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Abstract. In this paper, various applications of the theory of hyperdifferential operators
to quantum mechanics are discussed. A concise summary of the relevant aspects of the
theory is presented, and then used to derive a variety of operator identities, expansions,
and solutions to differential equations.

§ 1. Introduction

The purpose of this paper is to point out various applications of the
theory of hyperdifferential operators. In particular we will illustrate how
this theory can be used to derive a wide variety of operator identities,
expansions, and solutions to differential equations of interest in quantum
mechanics.

Hyperdifferential operators are differential operators of infinite order
with variable coefficients

A= f amnzm( d)n. (1.1)

m,n=0 dZ

The feature of these operators which is of particular relevance in applica-
tions is the possibility of defining the symbol of 4,

cA(z, &)= i Ay 2™ E (1.2)

mn=0

in terms of which we can develop a computational calculus, called the
symbolic calculus.

* This work was partially supported by N.S.F. grant GP 19614.
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We note that for a hyperdifferential operator 4 with symbol ¢ A(z, £)

Af=Cn | ol ic) fle)de (1.3)

where

f@=@n * e ™ f(x)dx, (14)

is the Fourier transform of f(x). Here we must assume that f has the
proper smoothness and growth characteristics. (x is a real variable while
z and & are usually complex variables.)

In Sections 2 and 3, some results about analytic functionals, hyper-
differential operators, and the symbolic calculus are presented in their
most elementary form. In particular, in Section 2 we introduce several
representations of analytic functionals (the most important of which is
the Fourier-Borel transform). In Section 3, we derive formulas for the
symbol of a product of two operators and the transpose of an operator.
These formulas are the essential ingredients in the symbolic calculus.
A more detailed exposition can be found in [14, 15].

In Section 4, the results of Sections 2 and 3 are applied to Weyl's
prescription for quantizing a classical function and to the process of
normally ordering an operator. Section 5 is devoted to the solution of
a partial differential equation which arises in the theory of two photon
amplification [8].

To illustrate the basic concepts, we present the following examples.
First, if f(£) is the Fourier transform of f(x) and g(x, £) is a polynomial
in x and &, then

glx, dfdx) f(x)=2m)"* [ e**g(x, i8) f(£) d¢ (1.5)

is a hyperdifferential operator with symbol

og (x, di) =g(x, &). (1.6)
X

Next, consider the initial value problem

%@,z):P(%) fx.0, >0 with f(x,0)=/fo(x). (L7

The solution is given by
R() fo(x)=f(x,0)=(2m)"* [ e eP @ fy (&) de . (1.8)

where
R(t)=e'P@dx) (1.9)
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is a hyperdifferential operator with symbol
oR(t) =€t (1.10)

In the case of variable coefficients, that is, P(d/dx)— P(x, d/dx), this
problem is much more difficult, but can be handled using our techniques
(see Section 5). In fact, this is one of the main differences between our
theory and for instance [3].

The material found in Section 2 is well-known. The material pres-
ented in Section 3 is a special case of the material in [15, 16, Section 21].
However, the proofs in [15, 16] use the theory of topological tensor
products and consequently are far more complicated than our presen-
tation.

The formulas derived in Section 4 appear in the physics literature.
What is new is the use of the symbolic calculus to derive them. In par-
ticular, the important Formulas (3.4), (3.8), (3.10), and (3.15) which we
use extensively in Section 4 appear in the physics literature, [12, 17] but
are not used in the extensive way we use them. In addition, our deriva-
tion of the formulas (4.4), (4.11), (4.14), (4.15), etc. show that these expres-
sions are valid for a wide class of analytic functions. Previously, it was
only known that these expressions were valid for the trivial case of
polynomials.

Equations like the equation in Section 5 have been discussed exten-
sively [2, 7, 8, 10, 11, 13]. We include this example here to illustrate the
general applicability of our technique.

The main point of this paper is to present the precise mathematical
theory of hyperdifferential operators and the symbolic calculus in a very
elementary form and to then show its general applicability to quantum
mechanical problems.

In Section 6 we discuss generalizations of this theory and some of its
relationships to other theories.

We remark that the theory of hyperdifferential operators is formally
similar to the theory of pseudo-differential operators and Fourier inte-
gral operators (see [5, 6]). However, there are many important dif-
ferences, in particular, pseudo-differential operators are assumed to be
of finite order. The functions appearing in the definition of Fourier
integral operators, which in our case correspond to the symbol, must
satisfy conditions which our symbol usually does not satisfy. These dif-
ferences come from the fact that pseudo-differential and Fourier integral
operators are designed to operate on Sobolov spaces, that is spaces of
functions with a finite number of square integrable derivatives, while
hyperdifferential operators are designed to operate on spaces of analytic
functions.

Although we only discuss the case of one variable z, everything easily
generalizes to n variables z=(z, ..., z,), (see [13, 15, 16]).
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§ 2. Analytic Functionals and the Fourier-Borel Transform

Let € be the complex numbers and let E be the set of entire functions
mapping € into C. That is

(") n
~{rerso=g e S e

where the power series is assumed to converge uniformly on any compact
set. Let E’ be the dual space of E, see [ 14, p. 2317, i.e.

E'={u=pu(z); » maps E into € and is linear and continuous} . (2.2)

We write
s 5 =<ul2), f(2)).

Remark. E and E' are obviously linear spaces. If we define
= |S|u<%|f(z)[ ; (2.3)

then the countable set of norms | - |, define a topology on E. In fact,
E is a complete metric space, see [14, p. 57, 89]. In this topology,
fu(2)= f(z) if and only if f,(z) converges to f(z) uniformly on compact
sets. Also in this topology u is a continuous linear functional if and only if

K A= Cf ly=C sup | f(2) (2.4)

|z| =
for some C and N. Finally there are the usual topologies on E’ defined
by duality.
Remark. We can now consider certain spaces of functions and dis-

tributions ¢ belonging to E’. Suppose that g(z) maps C into C (not
analytic) and

1) g(z)=0 if |zl>R forsomeR, (2.5)
i) [lgx+iyldxdy<oco.
If
s f= [ gle+iy) f(x+iy)dxdy (2.6)

then clearly y€ E’. In fact if y is any distribution on the complex plane
with compact support, (see [14, p. 255]) then the restriction of u to the
entire functions belongs to E.

At this point we will discuss several representations for elements of
E’ and then prove the necessary details in a later theorem.

Definition.

A = u(2), & f Iy Mt @7)

n!
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where [i(&) is called the Fourier-Borel transform of w. If

B =<1 2", (2.8)

then g, is called the nth moment of p.
If we set

1),
v= y EIOT 0 gy =~ 1)

then we see that v, = u, and as the polynomials are dense in E, we have
u=mv.

Remark. If p is given by a distribution with support on the real line,
then ji(—i&) is the Fourier transform of p.

We now give p a representation as a contour integral. In fact, we have

—1yn!
@ = 1rro0=""" g aman @)

C

where C is any curve enclosing 0 once. Consequently

(n) 0 (n) 0 1
Gupy =2 EEOTEO L L {0 i fiyaz, @i10)

providing the series converges.
Definition.

i) = <u(z>, ﬁ> —Ep i @.11)

and is called the Cauchy (or Fantappie) representation of p.

Definition.

Exp ={f(2); f(2) is entire, | f(z)] £ Ce?! for some C and N}. (2.12)

A= {f(2); f(2) is analytic for |z] > R for some R >0, and

lim £(9-03 (2.13)

where if two functions are equal in some neighborhood of oo, then they
are to give the same element of A.

Remark. Exp and A4 can be made into topological linear spaces in
a standard way (see [14, p. 232, ex. 22.5; 15, p. 19-017).
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Theorem 1. The following maps are 1—1 and onto:
. . : Hn "
) w2 = A) =plz), &) =

n!
+ ( 1) (n) (n) 4
iy g)-opu=%X—F-— p 0)o Exp—E/,

—

, E'— Exp,

i) uﬁM@=<M4—%;>=EMJ””, =4,

(=17

W) h)on=T ) RO (00) 50, A—E,

v} h(A)-g(l)=% (n')2 "M (e0) &N, A-Exp,

vi)  g(&)—=h()=Zg"(0) A", Exp—4,

_ dayvil 1 . R .
where b (c0) = ((f> (- h (—))) Moreover, 1) and ii), iii) and iv),
dz) \z z))) =0

and v) and vi) are inverses. That is,

i) u=x S e e -2 I i oo

Also, we have representations:

A7 () 1 0)

vii)  {p, fr =X —
ix) ufy= P le R/I(/l)f(/l) d\, R sufficiently large,
x) ()= % |/1|j A(A) e**da, R sufficiently large .

Proof. As =3 5

and the series converges uniformly on com-

pact sets in z we have 4(&) =X 'u"é is entire. From (2.4), |4(&)| £ Clle®%||y

< CeM¢l. For i), if (&) =0, then A™(0)=p, =<{u, 2"y =0. But as the
polynomials are dense in E, we have u=0.
(— 1)'g™(0) 6"

Next, if g € Exp, then define v=X% ‘
n!

. If g € Exp, then

from Cauchy’s formula we have

SR

° <cs 2.14)

g (0)| = Cn!
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Also, if f € E, then
|/ ™) < Cn! L{{%R— forall R>0. (2.15)
Consequently
IKv, OIS X
SCISfIRZS/RI=Cil flig

Ewﬂ (2.16)

if R is sufficiently large. Thus ve E’ and ¥ = ji or v=p. This shows that
ii) is the inverse of i) and maps Exp into E’' completing i) and ii).

For iii), we have X u,A "' converges for 1> S because u,= A" (0)
satisfies (2.14). We get the same result if we note that (2.4) implies that u
can be extended to continuous linear functional on the space of functions

is such

analytic in |z| < S and bounded for |z] £8§. If 1> S, then /11

a function. Clearly fi(c0) =0, i.e., fi € A. Again, if i(1) =0, then g, =0 and

thus u=0. Next, suppose h(d) € 4, i.e., h(A)= i a, 2~ "' converges for

/> S. Using 2.15, we see that |a|< CS " and as in (2.16)

(—1)a,d"
(n1)?

’

V=

If h(2)=[i(4), then #(1) = ji(4), i.e. v= . This completes iii) and iv). Also,
v) and vi) are easy.

For vii), compute fi and j and then compare to the expressions in
i) and iii). For viii), write f in a power series. For ix), substitute expression
2.9 into vii) and check the uniform convergence of the series. For x) set
f=¢e in ix).

§ 3. Hyperdifferential Operators

We wish to introduce a class of operators on E or E’ which includes
differential operators and operators such as

Also, we want the differential operators we will consider to be allowed
to have variable coefficients which include at least the polynomials.
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First, in the standard way we define for uc E' and fe E

d d
<d—5,f(2)> = <H> d—i > $zp f(2)) = w2 f(2)) 3.1

d\" . .
and, then note that, for example, 6™ = (E) S as we defined 6™ in

Section 2. Now we want a hyperdifferential operator on E or E’ to be
given by an expression of the form

A=Za,,z" (i> . (3.2)
dz

Definition. If A is a bounded operator mapping E into E or E’ into
E’, then A is said to be hyperdifferential if

Af(z)=Za,,z"fP(z) or Au=Za,,z"u"™ (3.3)

for some sequence 4,,, € C.

Proposition. Every partial differential operator with polynomial coef-
ficients is a hyperdifferential operator.

af

z

Proof. |zflg =R fllx and

‘ <(S—R)!|fls if S>R, etc.
R

We now wish to define two symbols for 4 and derive some of their
properties.

Definition. If A=Xa,,z" (di) , then
Z

GA(z, &)= T a,,z"E"=e "7 Ae**

GA(z, ) =2(—1)ynla,,z") ""1=XZa, " (—)

where & is called the symbol (or Fourier-Borel symbol) of 4 and ¢ is
called the Cauchy Symbol of 4.

Remark. If A=P (;i) is a differential operator with constant coef-

ficients, then 64 = P(¢).

Theorem 3.1. The following are equivalent

i) 4=0,
i) 6(4)=0,
iii) #(4)=0,

if Ais a hyperdifferential operator on E.
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dz
quently a,,,=0, m=0. Similarly 4(z")=0 implies q,,,=0 for all m, n.
Thus i)=>1ii).

Next, if 6(4) =0, then Ae**=0= X

d n
Proof. If A=Za,,,z" (—) =0, then A(1)= X aq,,,z"=0 and conse-

A(ZH) én

nl
ever {z"} form a basis for E and consequently 4 =0 so that ii)=-i).
Obviously ii) and iii) are equivalent.

Hence A(z")=0. How-

Theorem 3.2. The following conditions are equivalent:
i) A is a hyperdifferential operator on E,
il) 6(z, &) is entire in z and & and

sup |6 A(z, O L CreS¥ forall R>0
|z}=R

and some S > R.
iil) é(z, &)= X a,,z"&" and
lamnlécRR_mSn(n !)"1 for all R>0
and some S > R.

iv) &(z, A) is entire in z and if |z| £ R, then there is an S > R such that
6(z, A) is analytic in A for |A] > S and &(z, 00) =0.

Proof. If A is a bounded operator on E, then |[4e**|x < Crle* s
< Cr e8! which shows i)=ii).

From Cauchy’s theorem we obtain

|al = CreSI RT™[E "
SCrS"R™(nH1
which shows ii)=iii). Clearly iii)=-1v).

Next we see that A7!6(z, A7') is entire in z and if |z <R, then
A1 G(z, A1) is analytic for |A]<S™!. Again from Cauchy’s theorem
|n!a,,] < CgR™™S" This shows iv)=-iii).

Also, if O f = X a,,,z" f™(z), then

10f]x= sup 0f(2) < Cr, ZR"STY ™ RMS—=R)™"n! | 5.

Choosing R; >R and S> R+ S; we have iii)=-i).

Corollary 3.1. If A is a bounded operator on E, then A is a hyper-
differential operator with 6 A(z, &)= e~ %% Ae*=,

Proof. This is clear from Theorem 3.1 and Eq. (3.4).

At this point we want to write any hyperdifferential operator A4 as
an integral operator with kernel a(z, w).
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We define in the usual way

$hs f 3 == 2), f(2)) = pl2), f(—2)) (3.3)
<z = w), f(2)) = ulz), f(z+w))
o f(2)=<plz—w), f(W)) = {uw), f(z —w)>
and p * v by
v, fO=Lpv*fr=Cv,fixh)

where fe E and pu,ve E'. The last definition makes sense because of:
Proposition. If pye E', f€ E then u=feE.

S =2y
n!

Proof. f(w—1z)

ot ooy = 5 VL),

Now [ f®W|g<C|fll.gR™"n! and |u,| < CS" for some S (see (2.14)
and (2.15)) so that the series converges for all w.

Corollary. If k(z, w)= X f,(2) p;(w) with a finite sum and f,e E, y, € E',
then

Af(2)=<k(z,z—w), f(W)) =Z fi(2) p; * f (2)
Ap(w) = Z f;(W) p;  p(w)
are hyperdifferential operators with
6A(z,8) =X fi(2) (= Q).
Proof. Clear.

Remark. We can allow k(z, w) to be an infinite sum (see [15]).

d n
Definition. If A= Za,,,z" (a—;) is a hyperdifferential operator, then
we set
a(z, w)= Z a,,,z" 5" (w) (3.6)

and call a(z, w) the kernel of 4. We then define
ks f(z)=<k(z,w—2), fW)) = 2a,,2"6" «f(2)= Za,,z"f™ (2)
ks u(z)= X a,,z"0" « u(z)= T a,,z" 1t (z).
Proposition. If feE, pe E and A is hyperdifferential operator, then
Af=k«f Au=kx* p
6(A4) = <k(z, w), e, 6(A) = <k(z, w), (A= w) 1)
Proposition. If A is a hyperdifferential operator, then its kernel is unique.
Proof. This follows from Theorem 3.1.

4  Commun. math. Phys., Vol. 24

3.7)
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We note that we can find a hyperdifferential operator from its symbol
via its kernel. There are other interesting formulas in [15, 16]. We will
give the following very useful representation.

Theorem 3.3. If A is a hyperdifferential operator on E' and if ueE is
given by a function with support on the real axis (i.e.,

o fo=fux)fx)dx, z=x+iy,
where p(x) is an integrable function with compact support), then
Ap(x)=Q2m)"" [ e*a(x, i) f(— i) d¢. (3.8)

Proof.

() wry = v gue (o r@rax = § () w0 a

- <(gd;) u(x),f(x)> .

The rest is now clear from the kernel formula.

Theorem 3.3 holds for distributions with compact support with the
obvious modifications.

We now consider some algebraic properties of hyperdifferential
operators.

d\ .
Definition. If Af = X a,,,z" (d—) f is a hyperdifferential operator,
z
d n
then the transpose of A is A f = Z(— 1)"a,,, (T) " f).
z

Theorem 3.4. If A is a hyperdifferential operator on E and for some M
sup [6A(z, )| S Crexp(MR|E)) O0=Za<l1, R large, (3.9
jzl<R

then A" is a hyperdifferential operator in E with

0 0
A4t — 0z0¢ . — —_ . .1
O-A (Za é) € O-A(Z’ 6)7 az 52 H a{ aé (3 0)
Proof. From Hormander [4, p. 10] we have Leibniz’s rule

dy o* n\ [ d\"* .,

m ,Ezy m $z

(dz) e z(@z”)(a) (dz) ‘ )

1 aZa

=2 - mEmy | esF 3.11
2oc! (02"‘85“ (z 5))6 ( )

— (ea,agzmén) eéz .



Hyperdifferential Operators 51

If we sum over n,m we get the result, provided e%=% g A(z, £) is in fact
the symbol of some bounded operator. To check this we compute:

sup 103080 A(z, &)
z| <R

[ G Az, &)
=Ry e=&l=s (@ — 2T (G =g
S C(!)? exp(MR{(|E]+ S) (R, —R) *S™*
<(a!) exp(MRY[E]) («!) e*(MR})Pa™*(R; —R)™*~

< () exp(MR7[¢]) (MR{/(R, — R)".

<Cl!)?

¢, dz,|, R, >R

Thus the series for 6 A'(z, £) converges for R, =2R, R' 7> 2*"' M and
thus
sup |6 A'(z, &) £ Crexp(MR4|E]) for R sufficiently large
2l <R (3.12)
< Cre’®lEl for any ¢ and all R .

Remark. Consider
1 1 0% \» 1 1 n! \? _
o g -

m! nl men 0L m! \(n—m)!

msn

For z and &, small and positive (or negative), this is a series of positive
terms and can be summed any way we wish. Summing » first we obtain
€%2% %, Summing n=m we obtain oo. Thus ¢=%¢*¢ is not an analytic
function near (0, 0).

Definition. If A is a bounded operator on E, then the operator A*
operating on E’ and defined by

A*p 5= AfD (3.13)

is called the adjoint of A. Similarly if 4 is defined on E’, then A* is
defined by

, A* ) =<Ap.[> . (3.14)

Theorem 3.5. If A is a hyperdifferential operator on E and 6(A) satis-
fies 3.5, then A* is a hyperdifferential operator and A* = A'. A similar
result holds if A operates on E'.

Proof. Clear.

Theorem 3.6. If A and B are hyperdifferential operators on E (or E'),
then AB (A composed with B) is a hyperdifferential operator on E (or E’)

4%
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with .
6(AB)(z,8)= X — (00 A(2,§) (0. 0 B(z, {)
o
, (3.15)
= eaz r§(14(21’ 5) B(Za 51))21 =z

E1=¢
Proof. We compute

sup |[6(A° B) (z, )| < = (p!) C Sy 7 SISV (R — R)™P eRilél
[z =R
< CreS*TRIEIZ (S, (R, — R)Y

which is finite if we choose R, large enough. The rest is clear from
Leibniz’s rule.

Remark. For a more complete discussion of hyperdifferential oper-
ators see [13, 15, 16].

4. Applications to Quantum Mechanics

We wish to consider the process of quantizing a classical function of
the dynamical variables ¢ and p

fp.9)=Za,.pr"q". (4.1)

It is well known that the formation of the corresponding quantum
mechanical function presents difficulties because the coordinate and
momentum operators Q and P do not commute. For convenience in

what follows, we will take P = —ng«, Q=zsothat [Q, P]=—1.Ifin [17]

one sets i = i, one easily sees that the formulas there are the same as ours.
One particular way of quantizing functions is the Weyl prescrip-
tion [17]

f(P,Q)= | [ flo,7) P+ D dg do 4.2)
flo,0=02m [ fp,q)e """V dpdq. (4.3)

In the case P= %, Q =z, we can formally compute the symbol of
f(P,Q) by
_ ” i(aL+1:z)
a(f(P,Q)(z,¢)=e zéfff(o',‘f)e 4z e*dodr

. d
=e [ [flo,0)e ¥ e e dodr  (44)
= j .ff(a, T)e_(”/z eiﬂ'§+irzd0_dT
=et=% (¢, 2)
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where we have used the Zassenhaus [17, Eq. (4.55)] formula in the
second step.
If we write

0(z, )= f(P,Q)(z,&)= L b,,2"&", 4.5)
then

1. 0)= 2 by (| @6

as our symbolic calculus indicates. If we wish to compute the symbol of
the transpose

n

1P, Q)= Z (=1 b, 2 @)
of f(P, Q), then

o(f'(P, Q) (2. ) = o(/(P. Q) (2. — &
= oPtet 0 (¢, 2) @8)

=300 f(— & 7).
If we were to quantize the function

9. q) =€’ f(—p,q), (4.9)
then g(P, Q)= f*(P, Q).

Remark. We consider the Weyl quantization f(P, Q) of f(p,q) as
having been arrived at by substituting P for p and Q for g in f(p, q) with
f{p. q) written in a certain way, i.e. f(p,q)= X a,,p™¢" ... p™q™ with
mg+ - +my=mn + - +n;=n.Ifin (P, Q) we move all P to the right
of Q using [P, Q]=1, we obtain an operator that is the same as substi-
tuting P for p and Q for q in e*%% f(p, q) with all p written to the right
of g as indicated by Formula (4.4). On the other hand, if we wish to write
P to the left of Q, we substitute into e*%% f(p, q) with p written to the
right of ¢. This is the theorem of McCoy (see {17, p. 968]).

Remark. For additional methods of quantizing functions see [12].

Proposition. Suppose C(P, Q), F(P, Q), G(P, Q) are the Weyl quantiza-
tions of c(p, q) f(p, q) and ¢(p, q) respectively and

C(P,Q)=[F(P,Q),G(P,0)], (4.10)
then
c(p, @) =2sinh(3(8,,04,~ 0,0, ) f(P191) 90292)| p,=p, =, - (4.11)

q1=4q2=4

Remark. This is the theorem of Moyal (see [17, p. 968]).
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Proof. We have
o*¢F *6G 6G 0*cF
Clz, &)=Y — _
(2,6) ; k' ( 6fk aZk a&k azk>
c(p, q)=e *%% ¢C(q, p)

A o\
=e 0% (Z k' (a ) apaqf(p’q)( q) eiapaqg(p’q)__,

p

(4.12)

o e_%(apl +6P2)(0q1+6‘12) e%(apx 0g, 1 0p, 042)

e’ % f(p1q1) g(p2s 42) —
= e3P %7000 f(p, q,) g(py, 42) — -+
=2sinh (5(0,,0,,—0,,0,) f(P14)) 9(P292)1p, = p, =

q1=92= q
Next, if we consider quantizing the function p*¢{q) to the operator 0,

we see that ¢(0) = e*%:% £*¢(x). On the other hand, if we define
(4, BY* = {4, BY* 'B+B{A,B}* ' a>1

4.13)
{A,B}'={A,B}=AB+BA,
then one can easily compute by induction that
G{P, p(Q)}*= 2% e%%= £ p(x). (4.14)
Consequently
0=27{P, p(Q)}". (4.15)

This is a theorem of Daughady and Nigam (see [17, p. 967]).

At this point we see how easily we can derive certain results in quan-
tum mechanics. We now present some new results. It is clear that one
can quantize any polynomial f(p, ) using the Weyl prescription because

e*®f(p, q) (4.16)

is a finite sum. On the other hand the Remark after Theorem 3.4 shows
that one cannot quantize e??* as an operator with a symbol.
We see from Theorem 3.4 that if

|S|u%< |f(p. @)l £ Cgexp(MR“|p|)
q <

for some M, a, 0<a< 1, then f(p, g) can be quantized as an operator
with a symbol. Also, in the proof of Theorem 5.1 in [13], there are given
additional conditions under which a function f(p, q) can be quantized
with a symbol. These conditions essentially say that if one restricts the
growth of f(p,q) in the variable, say p, then one can allow f(p, q) to
grow fast in the variable g or vice versa.
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At first these results seem to depend heavily on the choice of the
space E. However, if one compares our theory to the theory in [13, 16]
one sees that essentially for any choice of space in place of E, e2%* cannot
be quantized as an operator with a symbol which is analytic near zero.

We now consider the problem of normally ordering an operator.
Suppose

F(P,Q)= Xa, P Q™ .. P*1Q™ 4.17)

where the sum ranges over all k-tuples of non-negative integers for all
non-negative values of k. We now want to find an expression

F(P,Q)= % a;Q' P! (4.18)

for F which is called the normally ordered form of F(P, Q), see Section 10
and Footnote 62 in [17]. Now we have

o(F(P, Q) (x,8)=0F(x,&)= Za;x'¢. (4.19)

Consequently, if we have an operator not in normal form and if we can
compute 6 F =6 F(P, Q)= Z b;;x'¢/, then the normally ordered form of
F is given by

F(P,Q)=Xb;Q'P’. (4.20)

Remark. Putting an operator such as (4.17) into normal form consists
of moving all of the P’s to the right of the Q’s in expression (4.17) using
the commutation rule [P,Q]=1.

As an example, consider the operator P™ Q" which we consider as the
compose of P" and Q" Now oP"=¢" and ¢Q" = x" and using the for-
mulas for the symbol of a compose (3.15) we have

1 /8YV o\
o=y L (2] L)

il
min(m,n)  { m! n!

— . xn—-i m—i
or
min(m,n) 11
m.n! , .
pro" = n—ipm=i

In fact, if we have the two operators F = F(P, Q) and G=G(P, Q) in
normally ordered form, then FG is not normally ordered. However our
formula for the symbol of a compose gives

1 /0Y ay
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which will put FG in normally ordered form. Now, if we consider
0
Fix,(+ —)0oG(x,{)
ox

1/aV d\
_xl (E) oF(x. &) (W) G(x, &)

where we have expanded F(x, £) in a power series in the variable £ about
the point &, we see that

o(FG)(x,&)=0F (x, E+ %) aG(x, &)

which is equivalent to the Formula (10.6) in [17].
Next we observe that

d
e (e
o.et(P+¢(Q)) —e &x e (dx )eéx
d
ot er(Hw(x))

where again we have used the Zassenhaus formula [17, Eq. (4.55)]. If

!

T

we see that
g PHOQ) - pd pté

Also if f(x) is a linear combination of ¢'*, then clearly

of(P+¢(@Q)=e"f(Q),

and in particular

|
)
)

x

o(P+QY=e¢ °
n—2k [k/2] xsén—Zk—s

-’y

!
s=0 kgon’ s! k!(n—2k_s)!

+4

'

0&2 in

which gives the Formulas (10.42b) and (10.43) in [17].
Thus we see that the process of computing a symbol of an operator
is very useful but does not seem to be used in physics literature.
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§ 5. Applications to Differential Equations

In this section we want to solve differential equations of the form

—;;P(x, »t)y=AP(x,y,1), (5.1)
P(x,7,0)= Po(x. y) (52)

where A is a differential operator with variable coefficients (i.e., depending
on x and y). This technique, called the symbolic calculus, has very general
applications, and generalizes the Fourier transform techniques that may
be used when A has constant coefficients.

The solution to (5.1) can be written, at least formally, as exp(At) P,,.
We call exp(At) the resolvent operator of problem (5.1). In general, the
resolvent is an integral operator and the symbolic calculus allows us to
calculate its kernel (sometimes called the time dependent Green’s func-
tion) independent of the initial data. We obtain our solution as an
integral of the Fourier transform of the initial data and the kernel of the
resolvent. We remark that once the resolvent kernel is obtained (i.e., the
Green’s function) much information can be read out of it, such as which
class of initial data the problem can be solved for and for how long the
solution exists as a classical function.

We are now going to work in two variables. That is, we will replace z
by x and y, and & by £ and #. We now write formulas (3.4) and (3.15)
in this notation:

o(H)(x,y, ¢, n)=exp(—<x—ny) Hexp(Ex+ny) (5.3)

© 1 ¢MeH) 0Ye(K)
G(HOK)(xay,éa’?): Z l']' aélan] 6xiayi

i.j=0

where H and K are two hyperdifferential and operators and H- K is H
composed with K. Also, if A is a differential operator, then the symbol
of the resolvent of exp(At) is

R(t %, y,&,m) = 6(exp(AL)) (x, y, &, ) = e~ ¥ et 234y

and satisfies the following differential equation:

(Q—A)&m@x+nWRmnxémn=o (5.5)

ot
RO, x,y,&,n)=1.
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Finally, if in problem (5.1) we can compute o(exp(4r)), then the
solution of problem (5.1) is given by Eq. (3.8) in the form

P(x,y,8)=(2m)"2 [ exp(i(éx +1y)) R(t, x, y, i€, i) Py (¢, m)dEdn (5.6)
Po(&, )= [ exp(—i(Ex +ny)) Po(x, y)dx dy.

We now proceed to solve problem (5.1) for a particular case. Consider
the problem

2
0
%)_ = 58;—53)— +ax ax +by % +c¢  (a,b,care constants) (5.7)
P(Oax,J’)ZPo(X,Y)‘
If we set
02 0 0
A= ——— — +by —
Ox0y +ax Ox +hy oy te,

we need to compute o(exp(Ar)). We first note that if [X, Y]=XY~YX,

then
2

2 -
[ g ,axi+by ¢ +c}=(a+b)
dy

0x 0 0 0x 0
xdy X x 0y 58)
SCCAN I N Y D IV
xﬁx’yay ~Fax _y’ay -
From [17] we find that if [X, Y] =aY, then
exp(X +Y)=exp(X)exp(a~'(1—e %) Y) (59)

=exp(a (e ' —1) Y)exp(X).
Consequently,

A1) = expl tax = thy - (c1) T 82)
exp(At) = exp|tax ax | SXPLtOY oy CPLED P\ T kb dxdy)

(5.10)
From (5.3) we obtain

ea+b_1 82 ea+b*1
= tén). 5.11
o'(exp( a+b ! 6x6y)) eXP( a+b f’?) 4

Also, a(atx T) satisfies a first order differential equation given by
X

(5.5), and this can be solved using the method of characteristics. However,
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we can use {5.8) to obtain the same result as follows:

o (exp <atx %)) (., y, &1

=e ¥ exp (atx 6) e
Ox

_ 0 Ex
et I S S
e exp(at(x 7 + [—exp(—al) )) (5.12)
=e “*exp(e’ £x)exp (atx —a~)
0x

— exp((e — 1) &x).
We now apply (5.4) to (5.10) obtaining

(D= olexpli i)) (X (tb i)) il WS
o =eglexp axax o|exp y@y o\exp a+b Ox 0y

(5.13)

t_1 bt et —1
= t+ (e — - t—— Enyp.
eXp{c + (e JEx+(e )ny+ > 511}

The solution to problem (5.11) is now given by (5.6).

Remark. It is clear that e’ for our operator A4 is not a hyperdifferential
operator on E as ge?’ does not have the correct growth properties.
However e’ is a hyperdifferential operator on the spaces given in [13]
and on those spaces has the symbol just calculated. Also the spaces used
in [13] give the correct initial data for which problem (5.1) can be solved,
see [3], Chapter 3.

We note that the above techniques solve the problems studied in
[2, 6, 8, 10, 11]. An exposition of a general theory of the solution of
problems like (5.7) appears in [ 13]. We remark that these techniques can
be used to study equations whose coefficients also depend on time.

§ 6. Summary

At this point we have clearly demonstrated the usefulness of the
theory of hyperdifferential operators and the symbolic calculus. The
critical formulas that we use are the formula for the symbol (3.4), the
integral representation (3.8), the symbol of the adjoint (3.10) and the sym-
bol of the compose (3.15).

The choice of the space E is not critical in this development. In fact,
for discussing various problems it is essential to choose different spaces.
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In [13, 15, 16] certain spaces of analytic or entire functions are chosen
and particular applications are made to scales of Banach Spaces of func-
tions. It is also possible to choose the spaces of type W* in [3] or spaces
of infinitely differentiable non-analytic functions of Gevrey type [1]. For
each choice of space many technical changes must be made in the theory
but the general aspects remain the same. Also, in [3] the Fourier dual
corresponds to the Fourier-Borel transform of our dual spaces.

The solvability of the Cauchy problem for differential equations with
constant coefficients is very well developed [3]. However, the theory
presented here is specifically designed to handle the variable coefficient
case. Compare the solution (5.6), (5.13) of Egs. (5.1), (5.2) and the solution
of the heat equation [3, p. 31, 37, 61, 111, 121, 164].

Another pleasant aspect of this theory is that the Formula (3.4) for
the symbol of A can be written 6(4)=e 2 Ae® where B is the multi-
plication operator £z. This equation is in an advantageous form for
applying Baker-Campbell-Housdorff [17] type formulas which we did
extensively.
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