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APPLICATIONS OF GENERALIZED STRESS
IN ELASTODYNAMICS
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Abstract. The problem under consideration is the scattering of elastic waves by in-
homogeneous obstacles. The main goal is to obtain approximation techniques which
are amenable to numerical implementation. For time-periodic problems a coupling
procedure involving finite elements and boundary integral equations is described.
For general time-dependent problems, artificial boundary methods are studied. In
both cases the concept of generalized stress, as originated by Kupradze, plays a cen-
tral role. The analysis is restricted to planar two-dimensional problems since these
illustrate the essential ideas.

1. Introduction. We treat the problem of scattering of elastic waves in an infi-
nite homogeneous medium by inhomogeneous obstacles. The special case of two-
dimensional anti-plane strain problems was considered in [2] and [3], This situa-
tion reduces to a scalar problem. We consider the more complicated problem of
two-dimensional plane strain. Here one has vector problems with all the essential
difficulties of the fully three-dimensional problem. (The latter could also be treated
by the methods given here.)

To obtain a mathematical formulation of the planar interface problem, let Q and■y
£2+ be two (uniformly) isotropic, linearly elastic bodies which fill all of K . The
body Q is bounded and composed of an inhomogeneous material with density p_
and Lame moduli fi_ and , while the unbounded homogeneous body Q+ has
density p and Lame moduli p+ and . The interface is T := <9Q, the boundary
of Q.

Since the materials are linearly elastic and isotropic, the fields are the planar dis-
placement

W = Wx (x,, x2, t)el + W2(xl, x2, t)e2,

the infinitesimal strain tensor

E := + \>WT),
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122 D. B. MEADE

and the Cauchy stress tensor

1[W) := 2n{x)E + A(x)(tr E)I.
Positivity of the stress tensor is ensured by assuming the Lame moduli satisfy fi > 0
and 31 + 2/i > 0 pointwise. The normal component of the stress is the traction

1[W] :=I[W)n.
Assuming there are no body forces, the equation of motion is

pW = V 1[W].
The two bodies are assumed to be in rigid contact. That is, the displacement

and traction are continuous across the interface. The system is set in motion by an
incident field U° in fi which satisfies the homogeneous equation of motion in
all of E3. The complete formulation of the interface problem is most conveniently
stated in terms of

f W, xetl,
U:=\ o (1-1)I w - U°, x e ,

the total wave in Q and the scattered wave in Q.
0 2 2Problem 1.1. Given the incident plane wave U : E x (0, oo) —► E , determine

the outgoing plane wave U : (Q U Q ) x (0, oo) —► E such that

/>i/=V ■![£/] in (fiufi,) x (0, oo),

t U] = U°,
n

I[C/°]+ on fx (0, oo)Z[C/]

U(-, 0) = 0, #(-, 0) = 0 in QuQ+.
The outgoing condition guarantees the uniqueness of solutions. An energy argu-

ment shows that a sufficient condition for the solution to be outgoing is

lim [ (![£/] • U)(x, t) = 0 for all t G (0, oo)
-►oo

p{x) :=

where Sr := {y e Q+ : \y\ = r}.
In an attempt to maintain simple, yet concise, notation, we adopt a composite

notation for the density and Lame moduli, e.g.,
P_(x), xeQ,
p+, x e ft+ .

In addition, all analysis is performed under the assumption that the material param-
eters and the interface are as smooth as is necessary.

Remark. The anti-plane displacement is orthogonal to the cross-sections of the
inclusion: W = ^(x,, x2, l)e3. The formulation of the corresponding interface
problem is unchanged, but simplifies to a scalar problem for W3 with the observation

n
that = pVW and I[ W7] is parallel to the normal derivative of W ,

In Sec. 3 we study Problem 1.1 in the special case of steady-state, time-periodic
motions and in Sec. 4 in the general time-dependent case. The essential tool in both
cases is the generalized stress; this is discussed in Sec. 2.
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2. Generalized stress and traction. The original idea for using the generalized
stress and traction in the study of elastic interface problems is found in the work
of Kupradze [20]. These ideas are used in the present situation to construct inte-
gral representations for the exterior displacement (see Sec. 3.2) and stable artificial
boundary conditions (see Sec. 4.3). The key observation in this development is that

V • I[«] = |lAu + qV ■ (VwT) + (A + fi- q)V • ((V • u)I),

for any constants a, /i, and X.
Definition 2.1. The generalized stress associated with the planar displacement u

is
Ia[u] [iVu + aVuT + (X + ju ~ a)(V • u)I;

n
the corresponding generalized traction is 2a[w] := I?[v]n .

The proof of the generalized Green's identities is a simple exercise in integration
by parts (see [21]).

Lemma 2.1. Let P be a bounded region of IT with a piecewise smooth bound-
ary, dP, and let /u, X, and a be real-valued differentiate functions on P. For
any complex-valued smooth functions u, v the generalized first and second Green's
identities are

/ (V ■![«])• F = [ la[u] ■ v - [ Z°[«] • W (2.1)
JP JdP JP

+ J (VwT - (V • u)I)-a)-v

and

/((V-I[H])-t;-w-(V-EpJ]))= [ (£a[u]-v -u-ia[v])
Jp JdP

+ y (VwT -(V-n)/)V0*-a)-t; (2.2)

- J H-(VwT-(V-jJ)/)V(^-a).

Note that, in (2.1) and (2.2), the extraneous integrals over P vanish whenever
ju - a is a constant. Moreover, the classical Green's identities are obtained when
a = /u .

The central idea needed for our analysis is contained in the following result.

Lemma 2.2. There is a skew-symmetric 2x2 matrix M for which

Ia[u] = I[u] + {a- n)Mu r.

Moreover, M is spatially constant on dP. (Here u is the tangential derivative of
u on dP.)

Proof. From the definitions of the classical and generalized stresses we have

X"[m] = /xVu + aViiT + (A + fi - a)(V • u)I

= Z[«] + (a - fi)(VuT - (V • u)I)
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so that, on dP,

Ia[u] = l[u] + (a - fi){VuT - (V ■ u)l)n .

To complete the proof introduce a local coordinate system in terms of the arclength
and distance from dP along normal lines. That is, let dP = {X{x) : t arclength}
and let n(z) denote the outward unit normal at X(t) . Then x = X(r) + vn(i)
produces an orthogonal coordinate system, (t, v), in a neighborhood of dP. For
any smooth vector-valued function u we know that

v"= ®X'(T)+

with Q{i, v)1 + vk(t) and curvature k(t) . Hence

M{x, v) := g 1 {t) ® n{x) - n{x) ® X\x)).

The skew-symmetry of M is immediate; the fact that M(■, 0) is constant is obtained
with the use of the Frenet formulae. □

3. Time-harmonic problem. One means of determining the large-time behavior of
solutions to the time-dependent problem is to study the corresponding time-harmonic
problem. In the current context, suppose U is a solution to Problem 1.1 for a time-
periodic and monochromatic incident wave, i.e., U°(x, t) = Re(u°(x)elwt) where
co > 0 is the frequency. Solutions to Problem 1.1 ultimately have the same form:
U(x, t) -* Re(u(x)e,co'), as t —> oo (pointwise on R2). The complex-valued "am-
plitude" u solves the following time-reduced interface problem.

Problem 3.1. Given co > 0 and u° : R2 —«• C2, determine u : Q u Q+ —<- C2
which satisfies

V • ~L[u] + pco2u = 0 in Q U Q , (3.1)

r i o[u] = u , i[u] = l[u°]+ onr, (3.2)

and the elastic radiation conditions.
3.1. Uniqueness. The elastic radiation conditions in Problem 3.1 are the time-

harmonic analogue of the outgoing condition of Problem 1.1. An explicit representa-
tion of these conditions is obtained from the Helmholtz Decomposition [22]. Thus,
u = u[ + ur where uL and uT, the longitudinal and transverse components of the
displacement, satisfy

^UL = (cf) "z. ' ^UT ~ (cy) "r>
Vxi(L = 0, V ■ uT — 0.

The constants cL := ((A+ + 2/^+)//?+)l/2 and cT (f*+/p+)]/2 are the irrotational
(longitudinal) and equivoluminal (transverse) wave speeds.
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Definition 3.1. The displacement u = uL + uT is said to satisfy the elastic radi-
ation conditions if uL and uT satisfy the Sommerfeld radiation conditions:

\uL\ = <f(r"1/2),

\uT\=d?(r-il2),

du, . co
—- + / — u
dr cL L

duT . co
K + i — uT
dr cT 1

< —1/2no(r )

/ _!/2\= o(r

The remainder of the uniqueness argument is standard [20, Chap. III]. An energy
argument (with u° = 0) shows that

Im J I[w] ■ u =
for all r. Then, utilizing the elastic radiation conditions, it is shown that

0 = o(l)-^+ + 2n+) f \uL\2 - [ \uT\2.
l Jr, ct Jrr

2 2Hence fr \uL\ =o(l) and fr \uL\ =o(l) and Rellich's Lemma [15, p. 109] implies
that uL and uT are identically zero in . Further, the interface conditions imply

n
that u =0 and I[w] =0 on F and, by unique continuation, the solution must
vanish in the interior. As a result, Problem 3.1 has at most one solution.

3.2. Integral representation. The reformulation of Problem 3.1 on a finite domain
is based upon the potential theory for the time-harmonic Cauchy equation

H+Au + (A+ + /i+)VV • u + p+co2u = 0. (3.3)

The fundamental solution of (3.3) is, in E , the matrix-valued function (see [19])

X{x,x) = -~ ^H{2\kTr')I + ^V{H(2 (kTr') - Hi2\kLr'))

where H^] is the zero-order Hankel function of the second kind, kL := co/cL , kT
co/cT, and r := \x - x\.

A family of integral representations for solutions of (3.3) is obtained from the
generalized second Green's identity (2.2). The simple and generalized double layers
for a density <p are defined to be

S"[(p]{x) := J 5£{x, x)(p(x)dsx,

fa[<p]{x) := jb[J?]{x,x)<p{x)dsx,

for all x e £2 U £2+ . (The kernel of the generalized double layer, La+[J3T], is the
n

matrix whose yth column is la+[J^ ], the generalized traction of the y'th column of
.W.)
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In addition to satisfying (3.3) in Q and in Q+ and the elastic radiation conditions,
5? and 2a have well-known jump relations [20]. Define, for x e T, the boundary
integral operators S and Da+ by

S[p](x) := j J,f (x, x)<p(x) dsx ,

D"+[(p](x) := J t"+[J^](x, x)cp{x)dsx .

Then, for xeF,

^[<p](xf =S[<p](x),
=t[Da+[<p]](x),

9fa+[(p](xt = T^<p(x) + Da+[<p]{x).

Theorem 3.1. (i) If u is a solution to (3.3) in an interior region Q, then

u=3ra+[u~]-5* Ia+[u]~~ in £2, (3.4)

X-u~ =Da+[u~]-S la+[uf onT, (3.5)

for any choice of the parameter a+ .
(ii) If u is a solution to (3.3) in an unbounded exterior region Q+ which satisfies

the elastic radiation conditions, then

u =<?>

1 + c
2U

b+[u]+

za+[u]

-&a+[u+) in Q+ , (3.6)

-Da*[u+] onT, (3.7)

for all constants a+ .
3.3. Boundary integral reformulation. We use the direct method to develop equiv-

alent problems on a finite domain. Suppose u is a solution to Problem 3.1. Then,
for any choice of the parameter a ,

u=S*

in Q+ while, on Y,
1 + c- S

IQ+["]+

ia+[uf

■&a+[u+]

- Da+[u+]. (3.8)

The goal is to eliminate all references to the exterior solution. This requires a
jump relation for the generalized traction. Using Lemma 2.2 and (3.2) we obtain

v«r iI [u] XQ+[w°] + [a- h)Mu t (3.9)

where M is as defined in Lemma 2.2 and, for any x G T, the jump in a- fi across
the interface is

[a - fi](x) : = (a_(x) - fi_(x)) - (a - n ).
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The remaining occurrences of the exterior solution are eliminated from (3.8) with
the use of the interface conditions, (3.2) j and (3.9). This produces

0 = X-u Ia-[u] + Da+[u ] + S[[a- fi]Mu ]-u° .

Note that the assumption that u° satisfies the homogeneous equation in Q implies
that

Tr*Ot r 0-, T-X +[u ] on f.1 0 c-U = D +[U ] - S

To complete the reformulation of Problem 3.1 we introduce the interior generalized
n

traction as an auxiliary variable: 0:=Xa[w] .
Problem 3.2q . Given a> > 0 and u°, determine the pair (u, 0) such that

V ■ X[w] + p_co2u =0 inQ, (3.10)

ZQ~[w]_-0=O onT, (3.11)

X-u~-S[Q] + Da+[u~] + S[[a-li]Mu~x]=u on T. (3.12)

Remark. Similar reformulations can be obtained from a simple-layer ansatz. In
this situation the auxiliary variable is the simple-layer potential. One benefit of this
approach is that the solution in the exterior is more easily determined than by the
direct method. The direct method is preferable in situations where the primary
interest is the interfacial traction. The simple-layer process is described in [21].

Remark. It is also observed in [3] that one can, in fact, form a family of problems
depending on a parameter /?, 0 < /? < 1 , for the anti-plane case. In particular when
P = j the resulting problem is symmetric, thus reducing the numerical complexity.
A similar family can be obtained for the plane strain case (see [21]). Symmetric
problems are also obtained from the coupling method presented in [5]. However,
this method has the disadvantage that it requires the use of hypersingular kernels.

Theorem 3.2. Let a be given. Problems 3.1 and 3.2Q are equivalent in the following
sense:

n
(i) If u is a solution to Problem 3.1, then (u|n,£a~[M] ) solves Problem 3.2q ;

(ii) Assume p_o? is not an eigenfrequency of the interior Dirichlet problem. If
(m, 0) is a (sufficiently smooth) solution of Problem 3.2n and the extension
of u to Q is+

u=^ e-[a- n]Mu z-la+[u°] 7a+[u -u], (3.13)

then u is a solution to Problem 3.1.
Proof. The argument leading to the formulation of Problem 3.2a verifies the claim

in (i).
It is obvious that the extension to Q+ specified in (3.13) satisfies the exterior

equation of motion and the elastic radiation conditions. It remains only to confirm
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that the interface conditions are satisfied. To verify (3.2) j we use (3.13) to compute
u+ . Then (3.13), together with (3.6), yields

S? - [a - /i]Mu t T - £q+ [u] - la+ [w]4 = 0.

The hypothesis that p_cu2 is not an eigenfrequency for the interior Dirichlet problem
implies S is injective [21]. Thus, recalling (3.9) and the definition of 0,

i[u]0 = 0 - [a - p\Mu r - Ia+ [M°] - Ia+ [u]'
n n +
1[Uf.

Therefore (3.2)2 is satisfied and the extended u is a solution of Problem 3.1. □
3.4. Variational problems. Suppose (w,0) is a smooth solution to Problem 3.2q .

Multiplying (3.10) by a test function v and integrating over Q produces, with the
use of (3.11) and (2.2),

0 = - f XQ"[w] • VF + f (VmT - (V ■ m)/)V(//_ -a_)-v
Jq J n

+ / p_0)2uv + / 0 v~ .
J n J r

Next, let ¥ be a test function on T. Multiply (3.12) by 2VF and integrate over T.
This leads to

2 j*¥-u = jv-u~ -2 f V-S[Q] + 2 j VDa+[u~]

+ 2 Jv-S[[a-fi]Mu~r].

We seek solutions in := H (Q) x H ' (T). Define := (u, 0) and ^ :=
(f,vF) and let {•,•) denote the H~l/2(T) - duality pairing.

/'locProblem 3.3 . Given u° e //,' (E2), find ^ e such that srfa{J/, 'V) =
for all 2^ € X

.1 y a

', 2H :=^"(m, w)+j/12(0, v)+j*2°(u, ¥)+j/22(0, V)

The functional & and bilinear form srfa are defined by 9r{'^/') := 2(4/, w°) and

where

aAu,v)\- [ • Vv - [ p_co2u-v
Ja J n
- [ (VuT - (V ■ u)I)V(n_ - a J • 17,

JQ

= - (Q,v~),
= (V, u~ + 2£>a+[*T] + 25[[q - //]M«;t]),
= - 2(*F, 5[0]).

^12(0, «)

<(",¥)

^(0,^)
3.5. Existence. A Riesz-Schauder argument is used to show the existence of a

solution to Problem 3.3 . The idea is to separate the bilinear form sfa into the
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sum of a coercive term (on X) and a "smoothing" term. The use of the generalized
traction is critical to the success of this procedure.

Let (•, •) be the 2?' - duality pairing and write

T) = V) + {s/fW, T)
where the bounded linear operators 3?0a, are defined by

{^0a^,T):= f Ia~[u] Vv+ f u-v-{Q,v-) + {V,u~)-2{V,§[&]),
Jo. J n

, T) := - f (p_co2 + l)u-v— [ (VwT - (V • u)I)V(fi_ -a_)-v
Jn Jn

+ 2(¥, Da+[u~]) + 2(T, S[[a - fiWWJ) - 2(¥, (5 - 5)[0]),

for all ^M?. The boundary integral operator 5 is the trace of the simple
layer 5 for the homogeneous elliptic equation

~H+Au - (n+ + A+)VV ■ u + u = 0.
Observe that formally

-V • Ea-[w] + w - 0"
u~ - 25[0] J '

-{P-W1 + l)w - (V«T - (V • u)I)V(fi_ - a_)
. 2Da+[u~] + 2S[[a - n]Mu~x] - 2(5 - 5)[0]

and Problem 3.3 can be rewritten as

'+J/"& = F:= 0
2 u° (3.14)

To investigate the coercivity of sZQa on 2?, let ^ — (u, Q) be given. Then

Re(sf0a%S ,ZS) = [ (ZQ_[w] ■ V« + |w|2) - 2Re(0, 5[0]).
Jn

It suffices to show that the individual terms are coercive on and H~l/2(T),
respectively.

Lemma 3.1. Suppose a_ is selected so that a_ e (-fi_ , n_] on Q. Then there is
a positive constant C such that

J (£a~[w]'Vm + |m|2) > C||w||^,(n) (3.15)

for all ueHl(Q).

Lemma 3.2. The operator 5 is bijective from H '^(T) to H{/2(T) and coercive
on H~l/2(T), i.e., there is a constant C > 0 so that

-Re(p, S[<p]) > C||^||^-i/2(r)

for all (p&H~x'2(Y).
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These results are obtained by a diligent investigation of the singularity of the kernel
of S (see [18]). The complete proofs for the present context are in [21],

Proof of Lemma 3.1. From the definition of the generalized stress we find

XQ" [u] ■ Vu + \u\2 = (fi_ - a_)
Vw -Vu + C"_ +<*_)Vu + Vw

+ (A_ + — Q:_)|V ■ U\ + \U\ .

(aE + b{\rE)I) ■ E > min{a, a + 3b}\E\2

Then, using the estimate

(<aE
for symmetric tensors [14, p. 85] and applying Korn's Second Inequality [9], we
conclude that, for all u e ,

[ (b~[u]-Vu + \u\2) >C [ (| Vw|2 + |m|2)
Jq Jn

provided

-f- a_ ^ 0,

+ £*_) + 3(A_ + fi_ — q_) > 0,
H_ - a_ > 0.

Combining all three restrictions, (3.15) holds for any a_ e (-//_ , //_]. □
The coercivity of s/Qa implies the existence of an inverse Ta : %f' —► . Applying

Ta to (3.14) yields
^ + (rV,Q)^ = TaF. (3.16)

If TasfQa is compact, as an operator on 3?, then (3.16) is a Riesz-Schauder equation
on ^ . As such, a solution to Problem 3.3(t exists if = 0 is the unique solution
to the homogeneous equation

^ + (rV,> = 0. (3.17)
The compactness of Tasrf£ and the unique solvability of (3.17) are directly related

to the smoothing properties of S - S and Da+ .

Lemma 3.3. (i) The difference S - S is a pseudo-differential operator of order -3 ,
i.e., S - S : H~1/2+e (r) - H5,2+( (T) for any e > 0;

(ii) The smoothing of Da+ depends upon the choice of the constant a+ . In
general, Da+ is a pseudo-differential operator of order 0 . However, if

ft+(A*+ + /U
A+ -)- 3fi+

a+ = a+ := £± ^ — +; , (3.18)

then the order of Da+ is -1 , and Dn+ : H]/2+e(T) —> Hi/2+e(T).
Proof. The smoothness of these mappings is determined from asymptotic expan-

sions of the kernels. The kernel of S is

%{x ,x) = ^ - ^D7 + j2VV(KQ(kT\x -x\)~ K0(kL\x - *|)) j ,
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where K0 is the modified Bessel function of order zero, kL := (A + 2n+)~l/2, and
kT :=fi, . Small-amplitude expansions of and show that

(J?T - JT)(x, x) = C, + C2\x - x\2 log \x - x\ + <f(\x - x|2).

To prove (i) we consider the kernels of the second-derivatives of S - S. The sin-
gularities are <^(log|x — x|); hence one degree of smoothing is produced. It then
follows that S - S is a pseudo-differential operator of order -3 .

The proof of the second half of the lemma is based upon Kupradze's derivation
of the "pseudo-stress" [20, Sec. 1.4], The small-amplitude expansion of the kernel of
Da+ is

la+[3r](x, x) = (Z?,/z+ + b2a+) ( log \x - x\) I (3.19)
X

-2b2(n+ + a+) ^-^-log|x-x|^ VJx -x| <g> VJx -x|

+ (bla+ + b2/u+)n ® log \x - x\
+ {bl (A+ + n+ ~ a+) + b2(X+ + 2y"+))(Vx log \x - x|) ® n
+ &(\x -x|log|x -x|)

where b] := -(A+ + 3/i+)/{4iin+(A+ + 2fi+)) and b2 := (A+ + fi+)/{4iin+{X+ + 2fi+)).
n

Note that the singularity of Za+[J3T] is, in general, a combination of normal and
tangential derivatives of the logarithm. In these situations Da+ has a Cauchy kernel
and provides no smoothing. However, if a+ can be selected so that only the normal
derivatives terms appear in (3.19), then one degree of smoothing will be obtained.
The unique choice of the parameter a+ for which this occurs is (3.18). □

To complete the proof of the compactness of Tasrf°, let a := a where a is
obtained from (3.18) and a_ is defined so that [a - fi] = 0. Then

: Hx+\£l) x H~x'2+e(T) -> Hx+t(£2) x //3/2+e(T)

and, with := Hl+C{fi) x H~l,2+e{T),

for any e > 0. Thus Tas/a' : , and Tsf" is compact as a mapping on
&.

To show that (3.17) has a unique solution, suppose ^ e is one such solution.
Then ^ is a solution to Problem 3.35 , with u° = 0, which is in e for every
e >0. In particular, % is smooth enough to invoke Theorem 3.2(ii). The uniqueness
of solutions to Problem 3.1 implies that ^ = 0.

The existence of a solution to Problem 3.3(i is complete once we confirm that a
satisfies all the hypotheses of Lemma 3.1, i.e., a_ e (~fi_ , n_]. That a < fi_ is
easily determined from the assumptions that fi > 0 and 3A + 2jU > 0. However,
a_ > —fi_ only if fi_ _ > £/{A + + 3//,).
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Theorem 3.3. Define the function a by:

a(x):=
xea

+ ■"+)
^■+ + 3/^,

x e Q+

Assume
2

=■ in n (3'20)
2and p_co is not an eigenfrequency of the interior Dirichlet problem. For every

0 12incident wave u € Hloc(R )> Problem 3.3^ has a unique weak solution ^6/.
Moreover, \\%\\%> < C||m°||h\ (r2j for some constant C > 0.

In practice, solutions to Problem 3.3d are sought via Galerkin's method. The
existence proof just completed also suffices to establish quasi-optimal convergence of
finite-dimensional solutions in ^ (see, e.g., [6,17]). Numerical implementation of
these ideas is simplified by the observation that all boundary conditions are natural.

We conclude with some comments about the restriction on the interior shear modu-
lus. Although many realistic combinations of materials do satisfy (3.20), for example
a steel, aluminum alloy, and "unmodified" concrete foundation in the surface of the
earth (see, e.g., [13]), there is no known physical justification for this constraint.

One explanation for the origin of this restriction is the lack of necessary conditions
for the coercivity of £fQa . In fact, Costabel and Stephan obtain existence results for
any combination of (homogeneous) elastic materials [5]. It must be noted that the
techniques in [5] require the use of integral operators with the hypersingular kernels;
the methods which we have just completed utilize integral operators that are at most
strongly singular. The author is continuing to examine several means of strengthening
this part of the analysis.

4. Artificial boundary problems. The use of artificial boundaries for acoustic and
elastic wave equations on two-dimensional half-spaces has been studied extensively
(see, e.g., [4,11,12,16] and the references therein). The basic approach is to use
Laplace and Fourier transforms to obtain an explicit representation for the symbol
of the artificial boundary condition. The exact boundary condition is nonlocal in
both space and time; more localized approximate boundary conditions are obtained
by truncating the Pade expansion of the symbol.

Recently, Barry, Bielak, and MacCamy [2] have generalized these methods to the
scalar anti-plane problem in the exterior of a region with a curved boundary. The
extension to the planar elastic interface problem is presented in this work.

4.1. Exact artificial boundary conditions. Let U be a solution of Problem 1.1.
Then U(x, •), the Laplace transform of U(x, •), satisfies the elastic radiation con-
ditions and

ps2U=VI[U] inftuQ

[U] = U°,

+ :
n ,

1[U]
n -0 +

= X[IT] onT.
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The artificial boundary is Tj , a closed, convex, smooth curve surrounding £2.
Define ^ to be the unbounded region with boundary Tj and £2, := Q+ \ £2, .
To obtain boundary conditions on the artificial boundary we consider a family of
well-posed elliptic Dirichlet problems in .

Problem 4.1;. Determine the function &{■, •; t) which satisfies the elastic radi-
ation conditions and

ps2$(x, 5; t) =V • l[$?](x, s; t) in Q, + (4.1)

1&{x, s\ t) =U(x, t) on Tj. (4.2)

From classical elliptic existence theory there exists a bounded linear operator §
(independent of t) for which ${x, 5; t) = &[U\T (•, r)](x, s) in + . Thus, for
any a, the generalized traction of $ on Tj is given by

ia+m\T{-,-t)=Fa[u\T (.,o],
11 11

where 9r<x is a bounded linear operator. The generalized traction of U is found by
applying the Laplace transform to (4.2):

IQ+[f7]|r (x, s) = [ e~"X',+ [^?]|r (x, 5; t) dt
1 Jo 1

Loo
e~s'9ra[U\v{-,t)](x,s)dt (4-3)ir

= Fa[U\r{-,s)]{x,s).

The corresponding artificial boundary condition for U is, in the time domain,

£a+[^]lr|(-.0=^'a[t/,|r1]

with [/'(•, t) := U(-, t - t) , the time history of U at time t. The formulation of
the exact artificial boundary problem is now complete.

Problem 4.2q . Given U° , find the planar wave U that satisfies

pU =V ■I\U] in (flufl.) x (0, oo),i-
la+[U] =&a[Ut] on Tj x (0, oo),

[U] = u°,
n

= 1[U°]+ on Fx (0, oo),![£/]

£/(•, 0) = 0, U(-,0) = 0 inQuQ,.

The impracticality of the exact artificial boundary condition is apparent. First,
!Fa is defined solely through the abstract theory of elliptic PDEs and the Laplace
transform. Further, even if an explicit definition of were available, the spatial
and temporal nonlocality complicates any computational implementation.

4.2. Approximate artificial boundary conditions. Approximations to ■9r" are ob-
tained by truncating an asymptotic expansion of &~a. The expansion of is
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based upon the ideas of geometrical optics for wave equations [7], The Helmholtz
Decomposition permits the replacement of the exterior equation of motion (4.1) with
a pair of (scalar) reduced wave equations in Qj + . That is

y = v$ + v x (0£>3)
where

A$=(i)2$, A*=(£)V (4.4)

High-frequency (s » 1) expansions of and 4* are
OO

$(x ,s;t)~ e~sp(x) ®k(x; t)s~k, (4.5)
k= 1

OO

$(x, S; t) ~ e~sq(x) Vk{x; t)s~k . (4.6)
k= 1

The computations simplify with a change of coordinates. Suppose rt = {X(r) : t
arclength} and n{t) is the outward unit normal at X(x). Then x = X(t) + vn{x)
defines an orthogonal coordinate system (r, v), where v is the distance from x
to T1 as measured along the normal n{i). Let Q = Q(r, v) 1 + vk{t) where
k{t) > 0 is the curvature at X(x) . For future reference we recall that for a scalar-
valued function X:

VX = ^X'(x) + Xl/n(x), A x = i(f^l) + (Qx
q A Q \\ Q

and for a vector-valued function v :

' ,V' , V

V T
Vv = ® X (t) + v v ® n{v)

where <S> denotes the tensor product.
The functions p and q are determined by substituting (4.5) and (4.6) into (4.4)

and (4.2). Thus, for v > 0,

\Vp\2 = \, \Vq\2=\,
CL CT

while p = 0 and q = 0 when v = 0. As a result

/>(*) = 7-. Q(x) ~ ~r ■
CL CT

To express the generalized traction in the new coordinates we first decompose &
into its tangential and normal components: & = $TX' + n :

£Q+mir, = 0+(v£)|T» + a+(V^)T|rn + (A+ + n+ - a+)(V ■ &)\Tn

= (H+&Tv+a+(&Nt-K&T))X' (4.7)

+ ((^+ + 2-ii+)&' v + (A+ + /z+ - a+)(£T + k& ))n .
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The asymptotic expansions of w and $N on T, are

&T(x,s-,t) = ^-Vv

1 -su/Ctxu , („-'"/cL®k,T , -™/cT (_UJ , i
Crr

e "V1+£ + II.k+1
-k

■T k= 1

and

= $ ,„ + ̂f
~ - (<iy„ - r*.

Thus the expansion of the generalized traction on the artificial boundary is

n oo

r+mTi{x,s-t)~ £ s*+[£/iri(-> OK*)* .
k=~\

Definitions of the tangential differential operators Ek+, in terms of the 0>k and x¥lc ,
are obtained from (4.7):

s_+,[tfiri]=~^lx,+i+ ^+<v.

HMflr.l - (£*.,. - + (I -
+ 2^, A, + ^, Q ,+ + —   ±K°'
CL ' CL

A+ + 2n+ /j,+ + a
CL CT

and, for each k > 1,

SMflr,] = H " K'" J4"'- + (| " j) V".") X'
CTuj _ , Arft _l ^1+ (A+ + 2„+) ̂ «Pfc>„t - -<D,t + -c+[fL- j J 4>fct

The high-frequency expansion of is determined from (4.3); truncating this
expansion after a finite number of terms produces a sequence of approximate artificial
boundary operators

Fan[U\r {-,*)}■■= £ Zak+[U\ri(-,s)](x)s-k.
k=— 1
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All that is lacking is an explicit definition of the E^+ in terms of U\r . Recurrence
relations for the and x¥k are obtained by substituting (4.5) and (4.6) into (4.4):

K 0, k = 0
+1Q%+x j^AOfc, k > 1 mQi.+ ' (4'8)

*■ f 0, k = 0
^ + 2Q^ = {^k, k> 1 (4"9)

If we write U = t/rX' + UNn, then the corresponding relations for the Dirichlet
boundary condition (4.2) are

1 { -UN, k = 0**+1 = 1* onr.' (4-10)
T

-4> , = I " ' onr. (4.11)k+x 1 T „, k > 1 1

*+' I ̂ ,,+n.r' *>*
j_ [t/r, ^ = 0

The first three artificial boundary conditions (n - -1, 0, 1) are determined from
O, and y, . With k = 0, (4.8) and (4.10) yield

c,
0i =-cLUn, Oj v = -jkU ■ n .

The computation of tangential derivatives is straightforward.

Oi T= -cl(kU X' + U x n),

®i.tt = - cl((2kLJ t + k'U) • X1 + (U TT - k2U) ■ n),

,„t = y ■ X' + + k'U) ■ n),

but the second normal derivative requires slightly more care:

= _l_g_ / k(t)
{>vv 2dv \Q(t, v) 1

3cL 2 Tj
= -rK U ■ n .

„=o 4
In a similar fashion and its second derivatives are determined from (4.9) and
(4.H).

The definitions of Eak+, k - -1,0, 1 , in terms of the boundary data, that result
from these calculations are

^+,[t/]= ~A_x(x)U,
Ho+[U]= -A0(x)U + Ba0 + Ur,

E?+[C7] = At(x)U + B](x)Ur + C,(x)C/

with
Ui / / ^ 2//

A fx):=C±x <8>X +-± ^n®n\
cT cL
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A0(x) :=k ( [cL- jcTJ ^±X' <g> X'

A, + 2fi
+ [CT~ 2ClJ cL n®n

^q+ + ^r{cT- cL) J (X1 ® n - n ® X1);5 + •X>0 .
"T

A^(x):=/C

+ k'(cl - cr)2^~~^' ® n

/ 2 2// , /
- K (cL - CT) —±n <g> X

1 ( - Lr V -t_t3"+,
2 L 2c,+ k \cT- jcL ] -~z—-n <8 n ;

~L

Bx{x) := k{cl - cT) ( ( ^cL - cTJ X' ® n

1 \ A + 2[i
w ,  n®x'

2 ' L c~L

C,(x):= (cL- ^cT^n+X'®X'

+ (cT - \c^j (A+ + 2[i+)n <g> « .

The final forms of the first three approximate boundary conditions, in both the
frequency- and time-domains, are summarized in the following table.

n = —1 £ a+[U] = -sA_lU ia+[U] = -A_lU

n = 0 IQ+[&] = -i^_,&-/l0C/ + 50+£/ir £°+[^] = -^_|C-^oi7 + flO+C/,r

71 = 1 £a+[t/] =-5.4 t/ + Ba+{/r £a+[C/] = -^_,i/-^0f7 + fi0a+f7r

f In, £ + s,t/it+ <:,&„) +^1i/ + i»1uT + c1t/>„

Remark. With the exception of the first approximate artificial boundary condition
{n = -1), each approximate boundary condition is independent of the parameter in
the sense it can be rewritten in an equivalent form which does not involve a . For
n = 0 this follows from the fact (see Lemma 2.2) that

i[U] = lanU]-(a+-n+)MU T

= A_lU-A0U + 2f^- (ct-\Ci)mUz.
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Since is the only coefficient matrix which depends upon a+ , similar observa-
tions hold for all n > 1 .

Remark. The time-dependent version of the three-term boundary condition (n =
1) has been differentiated with respect to time. This is done in anticipation of the
variational formulation (see Sec. 4.5) as well as for notational convenience.

We conclude by noting that each approximate boundary condition is spatially
local. More importantly, the temporal dependence of is local for n = -1, 0
but requires the time history of U and its first (n + 1) tangential derivatives for
n > 1 .

4.3. Dissipativity. Our investigation of the well-posedness of the artificial bound-
ary problems proceeds exactly as in [2]. Let be a boundary operator of the type
considered in the previous sections and let &~a denote its Laplace transform. We
consider a general class of problems that includes the exact and approximate artificial
boundary problems.

Problem 4.3q . Given functions (p , \f/, and x > determine U which satisfies

ps2U = V •![£/] in £2 U ft,

IQ-[C7] =$ra[U] + x onf

[U] = <p, Z[£/] \j/ on r.

Definition 4.1. The boundary operator ET a is dissipative if Problem 4.3q , with
<P = W = X - 0, has no nonzero solutions for se{zeC:Rez>0,z^0}.

One motivation of this definition is as follows: Suppose ^ra is not dissipative.
Then a solution to Problem 4.3a will, in general, have poles in Res > 0. Hence the
solution to the time-dependent problem is expected to grow exponentially in time.

Theorem 4.1. Assume a e {-p, p] in QuQ, and a_ - p_ = a+ - p+ on Q.
Sufficient conditions for the boundary operator 9to be dissipative are

/,
3ra[U] U< 0 for all 5 = £>0 (4.12)

sgnlm / a[t/] ■ U = - sgn Ims for all s - + irj,

with ^ > 0, t] ̂  0

(4.13)

for any U ^ 0 on T, .
Proof. Let U be a solution to Problem 4.3(( with (p — \j/ = x = 0. The first

generalized Green identity and the continuity of U are used to show that

0 = s2 [ p\U\2+ ( I.a[U] VU-f XQ[C/] U-[ ^a[U] U.
Jauci, J nun, J r L J -'r,

Further, the interface term vanishes since, by the second hypothesis on a and the
n ^ ^

interface conditions, [X"[L?]] = [a - p]MU T = 0. The first hypothesis on a



APPLICATIONS OF GENERALIZED STRESS 139

guarantees
vu + vu'Ia[U]VU>C

Suppose 5 = £ > 0. Then

2 f ,fr,2 , I r«rA, _7v ^ s~,\i r%i|2s [ p\U\2+[ ZQ[C/]-Vt/>C||t/||^(nuo
■/tiun, Jn un, 1

and (4.12) implies that , = 0; hence U - 0 in QuQ, . (Note that this
argument is not valid if 5 = 0.)

When s = £ + it] with £ > 0 and rj ± 0 we have

0 = Im{s2) [ p\U\2-lmf fa[U]-U.
J nua, Jr.

If £ > 0, then (4.13) implies ||^||L2(£Jun ) = 0. If £ = 0, then Im(s ) = 0 and

Im fr ya[U] U - 0. But sgnlms ^ 0 so that (4.13) implies U = 0 on Tj . Then,
by the uniqueness of solutions to the interface problem, we conclude that U = 0 in
fiuD,. □

Our first application of Theorem 4.1 is to identify the parameters a for which
SF* is dissipative.

Theorem 4.2. If a e (-//, /u] on Q u Q+ and [a - p] = 0 on T, , then the exact
artificial boundary operator 5Fa is dissipative.

Proof. We provide only a sketch of the proof, the complete argument is in [21].
An energy argument on the truncated region r := {x e fij : |x| < r} yields

0 = s2p,f \U\2 + [ I a+[U]VU- [ la+[U] U+ [ ^a[U]U.
JaKr Jnu, Jrr V J Jr,

From the elastic radiation conditions it is determined that

f ■ U = a^(r)s2 + a.(r)s + aJr)
J r,

where for a sufficiently large value of r, say r = r*, all three coefficients are positive.
Thus, when 5 = £ > 0,

- f ^a[U] ■ U = a2(r*)£2 + a1(r*)£ + a0(r*) > 0

while, if s = £ + it] with £, > 0 and rj ± 0,

-Im / Sra[U] U = ri(2£a2{r*) + al{r*)).
Jri

Since 2£a2(r*) + a^r*) > 0, this confirms the dissipativity of . □
The primary difference between the plane and the anti-plane approximate artifi-

cial boundary conditions is the presence of the terms involving the first tangential
derivative. The flexibility obtained by using the generalized traction will be exploited
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to compensate for these new terms. Thus, assuming the analogy with the anti-plane
problem remains intact, we anticipate that ^ will be dissipative for n = -1,0,
but not for n = 1 .

One explanation for the appearance of the additional tangential derivative terms is
provided in parts (iii) and (v) of the following lemma, viz. the only skew-symmetric
scalar is 0.

Lemma 4.1. For every xeF, :
(i) A_{ is positive definite;

(ii) A0 is positive semi-definite if and only if cT/cL > j ;
(iii) Bq+ is skew-symmetric (and spatially constant) for all constants a+ ; more-

over, Bq+ = 0 if and only if a+ = a*+ := -//+(1 - cL/cT);
(iv) A j is positive semi-definite;
(v) Bj is a skew-symmetric;

(vi) C, is positive semi-definite if only if cTlcL > \ .
Proof. For a matrix of the form

L := aX' ® X1 + bx' ® n + cn ® X' + dn <g> n
with scalar-valued coefficients: det(L) = ad - be and tr(L) = a + b . The physical
hypotheses on the Lame constants imply that: cL > 0, cT > 0, and cL - cT > 0.

Since det(^_j) = (^+/cr)((A+ + 2/z+)/c^) and tr(^_J = n+/cT + (X+ + 2fi+)/cL ,
it is immediately seen that A_i is positive definite. Next,

2 H+ 2//+ ( 1 \ ( 1
d«M0) = k Tj^r— " 2ct ) (c7- " 2cl

"{Ao]"K (t; - \ct) + icT"

thus, A0 is positive semi-definite only when cT - \cL > 0. (Parts (iv) and (vi) are
similar.)

The skew-symmetry of Bq+ and B{ is obvious. To complete the proof of (iii)
note that (X' - n® X') ^ — 0 . □

The positivity of A_x guarantees, by Theorem 4.1, the dissipativity of for
all admissible a. Consider next the approximation with n = 0. The observation
that _

Im f A0U U = lmf B°+U-U = 0
J r, J r,

implies that condition (4.13) is satisfied. Condition (4.12) requires more attention.
First, Aq is positive semi-definite if and only if cT - \cL > 0. Next, the skew-
symmetry of Bq* eliminates all hope for positivity of the bilinear form for the
U T term. Moreover, since ||U Z\\L (r f cannot be bounded by ||t/||L2(r >, the two
favorable terms do not counteract this term. The final alternative is to choose the
parameter so that B^+ = 0, i.e., a+ = a* . To satisfy the remaining hypotheses of
Theorem 4.1 let

a_ = al := fi_ - ji+ f 2 -
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and assume that

t1-> ~~2~ pointwise on Q. (4.14)

This completes the proof of the following theorem.

Theorem 4.3. (i) is dissipative for any admissible a;
(ii) is dissipative if a = a*, cT/cL > \ , and (4.14) is satisfied.
Remark. The physical interpretation of the restriction on the exterior wave speed

is that the unbounded body cannot be too incompressible. Materials such as granite
and the Earth's mantle do satisfy this constraint, but the outer core does not. In
addition, the constraint on the interior shear modulus (4.14) is less restrictive than
the corresponding constraint, (3.20), obtained in the analysis of the time-harmonic
problem. (See also the discussion at the end of Sec. 4.4.)

The s~l term in the three-term approximation (n = 1) also has a U x term
which is not present in the anti-plane setting. This does not present a difficulty as the
second-order derivative term can be used to control the new term. The difficulty arises
from the fact that both Al and Cx are, in most situations, positive semi-definite.
As a result, neither sufficient condition will be satisfied.

Again this parallels the anti-plane analysis. The numerical experiments in [2]
indicate that exponentially growing solutions do arise from the use of the three-term
approximation. These numerical results are markedly improved when a modification
of the approximate operator is tested. We anticipate similar findings for the planar
situation.

The idea is to consider a simple variation of which both approximates the
exact artificial boundary operator as well as and improves the damping
properties of the solutions. Thus we define

J^[&] := -sA_fi-A„U + B;-U^ + ~(Afi + Bfi, + Cfi^,
for any S > 0 . The corresponding boundary condition is

b[U] + 8!b[U]= - A_lU - {A0 + 8A_X)U + {Al -SA0)U

+ B^Ux + {B,+SB^)UT + ClUTT.

To investigate the dissipativity of &a. , let s = £ > 0 and consider
6

f Falf[U] ■ U = - s f A_XU - ~U — f A0U U + f B°+U r U
Jr. Jr. Jr. Jr.

+
5 +rs{!rA'0D+j^B'-c'-')D'°-L,c<D'D^

Recall that A_x is positive definite, A{ is positive semi-definite and B0 and 5, -
Ct T are skew-symmetric. To ensure that A0 and Cl are also positive definite,
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assume cT/cL > \ . Then, applying Young's inequality to the skew-symmetric terms,

/,
o< - (sk_,+k„ - c0 (e0) - ') ngnl,,r,, (4->5>

E° + j + a')
with fc_,, kQ, k2, , and c(cj) positive and kx, e0, and cq (e0) nonnegative. The
goal is to demonstrate that a+, eQ, , and S can be chosen so that the right-hand
side of (4.15) is nonpositive.

It is apparent that replacing 5 with 5 + S does not improve the status of the
Bq+ term; the need to have e0 = ca (eQ) = 0 dictates the selection a = a*. Then,
choosing < k2 and S sufficiently large (but independent of £), (4.12) will be
satisfied.

The second condition (4.13) remains, in general, unfulfilled. The same situation
exists in the anti-plane problem. However, numerical experiments indicate that the
modified approximate boundary condition does prevent exponential growth of so-
lutions. (We emphasize that Theorem 4.1 provides only sufficient conditions for
dissipativity; necessary conditions are unknown.)

4.3. Half-space comparison. In the context of a homogeneous half-space it is a
simple exercise to compare the approximate artificial boundary conditions with those
obtained by Clayton and Engquist [4] and Engquist and Majda [11,12],

We consider the Dirichlet problem on Q+ := {x e R2 : x2 > 0} and introduce an
artificial boundary T, := {x 6 I2 : x, = L} with L > 0 . The first three approximate
artificial boundary conditions (« = -1 , 0, 1) are

A+ + fi+ - a+

".1 +

Ua +

A+ + 2[i+
0

Ct0 1 - -£
CL

^ - 1 0
CT

0
c

C_T_

CL

cT
- 1 0

U 2 +

^,2 +

U2 +

CL

0

0

J_
0

0

J_
cT

0

J_
CT

0
1

2 CL CT ®

0 2C7" _ CL J

cT

U = 0 (4.16)

U = 0 (4.17)

U (4.18)

ut 22 = 0.

The three-term approximation (4.18) is exactly the same as Engquist and Majda's
"modified second-order radiating boundary condition" [12, p. 336, Eq. (3.20)].

Recall that we were unable to show that (4.18) is dissipative. Even in the simplified
geometry of a half-space, the well-posedness of this boundary condition is difficult
to ascertain. However, numerical evidence [10] indicates that (4.18) is stable only
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for materials with cT/cL > 0.46. The similarity of this finding to the theoretical
restriction cT/cL > 0.5 needed to show that (4.17) is dissipative is intriguing, but
unexplained.

4.5. Variational problems. The fact that the approximate artificial boundary con-
ditions are natural suggests the use of finite element methods. Let U be the solution
to Problem 4.2a with incident wave U° and replacing a. The weak for-
mulation is most easily discussed in terms of the total wave W (see (1.1)) which
satisfies

pW =V I[W] in (QuQj) x (0, oo),

t-[W] =^na[W']+^[U°] on Tj x (0, oo),

[W] = 0, I[W] on T x (0, oo),

W{-, 0) =0, W{-, 0) = 0 inQuQ,.

Here ^[U\x, t) := Xa+[t/u](x, t) - ^na[(U°)'](x).
Let V be a test function on QuQ, and assume that V(a_ - p_) = 0 in Q and

[a - n] = 0 on T, . Then, since [Ia+[W]] = 0,

0 =[ pw-v+f La[W] ■ V - [ Ia+[IV] ■ V
./nun, J nun. Jr. (4.19)

and the following variational problem is obtained.
Problem 4.4a n . Given an incident wave U° , find the total wave W such that,

for any test function Fe//'(fluQ ) and all r > 0,

(4.20)[ (pW(-,t)-V + la[W(-,t)]-VV)- f $-«[W']-V
J QuQ| J r j

- [ &Z[U°(.,t)].V
Jr\

[ W(-, 0) ■ V = 0, [ W(-, 0) ■ V = 0. (4.21./nun, ./nun,/nun, ./nun
When the two-term approximation (n = 0) is used (4.20) becomes

s/a{W,V)+( A_x W ■ V + f pW ■ V = [ 3?*[U°]
./nun, ./nun, J r,

where stfa is a bounded bilinear form on Hl(D. U Q ) defined by

■ V

jfa(IV,V):= f Ia[W] ■ V+ [ A0W ■ V- [ Bq+ W r ■ V
J nun, Jr. J r,

Moreover, if cr/cL > \ and a = a*, the Second Korn Inequality [9] implies that
is coercive on //'(Oufi+).

When W(■, t) and V are restricted to finite-dimensional subspaces of //'(f2Ufl+)
the variational problem reduces to an initial-value problem for a system of linear
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second-order ODES in time. Thus, the finite-dimensional problems have a (unique)
solution for all t > 0. The convergence of these solutions can be investigated using
"elliptic projection" techniques (see, e.g., [1,8]). Further results are forthcoming.

The additional damping term in the modified three-term approximation (n = la)
requires a different treatment; a mixed method seems preferable. Let /(•, t) :=
n a t *
£"+[W ]If and assume a = a . The weak form of the artificial boundary condition
is

[ (X + A_l U + A0U - A U) ■ y\

+ S [ (X + A_xu + A0U) ■ >1
■'ri

- LBlU.T-1+[ ClU,r-1,T= [ ^[U°]Jr. j r, j r.

(4.22)

■ 1

where rj is a test function on Tj . Thus we seek a solution (W, %) which satisfies
(4.19), (4.22), and the initial conditions (4.21). Even though this problem is easily
implemented on finite-dimensional subspaces, we have yet to succeed in proving the
existence of solutions to these problems.
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