is a reasonable probabilistic model available.
Another particularly convenient feature of using a GPHMM is the availability of natural likelihood-based
methods for parameter estimation. The implementations of nonprobabilistic models usually run into the
dif� culty of having to heuristically determine parameters.

It was pointed out earlier that the ubiquitous Smith–Waterman algorithm for alignment can be seen as
a particular implementation of a PHMM (Durbin et al., 1998). The GPHMM generalizes such models,
providing extensions of the Smith–Waterman algorithm to more general sequence alignment problems,
which may involve different kinds of sequences originating from different organisms.

3.1. DNA–DNA

As more genomic DNA sequence becomes available from multiple organisms, the ability to identify
conserved elements contained in long stretches becomes more important. Figure 1 shows the state space of
a basic GPHMM for modeling genes in syntenic stretches of genomic DNA from two different organisms.
Such a model can be used to exploit the information contained in the conservation of exon sequence to
come up with more accurate gene predictions. The � nal product of the model is a global sequence alignment
incorporating annotation of coding exons in both organisms simultaneously. Moreover, the probabilistic
nature of the GPHMM allows for the determination of probabilities of the predictions being correct.

All states in the model generate bases or gaps in two organisms at a time; hence, it is a “pair” model. The
intron and intergene states can be set up so that they always generate either a base in each organism, or a
base in one organism and a gap in the other. The two sequences generated by such a model would each be
geometrically distributed (with possibly different parameters), but the difference between the two lengths
would in the limit converge to a Gaussian distribution, yielding highly correlated intron and intergenic
lengths. An alternative approach is to generate introns and intergenic regions independently by using
two consecutive self-transitioning states. The � rst state generates one sequence, and then the second state
generates the other, resulting in independent geometric distributions for the sequence lengths. Regardless of
the exact model that is used, it is convenient to represent these states as single states with a self-transition.

There are three types of intron states, one for each phase. An intron is said to be of phase 0 if it does not
interrupt codons, a phase 1 intron interrupts a codon after its � rst base has been generated, and a phase 2
intron interrupts after the second base of the codon.

Geometric distributions are a poor � t for exon lengths, so the remaining exon states are all “generalized,”
each one generating two sequences (of possibly different lengths). The exon states each have two subscripts,
characterizing their type. EI;j denotes an initial exon followed by a phase j intron, constraining its length
to be equal to j mod 3 in each organism. Similarly, Ej;F denotes a � nal exon following a phase j intron,
and likewise for Ei;j . The exon states all have characteristic models at either end (start, splice, or stop
signals) but are otherwise identical within.

The pair of sequences generated by the exon states is chosen from some joint distribution under which
the lengths are constrained to be equal modulo 3 and are most likely to be the same. This has been found
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FIG. 1. A GPHMM for alignment and prediction of exons using genomic DNA from two different organisms. The
shaded states are the typically less-conserved intergene and intron states, each producing either a single base or a gap
in each organism. The use of self-transitions models their state durations as geometric. The unshaded states (all of
which are exons) will all have duration one as they have no self-transitions; however, they are generalized and produce
exon-pairs according to some predetermined joint distribution.

to be a reasonable model of the truth in studies so far (Batzoglou, 2000; Jareborg, 1999; Mironov, 1999).
However, it is possible to modify the state space of the model to relax this constraint. PAM matrices
(Burge and Karlin, 1997; Müller and Vingron, 1999) of an appropriate evolutionary distance can be used
to model the pair of similar sequences produced. Quite a natural way to model exon states is to use a
PHMM which for the most part generates codons in both organisms, but occasionally may produce a codon
in one organism and a gap in the other (according to the appropriate PAM matrix).

As mentioned above, the model in Fig. 1 is very basic; it models genes on only one strand and produces
the same exon sequence in each organism. Some of the restrictions are relatively simple to relax. Genes
can be modeled on the reverse strand by the addition of a mirror image of the state space below the
intergene state. The insertion and deletion of exons can be allowed for by the introduction of extra exon
states which produce an exon in one organism and a gap in the other. Sequencing errors leading to exon
pairs of lengths not equal modulo 3 can be allowed for by a simple adjustment of the exon model. Some
of the restrictions are more rigid however. The assumption of the overall conservation of the order and
direction of genes and their exons cannot easily be avoided by this model. In cases of large inversions and
other rearrangements, some preprocessing of the data might restore the order. Insertions of introns within
exons in one sequence are not easily handled. Another dif� culty is exon pairs where the lengths differ
modulo 3 due to introns of different phases (as opposed to sequencing errors). It is not clear how often
this occurs in nature (it is estimated to happen in about 1% of genes for H. sapiens versus M. musculus
[Pachter, 1999]).

We note that the Wobble Aware Bulk Aligner (WABA) of Kent and Zahler (2000) takes an initial step
in the direction of the model we describe. Their model is simpler, not being generalized and using mainly
the signal of the third base wobble to � nd coding sequences.

3.2. DNA–cDNA

Another useful application for GPHMMs is to the problem of aligning a full-length cDNA to genomic
sequence (Florea et al., 1998). Figure 2 presents the state space of such a GPHMM.
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FIG. 2. A GPHMM for alignments between a (possibly long) stretch of genomic DNA and a full-length cDNA. The
shaded states generate output in only one of the two sequences. The PolyA state generates a poly(A) tail in the cDNA;
all the other shaded states generate sequences in the genomic DNA only. The unshaded states generate output in both
the genomic and the cDNA sequences. As in Fig. 1, the states allowing self-transitions produce either single bases or
gaps in each sequence, thereby having geometric lengths. The remaining states are generalized.

Unlike the model in Fig. 1, there is only one possible state to begin with, the state labeled “Start.” All of
the shaded states model regions that are not expected to apply to the cDNA sequence, and so they generate
output in only the genomic sequence.

The exon and intron states work much as they did in the DNA–DNA example, except that the introns
generate nothing in the cDNA sequence. In aligning cDNA to genomic DNA, there would be very little
expected difference between the corresponding regions, so the exon and UTR states would have joint
distributions with very high probability of producing identical sequences. The probability of producing
identical sequences would depend chie� y upon the quality of the sequencing and assembly steps which
produce the data.

The promoter (Prom) and polyadenylation (PolyA) states allow for the incorporation into the alignment
of signals typically found upstream and downstream of the gene. The PolyA state generates a poly(A) tail,
so it generates sequence in the cDNA only. Other states which could be introduced to improve performance
would be splice site and intron states on a loop from each of the UTR states, which would allow for the
prediction of introns between untranslated exons, and a poly(A) signal state which occurs towards the end
of the 3’UTR state.

3.3. DNA–protein

GPHMMs are also well suited to the problem of aligning protein with genomic DNA. In fact, it can be
modeled with the same state space as that of the DNA–cDNA model in the previous section. All that is
required is the modi� cation of the output distributions from each of the states.
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The start, promoter, intron, polyadenylation,and � nish states all work exactly as before. Since the protein
sequence would only be expected to align with coding exons, the UTR states now only produce output
in the genomic DNA sequence. The only remaining difference is that in the coding exon states a pair of
sequences is produced over two different alphabets, amino acids and nucleotides. Construction of a joint
distribution that produces a sequence of DNA and its translation is relatively simple.

There is a slight dif� culty in treating output generated on either side of an intron of phase other than
zero. The convention is that the next amino acid is produced with the third base of a codon. When � nishing
a codon spanning an intron of phase 1 or 2, the model does not allow for keeping track of the previous
bases of the codon.

As in the case of DNA–cDNA alignment, it has been established that the incorporation of the biological
signals assists DNA–protein alignment. Usuka and Volker (2000) showed that the inclusion of splice site
strength led to better alignment in Arabidopsis thalania. Gotoh (2000) developed a model handling coding
potential, translation initiation, termination, and splicing signals in addition to sequence similarity, leading
to improved performance. The GPHMM approach can handle all of these features and more. As mentioned
before, the GPHMM has the added bene� t of its parameters being easy to estimate in a theoretically sound
manner. We note that there are other methods by which to align DNA sequences to protein sequences. For
example, the program GeneWise (Birney and Durbin, 2000) tackles the DNA–protein problem by using an
HMM to � nd optimal alignments between DNA and a protein pro� le-HMM. Since the pro� le-HMMs it
uses can be thought of as representing families of proteins, it tackles a slightly different kind of alignment
problem to the one we describe here.

4. CONCLUDING REMARKS

The GPHMMs described here were developed in the course of building a probabilistic two-organism
cross-species gene-� nding program. The results can be applied to that problem, although numerous tech-
nical issues need to be resolved (Alexandersson et al., 2001). Parameters for the models can be estimated
from counts using the methods outlined by Durbin et al. (1998). We are currently � nishing software for
the implementation of the two-organism gene-� nding GPHMM. Extension of the theory to more than
two organisms is possible, although the computational complexity increases dramatically and the use of
approximate alignments becomes more important. It is interesting to note that the GPHMM we describe
for DNA–DNA alignment and gene � nding directly generalizes the existing HMM gene � nders such as
GENSCAN, GENIE and HMMGene (Burge and Karlin, 1997; Krogh, 2000; Kulp et al., 1996) and can be
used for single-organism gene � nding as a special case (assuming one uses the same splice site and other
signal models). This is accomplished by forcing each state to always generate a pair of identical outputs
and by restricting the joint transition and length distributions to be univariate.

The computational burden associated with GPHMMs is mitigated by the use of approximate alignments.
It is an interesting computational problem to develop fast algorithms for � nding approximate alignments
that substantially reduce the search space, but at the same time contain the “true” alignment with high
probability.
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