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Applications of In�nitary Lambda Calculus

Henk Barendregt∗ & Jan Willem Klop†

Dedicated to Giuseppe Longo at the occasion of his 60-th birthday

Abstract

We present an introduction to in�nitary lambda calculus, highlighting its main
properties. Subsequently we give three applications of in�nitary lambda cal-
culus. The �rst addresses the non-de�nability of Surjective Pairing, which in
Barendregt [1984] is shown to be not de�nable in lambda calculus. We show
how this result follows easily as an application of Berry's Sequentiality The-
orem, which itself can be proved in the setting of in�nitary lambda calculus.
The second pertains to the notion of relative recursiveness of number-theoretic
functions. The third application concerns an explanation of counterexamples
to con�uence of lambda calculus extended with non-left-linear reduction rules:
Adding non-left-linear reduction rules such as δxx→ x or the reduction rules
for Surjective Pairing to the lambda calculus yields non-con�uence, as proved
in Klop [1980]. We discuss how an extension to the in�nitary lambda calcu-
lus, where Böhm trees can be directly manipulated as in�nite terms, yields
a more simple and intuitive explanation of the correctness of these Church-
Rosser counterexamples.

1. Introduction

The aim of this paper is to present some well-known results in λ-calculus from the
point of view of in�nitary λ-calculus, where terms may be in�nitely deep and reduc-
tion sequences may be of trans�nite length α, for a countable ordinal α. In�nitary
λ-terms are already familiar in λ-calculus in the form of Böhm trees (BTs), but in
the extended setting of in�nitary λ-calculus (or λ∞ for short) BTs are just a partic-
ular kind of in�nite normal forms, and in this extended setting we can even apply a
BT to another BT. In Section 2 we will give a somewhat more detailed exposition
of λ∞ with β-reduction, λ∞β for short. (We will not consider η-reduction in this
paper.) First we will describe why in our view in�nitary λ-calculus is of interest.

The �rst reason pertains to semantics of λ-calculus. By now it is classic that
in�nite λ-terms constitute a syntactic approach to the semantics of �nite λ-terms
with (e.g.) β-reduction, in various forms, in particular the semantics given by the
three families of in�nite λ-trees known as Böhm trees, Lévy-Longo trees, and Be-
rarducci trees. Whereas the �rst family seems to be the most important, the second
family is instrumental for a closer connection to the practice of functional program-
ming using notions as lazy reduction and weak head normal form, see Abramsky
and Ong [1993], while the third family is a sophisticated tool for consistency studies
as demonstrated in Berarducci and Intrigila [1996].

The second reason concerns the pragmatics of computing with λ-terms. Some
computations are most naturally presented as trans�nite sequences, rather than as
compressed sequences of length at most ordinal ω, even though this always can be
done by dove-tailing. Below we give some illustrating examples.
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The third reason is found in the feature of expressivity. In�nite λ-terms can
be nonrecursive. This can be used to give a direct representation of notions that
otherwise need some circumlocution for their de�nition: a recursion-theoretic oracle,
used in the de�nition of relative computability, can be de�ned in various ways, but
the representation as an in�nite λ-term has an appealing directness, since the oracle
can now directly be processed by a �nite λ-term, standing for a �nite program.
Below, in section 4, we will substantiate this.

The last reason, illustrated by Section 3 on Berry's Sequentiality Theorem (BST)
and Section 5 on the failure of con�uence in extensions of λ-calculus with non-left
linear reduction rules, is theoretical coherence and transparency, including a better
understanding of phenomena in �nite (!) λ-calculus. The Section on BST provides
such a better understanding for the inherent sequentiality of �nitary λ-calculus,
with as corollaries some non-de�nability results treated there, among them the
fundamental fact that (just like parallel-or), it is not possible to de�ne Surjective
Pairing in λ-calculus. We present a succinct and new proof of this non-de�nability
fact. Finally, Section 5 contributes to a better understanding of the extension of λ-
calculus with rules like δxx → x, encoding a discriminator δ for syntactic equality
(of its two arguments); such an extension λ + δ looses the con�uence property,
but the deeper reason is best understood via an excursion to the realm of in�nite
λ-terms.

Concluding this Introduction, let us point out once more that our paper has in
part the character of a survey and introduction, albeit of modest scope. This entails
that our primary concern is not to communicate new results on this subject. Yet
there are some new elements. Next to some new proofs, such as for the unde�nability
of Surjective Pairing in (�nitary and now also in in�nitary) λ-calculus, and for
the non-con�uence of this same system viewed as a rewrite system, there are a
few new results, notably the short solution of an open problem of Scott [1975a],
and a theorem building on work of Kleene [1963], capturing the notion of relative
recursiveness directly in (in�nitary) λ-calculus.

2. Preliminaries

In this section we will lay out various notions and notations, and some basic prop-
erties, of �nitary as well as in�nitary λ-calculus.

2.1. Lambda calculus and two extensions

We assume familiarity with ordinary untyped λ-calculus, see e.g. Barendregt [1984].
In particular the following notations will be used. The notation follows common
practise. Closed λ-terms are usually denoted by Roman capitals, but sometimes
by Greek letters (upper or lower case). As often in mathematics and programming
languages, there are sometimes innocent examples of overloading: for example ω is
a λ-term, but also the �rst in�nite ordinal, in which sense it is used in the notation
Mω, an in�nite λ-term.

2.1. Notation. M ≡ N stands for syntactic equality between the (possibly in�ni-
tary) terms M,N and M = N for their convertibility (w.r.t. a notion of reduction
clear from the context, usually β or an extension). We use the combinators (closed
λ-terms) I ≡ λx.x, K ≡ λxy.x, S ≡ λxyz.xz(yz), Y ≡ λf.(λx.f(xx))(λx.f(xx)),
B ≡ λxyz.x(yz), Θ ≡ (λxy.y(xxy))(λxy.y(xxy)). We also often use the combina-
tors ω ≡ (λx.xx), in some papers denoted by ∆, and Ω ≡ (ωω).

The set of λ-terms is denoted by Λ, that of normal forms (under β-reduction)
by ΛNF. The set of closed λ-terms is denoted by Λø. For M,N ∈Λ the following
notations are used. For pairing [M,N ] ≡ λz.zMN , with z a fresh variable; for
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applicative iterationMnN is de�ned recursively: M0N ≡ N ; Mk+1N ≡M(MkN).
Using this notation, the Church numerals are cn ≡ λfx.fnx. For iterated arguments
MN∼n is also de�ned recursively: MN∼0 ≡M ; MN∼(k+1) ≡MN∼kN .

2.2. Definition. (i) Extend the set of λ-terms Λ with a constant f, intended to
represent an f :N→N. The resulting set of terms will be denoted by Λ(f).

(ii) On Λ(f) one can extend β-reduction with the notion of reduction f axioma-
tized by the contraction rule: fcn →f cf(n).

2.3. Lemma. The notions of reduction f and βf are Church-Rosser.

Proof. Similar to the proof of Mitschke's Theorem 15.3.3 in Barendregt [1984].
Alternatively, observe that f and βf constitute orthogonal higher-order rewriting
systems (in the form of CRSs or HRSs) and use Theorem 11.6.19 in Terese [2003].

Remember that every λ-term M is of one of the following forms:

M ≡ λx1 . . . xn.yM1 . . .Mm or λx1 . . . xn.(λy.P )QM1 . . .Mk.

In the �rst case M is said to be a head normal form (hnf); in the second case M
has the head-redex (λy.P )Q.

2.4. Definition. (i) Another extension with one constant is Λ(⊥).
(ii) On Λ(⊥) one de�nes the notion of reduction Ω by the contraction rules:

M →Ω ⊥, if M 6≡ ⊥ and does not β-reduce to a hnf;

⊥M →Ω ⊥;
λx.⊥ →Ω ⊥.

2.5. Lemma. The notion of reduction βΩ is Church-Rosser.

Proof. See Barendregt [1984] Lemma 15.2.5.

Below we will use De�nition 2.4 and Lemma 2.5 in our dealings with Böhm Trees
(BTs). We mention also at this point two notions related to hnf's, to be used below
for two variants of BTs, to wit the Lévy-Longo Trees (LLTs) and the Berarducci
Trees (BeTs). For the moment, the next De�nition 2.6 and Remark 2.7 can be
skipped.

2.6. Definition. (i) A term M is a weak head normal form (weak hnf or whnf) if
it is an abstraction λx.P or vector xM1 . . .Mm, where x is a variable.

(ii) A λ-term M is root stable, if it is a variable, an abstraction λx.P , or an
application PQ where P does not reduce to an abstraction. Equivalently: M is
root stable if it has no in�nite reduction in which in�nitely often a root reduction
step is performed. A β-reduction step C[(λx.A(x))B]→ A(B) is a root step when
the context C[ ] is empty, so the contracted redex is `at the root'.

2.7. Remark. So, in a sense, whnf's as `semantics building blocks' are parts of the
hnf building blocks. This is not a coincidence, but is connected to the relationship
between the various notions of semantics of λ-terms, regarding BTs, LLTs and BeTs
that we brie�y mentioned above, and on which we will elaborate below. The BeT
building blocks are just abstractors λx, application nodes, and variables; in turn
these building blocks are fragments of the whnf building blocks. The re�nement
of the `bases of building blocks' can be seen as re�ecting the coarseness of the
corresponding semantical notions, which is stated more precisely in Remark 3.6.
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2.2. In�nite λ-terms

In this section we will introduce in�nite λ-terms. We �rst present the general
notational format, called applicative notation, and then a specialized notation for
a subset of the in�nite λ-terms, where an abbreviated notation is more convenient,
called the hnf notation.

2.8. Definition. (i) Λ∞ is the set of (possibly) in�nite λ-terms coinductively de-
�ned by

term ::= x | term @ term | λx term

(ii) Λ∞(⊥) is de�ned similarly, also allowing the constant ⊥.
(iii) Certain elements of Λ∞(⊥) are known as Böhm trees of �nite λ-termsM ∈Λ,

de�ned in Barendregt [1984] by the following coinductive de�nition.

BT(M) ≡ ⊥, if M does not have a hnf;

≡ λ~x. y

BT(M1)

qqqqqqqqqqq
. . . BT(Mk)

NNNNNNNNNN

, if M has hnf λ~x.y ~M

with ~M = M1, . . . ,Mk.

So BT is a map from Λ to Λ∞(⊥). Below we extend this map to all of Λ∞(⊥), but
this requires the de�nitions of in�nitary β-reduction and hnf on Λ∞(⊥).

Often we will present (both �nite and in�nite) λ-terms as unary-binary branch-
ing trees, with application nodes binary branching and abstraction nodes λx unary
branching, and with variables or constants as terminal nodes. Such trees are dis-
played in Figure 1 (left window) and Figure 2 (left window).

2.9. Remark. Note that in this last de�nition we have introduced an abbreviated
notational format, introduced in Barendregt [1984], that we will call the hnf nota-
tion, which is especially suitable for terms that do not contain redexes. The BTs
are among such terms. In Figures 1,2 it is shown how this hnf-notation can be `ex-
panded' to the general applicative notation, which costs several more application
and abstraction nodes.

2.10. Example. (i) Let M ≡ [a1, a2, [a3]] ≡ λz.za1a2(λz.za3). Then M has the
following two views.

applicative view of M hnf view of M

λz

@







22222

@

�����
11111 λz

@

�����
00000 a2 @

�����
22222

z a1 z a3

λz.z

�����
=====

a1 a2 λz.z

a3

Figure 1: Two views of M ≡ [a1, a2, [a3]] ≡ λz.za1a2(λz.za3)
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(ii) Let Y2 ≡ λf.f(f⊥) and Y as in 2.1. Then Y2,BT(Y) have the following
two views.

applicative view hnf view

Y2 BT(Y) Y2 BT(Y)

λf

@

�����
00000

f @

�����
.....

f ⊥

λf

@
��� 111

f @
��� ...

f @

���� ...

f
. . .

λf.f

f

⊥

λf.f

f

f

f

. . .

Figure 2: Two views of BT(Y) and its approximant Y2

(iii) A notation that we will sometimes use for M ∈Λ∞(⊥), is Mω, de�ned coin-
ductively by Mω ≡M(Mω). For instance BT(Y) ≡ λf.fω.
(iv) An interesting term is Iω. It will play a role in Lemma 2.20. In applicative

notation one has

Iω ≡ @

I
��

@
@@

I
~~~

. . .

FF

, where I stands for λx

x

.

Note that this term contains in�nitely many β-redexes; as we will see later, it
reduces in one step to itself. There is no hnf view of Iω.

(v) We generalize (ii), especially for use in Section 5, to the well-known µ-
notation; in this notation we have Mω ≡ µx.Mx, with x a fresh variable (i.e.
/∈FV(M)). This in accordance with the well-known µ-rule

µx.M →µ M [x: = µx.M ].

Note that µx.M can be emulated as Θ(λx.M). So A ≡ µx.xx∈Λ∞(⊥) is the binary
tree consisting of application nodes only.

µx.xx ≡ @
mmmmmm

QQQQQQ

@
vvv HHH @

vvv HHH
. . . . . . . . . . . .

.

Moreover, one has
µx.xI ≡ @

~~ <<

@
{{{ @@@ I

. . . I

.

The following remark needs De�nition 2.29 and can be skipped at �rst reading.

2.11. Remark. Whether a term such as µx.xx is useless (i.e. its `semantics' equals
⊥) depends from the semantical view that one is adopting. More precisely: let
M ∈Λ be such that M →→β MM . To this end, take M ≡ Yω, where ω ≡ λx.xx. It
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is an easy exercise to show that M has no hnf, and thus BT(M) ≡ ⊥. We could also
take the BT after reducing M to its in�nite normal form in Λ∞(⊥); as we will see
later, this in�nite normal form of M is µx.xx. Now, residing in Λ∞(⊥), we again
have BT(µx.xx) ≡ ⊥, for the extension of BT to Λ∞(⊥) to be de�ned below. This
is so because µx.xx is a normal form, which is not a hnf, hence has no hnf.

Also in the semantics of Lévy-Longo trees (LLTs), this term and its in�nite
normal form µx.xx, both have LLT ≡ ⊥.

However, in the Berarducci tree semantics, which gives a syntactic model of λ-
calculus, these terms do have a non-trivial semantical value, viz. µx.xx, see Example
2.37.

In this paper we will focus on the coarsest of the three semantical views, namely
that of the BTs. See also Remark 3.6.

2.3. Beta reduction on Λ∞(⊥)

The notion of β-reduction extends in a straightforward manner from Λ(⊥) to
Λ∞(⊥), bearing in mind that a β-redex has a �nite `redex-pattern' that makes
it recognizable as such, namely

@
{{{

CCCC

λx . . .

. . .

Of course one has to de�ne the usual notions of free and bound variable oc-
currences, and substitution without variable capture. But it is a matter of routine
to spell out these details, from which we will refrain here; instead we refer to a
detailed treatment in Terese [2003], section 12.4, where also α-conversion is treated,
using Barendregt's variable convention, and including a proof of the Substitution
Lemma as in Barendregt [1984], 2.1.16. Important is to realize that the contraction
of a β-redex (λx.M)N to the reduct or contractum M [x := N ] now may require
in�nitely many copies of N to be substituted in as many occurrences of the free
variable x in M . Examples are below in Example 1.3.1 and 1.3.2. As pointed out
in Terese [2003], in practice one will avoid such `ω-tasks', by adopting some com-
putational scheme like explicit substitution, allowing a �nite part of the reduct to
be computed in �nite time. Having de�ned single β-reduction steps on Λ∞(⊥),
with notation →β , we de�ne the transitive-re�exive closure of →β , written as →→β ,
just as for �nite λ-terms, but now for possibly in�nite terms, that is on Λ∞(⊥).
With this notion of reduction, the de�nition of head normal form (hnf) and thereby
the coinductive de�nition of BT extends in an analogous way to all of the domain
Λ∞(⊥); we will not repeat the de�nitions as they are verbatim the same.

The de�nition of normal form with respect to β-reduction (β-nf) is simple:
M ∈Λ∞(⊥) is a β-normal form if it contains no β-redex. As an advance warning,
elaborated below after Lemma 2.30, we mention that every BT is a β-normal form,
but not vice versa.

Next we introduce in�nite β-reduction sequences. We will do this in an informal
way, referring for a full detailed treatment to Terese [2003], Kennaway et al. [1995a],
[1995b] and [1997], Ketema and Simonsen [2005] and [2006], Klop and de Vrijer
[2005]. Reduction sequences now may have trans�nite length:

M0 →β M1 →β ... Mω →β Mω+1 →β . . .Mω.2 →β ... Mα.

Here M0,M1, . . . ∈Λ∞(⊥). We have single β-steps Mγ →β Mγ+1. The term Mλ

is for a limit ordinal λ the Cauchy limit of the earlier Mµ, with µ < λ, with the
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usual distance metric d on the �nite and in�nite term trees: d(M,N) = 2−n ifM,N
coincide only up to depth n, and d(M,M) = 0.

At this point in our introduction, we would have reduction sequences of every
ordinal length α, e.g. for M0 ≡ Ω we would have

M0 ≡ Ω→β Ω→β . . . Mω ≡ Ω→β Ω→β . . . Ω ≡Mα.

However, in addition to Cauchy convergence we impose a crucial further require-
ment on the limit behaviour of reduction sequences: when approaching a limit λ,
the depth dγ of the contracted redex rγ in stepMγ →β Mγ+1 must tend to in�nity:
limγ<λdγ = ∞. Here the depth of a redex r in M ∈Λ∞(⊥) is the number of steps
(edges) in the term tree of M from the root to r. Now our reduction sequence in spe
Ω→ Ω→ . . .Ω of arbitrary length α is not allowed, since there the contracted redex
depth stays at level 0, and is not going down at each limit λ; the action is `stagnat-
ing' at level 0. Reduction sequences satisfying our crucial redex-depth-to-in�nity
requirement, are called strongly convergent. The point of the redex depth require-
ment, i.e. of strong convergence, is that it entails a natural notion of `descendant'
or `residual' carrying over to trans�nite reductions, and the notion of descendant
is a backbone of the theory of orthogonal rewriting, including λ-calculus. Actually,
our de�nition above is in fact redundant, since the redex depth requirement already
implies Cauchy convergence. It is not hard to see that strongly convergent reduc-
tions can have at most a countable ordinal as length; if not, we would have some
level at which the action (redex contraction) would stagnate forever�but the depth
requirement prohibits that. Reductions that are stagnating at some �nite level, i.e.
that are not strongly convergent, are called divergent. There is a helpful analogy
between �nitary reductions and in�nitary (trans�nite) reductions: in the former we
have �nite versus in�nite reductions, to be compared with, in the latter, strongly
convergent versus divergent reductions.

2.12. Notation (In�nitary β-reduction and conversion). (i) LetM, N be terms in
Λ∞(⊥) and suppose that there is a trans�nite strongly convergent R-reduction from
M to N . Then we write

M →→→R N.

(ii) M −→α
R N (respectively M −→6α

R N , M −→<α
R N) denotes that there

is a strongly convergent in�nitary R-reduction from M to N with length α (respec-
tively 6α, <α).
(iii) =R∞ is the in�nitary conversion relation corresponding to→→→R. In fact =R∞

is (R←←← ◦ →→→R)∗, where `◦' denotes relational composition and ∗ transitive closure.

2.13. Definition. (i) A term M ∈Λ∞ is in β-normal form (β-nf) if it does not
contain a β-redex.

(ii) M has a β∞-nf if M →→→β N and N is in β-nf.
(iii) Λ∞NF = {M ∈Λ∞ |M is in β-nf}

2.14. Example. (An in�nite �xed point combinator.) In this example and the next
we will present some brief excursions in the in�nitary λ-calculus as introduced up
to now. Next to illustrating the notions de�ned above, we also aim in these two
examples to suggest the convenience of having available the additional in�nitary
domain for computations, and moreover that this leads to some observations that
may be of interest on their own. In the present example we will encounter an
in�nite �xed point combinator (fpc). Using the notations for S, I, Y above, consider
δ ≡ λab.b(ab). Note that δ = SI. The following is an observation of C. Böhm and
G. van der Mey: if Y is a `reducing fpc', i.e. Y x →→β x(Y x) for a variable x, then
Y δ is again a reducing fpc. Indeed, we have

Y δx→→β δ(Y δ)x→→β x(Y δx)→→β x
n(Y δx).
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Now let us perform this reduction in an in�nitary way, in ω + ω steps:

Y δx→→→β (λf.fω)δx→β δ
ωx ≡ δ(δω)x→→β x(δωx)→→→β x

ω.

Hence Y δ is indeed behaving as a fpc, and we have Y δ =β∞ λx.xω =β∞ Y .
Note that the above reduction of length ω.2 could have been `compressed' to

one of length ω between the same terms Y δx and xω, but the resulting reduction
would be less natural and informative.

In fact the in�nite term δω ≡ δ(δω) is itself already a reducing fpc, as the
reduction above shows, and we also have δω =β∞ λx.xω =β∞ Y . So we have
encountered a new in�nite fpc, δω, or in µ-notation: µx.δx. As an illustration of
the richness of the in�nitary domain, Λ∞(⊥), we mention that one can �nd many
more in�nite fpc's, e.g., for every n the in�nite term (SS)ωS∼nI is a fpc. Here S∼n

denotes a string of n occurrences of S's, with brackets associated to the left; thus
for n = 3 we have (SS)ωSSSI. The simple veri�cation is left to the reader or can be
found in Klop [2007].

2.15. Example. [The equation BYS = BY and Scott's Induction Rule.] In Scott
[1975b], p. 20, the following principle (Scott's Induction Rule) was introduced.

Γ, ax v bx ` a(ux) v b(ux)
,

Γ, a⊥ v b⊥ ` a(Yu) v b(Yu)

where x /∈ FV(Γ). Scott mentions that the equation BYS = BY can be proved
using this rule. In Scott [1975a], p. 360, it is conjectured that, using techniques of
Böhm, it can be shown that this equation cannot be proved in (�nite) λ-calculus,
i.e. BYS 6=β BY . We �rst show this inconvertibility and then the validity of
BYS = BY under in�nitary conversion =β∞ .

2.16. Proposition. (i) For Curry's �xed point combinator Y one has

BYS 6=β BY .

(ii) For every �xed point combinator Y one has BY S 6=β BY .

Proof. (i) That BYS 6=β BY follows immediately from the observation that ap-
plying an I to both sides of the equation in question, with result BYSI and BY I,
we have BYSI =β Θ and BY I =β Y , respectively Turing's and Curry's �xed point
combinator (see notations in Section 2.1). It is well-known that Θ 6=β Y ; a non-
trivial but easy exercise establishes this. It follows that BYS 6=β BY .

Note that Scott [1975a] refers in this discussion to Curry's fpc Y . What if we
take another fpc Y in the equation BY S = BY ? If Y is a fpc in the Böhm sequence

Y
0 ≡ Y , Y1 ≡ Θ =β Yδ, Y2 ≡ Yδδ, Y3 ≡ Yδδδ, . . . ,

then BYnS 6=β BYn follows similarly from the fact that Yn 6=β Yn+1. In fact we
even have Yn 6=β Yn+k, for all n, k ≥ 0. For a proof of this result, see Böhm [1963]
or Klop [2007].

(ii) Much more di�cult it is to prove BY S 6=β BY for an arbitrary �xed point
combinator Y ! The proof runs via a deep result of Intrigila [1997], a�rming a
conjecture by Statman, stating that for no fpc Y we have Y =β Y δ. Indeed,
suppose BY S =β BY , for the fpc Y . Then BY SI =β BY I. Hence

Y δ =β Y (SI) =β BY SI =β BY I ≡ (λabc.a(bc)Y I =β λc.Y (Ic) =β λc.Y c =β Y.

8



The last step is justi�ed as follows: Y (KI) =β KI(Y (KI)) =β I, hence Y is solvable,
and hence has a hnf, by Barendregt [1984], Theorem 8.3.14. Therefore Y , being
closed is β-convertible to λx.Z. Then

λc.Y c =β λc.(λx.Z)c =β λc.Z[x: = c] ≡α λx.Z =β Y.

Therefore the assumption entails Y δ =β Y , contradicting Intrigila [1997].

2.17. Proposition. For every �xed point combinator Y one has BY S =β∞ BY .

Proof. BY S = BY (for an arbitrary fpc Y ) can be proved conveniently in the
framework of in�nitary reductions. By a simple computation BY →→→β λab.(ab)ω

and also BY S→→→β λab.(ab)ω. So

BY =β∞ λab.(ab)ω =β∞ BY S.

Note that en passant, we have established that =β∞ is not conservative over =β.
In Klop [2007] several other equations of this type are discussed, that do not hold
with respect to =β, but do hold with respect to =β∞ .

2.4. Basic properties of in�nitary λ-calculus

We will brie�y present some basic properties of the extended calculus, referring to
Terese [2003] Chapter 12 for complete proofs.

In �nitary λ-calculus, the two main issues for reduction are the con�uence prop-
erty or Church-Rosser property (CR), stating that two coinitial reductions can be
prolonged to a common reduct, and the termination property in the strong variant
of Strong Normalization (SN), stating that all reduction sequences eventually must
terminate in a normal form, and the weak variant of Weak Normalization (WN),
stating merely the existence of a normalizing reduction. The CR property has an
important corollary, namely the uniqueness of normal forms (UN). For connections
between these and other properties we refer to Barendregt [1984], Chapter 1 of
Terese [2003], Klop [1992].

Naturally, the question arises how these properties generalize to the in�nitary
calculus λ∞β. Notationally the extension is easy, and we will consider the properties
of in�nitary con�uence (CR∞), strong and weak in�nitary normalization (SN∞,
WN∞ respectively), and uniqueness of in�nitary nomal forms (UN∞). Connected
to the property CR∞ we also may consider PML∞, the in�nitary generalization of
the fundamental Parallel Moves Lemma (PML), which for �nite λ-calculus is the
key lemma on the way to CR. Let us de�ne these notions formally.

2.18. Definition. (i) The in�nitary Church-Rosser (or con�uence) property CR∞

for →→→R is: for all M0,M1,M2 ∈Λ∞(⊥) there exists an M3 ∈Λ∞(⊥) such that

M0 →→→R M1 & M0 →→→R M2 ⇒ M1 →→→R M3 & M2 →→→R M3.

(Note: we could have given the CR∞ property mentioning explicitly the length in
ordinals of the reductions involved; in view of the Compression property, appearing
later, this amounts to the same as the present de�nition.)

(ii) PML∞ for →→→R is the property similar to CR∞, but but with one of the
coinitial reductions �nite: for all M0,M1,M2 ∈Λ∞(⊥) there exists a M3 ∈Λ∞(⊥)
such that

M0 →→R M1 & M0 →→→R M2 ⇒ M1 →→→R M3 & M2 →→→R M3.

(iii) A term M ∈Λ∞(⊥) has the in�nitary Strong Normalization Property, nota-
tion M is SN∞, if M admits no divergent reductions. In other words all reductions
ofM eventually terminate in a normal form, possibly after a trans�nite β-reduction.
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(iv) M ∈Λ∞(⊥) has the WN∞ property if there exists a λ∞β-nf N ∈Λ∞(⊥) such
that M →→→β N .

2.19. Example. (i) Every fpc Y is WN∞, its normal form being λa.aω. For the
fpc's Y0 ≡ Y , Y1 ≡ Θ =β Yδ, Yn ≡ Yδ∼n, considered in Example 2.15, we even
have SN∞.

(ii) A term which is WN∞ but not SN∞ is KIΩ. This involves a term which is
`erasing', i.e. not a λI-term, so one may ask whether possibly Church's theorem,
stating that for λI-terms M one has the equivalence

M is SN ⇐⇒ M is WN,

generalizes to the in�nitary setting. However, this is not the case, and a coun-
terexample to this generalization is the fpc Y Ω ≡ ζζΩ, where ζ ≡ λxpf.f(xxpf),
mentioned in Klop [2007]. This fpc is WN∞ but not SN∞, and it is a λI-term.

The following counterexample was independently given in Ariola and Klop [1994]
and Berarducci [1996]. The latter paper moreover presented a method to restore
CR∞ by equating a class of problematic terms, namely the ones that have no root
stable form (in Berarducci's paper called `mute' terms) as will be discussed below.

2.20. Lemma (Failure of PML∞ and CR∞). The properties PML∞ and a fortiori
CR∞, do not hold for in�nitary λ∞β-calculus.

Proof. Consider Y I. Then on the one hand

Y I→β (λx.I(xx))(λx.I(xx))→→→β Iω,

and on the other hand

Y I→β (λx.I(xx))(λx.I(xx))→→β (λx.xx)(λx.xx) ≡ Ω.

Both Iω and Ω only reduce to themselves, so they have no common reduct and
PML∞ and hence also CR∞ fail.

After these negative �ndings, we now turn in two ways to the positive state of
a�airs.

The �rst way of restoring aspects of con�uence is as follows. Note that both Iω

and Ω in the proof of Lemma 2.20 are not normal forms. Now, when we impose
that one of the terms that are the end points of the coinitial reductions considered
for the con�uence is a normal form, then con�uence does hold.

This fundamental theorem has some bene�cial consequences, among which the
property UN∞, the unique normal form property. It was proved in Kennaway et al.
[1995b] for �rst order in�nitary TRSs, there called iTRSs, and extended by Ketema
and Simonsen [2005] to a wider context, generalizing iTRSs and also our present
framework, namely for all orthogonal and `fully-extended' in�nitary Combinatory
Reduction Systems (iCRSs, as they are called in Ketema and Simonsen [2006] and
[2005]). The notion `fully extended' excludes a variable condition such as present
in the η-reduction rule. For our purpose, we only mention that in�nitary λ-calculus
extended with the oracle f-rules λ∞βf, is among this large class of higher-order
rewrite systems. First we will state formally the unique normal form property
together with two variants. We will do this in De�nition 2.21 in a general way,
namely for Abstract Reduction Systems; then we specify the notation of these
properties for the present in�nitary λ-calculi.

2.21. Definition. Let→R be a reduction relation on some set A, with correspond-
ing conversion relation =R.
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(i) R has the unique normal form property w.r.t. reduction, notation UN(→→R),
if for all a, b1, b2 ∈A with b1, b2 in R-nf one has

a→→R b1 & a→→R b2 ⇒ b1 ≡ b2.

(ii) We say that R has the unique normal form property w.r.t. conversion, no-
tation UN(=R), if for all b1, b2 in R-nf one has

b1 =R b2 ⇒ b1 ≡ b2.

(iii) R has the normal form property w.r.t. R, notation NF(R), if for all a, b∈A
with b in R-nf one has

a =R b ⇒ a→→R b.

Note that UN(=R) ⇒ UN(→→R), but in general not vice versa.

2.22. Notation. To indicate that we are dealing with in�nitary reduction, we will
write the properties of De�nition 2.21 as UN∞, NF∞, specifying always the con-
sidered reduction or conversion relation. E.g. we will state `UN∞ holds for →→→β',
`UN∞ holds for =β∞ ' or `NF∞ holds for =β∞ '.

2.23. Lemma (Ketema and Simonsen [2006]). Suppose M1 →→→βf N and M1 →→→βf

M2, with N in β∞f-nf. Then M2 →→→βf N.

M1 N(nf)

M2

βf

βf

βf

This lemma has some useful consequences.

2.24. Corollary. (i) NF∞ holds for =β∞ and for =βf∞ .
(ii) UN∞ holds for →→→β and =β∞ ; also for →→→βf and =βf∞ .
(iii) LetM ∈Λ∞(f). SupposeM ∈WN∞ for→→→βf , i.e.M has an in�nitary βf-nf.

Then M is CR∞ for →→→βf , i.e. two →→→βf-reducts of M have a common reduct.

The other way of reaching con�uence properties is by taking a congruence, that
is, by working modulo a class of unde�ned terms, e.g. the class of terms without
hnf. This works, because the problematic terms causing non-con�uence are always
unde�ned terms. Below in the subsection about Böhm reduction, we will elaborate
this route. First we pay attention to the following important feature of in�nitary
reductions.

Compression

The introduction of reduction sequences of trans�nite length α is a natural general-
ization of �nite reductions. But often we do not need the �ne distinctions that this
length measuring with countable ordinals makes possible. Indeed we can remove the
use of trans�nite ordinals, by compressing a reduction of length α to one between
the same terms of length β 6 ω. In fact, the in�nitary λ-calculus of Berarducci and
Intrigila [1996] does without trans�nite reductions, and just considers reductions of
length at most ω. (Their in�nitary λ-calculus can easily be extended to trans�nite
reductions, though.) So, we have the following Compression property.
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2.25. Lemma. (i) Let R : M →α
β N , for some countable ordinal α. Then there

exists an in�nitary reduction R′ of at most ω steps, i.e. R′ : M →6ω
β N . This R′

is obtained from R by compression.
(ii) Compression also holds for λ∞βf-calculus, where the oracle rules for f are

added.

Proof. (i) See Kennaway and de Vries [2003], p. 690. The compression is a
straightforward application of `dove-tailing'.

(ii) See Ketema and Simonsen [2006] and [2005].

2.26. Example. The following reduction

[Ya, Yb]→ω
β [aω, Yb]→ω

β [aω, bω],

see Notation 2.1, has length ω.2. It can be compressed to length ω by alternating
the contraction of a redex `to the left and to the right.' Since the reduction ends
in a nf, in this case all compressed reductions R′ are Lévy equivalent with R, see
Terese [2003], p. 690.

2.27. Remark. For the Compression property our de�nition of strongly convergent
reductions is essential. For in�nitary reductions that are merely Cauchy conver-
gent, without the depth-to-in�nity requirement, compression does not hold. For
counterexamples see Terese [2003].

For use in Section 4 we mention the following, anticipating the notion of reduc-
tion βΩ, treated in the next subsection.

2.28. Proposition. Let N ∈Λ be a �nite term. Then

(i) M →→→β N ⇒ M →→β N.
(ii) M →→→βΩ N ⇒ M →→β N.
(iii) M →→→βfΩ N ⇒ M →→βf N.

Proof. (i) By compression M −→6ω
β N . Since N ∈Λ is �nite, α cannot be ω,

by the de�nition of strong convergence.
(ii), (iii) Similarly.

In�nitary λ∞β-calculus with Böhm reduction

We will now brie�y focus on the extension of λ∞β-calculus with Ω-reduction rules.
Actually, as mentioned in the Introduction, the theory forks in three main directions.
(See Terese [2003], chapter 12, for a more elaborate presentation. As a reminder,
the de�nition of weak hnf and of root stable term were already stated in De�nition
2.6(ii) and discussed in Remark 2.7.) We introduce the following three in�nitary
rewrite systems.

2.29. Definition. (i) (For Böhm trees, BTs) The λ∞βΩ3-calculus is the λ∞β-
calculus extended with the three Ω-reduction rules given in De�nition 2.4.

(ii) (For Lévy-Longo trees, LLTs) The λ∞βΩ2-calculus is the λ
∞β-calculus ex-

tended with the two Ω-reduction rules:

M →Ω ⊥ if M 6≡ ⊥ and M does not β-reduce to a weak hnf;

⊥M →Ω ⊥.

(iii) (For Berarducci trees, BeTs) The λ∞βΩ1-calculus is the λ
∞β-calculus ex-

tended with the single Ω-reduction rule:

M →Ω ⊥, if M 6≡ ⊥ and M does not β-reduce to a root stable term.
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Note that these three rewrite systems are not orthogonal rewrite systems; the rules
display several overlaps, giving rise to non-trivial `critical pairs'.

We now give a rather di�erent de�nition of BTs. Whereas the �rst de�nition in
2.3 was in a coinductive fashion, the present alternative one is employing in�nitary
rewriting. We will only treat BTs, and refer just to λ∞βΩ-calculus; the de�nitions
of LLTs and BeTs are entirely analogous.

Also for the calculi yielding LLTs and BeTs we have CR∞ and the other prop-
erties of Corollary 2.34 below. In particular CR∞ for λ∞βΩ1 for the BeTs provides
an interesting alternative route to UN∞ for λ∞β, based on the following lemma
from de Vrijer [1999] on abstract reduction systems. We note that this route was
�rst employed by Berarducci [1996].

2.30. Lemma. Let A = (A,→1) and B = (B,→2) be two abstract reduction systems
(ARSs). Suppose

(i) A ⊆ B;
(ii) →→1⊆→→2;
(iii) NF(A) ⊆ NF(B), where NF of an ARS is the set of its nfs.

Then B is UN(→→2) ⇒ A is UN(→→1).

Proof. The proof is trivial. If for a∈A has two nfs n1, n2, so a →→1 ni, i = 1, 2,
then a, n1, n2 ∈B and a→→2 ni, i = 1, 2, so n1 = n2.

Now the in�nitary calculus λβΩ∞1 for BeTs is indeed an extension of λ∞β as ARSs
in this Lemma. As CR∞ holds for →→→βΩ1 , we have UN∞ for →→→β, by Lemma 2.30.
Note that this proof manoeuvre would not work for BTs or LLTs: there the third
condition in Lemma 2.30 is not satis�ed. Namely, for BTs the problem is that L ,
as in Example 2.37, is a β-nf, but not a λ∞βΩ3-nf, the calculus de�ning BTs. For
LLTs an o�ending term would be the term A , as in Example 2.37, which is also a
β-nf, but not a λ∞βΩ2-nf, the calculus de�ning LLTs.

2.31. Definition. Let M ∈Λø(c), where c is some set of constants (or variables
that we will not bind). Then BT (M) is de�ned as above, where the c are treated
as constants. We will apply this to various versions of λ(δ) in Section 5, which
is a rewriting system consisting of Λ(δ) with some varying notions of reduction,
involving the constants δ. Although δxx →βδ x, one has BT(δxx) 6≡ BT(x), but
BT(δxx) ≡ δxx.

2.32. Lemma. Let M ∈Λ∞(⊥). Then BT(M) is a βΩ∞-nf of M .

Proof. De�nition 2.8(iii) of BT(M), extended to elements of Λ∞(⊥) can be seen
as an in�nitary reduction; the `depth-to-in�nity' requirement clearly is satis�ed.

2.33. Proposition. We have CR∞ for λ∞βΩ.

Proof. See Terese [2003] Theorem 12.9.6, p. 699.

2.34. Corollary. We have WN∞ and UN∞ for λ∞βΩ. More speci�cally, in the
λ∞βΩ-calculus all terms M have BT(M) as unique λ∞βΩ-nf.

Proof. By Lemma 2.32 and Proposition 2.33.

2.35. Corollary. Let M,N ∈Λ∞. Then
(i) M→→→βΩBT(M).
(ii) BT(M)BT(N)→→→βΩ BT(MN).
(iii) BT(BT(M)) ≡ BT(M).
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(iv) M =βΩ∞ N ⇐⇒ BT(M) ≡ BT(N).
(v) BT(MN) ≡ BT(BT(M)BT(N)).

Proof. (i) By Lemma 2.32.
(ii) Note that MN →→→βΩ BT(M)BT(N), and that BT(MN) is the λ∞βΩ-nf of

MN . Then the result follows by CR∞ for λ∞βΩ.
(iii) By Corollary 2.34.
(iv) By Corollary 2.34.
(v) By (ii), (iv) and (iii).

2.36. Remark. (i) If a priority is imposed between the Ω-reduction rules and β-
reduction, to the e�ect that the �rst have precedence over the latter, then the
λ∞βΩ-calculus is even SN∞. If not, SN∞ fails: Ω has a divergent reduction

Ω→β Ω→β . . . .

(ii) These de�nitions and facts generalize straightforward to the presence of the
oracle f-rules in De�nition 2.1.

To conclude this part on BTs, LLTs and BeTs we mention that mutatis mutandis
similar statements hold for the LLT and BeT setting, most importantly concerning
the properties CR∞, WN∞ and UN∞. In the remainder of this paper we will not
need LLTs and BeTs.

2.37. Example. Write L ≡ λx0(λx1(. . . and A ≡ µx.xx.
(i) Note that

BT(YK) = ⊥.
LLT(YK) = L .

(ii) BT((λx.xx)ω) = ⊥.
LLT((λx.xx)ω) = ⊥.

(iii) BeT((λx.xx)ω) = A .

The next lemma is easy to prove but very useful.

2.38. Lemma (Partial conservativity). (i) LetM ∈Λ∞ and N ∈Λ in β-normal form.
Then

M =β∞ N ⇒ M →→β N.

(ii) Let M ∈Λ∞ and N ∈Λ in βf-normal form. Then

M =βf∞ N ⇒ M →→βf N.

Proof. (i) If M =β∞ N with N ∈ΛNF, then M →→→β N , by Corollary 2.24(i),
henceM →→β N , by Proposition 2.28(i). Alternatively, note thatM =β∞ N implies
M =βΩ∞ N , hence applying CR∞ for→→→βΩ we get M →→→βΩ N , because N ∈ΛNF;
moreover one has M →→β N , by Lemma 2.28(ii).

(ii) Similarly.

Note that the requirement that N ∈ΛNF cannot be dropped. E.g. Y =β∞ BT(Y),
but Y 6=β BT(Y).

2.39. Definition. The set of Böhm trees is the following collection.

B = {M ∈Λ∞(⊥) | ∃N ∈Λ∞(⊥).BT(N) ≡M}.

In Barendregt [1984] elements of this set are called Böhm-like trees; they may not
be the BT of a �nite λ-term.
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2.40. Definition. (i) BΛ = {M ∈B | ∃N ∈Λ.BT(N) ≡M}.
(ii) B<∞ = {M ∈B |M is �nite}.
(iii) Bnf = {M ∈B | ∃N ∈ΛNF.M ≡ N}.
(iv) B+⊥ = {M ∈B |M contains a ⊥}.
(v) B−⊥ = {M ∈B |M is ⊥-free}.

(vi) Λ∞• (⊥) = {M ∈Λ∞(⊥) | BT(M)∈B•},
where • is one of the symbols in {Λ, <∞,nf,+⊥,−⊥}

Remark. Λ∞Λ (⊥) = {M ∈Λ∞ | BT(M) is r.e.}. See Theorem 10.1.23 in Baren-
dregt [1984].

2.41. Lemma. (i) Bnf ⊆ B<∞ ⊆ BΛ ⊆ B.
(ii) B−⊥ ∩ B<∞ = Bnf .

Proof. Immediate.

In order to give examples of speci�c terms in or outside the given sets, we need the
following notation.

2.42. Notation. (i) For A ⊆ N, its partial characteristic function χA is de�ned by

χA(n) = 1, if n∈A,
= ↑, else (↑ denoting `unde�ned').

(ii) Let f : N→ N. Then Gf ∈Λ∞ is de�ned by

λz.z
qq MM

cf(0) λz.z
qq LL

cf(1) λz.z
tt GG

cf(2) . . .

(iii) Let ψ : N ↪→ N be a partial unary function. Then Gψ ∈Λ∞(⊥) is de�ned by

λz.z
tt LL

M0 λz.z
ss KK

M1 λz.z
vvv HH

M2 . . . ,

where

Mk = cψ(k), if ψ(k)↓ (here ↓ denotes `de�ned'),
= ⊥, else

(iv) For A ⊆ N, its characteristic function KA is de�ned by

KA(n) = 1, if n∈A,
= 0. else.

(v) H = {n∈N | ϕn(n)↓}, where ϕe is the unary partial computable function
with program e and H is its complement.

2.43. Example. The following examples show the general position of the de�ned
subsets of B.
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B

q GKH
q BT(Y)

q S q ⊥ q GχH
q GχH

BΛ

B<∞

︸ ︷︷ ︸
B−⊥

︸ ︷︷ ︸
B+⊥

Figure 3: The collection of Böhm trees B and some subclasses

3. Berry sequentiality

One of the uses of Böhm trees is that they enable us to make a fundamental feature of
β-reduction explicit, namely its sequential nature. This may be seen as a restriction
in the expressivity of λβ-calculus, because it entails the classical fact that parallel
functions like parallel-or are not de�nable in λβ-calculus. The basic theorem that
states this sequentiality is Berry's Sequentiality Theorem (BST), that we will state
below. Its main corollary of the non-de�nability of parallel-or is described in several
places (Plotkin [1977], Barendregt [1984], Curien [1993], Berry [1978].) Barendregt
[1984] also describes another consequence, the Perpendicular Lines Lemma. In the
present paper we will employ BST to show that the operators and rules of Surjective
Pairing are not λ-de�nable. In Barendregt [1974] this was �rst proved using an ad
hoc underlining argument; the use of BST is more `systematic'. We mention here
that all these non-de�nability corollaries of BST, which we present as an in�nitary
statement regarding BTs, also are deduced in Endrullis and de Vrijer [2008] in λβ-
calculus, so in a �nitary framework.

The theorem BST itself is a natural candidate for a treatment in in�nitary λ-
calculus, as was shown in Bethke et al. [2000]. The fact that BTs can be obtained as
the result of an in�nite reduction sequence, Corollary 2.34, enables us to perform a
tracing argument that shows the origin of the ⊥s in the output BT(M), as present
in the input term M. (See Fig. 4 below.) The essence of the sequentiality is then
intuitively very simple: in a reduction in λ∞βΩ-calculus, the ancestors of symbol
occurrences can be traced back towards their origin in the initial term; a symbol
either has one ancestor, or it was created (in our case by the �rst Ω-rule). So by
tracing the symbols along the in�nite reduction that computes the BT, we discover
the `causal relations' between the output ⊥s and the input ⊥s; and that is what BST
is about. (This technique is also used in more application-oriented areas under the
name of origin-tracking, e.g. for `program slicing' for error detecting.) The precise
details of the tracing procedure are intricate, and will not be considered below. A
simpler proof of BST can also be found in Curien [1993]. Here we only hint at the
in�nitary tracing proof of BST, and concentrate on the two applications, to wit the
non-de�nablity of SP and the derivation of the Perpendicular Lines lemma. Before
doing so, we explain in an example what are the possible `causal relations' between
input and output ⊥s.

3.1. Example. (i) Consider the �nite BT-reduction sequence

M ≡ (λxy.x⊥)⊥ → λy.⊥⊥ → λy.⊥ → ⊥ ≡ BT(M).
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Now an input z in the �rst ⊥ has no output e�ect:

(λxy.xz)⊥ → λy.⊥z → λy.⊥ → ⊥,

but with input z in the second ⊥ we do have non-trivial output:

(λxy.x⊥)z → λy.z⊥.

(ii) Let ω ≡ λx.xx. Consider the reduction

M ≡ (λxy.xω⊥)ω⊥ → (λy.ωω⊥)⊥ → (λy.⊥⊥)⊥ → (λy.⊥)⊥ → ⊥.

In this example it is not possible to increase the output ⊥; for re�ning both input
⊥s in M to P, Q, respectively, gives

M ≡ (λxy.xωP )ωQ→ (λy.ωωP )Q→ (λy.⊥P )Q→ (λy.⊥)Q→ ⊥.

(iii) In the two examples above there was only one output ⊥. In the next example
there are three output ⊥s. Let

M ≡ (λxz.zx(ωω)⊥)⊥ →→ [⊥,⊥,⊥] ≡ BT(M).

The second ⊥ is independent of re�nements of M ; the �rst ⊥ and third ⊥ are
descendants of the ⊥ 's in M in the order of appearance. This example already
gives an intuition of why BST holds: the ⊥s in the output that have no ancestor
are the ones that are `created' during the BT computation, while the output ⊥s
that have an ancestor are their descendants; in other words, they can be traced to
input ⊥s.
(iv) Finally consider

M ≡ (λxy.y(xx))ω → λy.y(ωω)→ λy.y⊥ ≡ BT(M).

Here the term without hnf ωω is created, and the ⊥ in the �nal BT has no `ancestor'.
In the Fig. 4 the grey area denotes a spot where a creation is performed; there is
no precise origin for the ⊥ arising from that creation.

Before stating BST and turning to its applications we need to set up some
notations.

3.2. Definition. Let M ∈Λ∞.
(i) Let α∈{0, 1}∗ be a �nite sequence of bits. We can use such sequences to

denote positions of subterms of M . The corresponding subterm (occurrence) is
denoted by M |α. The notion is di�erent from that with the same notation in
Barendregt [1984], De�nition 10.2.18(ii). In that book one �rst needs to determine
the Böhm tree of M in order to evaluate M |α. Moreover, due to the di�erence
in notation for Böhm trees (applicative vs hnf, see Notation 2.9) α in Barendregt
[1984] may be a sequence of elements of N, not just of {0, 1} as in this paper.

(ii) The notion is illustrated for the term M ≡ [a1, a2, [a3]] ≡ λz.za1a2(λw.wa3)
of Notation 2.9(i).

M |[ ] = M

M |[0] = za1a2(λw.wa3)
M |[1] = ↑, i.e. unde�ned,

M |[00] = za1a2

M |[001] = a2

M |[000] = za1

17



(iii) If M |α = ⊥ we write ⊥α ∈M to denote the corresponding subterm occur-
rence of ⊥ at position α. For example ⊥[01],⊥[001] ∈λf.f⊥⊥ denote the two subterm
occurrences, as can be seen from the tree in Λ∞.

3.3. Definition. Let M →→ N .
(i) Let ⊥α ∈M , ⊥β ∈N be subterm occurrences. We say that ⊥β traces back

to a ⊥α (w.r.t. the given reduction), notation ⊥α ; ⊥β , if coloring the di�erent
occurrences of ⊥ in M with di�erent colors and tracing the colors in the reduction
M →→→βΩ N yields the same color for ⊥β as that for ⊥α. During Ω-reduction steps,
like ⊥M →Ω ⊥, the right ⊥ should have the same color as the left one.

(ii) ⊥β ∈N is said to be created (w.r.t. the given reduction), if it does not trace
back to some ⊥α ∈M .

3.4. Example. Let z(Iωω)(ω⊥1)((λx.yxx)⊥2)→→ z⊥3⊥4(y⊥5⊥6), with ω ≡ (λx.xx).
Then ⊥3 is created, ⊥1 ; ⊥4, ⊥2 ; ⊥5, and ⊥2 ; ⊥6.

3.5. Definition. (i) Let M ∈Λ∞. Write Ms for a term that results from M by
replacing occurrences of ⊥ by arbitrary terms, whereby free variables may be cap-
tured. We view s as a `liberal' substitution operator.

(ii) LetM,N ∈Λ∞. We writeM v N if N ≡Ms for some substitution operator.

Without proof we mention the following.

3.6. Remark. For M ∈Λ∞(⊥) we have

BT(M) v LLT(M) v BeT(M).

3.7. Example. (i) xΩ(⊥x)(x⊥)(λx.⊥)⊥ v xΩ(Ix)(xK)(λx.S)Y .
(ii) λx.x

⊥
uu

x
HH

⊥
vvv

. . .
BBB

v λx.x

c0
tt

x
II

c1

uu
. . .

DD

.

3.8. Proposition. Let M1 →→M2.
(i) For all substitutions s1 there exists a substitution s2 such that Ms1

1 →→Ms2
2 .

This yields

M1
v

����

Ms1
1

����
M2

v
Ms2

2

(ii) If moreover ⊥α ; ⊥β, then we also may require in (i) that

Ms1
1 |α = ⊥ ⇒ Ms2

2 |β = ⊥;
Ms1

1 |α = z ⇒ Ms2
2 |β 6= ⊥,

where z is some fresh variable.
(iii) If ⊥α1 ; ⊥β and ⊥α2 ; ⊥β, then α1 = α2. In other words, every occurrence

of ⊥∈M2 can be traced back to at most one α∈M1.

Proof. (i) By trans�nite induction on α, the length of reduction establishing
M →βΩ N . During an Ω-step like ⊥P → ⊥, the substitution gets modi�ed.

(ii) Like (i).
(iii) By (ii).

3.9. Definition. Let M ∈Λ∞(⊥) and M →→→βΩ N ≡ BT(M). Then
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(i) ⊥β ∈N is dependent of a ⊥α ∈M if for all M ′ wM and all fresh variables z

M ′|α = ⊥ ⇒ BT(M ′)|β = ⊥,
M ′|α = z ⇒ BT(M ′)|β 6= ⊥.

(ii) ⊥β ∈N is constant if ∀M ′ wM.BT(M ′)|β = ⊥.

We will not prove the following Sequentiality theorem, see Bethke et al. [2000] for
a proof in the in�nitary context.

3.10. Proposition (Berry's Sequentiality Theorem). Let M ∈Λ∞(⊥) and let N ≡
BT(M) be the βΩ∞-nf of M . Then we have the following.

(i) Every ⊥β ∈N is dependent of at most one ⊥α ∈M .
(ii) Those ⊥β ∈N that are not dependent of any ⊥α ∈M are constant.

⊥⊥⊥⊥ ⊥

⊥

⊥

⊥

M BT(M)βΩ

Figure 4: Three occurrences of ⊥ in BT(M) trace back to some ⊥ in M

Now we list some consequences of the Sequentiality Theorem. The following
was �rst proved for �nitary λ-calculus in Barendregt [1974], using the technique of
underlining. For an alternative proof see de Vrijer [1987] or [2007].

3.11. Proposition. There are no terms π, π1, π2 ∈Λ∞ constituting a surjective
pairing, i.e. such that

πi(πx1x2) = xi & π(π1x)(π2x) = x.

Proof. Suppose π, π1, π2 do exist. Then

π(π1⊥)(π2⊥) = ⊥.

The RHS ⊥ is not constant in this situation, as π(π1I)(π2I) = I. By Sequentiality
this ⊥ must depend on say the �rst ⊥ in the LHS. But then for all X one has

⊥ = π(π1⊥)(π2(πXY )) = π(π1⊥)Y.

By taking the second projection one obtains π2⊥ = Y . This implies X = Y for all
X,Y ∈Λ∞, which is not so by UN∞ for λ∞β-reduction.

A second application is the generalization of the perpendicular lines lemma, see
Barendregt [1984], Theorem 14.4.12 proved for =BT. It states that any λ-de�nable
map (Λ∞)n → Λ∞ which is constant on n di�erent perpendicular lines is constant
everywhere.
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3.12. Theorem (Perpendicular lines lemma). Let F,Mij , Ni ∈Λ∞ for
i, j ∈{1, . . . , n}. Suppose for all Z ∈Λ∞ one has (here = stands for =βΩ∞)

F M11 M12 . . . M1(n−1) Z = N1;
F M21 M22 . . . Z M2n = N2;

. . .
F Z Mn2 . . . Mn(n−1) Mnn = Nn.

Then for all ~Z = Z1, . . . ,Zn one has

F ~Z = N1 = . . . = Nn.

Proof. For notational simplicity we take n = 3. That is, let F,Mij , Ni ∈Λ∞ with
1 6 i, j 6 3 be given such that for all Z ∈Λ∞ one has

F M11 M12 Z = N1 (1)
F M21 Z N23 = N2 (2)
F Z M32 N33 = N3. (3)

We show that for all M1,M2,M3 one has

FM1M2M3 = F⊥⊥⊥.

Indeed, write N ≡ BT(F⊥⊥⊥). Then F⊥⊥⊥ →→ N . We have BT(FM1M2M3) w
N , since function application is monotonic w.r.t. v. Suppose that for some
M1,M2,M3 the inequality is strict. Then some ⊥β ∈N is not constant in this
situation. Hence this ⊥β must depend on one of the three ⊥s in F⊥⊥⊥, say the
last one. Then

N | α = FM1M2⊥ | α, since ⊥β depends on the third ⊥,
= N1 | α, by (1),

= FM1M2z | α by (1),

6= N | α, since ⊥β depends on the third ⊥.

Therefore the assumption is false and we are done.

In Barendregt and Statman [1999] it is proved that the perpendicular lines
lemma does not hold for β-equality.

4. Relative computability

In this section we will exploit the fact that in�nite λ-terms can have arbitrary
complexity. Coding a total number theoretic function f :N → N as an in�nite λ-
term Gf ∈Λ∞, we can use Gf itself as an oracle in the computation of another
function g : N → N, where the actual computation is performed by a �nite λ-term
and β-reduction. That is, we can capture the notion of relative computability,
f ; g, i.e. g can be computed with f as oracle, entirely in in�nitary β-calculus.
As an intermediate and still �nite λ-calculus we use λf, as introduced in De�nition
2.1. According to Kleene [1963] we have that f ; g i� g can be computed in λf.
Then we connect the �nitary λf-calculus with the in�nitary λ∞β-calculus.

4.1. Notation. (i) Let Bk = Nk → N, with B0 = N, and B =
⋃
k∈N Bk.

(ii) Let [n0, . . . , nk−1] be some coding of sequence numbers such that
(1) For all k > 0 the function λλx0 . . . xk−1.[x0, . . . , xk−1]∈Bk is computable;
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(2) There is a computable λλpx.(x)p ∈B2 projecting a sequence number onto its
components, i.e. such that

∀k, p ∀[n0, . . . , nk−1].p < k ⇒ ([n0, . . . , nk−1])p = np.

(iii) For g ∈Bk de�ne [g]∈B1 by

[g](n) = g((n)0, . . . , (n)k−1), if k > 0,
= g, if k = 0.

The computable functions form the least class of total functions that contain the ini-
tial functions (successor, constant zero function, and the projections λλx1 . . . xn.xi)
and that is closed under composition, primitive recursion and minimalization.

4.2. Definition. Let f, g ∈B. We say that f computes g, notation f ; g i� g
is computable in f (i.e. can be obtained by adding f to the initial functions and
closing this collection under substitution, primitive recursion and minimalization).

4.3. Lemma. For g ∈Bk with k > 0 one has g ; [g] and [g] ; g.

Proof. Note that for f ∈Bk with k > 0 one has for all n0, . . . , nk−1

[g](n) = g((n)0, . . . , (n)k−1);
g(n0, . . . , nk−1) = [g]([n0, . . . , nk−1]).

4.4. Definition. Let g ∈B1. Then Gg ∈Λ∞ is de�ned as in Notation 2.42. If g ∈Bk
with k 6= 1, then Gg = G[g].

The following lemma states how one can transform Gg and a term G that λ-de�nes
g in λ∞β, in both directions into each other, by application of a �nite term.

4.5. Lemma. Let g ∈B1.
(i) There exists an S ∈Λø such that SGgcn →→β cg(n), for all n∈N.
(ii) There exists a T ∈Λø such that for all G∈Λ∞

[∀n∈N. Gcn →→→β cg(n)] ⇒ TG→→→β Gg.

(iii) There exists a T ∈Λø such that for all G∈Λ∞(f)

[∀n∈N. Gcn →→→βf cg(n)] ⇒ TG→→→βf Gg.

Proof. (i) De�ne S ≡ Y [λsgn.zero?n(gK)(s(g(KI)(P−n), where zero?c0 =β K,
zero?cn+1 =β KI and P−c0 =β c0, P

−cn+1 =β cn. Then for all G∈Λ∞, n∈N

S G c0 =β GK;
S G cn+1 =β S (G(KI)) cn,

a kind of primitive recursion for λ∞β. It follows by induction on n that S works:

SGgc0 =β GgK ≡ [cg(0), cg(1), . . .]K =β cg(0)

SGgcn+1 =β S(Gg(KI))cn =β S[cg(1), cg(2), . . .]cn =β cg(n).

(ii) De�ne H ≡ Y(λhgn.[fn, hg(suc n)]. Then for all n∈N

HGcn →→β [Gcn, HGcn+1].
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Take T ≡ λf.Hfc0. Then,

TG →β HGc0 →→β [Gc0, HGc1]

→→β [Gc0, Gc1, HGc2]

→→β [Gc0, Gc1, . . . ,HGck]

→→→β [Gc0, Gc1, . . .]

→→→β [cg(0), cg(1), . . .]

≡ Gg.

(iii) Similarly.

4.6. Corollary. Let g ∈B1. If g is computable, then Gg ∈Λ∞Λ (⊥).

Proof. By the λ-de�nability of computable functions there exists an G∈Λø such
that Gcn = cg(n), for all n∈N. Hence by Lemma 4.5(ii) we have

TG→→→β Gg ∈Λ∞Λ (⊥).

Now we repeat Lemma 4.5 for functions of more variables.

4.7. Lemma. (i) For every k∈N there exists an Sk ∈Λø such that for all g ∈Bk

∀n1, . . . ,nk ∈N.Sk Gg cn1 . . . cnk
→→→β cg(n1,...,nk).

(ii) For every k∈N there exists a Tk ∈Λø such that for all g ∈Bk, G∈Λ∞

[∀n1, . . . ,nk ∈N.Gcn1 . . . cnk
→→→β cg(n1,...,nk)] ⇒ TkG→→→β Gg.

(iii) For every k∈N there exists a Tk ∈Λø(f) such that for all g ∈Bk, G∈Λ∞(f)

[∀n1, . . . ,nk ∈N.Gcn1 . . . cnk
→→→βf cg(n1,...,nk)] ⇒ TkG→→→βf Gg.

Proof. Similar to the proof of Lemma 4.5, using the λ-de�nability of the functions
in the proof of Lemma 4.3.

4.8. Corollary. Let g be de�ned from g1, . . . ,gk by composition, primitive recur-
sion or minimalisation. Then there exists a T ∈Λø such that

TGg1 . . .Ggk
→→→β Gg.

Proof. Without loss of generality we do this for g(x, y) = g1(g2(x, y), g3(x)). No-
tice that for G ≡ λxy.S2Gg1(S2Gg2xy)(SGg3x) one has by Lemma 4.7(i)

Gcncm →→β S2Gg1(S2Gg2cncm)(SGg3cn)→→→β S2Gg1cg2(n,m)cg3(n) →→→β cg(n,m).

Therefore, by Lemma 4.7(ii), for the right T ∈Λø one has

TGg1Gg2Gg3 →→→β T2(λxy.S2Gg1(S2Gg2xy)(SGg3x))→→→β T2G→→→β Gg.

Of the following equivalences (1)⇐⇒ (2) was proved in Kleene [1963].

4.9. Theorem. Let f, g ∈B. Then the following are equivalent.

(1) f ; g;

(2) ∃G∈Λø(f)∀n∈N . Gcn →→βf cg(n);

(3) ∃H ∈Λø . HGf →→→β Gg.
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Proof. We show (3) ⇒ (2) ⇒ (1) ⇒ (3). We give an extra proof of (1) ⇒ (2) ⇒
(3), to isolate the equivalence between the `�nite' statements (1) and (2) and to
shed more light on the transition between the �nite (2) and the in�nite system (3).

(3)⇒(2) Assume HGf →→→β Gg, with H ∈Λø. Now fcn →f cf(n), so

T f →→→βf Gf ,

by Lemma 4.5(iii). Hence by assumption H(T f)→→→βf Gg. Then for all n∈N

S(H(T f))cn →→→βf cg(n), by Lemma 4.5(i),

S(H(T f))cn →→βf cg(n), by Lemma 2.38(ii) or 2.28(ii).

Therefore we can take G ≡ S(H(T f)).
(2)⇒(1) The relation P →βf Q is (after coding) computable in f . This makes

P →→βf Q and P =βf Q r.e. in f . It follows that

{[n,m] | g(n) = m} = {[n,m] | Gcn =βf cm}

is r.e. in f . Therefore g is computable in f .
(1)⇒(3) Assuming f ; g, we show by induction on the generation of g from f

that there exists an H ∈Λø such that HGf →→→β Gg. If g = f we can take H = I.
If g is an ordinary initial function, then Gg ∈Λ∞Λ (⊥), by Corollary 4.6, and we can
take H = λx.M for some M ∈Λø such that M →→→β Gg. Now suppose g results
from composition, primitive recursion or minimalization from previously obtained
functions g1, . . . , gk from f . Then taking H ≡ (λx.T (H1x) . . . (Hkx)), with T as in
Corollary 4.8 one has

HGf ≡ (λx.T (H1x) . . . (Hkx))Gf
→β T (H1Gf ) . . . (HkGf )
→→→β TGg1 . . .Ggk

, by the induction hypothesis,
→→→β Gg, by Corollary 4.8.( )

(1) ⇒ (2) We claim that if f ; g, then g can be λ-de�ned in λβf by some
G∈Λø(f), i.e. Gcn =βf cg(n) . This is done by induction of the generation of g from
f according to the µ-recursive schemes. For g = f this follows by taking G = f. For
the other initial functions λ-de�nability is trivial. Closure of λf-de�nability under
the schemata of composition, primitive recursion and minimalisation is proved as
for the ordinary recursive functions, see e.g. Barendregt [1984], §6.3.

(2) ⇒ (3) Given is a λf-term G∈Λø(f) such that Gcn →→βf cg(n). Taking

M ≡ λf.G[f := f ]), we have M ∈Λø and M f →β G. So for all n∈N we have

M fcn →→βf cg(n) (1)

By Lemma 4.5(i) we have SGfcn →→→β cf(n) and hence by Lemma 2.38(i)

SGfcn →→β cf(n).

In reduction (1) we replace all occurrences of f by (SGf ), and steps fcn →f cf(n)

by the �nite reduction SGfcn →→β cf(n). The result is a �nite β-reduction starting
with an in�nite term: M(SGf )cn →→β cg(n), for all n ≥ 0. Hence by Lemma 4.5(ii)
we have T (M(SGf ))→→→β Gg. So we can take H ≡ (λg.T (M(Sg))).

5. Non-left linear reduction

In Section 3 we have discussed the non-de�nability of Surjective Pairing, as de�ned
by π, π0,π1 and the equations π0xy = x, π1xy = y, π(π0x)(π1x) = x. It turns out
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that not only de�nability is problematic for these reduction rules, but also the (�ni-
tary) con�uence property for the extension of λβ-calculus with these rules. Turn-
ing these equations into the reduction rules π0xy → x, π1xy → y, π(π0x)(π1x)→ x
yields a non left-linear system, due to the repetition of the variable x in the lefthand-
side of the third rule. The question remained whether this trio of reduction rules,
which we will also refer to as SP, can be added to the λβ-calculus such that the
resulting system is CR. In Klop [80] it was shown that the addition yields non-
con�uence, thus solving a problem in the list of open problems in Böhm [1975], p.
367. The `correctness proof' of these CR-counterexamples in Klop [1980] was rather
elaborate, requiring standardization and postponement arguments. But it was also
suggested there that an excursion to the realm of in�nite terms could convey the
essence of the counterexample in a more succinct way; see also Barendregt [1984]
Section 15.3. In the present section we will elaborate this suggestion in detail.

We will discuss the following four versions of a non-left linear rule, to be added
to λ-calculus, in increasing order of di�culty.

5.1. Definition (J. Staples). The notion of reduction δS is de�ned on Λ(δ, ε) by
the rule

δxx→δS
ε.

5.2. Proposition. The notion of reduction βδS is not CR. By a �xed point con-
struction there are terms C,A∈Λ(δ, ε) such that

Cx →→β δx(Cx),
A →→β CA.

Then Cε =βδS
ε, but these terms have no common reduct.

Proof. We have the (more-step) βδ-reductions

A
β
// // CA

β
// // δA(CA)

β
// // δ(CA)(CA)

δS

// ε

Cε

����

The three terms CA,Cε and ε form a counterexample against the CR property. In
this case it is easily proved that Cε 6 ↓ ε, i.e. Cε and ε have no common reduct, as
is left to the reader.

As a preparation to the other more complicated versions, we look at the in�nite
normal forms of the three terms just mentioned in this proof.

In fact these are ⊥-free Böhm trees, since there are no terms without a head
normal form in the reducts of the terms in consideration. The BT's, see De�nition
2.31 for the notion of BT for terms in Λ(δ, ε), turn out to be in�nite regular trees.
Employing the µ-notation as in Example 2.10 they are as follows.

BT(CA) ≡ µx.δxx ≡ ∆,
BT(Cε) ≡ µx.δεx,

BT(ε) ≡ ε.

A slightly more di�cult extension is the following.

5.3. Definition. (Klop [1980]) The notion of reduction δK is de�ned on Λ(δ, ε) by

δxx→δK
εx.
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5.4. Proposition. The notion of reduction βδK is not CR.

Proof. De�ning the same terms C,A∈Λ(δ, ε) as in Proposition 5.2 we have the
following.

A // // CA // // δA(CA) // // δ(CA)(CA)
δK

// ε(CA).

C(ε(CA))
����

Now it is a bit more laborious to show that ε(CA) 6 ↓ C(ε(CA)), which was done
in Klop [1980] using �nitary arguments. The in�nitary argumentation employs the
BT's of the three relevant terms CA, ε(CA) and C(ε(CA)). They are ∆, ε∆, and
µx.δ(ε∆)x, respectively. The treatment will be analogous to the more complicated
version introduced next, and will therefore not be given here separately.

5.5. Remark. For Propositions 5.2 and 5.4 the situation is:

M →δ M
′ ⇒ BT(M)→6ω

δ BT(M ′).

As a notational reminder→6ω
δ stands for a δ-reduction of length 6 ω. For the next

counterexamples the situation is more complex and we need a de�nition.

5.6. Definition. (i) An occurrence of δ is called balanced if it is the head of a
δ-redex δMM , with M ∈Λ∞(δ, ε).

(ii) Analogously, for the case of Surjective Pairing below, an occurrence of π is
called balanced if it is the head of a π-redex π(π0M)(π1M), withM ∈Λ∞(π, π0, π1).

A slightly more complex variant of δ-reduction comes close to Surjective Pairing.

5.7. Definition. (J.R. Hindley) The notion of reduction δH is de�ned on Λ(δ) by

δxx→δH
x.

The reason that δH is more complex than the versions in De�nitions 5.1 and 5.3
lies in the possibility that new redexes can be created by application of the δH -rule,
which is now a collapsing rule (i.e. the RHS is a single variable), e.g. δH III→δH

II.
For Surjective Pairing the same holds.

5.8. Proposition. The notion of reduction βδH is not CR. By a �xed point con-
struction there are terms C,A such that

Cx →→ ε(δx(Cx))
A →→ CA,

Proof. We have reductions that are almost similar to the ones for βδK .

A // // CA // // ε(δA(CA)) // // ε(δ(CA)(CA)) // ε(CA)

C(ε(CA))
����

The BTs of the relevant trio of terms CA, ε(CA), C(ε(CA)) are respectively the
trees µx.ε(δxx) ≡ T , εT and µx.ε(δ(εT )x). The corresponding cyclic graphs are
drawn in the lower plane in Figure 5.
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Figure 5: Projection by BT

First note that there was an unbalancing e�ect leading to BT(C(ε(CA)) (the
leftmost cyclic graph in Fig. 5) whose top δ is unbalanced.

Now we will prove that indeed we have (ε(CA)) 6 ↓ C(ε(CA)), by an excursion to
the in�nitary setting, depicted in Figure 5. The upper plane is that of �nite terms,
projected to the lower plane of in�nite terms via the operation BT of taking the
Böhm tree. The question whether in the �nitary plane the terms C(ε(CA)) and
ε(CA) have a common βδ-reduct, translates in the in�nitary plane to the question
whether the in�nite terms BT(C(ε(CA))) and BT(ε(CA)), rendered as cyclic term
graphs in the �gure, are convergent by means of steps resulting from projections of
β- and δ-steps. Here there is a bonus: the projection of a β-step trivializes, because
it follows from M →β M

′ that BT(M) ≡ BT (M
′
).

How does a δ-step translate? Intuitively, as a possibly in�nite sequence of δ-
steps on in�nite trees, so −→6ω

δ. Possibly in�nite, because a δ-redex in the upper
plane may have in�nitely many descendants after the BT-projection. But it is im-
mediately clear from inspection of BT(C(ε(CA))) and BT(ε(CA)) that such steps
do not have an e�ect, for two reasons, which are best seen in the cyclic graph of
BT(C(ε(CA))). It contains two δ's, the lower balanced, the upper unbalanced.
Contracting a balanced δ keeps the tree the same, due to the cyclicity: the contrac-
tum is identical to the contracted δ-redex. Contracting an unbalanced δ is not even
possible, by de�nition of δ-reduction. Hence BT(C(ε(CA))) cannot be altered, and
therefore it cannot be con�uent with BT(ε(CA)).

Now let us consider the translation of a δ-step in more detail. In order to tackle
this problem, we will introduce a new constant γ that describes `sharing', with the
new rules δxx→ γx and γx→ Ix where I ≡ λx.x. We will call these rules (δγ) and
(γI) respectively, to be read as `δ to γ' and `γ to I'. The δ-step δMM →M is now
splitted in three:

δMM →δγ γM →γI IM →β M.

The new rules (δγ) and (γI) are extended to in�nite terms in the obvious way.

Example. Let ∆ ≡ µx.δxx be the in�nite binary tree of δ's as above. Then

∆ ≡ δ∆∆→γδ γ∆→γδ γ
2∆→ω

γδ γ
ω ≡ µx.γx.

(Note that this is a strongly convergent reduction.)
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We now have the situation as in Figure 6, corresponding to the following.

(1) M0 →δγ M1 ⇒ BT (M0)→6ω
δγ BT (M1);

(2) M1 →γI M2 ⇒ BT (M1)→6ω
γI P ;

(3) M0 →δ M3 ⇒ BT (M0)→6ω
δγ →

6ω
γI →→→βΩ BT(M3).

M0 ≡ C[δMM ] //

δγ

��

BT(M0)

δγ 6ω

��
M1 ≡ C[γM ] //

γI

��

BT(M1)

γI 6ω

��
M2 ≡ C[IM ] //

β

��

P

βΩ 6ω

��
M3 ≡ C[M ] // BT(M3)

Figure 6: Fine-structure of δ-parallel moves

As to (1): a δ-redex inM0 is preserved as (possibly in�nitely many) δ-redexes in
BT(M0). That this is so, is best seen by evaluating the BT not in an arbitrary way,
but using Knuth-Gross `steps'. A Knuth-Gross `step' starting from a �nite term
M consists of the complete development of all β-redexes in M simultaneously. In
other words, we apply the Knuth-Gross reduction strategy to compute the BT. The
point is that in this way, in each Knuth-Gross `step', δ-redexes are preserved. See
Barendregt [1984], Def. 13.2.7 for the precise de�nition of the Knuth-Gross strategy.
That δ-redexes are indeed preserved, after a Knuth-Gross `step', is an easy exercise.
That this remains so in the limit, BT(M0), is obvious.

As to (2): the intermediate tree P is not yet a BT. This is so because sub-
terms (subtrees) without hnf may have arisen, necessitating further normalisation
by replacing these by ⊥, to obtain a BT.

Now we can conclude. Consider the in�nite terms εT and µx.ε(δ(εT )x), with
T ≡ µx.ε(δxx), to be made con�uent in the in�nite plane, where we have to employ
`macro steps' steps like:

→6ω
δγ →

6ω
γI →→→βΩ .

However, we will not come far in this way; the only change that can be e�ectuated
is the (total or partial) transformation of T into µx.ε(γx) ≡ G. But doing so,
the unbalanced δ displayed in µx.ε(δ(εT )x) cannot be balanced, and will therefore
prohibit a con�uence with εT .

The most complicated extension is λ-calculus plus Surjective Pairing as in the
introduction of this section.

5.9. Theorem. The notion of reduction β SP on Λ(π, π1, π2)

πi(πM1M2)→SP Mi π(π1M)(π2M)→SP M.

is not CR. By a �xed point construction there are terms C,A∈Λ(π, π1, π2) such
that

Cx →→β ε(π(π0x)(π1(Cx))),
A →→β CA.

27



Then

A

����
CA // // ε(π(π0A)(π1(CA))) // // ε(π(π0(CA))(π1(CA)))

SP
// // ε(CA),

C(ε(CA))
����

SP

while ε(CA) and C(ε(CA)) have no common reduct.

Proof. Again we compute the BT's of the three relevant terms.

BT (CA)) ≡ µx.ε(π((π0x)(π1x))) ≡ S.
BT (ε(CA)) ≡ εS.

BT (C(ε(CA))) ≡ µx.ε(π(π0(εS)(π1x))).

The remainder of the in�nitary proof using these BTs is entirely analogous to the
treatment of the previous δH -version, requiring only a notational adaptation, which
is left to the reader.

6. Concluding remarks and questions

In this paper we have endeavoured to give some examples of applications of rewriting
with in�nite λ-terms, or in�nitary λ-calculus. Several questions remain, of which
we speci�cally mention the following.

• It would be interesting to investigate the precise relation of Scott's Induction
Rule (SIR), that we encountered in Example 2.15, to the present in�nitary
setting. Is it true that in�nitary λ-conversion =β∞ , includes all consequences
of SIR?

• Above, we introduced the µ-notation as a convenient notation for regular
in�nite λ-trees; this amounts just to cyclic graphs of λ-terms. Mixing the
µ-terms with λ-calculus, allowing β-reduction under the µ, provides for faster
evaluation. It would be interesting to pursue studies of term graph rewriting
against the background of in�nitary λ-calculus, as a continuation of work by
Kennaway et al. [1995a], and Ariola and Klop [1994], [1996], [1996], [1997],
where this theme was studied with reference to in�nitary �rst order rewriting.

• It will be interesting to extend the result in Section 4 on relative computability
from total functions to partial functions.
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