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Applications of interval computations to 
earthquake-resistant engineering: How to 
compute derivatives of interval functions fast 

VLADIK KREINOVICH, DAVID NEMIR, and  EFREN GUTIERREZ 

One of the main sources of destruction during earthquake is resonance. Therefore, the following idea 

has been proposed. We design special control linkages between floors that are normally unattached to 

the building but can be attached if necessary. They are so designed that adding them changes the 

building's characteristic frequency. We continuously monitor displacements within the structure, and 

when they exceed specified limits, the linkages are engaged in a way to control structural motion. This 
idea can also be applied to avoid vibrational destruction of large aerospace structures. 
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Brief introduction to an engineering problem 

T h e  p r o b l e m  of  resonance  des t ruc t ion .  O n e  o f  the main  sources o f  destruct ion d u r i n g  

ea r thquake  is resonance.  T h e  major i ty  o f  th.e ea r thquake  strikes are  not  powerful  e n o u g h  

to destroy a bui ld ing in one blow, but  the ea r thquake  usually contains a wide spec t rum of  

vibrations with d i f ferent  frequencies. W h e n  the  characterist ic frequencies of  the bui ld ing lie 

inside this spec t rum area, resonance and eventual ly  destruct ion can occur. 

T h e  vibrations can also occur, when  a br idge,  an  oil p la t form,  or  an aerospace construct ion 

encounters  periodic waves. How can we diminish  destruction? Before we e n u m e r a t e  d i f ferent  

methods,  let us describe (briefly) the  co r respond ing  mathemat ica l  problem. 
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Physical a n d  m a t h e m a t i c a l  descr ipt ion  of  a resonance: in brief .  A building (bridge, aerospace 

construction, etc) consists of many basic parts (beams, etc). Earthquakes cause these parts to 

displace, thus (ultimately) destroying the building. The position of each part can be described 

by describing the positions of its major points (endpoints, sometimes a midpoint, etc). In order 

to describe the state of  a building at any given moment of time t, we must describe the 

positions s 1 < a < N, of all these points. Since we are interested not in the engineering 

design itself, but only in the abnormalities, instead of the positions themselves, we will use 

displacements A:f~(t) = s - .s i.e., the differences between the current and ideal positions 

of  these points. 

How to describe dynamics? According to Newton's law, to describe the dynamics, we 

need to know the total force that acts on each point. This force .~  consists of  two parts: 

�9 the extermd force ~e that is caused by the earthquake itself; 

�9 the interrud, or strwcturtd force ~s  that is caused bv the connection between different parts 

of  the building. 

The  structural force depends on the positions and velocities of all the points. Then, we can 

get the accelerations d2~.~(t)/dt 2 as f~ = ff~/m~. Thus, we have a system of second-order 

differential equations: 

d: o(t)/dt = + f : .  

These equations can be reformulated in terms of displacements: 

d2As  ~ = / : ( A s  A i N ,  A s  As + f : .  

Since we are talking about small and not so fast displacements (large or fast displacements will 

immediately ruin the building), we can expand f f  into. Taylor series, and neglect the terms 

that are quadratic (or of  higher order) in A:F a and A~Fa. Thus, we arrive at a linear system 

of second-order differential equations with constant coefficients. It is well how to solve such a 

system: 

�9 First, we reduce it to a first-order system by introducing new variables ~7~ = ~ .  In terms 

of Ax~ and v~, we get the following first-order system: 

~o= f : ' ( A m ~ , . . . , / X ~ , , ~ , , . . . , ~ )  + f : ,  1 < a < N; 

/x o = G,  I < a < N .  

Here, the additional index l in the expression for the structural acceleration f~z indicates 

that we are restricting ourselves to linear terms only. 

These equations become easier to grasp and to solve if instead of  2 N  vector unknowns 

A : ~  and ~7~, we consider all 3 -  2 N  = 6 N  components of  these vectors as new scalar 

unknowns q l , - - - ,  q6N- In terms of these variables, we get a system of first-order linear 

differential equations with constant coefficients: 

(1~ = ~ A~bqb + f,~. 
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�9 It is well known how to solve such a system (see, e.g., [2]). Namely, if f,, = O, then a 

general solution of this system can be represented as linear combination of the functions 

exp(A~t) and t"'  exp(A~t), where Ac, are eigenvalues of  the matrix A~b (terms t "  exp(A,~t) 

with rn > 0 appear only if we have a degenerate eigenvalue). 

These terms have different asymptotic behavior: 

�9 If  Re A, > 0, then the corresponding term becomes large as t ---* oc. 

�9 If  ReAo < 0, then the term tends to 0 as t ~ ~z. 

�9 If ReAa = 0 (i.e., if A,, = iwc~ for some real value tat,), then we get an infinitely oscillating 

term exp(~wot) = cos(w~t) + i sin(a;,~t). This real value w,~ is called an eigen freqT~c), of 

the system. 

Buildings are usually stable, therefore Re A,~ < 0. 

All this was true for f~ = 0. What to do if f~ ~ 07 An arbitrary, non-zero force f~ can 

be represented (by means of Fourier transformation) as a linear combination of the sinusoidal 

waves with different frequencies co. Since our equations are linear, in order to get the response 

qa to the initial force, it is sufficient to compute the system's reactions for different frequencies, 

and then add these reactions. 

In particular, if one of the Fourier components of the force f~ has a frequency that 

coincides with one of  the eigen frequencies co,~, then the solution behaves as t exp(iwc, t) when 

t ~ oc. As a result, displacements and/or frequencies become larger and larger, and the 

building can be destroyed. This phenomenon is called a resommce. 

Strictly speaking, for real-life systems, there is always some friction, therefore, usually 

Re A~ < 0. The  role of  this friction is different for small and large frequencies: 

For small frequencies (that correspond to relatively smooth motion), this friction is small 

and practically negligible (in physical terms: the materials have elastic betuwior for such 

frequencies). Therefore, although for t ~ oe, the displacement will eventually tend to 0, 

but meanwhile, for reasonable t, its time dependency is indistinguishable from t exp(iw,~t) 

and thus, the building may be destroyed. 

For bigger freqnencies, that correspond to extremely fast changes of displacement and 

velocity, there is usually a very serious resistance. 

To give the reader who is not a specialist in mechanics an idea that this is really the case, 

let us imaging ourselves pushing a piece of  furniture. It is possible (with some force) to 

move it to and fro slowly, but practically impossible to move to and fro fast. 

Because of  that, for high eigen frequencies, the resonance displacement will quickly tend 

to 0, and therefore, such perturbations are of  no serious threat to the building. 

So, not all eigen frequencies cause destruction, but only small ones. How to avoid this resonance 

destruction? 

Active control. The  bnae-force idea is to add a huge auxiliary mass to damp the vibrations. 

and to forcefully return the structures to their initial positions by applying computer-controlled 

force (see, e.g., [5, 10, 22, 31]; this idea is called acti~e control). 
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In terms of our mathematical model, adding an additional force means adding an addi- 

tional term to fa that compensates for the unwelcome (resonant) components of f~. 

This method often works, but it has two main problems: 

�9 this method requires lots of energy for control, and, e.g., spacecraft must be energy- 

efficient; 

�9 if not precisely implemented, this method can pour lots of additional energy into the 

system in the wrong times, and thus cause additional destruction [17]. 

Semi-active control. There exist a modification of this method, called semi-active control, where 

instead of implementing an out-of-phase force, structural changes are made in the system to 

change its characteristic frequencies and thus avoid the resonance (see, e.g., [7, 10-14]). 

A new approach. For semi-active applications, a new method was proposed in [23]. According 

to this method, we do not add any energy to the system at all. Instead, we design special control 

links that are normally unattached to the building but can be attached if necessary. They are so 

designed that adding them changes the building's characteristic frequency. We keep monitoring 

displacements, and when motion is detected, the control linkages are alternatively engaged and 

disengaged in such a way that energy in lower (more destructive) modes of vibration is shifted 

into higher modes, where the energy is quickly 

structure itself. This idea can be also applied to 

structures. 

This idea has been thoroughly checked 

simulation [23]. 

A brief mathematical description of the new 

dissipated through passive dumping within the 

avoid vibrational destruction of large aerospace 

theoretically, and verified through computer 

approach. In terms of our above-given math- 

ematical description of resonance destruction, the idea is as follows. When we engage an 

additional linkage, we thus change the way how the displacements and velocities of different 

points influence each other. In our terms, we change the structural force function ff~. As a 

result, the coefficients of the linearized system of equations will also change: instead of 

we will have 

The idea is as follows: if the frequency of one of the components of the external force 

coincides with one of the eigen frequencies of the system (i.e., with one of the eigen values 

of the matrix A,~b), then, we engage the control linkage; this changes the matrix and hence, 

changes the eigenvalues that are no more equal to the frequencies of the external force. 

In order to implement this idea, we must have a way to decide when to switch. We 

have already mentioned that only small frequencies are potentially destructive. Therefore, it is 

reasonable to estimate the potential danger of the existing displacements and velocities by the 

total energy of all low-frequency components (i.e., of all the components whose frequency is 

_< w0 for some chosen w0), and to engage the control linkage if and only if this engagement 

decreases this total energy. 

For a linear system, energy is a quadratic function of displacements and velocities (i.e., in 

our terms, of the variables qa): terms that are quadratic in AZ~ correspond to the potential 
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(elastic) energy, and terms that are quadratic in velocity represent kinetic energy. For this 

same reason, the total energy of  low-frequency components is a quadratic function of q~, say 

E = ~ E~bqaqb. When we engage a control linkage, we thus change the coefficients of  the 

linear system, and hence, we change the coefficients in the expression for its energy. The new 

expression for energy will be ~7 = ~ E~bq~qb. The coefficients E~b and E~b can be determined 

before the control starts, so in course of  the actual control, we know them. 

So, for given q~, the question of  whether to engage the linkage or not reduces to checking 

a simple inequality: E = Z E~bq,~q6 > E = E E,6q~qb, or, what is equivalent, ~(Eab--E~b)q~qb > 

0. 

In real life, we do not know the exact values of q~ (i.e., of displacements and velocities). 

If we substitute the imprecise values of  qa into this inequality, then we may end up with a 

wrong decision (and in these applications, wrong decisions can be fatal): 

�9 We may not engage the linkage when it is necessary to, and thus fail to avoid destruction, 

o r  

�9 We may engage the linkage when there has been no potential damage to the building, 

and by engaging this linkage at the wrong time, actually worsen the situation and force 

destruction. 

Since imprecision in q~ can lead to grave consequences, it is important to determine q~ as 

accurately as possible. 

Related mathematical problem: brief informal description. To check for a resonance, one 

must know not only the displacements x(ti), but the rates x(ti) with which they change. The 

existing velocity sensors are much more expensive than the displacement sensors. So, if we are 

designing a reasonably cost system, we cannot use velocity sensors. Instead, we must estimate 

the velocity from the measured (and hence, approximately known) values of the displacements 

We must make control decisions really fast (in milliseconds). Therefore, there is no time 

to process lots of data. So, when estimating ~:(t~), we can take into consideration only the 

measurements in a few consequent points. Hence, all of them belong to a small time interval, 

and therefore, on this interval, the function x(t) can be well approximated by its first few 

Taylor expansion terms. In case this interval is sufficiently small, linear approximation is 

sufficient, so we can assume that a fimction x(t) is linear. If  this is not enough, we must add 

second order terms, and consider the case when x(t) is quadratic. 

A reasonable system must rely on low-cost, reasonably priced sensors. Therefore, the 

resulting measurements have a non-negligible error. This error leads to an error in the 

resulting estimate for the derivative. In view of  that, it is necessary to design methods of 

computing derivative that would have the smallest possible error. 

What we are going to do. In the present paper, we find the optimal estimates for the 

derivatives for both cases: when the error is of  statistical nature (in which case we know its 

statistical characteristics), and when this error is systematic (in which case we know only the 

interval of its possible values). 

Interval estimates are considered in Part I, statistical estimates in Part II. Part III  is 

reserved for proofs. 
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Part I. Interval estimates 
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1. Interval estimates for the derivative: formulation of a 

mathematical problem 

1.1. Definitions 

Definit ion 1. Suppose that for  some integer n, we are given n real numbers  tl < " "  < t~, n 

real number  ~ > 0 and x~, and n intervals F2 = [x+~ x:~], i = 1 . . . .  , n, where x:~ = xi - r 

and z + = :ri + ei. By a function intengd we mean the set ~" o f  all continuous functions x( t )  

such that for all i = 1 , . . . , n ,  x(t i )  E Fi. 

Ren~zrk. This definition was, in effect, originally proposed by R. E. Moore (see, e.g., discussions 

of dixrete fimaions in [20], Section 5.1, and [21], Section 2.5). 

Definition 2. Suppose that a function interval .~  is given. We say that a class o f  functions S 

is consistent (or com1~ztible ) with ~ i f  S M Y: ~ ~. 

Rem~zrk. In our case, this means that the measurement results (expressed by a function interval 

.T') are consistent with the supposition that the unknown function belongs to the class S. 

Definit ion 3. Suppose that we are given a function interval ~ ,  a class S o f  differentiable 

functions that is compatible with .~, and a real number  to. A real number  d is called a possible 

wdue of the derivative dx(t)/dt w.r.t. S i f  d = 5:(t0) for some z E S N .T'. The  set o f  all possible 

values will be called a derivative (or a derivative set) o f  .F with respect to S in the point to, and 

denoted by d.~/dt ts( to  ). 

Remark. In other words, d is a possible value if there exists a function x( t )  E S such that 

dx ( to ) /d t  = d and Ixi - x ( t d l  < e~ for i = 1 , . . . ,  n. 

Proposit ion 1. I f  S is a convex class o f  functions, then the derivative dYr/dtls is convex, i.e., 

it is either an interval (open, dosed, or semi-open), or a semi-line. 

(All the proofs are placed in Part III, for reader's convenience). 

Remark. In this paper,  we will consider only convex classes of  functions, namely, the class of  

all linear functions, and the class of all quadratic functions. Therefore,  the derivative sets will 

always be intervals (finite or infinite). 

Denotations. Let us denote the set of all linear functions x( t )  = a + bt by L, and the set of all 

quadratic functions ~:(t) = a + bt + ct 2 by Q. 

1.2. Main problem: first formulation 

Given ~" and to, to check whether  ~" is compatible with L or Q, and to compute  the derivatives 

d~ /d t lL  and d.~/dtIQ 

It is reasonable first to try L, and then, if L is incompatible with ~' ,  to try Q. 

1.3. How to solve this problem? 

Traditional and interval methods  of  numerical differentiation are not applicable to this 

problem. There  exist several methods of numerical differentiation, both in traditional numerical 

mathematics (see, e.g., [4]), and in interval mathematics (see, e.g., Chapter 8 of [1], Section 5.4 of 
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[3], [6, 16, 18], Chapter 11 of [19], [24-28]). However, we cannot directly apply these methods 

to our problem, because: 

�9 methods of traditional numerical mathematics usually give a numerical estimate, and do 

not provide us with an interval of  possible values; and we have already mentioned that 

for our applications, this is crucial; 

�9 methods of interml 7mah~naics are mainly designed for estimating the derivative of  the 

functions that are given by analytical expressions [1, 3, 6, 18, 19, 24-26];  definitions from 

[16, 27, 28] are applicable to the case when we have finite interval estimates for x ( t )  for 

all t, but in our case, we have such estimates only for t = tl ,  � 9  t = tn. 

Commem. In general, there is no way to reconstruct a function for all t from the observations in 

finitely many points. In our problem, however, as we have already mentioned, high-frequency 

components of  the displacement function go to 0 real fast. As a result, we consider only 

functions that are formed by low-frequency components and are therefore, very smooth. And 

if we have a very smooth function that is defined on a small interval, then its linear or  

quadratic terms provide a practically perfect approximation.  

We can. apply linear programming.  These problems can be solved by reducing them to linear 

programming.  For linear functions x( t )  = r + bt E L ,  ~( t )  = b. Therefore,  the upper  limit 

d + is the solution of the problem d --~ m a x  under  the condition that [a + bti - xi[ <_ ~i for 

1 < i < n, or, what is equivalent, - 6 i  <_ a + bti - xi _< ~ .  The  lower limit d -  is the solution 

of the problem d ---* rain under the same constraints. 

For quadratic functions x( t) = a + bt + ct 2, d = b + 2ct0, therefore, the limits can be found 

by solving the following conditional optimization problems: b + 2ct0 --* max  and b +  2ct0 --* rain 

under  the condition that - e i  <- a + bti + ct~ - x~ <_ r i = 1 , . . . ,  n. 

In both cases, we have linear programming problems, and they can be solved using known 

polynomial-time linear programming techniques (e.g., Karmarkar ' s  method [9]). 

Why is l inear,  p r o g r a m m l - g  not satisfactory. As we have already mentioned, we are in the 

area of  real-time control, therefore, the computation time must be as small as possible. T h e  

computational time of  an algorithm is roughly proportional to the total number  of  elementary 

computational steps (arithmetic operations, comparisons, etc). Karmarkar ' s  method demands  

C a  3"s steps, where n is a number of equations (i.e., in our  case, the number  of measurements), 

and C is a ra ther  big constant. 

Even if we have several processors working in parallel, the general case of a linear 

p rogramming  p rogram is unlikely to get a dramatic speed-up (more formally, it belongs to the 

class P that consists, crudely speaking, of problems with worst possible parallelization abilities, 

see, e.g., [8]). 

Why cannot we apply known methods of solving interval  l inear equations? Our problem 

can be easily reformulated in interval terms. For example, for a linear case, the problem is to 

find all possible values of  b for which for soine a, we satisfy the system of interval inclusions: 

a + bti - z i  E [ -e i ,  r 1 < i < n. This system is called an interval linear system (for a general 

definition, see, e.g., [29, 30], and references therein), and the interval of  all possible values of  b 

is called an optimal sohaion of such a system. There  exist numerous methods of finding optimal 

solutions' of interval linear systems. These methods have been perfected for many years, and 

the latest algorithms are very ingenious and fast (for the latest survey, see [30]). 

The  majority of  these methods share the same good property: they are un/verstd in the 

sense that they are applicable to an arbitrary interval linear system. But this same good property 
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is the cause of the common problem of these algorithms, the problem that leads us to the 

necessity to invent new ones. Namely, the problem of finding an optimal solution to an interval 

linear system has been proved to be NP-hard [15]. This term means that no matter  how smart  

(and thus fast) an algorithm for solving such system can be, in some cases, its computation time 

will increase exponentially (i.e., as a"  for some a > 1). An exponential function grows so fast 

that for reasonable n, this time quickly exceeds the lifetime of the Universe. The  fact that such 

"worst" cases exist for these algorithms does not invalidate their usage in economic problems, 

in some optimization problems, etc: if once in a while we do not get the optimal result, or it 

takes too long to get this result, no big deal. 

In our problem (earthquake-resistant engineering) milliseconds do count, and 100% relia- 

bility (i.e., getting results in 100% of  all the cases) /s an issue. I f  once in a while, our  system 

fails, the building (or the spaceship) may be destroyed. Because of that specific feature of Our 

problem, we cannot use the existing universal algorithms. We have therefore to design new 

ones, that will be applicable to our problems only, but that will have a guaranteed (and small) 

running time. 

1.4. Final formulation of the problem 

To find algorithms that ~npute derivative sets fluter than the general methods of linear programming. 

Comment. I f  we achieve that, then our algorithm will be faster than n 3"5 and hence (for 

sufficiently large n), its running time will be smaller than an exponential function. 

2g First result: How to compute derivative set if we 

know that x (t)  is linear 

Theorem I. A function interval }: is compatible with L if  and only i f  d + >_ d- ,  where 

d + = min,>j ((x + - x -~ ) / ( t i -  ~j)) and d-  = max~>j ((x~" - x + ) / ( t i -  t j)) .  I f  :7= and L are 

compatible, then the derivative of  J: with respect to L is equal to [d-, d+]. 

Remark. The  formulas f rom Theorem 1 prompt  the following natural  algorithm for computing 

d+: set an auxiliary element where the current record will be stored to s := +c~  (in Pascal, 

to Maxlnt), and then make  two embedded loops for i and for j ,  inside which we update  the 

record values s by assigning, s := min (s, (x + - x - ~ ) / ( t i -  t j)) .  After the loops are over, s 

contains the desired value d +. A similar natural algorithm can compute d - .  

Since we are interested in computing the estimates for the derivative as fast as possible, a 

crucial question is what is the running time of this algorithm. A running time is usually esti- 

mated by the total number  of  elementary computational steps (i.e., comparisons, and arithmetic 

operations) that we must per form to apply the algorithm. So, let us enumerate  the number  of 

computational steps for the above-described algorithm. 

Before we proceed, let us make one remark. With one exception, throughout  the whole 

paper, by a computational step, we will mean an arithmetic operation. There  will be one 

exception: while comput ing the statistical estimate, it is impossible to avoid computing a square 

coot, so, for that case (and for that case only), we will add computing the square root to the list 

)f elementary operations. Let us now return to our algorithm. Since we are given zi, ti and 

;i, we first need to compute z~" = xi + r and x~- = xi - r Each computation takes 1 step, so 
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totally, we need 2n steps. After that, computing each pair of  expressions (:c:~ - z + ) / ( t , -  tj) 

and (:c + - z - ~ ) / ( t i -  tj) takes 5 computational steps (3 subtractions and 2 divisions). Totally, we 

need to compute n(n  - 1)/2 such pairs (for all i < j), so it takes 5n(n  - 1)/2 computational 

steps. Now, to compute d +, we must compare n ( n - 1 ) / 2  such expressions, and find the smallest 

one. We can find the smallest of  n(n  - 1)/2 numbers in n(n  - 1)/2 - 1 steps. To  compute 

d - ,  we need the same number of  comparisons. So, the total number of  computational steps for 

computing d + and d -  is 2 n + 5 n ( n -  1 ) / 2 + 2 ( n ( n -  1 ) / 2 - 1 )  = 2 n + 5 / 2 n 2 - 5 / 2 n + n 2 - n - 2  = 

7 /2n  z - 3 /2n  - 2 < 7 /2n 2. So, we proved the following result: 

Theorem 2. For S = L, there exist an algorithm that given a function interval Y::, checks 

whether it is compatible with L, and i f  it is compatible, computes the derivative of.Y: in < 3.5n 2 

computational steps. 

Remarks. 

1) This estimate is much better than for Karmarkar's algorithm. 

2) As we have already mentioned, in earthquake-resistant engineering, every millisecond 

counts. So, although our algorithm is faster than the known ones, it would be nice to 

make it still faster. Our hope that this can be done is based on the following argument. 

The  algorithm that we have just described is based on the simplest possible idea of  

solving an interval linear system: namely, wherever in this system we have an interval 

(in our case, zi  E Ix;,  z+]), we choose one of the possible endpoints. Thus, we get lots 

of  different non-interval linear systems. For each of these systems, we find a solution. 

By comparing these solutions, we compute the biggest and the smallest values of  the 

unknowns (i.e., compute an optimal solution). This idea is known to be too expensive 

time-wise: it turns out that not all possible linear systems have to be solved. By cutting 

down on the number of these systems, we can drastically decrease the running time of the 

algorithms that find optimal solutions of interval linear systems [29, 30]. These "cutting" 

ideas are not directly applicable to our case (at least we could not figure out how to 

apply them), but their existence makes us hope that our (rather primitive) algorithm carl 

(probably) be further improved. 

3) Another reasonable way to decrease the running time of  an algorithm is to run it on a 

parallel computer (in which several processors can run in parallel, i.e., simultaneously). If  

we have several processors, then we can indeed decrease the computation time: 

Theorem 3. For S = L, there exists an algorithm that given a function interval jr, checks 

whether 5 r is compatible with L, and i f  it is compatible, computes the derivative o f  J ~ in parallel. 

The running time o f  this algorithm is smaller than the time o f  2 log 2 n + 3 computational steps. 

3D Second result: How to estimate the derivative in real 

time 

3.1.  Motivation of the following definitions 

In the previous sections, we considered the situation when we have to apply the algorithm 

once. However, in the desired applications, we must monitor the derivative, i.e., with every 
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new measurement,  produce a new estimate. This new estimate must be obtained in reed lime, 

i.e., the computations must be done by the moment  of the next measurement.  Therefore,  the 

computat ion that uses Z l , . . . ,  x~, must produce the result before the moment  t,,+l, and can, 

therefore,  spend the computat ional  time < t,,+l - t~. 

Usually, the time intervals t ~ + l -  ti are either equal, or approximately equal. In both cases, 

the smallest m of these differences if positive, and the biggest M is finite: 0 < m < M < oc. 

Therefore ,  to estimate the derivatives in the moment  t~, we must use t ime < M.  If  we denote 

by A t  the time of  one elementary computational step, then we conclude that for every n, we 

can use _< C computational  steps, where we denoted C = M / A t .  

For both algorithms from Section 3, however, the number of computat ional  steps increases 

with n, so we cannot use them directly for monitoring 

For  a seq~tentitd com~aer, the fact that the computation time increases with n can be easily 

understood.  Indeed, since we must process all n values x i , . - . ,  :r~, to each value we must apply 

at least one elementary operation.  The  elementary operations that we considered (arithmetic, 

comparisons, etc) require at most 2 variables. So, we need at least n /2  elementary  operations 

to process all the values Z l , . . . , z n .  Therefore,  the number of  computational  steps is > n/2 ,  

and thus it tends to oo when n --~ oo. 

We cannot use all the values z t , . . . , z , ~ .  How many of them can we use? 

Since processing k numbers  requires _> k /2  computational steps, and the number  of steps 

that we can use is limited by l~[/At,  we can conclude that k /2  <_ M / A t ,  i.e., that k < b, 

where we denoted b = 2 M / A t .  Therefore,  there exists a constant b such that in estimating 

the derivative, we can process only b values of  xi. 

For a paredM comtnaer, we can have similar estimates. Indeed, the final result of the 

computat ion is obtained by using some elementary operation. Each operat ion can handle 

only two numbers. Therefore ,  any computation that can be per formed in the time of one 

computat ional  step, can process at most 2 values x~. If  we take computations that take the 

time of  2 computational steps, then we can at best process 2 numbers, each of which is a result 

of  processing at most 2 numbers,  i.e., the result can depend on at most 4 different  values xi. 

In general ,  after the t ime that is necessary to per form k computational  steps, we can process 

at most 2 k different values xi. Therefore,  since the time is limited by _< l~ l /At  computational  

steps, we can process at most b = 2 m/At values. 

In both cases, to estimate the derivative, we can process at most b different  values of zi.  

So, we must choose b values out of  n. Since we consider a process that needs monitoring, 

the value of the derivative can Change over time. So, to get the most precise estimate at the 

moment  tn, we must consider b latest values z , ,  xn-~, �9 �9 �9 zn+l-b (of course, if n _< b, then we 

can process all the values xi). 

Let us formulate this situation in mathematical terms. 

3.2. Definitions of real-time algorithms, and the complexity of such 
algorithms 

Definition 4. Suppose that an integer b > 1 is given. Suppose also that tl < t2 < " "  < 

tn < - " ,  x l , z 2 , . . . , x , ~ , . . . ,  and 81 > 0,r > 0 , . . . , 8 ,~  > 0 , . . .  are three potentially infinite 

sequences o f  real numbers. The  values ti will be called moments of time. For a momen t  tn, by 

a b-bounded function interval .Tb we mean the set o f  all continuous functions x( t )  such that 

x( t i )  ff F~ = [x~-e~ ,x i+ei]  for all i such that n - b  < i <_ n. By a b-bounded interval estbruzte for 
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a derivative in the momen t  t~, we mean the derivative set d.~]b/dtls o f  the b-bounded function 

interval. 

Remark. In par t icu la r ,  for  S = L, the b-bounded  interval  es t imate  for  a der ivat ive is equal to 

[d~', d+], where  

d~ + = min  
,~-b<j<i<,~ ti - t j  

and  

d~ = max  
n-b<j<i<_n t i  - -  t j  

D ef in i t i o n  5. Suppose that an integer b > 1 and a positive rea l  number  C a r e  given. We say 

that an algorithm cmnltmtes interml estimates in rerd time with <_ C com.lmtational steps per measurement 

i f  this algorithm works as follows: it reads x l , t l , x 2 ,  t2, then after ~_ C computational steps 

generates d~ and d+ ; then reads x3 and t3, and in ~_ C computational steps generates d~ and 

d~, etc. 

Remark. In pr inciple ,  one  can apply  an a lgo r i t hm f rom T h e o r e m  2 to es t imate  d~ and  d + for  

all n.  Since we a re  process ing ~ b numbers ,  this a lgo r i t hm will requi re  C ~ 3.5b 2 computa t iona l  

steps pe r  measu remen t .  T h e  following theorem shows tha t  we can do  better .  

T h e o r e m  4. F o r  S = L, there exists an algorithm that computes interval estimates in real 

time, with < b ~ + 4b computational steps per measurement.  

R~nark. For  para l le l  computers ,  if we apply  an a lgo r i t hm f rom T h e o r e m  3 on every step, we 

get  the fol lowing result:  

T h e o r e m  5. For S = L, there exists an algorithm that computes interval estimates in parallel 

in real time, with < 2 log 2 b + 3 computational steps per  measurement.  

4. Third result: How to compute derivative set if x(t) 
is quadratic 

T h e o r e m  6. Assume that to is a real number. 

I f  n ~ 2, then any function interval Jr is compatible with Q, and the derivative of  .T with 

respect to Q in the point to coincides with ( - o o ,  +oo). 

I f  n > 2, then a function interval .T is compatible with Q i f  and only i f  the following three 

conditions are satisfied: 

I) ( ~ -  - ~ )~ ) / ( t ,  - t j )  < ( ~ ;  - ~ / - ) / ( t k  - t~) for  all i , j ,  k,  r such that (t, - t o 7  > (tj - to )L  

(tk - to) 2 > (tl - to) 2, and t~ + t~ - 2to = tk + tl - 2to > O; 

2) (x~ - x ? ) / ( t j  - t , )  >_ ( x ?  - x-~)/( t ,  - t~) for  all i, j ,  k,  t such that  (t ,  - t o 7  > (t j  - t o )L  

(tk - to) 2 > (tt - to) 2, a n d  ti + t j  - 2to = tk + t t -  2to < 0; 

3) d + >_ d - ,  w h e r e  d + = min(d~-,  d~) ,  d -  = m a x ( d ? ,  d~) ,  

d~ = max(  N,~i,/  D,jkz ), d~ = min( N,+k1/ Dijm ), 

N'Jkz = (ti - t~)(t~ + t~ - 2to) - (tk - tz)(tk + tz - 2to)' 
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+ - x ;  x ;  - x ?  

NiJm = (ti - t j ) ( t i  + t j  - 2t0) - (tk - t l)(tk + tl -- 2to) '  

1 1 
Dijkl -- 

tk + tl - 2to ti + t j  - 2to 

ra in  and m a x  a r e  taken over all quadruples ( i , j , k , l )  such that ( t i -  to) 2 > ( t j -  to) 2, 

(t~, -- t0) 2 > (tl -- to) 2, and ti + t j  - 2to > tk + tl - 2to, 

and d 1 = m a x  ( ( x  i- - x + ) / ( t i -  t j ) ) ,  d~- = ra in  ( (x  + - x ; ) / ( t i -  t j ) ) ,  where  ra in  and 

m a x  are taken over all i > j such that (t~ - to) 2 = (tj - to) 2. 

I f  :F and Q a r e  compatible, then the derivative o f  ~ with respect to Q in the point to is equal  

to [d - ,  d+]. 

T h e o r e m  7. F o r  S = Q,  the re  exist an algorithm that given a Function interval J: a n d  a point  

to, checks whether Y= is compatible with Q, and, i f  it is compatible, computes the derivative set. 

This  a lgo r i t hm requi res  < n 4 + 12n 2 computational steps. 

Remark. For  big n,  this m e t h o d  is worse than  K a r m a r k a r ' s  ( that  gives Cn3"S). However ,  for  

small  n,  it is reasonable  to use, because a constant  C in K a r m a r k a r ' s  m e t h o d  is r a the r  big. 

T h e o r e m  8. For S = Q, there exists an algorithm that given a function interval and a value 

to, checks whether .T is compatible with Q, and, i f  it is compatible, computes the derivative o f  

.7= in parallel. The  runn ing  t ime o f  this algorithm is less than or equal  to the t ime necessary  

for 4 log 2 n + 5 computational steps. 

W e  can app ly  these a lg o r i t h ms  to the case of  rea l - t ime estimates,  and  get the  fol lowing results: 

T h e o r e m  9. For S = Q, there exists an algorithm that computes interval estimates in real t ime 

with < b 4 + 12b 2 computational steps per  measurement.  

T h e o r e m  10. For S ---- Q, there exists an algorithm that computes interval estimates in real 

t ime in parallel with < 4 log  2 b + 5 computational steps per  measurement.  

Part II. Statistical estimates 

50 Statistical estimates of the derivative: definitions and 

the main result 

Remark. In this section, we will consider  the case when  all the measu remen t s  a re  p e r f o r m e d  by 

the same measu r ing  device,  and  therefore ,  all the  measu remen t s  have the same precision.  

Denota t ion .  For  a r a n d o m  var iable  ~, we will deno te  its ma themat i ca l  expecta t ion  (average) by 

E[r  and  its s t a n d a r d  dev ia t ion  v /E[ (~  - E[ ( ] )  2] by cr[~]. 

Def in i t i on  6. Assume that we a re  given an integer n >_ 2, a real number  cr > O, and n real 

numbers t l  < t2 < " "  < t,~. By a statistical estimate for an interval derivative we mean a linear 

function that transforms a sequence x l ,  �9 �9 x,, into a value d = ~ZlZ 1 + ~2x2 + �9 �9 �9 + CZnZ n . We 

say that a statistical estimate is non-biased i f  for arbitrary real numbers a and b, and for arbitrary 

n independent  random variables ~i with average 0 and standard deviation ~, the mathematical 

expectation E[a~ = E [ a l x l  + a2x2 + . . .  + a,x~] is equal to b, where  x~ = a + bt, + r By an 

error o f  a statistical estimate we mean the standard deviation a[b - ~ o f  the difference between 
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b and d. We say that a statistical estimate is aptimal i f  it is non-biased, and its error is the 

smallest possible (among non-biased estimates). 

Remark. We are interested in statistical estimates for which the error is the smallest possible. We 

consider only linear functions as statistical estimates, because for the most common distribution 

(Gaussian) it is known that the estimates for which standard deviation is minimal are linear. 

Theorem 11. The optimal statistical estimate is d = ~ i  aixi, where 

a~ = (t, - t ) / (na2),  t =  ~-~ t i /n ,  and o ' 2=  (~-~(t, - t )21 

i / 

Its error is equal to ~ / (  V/-~t). 

9 Computational complexity of the optimal statistical 

estimate 

Case when the times t~ are known beforehand. Let us first consider the case, when the times 

ti are known before the measurements, so that the coefficients ai can be precomputed. 

Theorem 12. I f  the coefficients ai are known, then to compute the optimal statistical estimate 

for the derivative, we need 2 n -  1 computational steps. 

Theorem 13. I f  the coefficients ai are known, then we can compute the optimal statistical 

estimate for the derivative in parallel in the time that is necessary for < log 2 n + 2  computational 

steps. 

General case. Let us now consider the general case, when the values of ti are not known 

beforehand. 

Theorem 14. In the general case, to compute the optimal statistical estimate for the derivative, 

we need <_ 7n - 2 computational steps. 

Theorem 15. I f  the general case, we can compute the optimal statistical estimate for the 

derivative in parallel in the time that is necessary for ~_ 3 log 2 n + 8 computational steps. 

70 Statistical estimates in real time 

Definit ion 7. Suppose that an integer b is given. Suppose also that x l , x 2 , . . . ,  x n , . . ,  and 

tl < t2 < " "  < tn < " "  are two potentially infinite sequence o f  real numbers. By a statistical 

estimate for the derivative in the moment  t,~, n ~_ b, we mean the result o f  applying an optimal 

statistical estimate for the derivative to the values x,~, x,~-l,. �9 xn+l-6 and t,~, t , ~ - l , . . . ,  t,~+1-6. 

Definit ion 8. Suppose that an integer b > 1 and a positive real number  C are given. We say 

that an algorithm computes statistical estimates for the deriwaive in real time, with < C computatiorud steps 

per measurement i f  this algorithm works as follo~vs: it reads Xl, tl, then after <_ C computational 

steps reads x2 and t 2 , . . . ,  reads xb, tb, after <_ C computational steps computes a statistical 

estimate for the derivative in the moment  tb and its error, then reads xb+l, tb+l, after _< C 

computational steps computes a statistical estimate for the derivative in the moment  tb+~ and 

its error, etc, 

Re~r~zrk. Since we are interested also in computing the error, and the formula for the error 

contains a square root, we must add square root to the list of elementary computational steps. 

The  results are as follows: 
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Theorem 16. There exists an algorithm that computes statistical estimates for the derivative in 

real time, with ~_ 18 computational steps per measurement.  

Renr The  nice property of this a lgori thm is that its running time does not depend on b, so, 

we can use arbitrarily big b, and still get the estimates in real time. This running  time can be 

fur ther  diminished if we have several processors at our disposal: 

Theorem 17. There exists an algorithm that computes statistical estimates for the derivative in 

parallel in real time, with ~_ 7 computational steps per  measurement.  

Reng~rk. In the next Section, we will consider a frequent case, when ti+z - ti = const. In this 

case, as we will see, the number  of  computational  steps can be made even smaller. 

81 Optimal statistical estimates for the case when 

measurements are made in consequent moments of 

time 

Defini t ion 9. We say that the mecmtrements are made in consequent mmnents of time i f  ti+t - ti = A t  

for  some A t  > 0. In this case, ti = t t  + (i - 1)At .  

For this case, we can simplify the formulas from Theorem 11. Let us first consider the 

case, when n is odd: n = 2k + 1. To  simplify the formulas, let us denote the midpoint  (tk+z) 

by So, and other points by s -k ,  � 9  s - t ,  So, �9 . . ,  sz . . . .  , s~, where si = ti+k+t. Correspondingly, 

let us denote by Yi, - k  < i < k, the values that correspond to the points si, i.e., Yi = Xi+k+l. 

Proposit ion 2. I f  n = 2k + 1, then the optimal statistical estimate is 

k 3iyi 

d = ~ k ( k  + 1 ) ( 2 k +  1)At  
i = - k  

and its error is equal to + 1 ) / 3 )  

In particular,  for n = 3, the optimal statistical estimate is 

d =  Yl - Y - t  
2 A t  

its e r ror  is equal to c r / ( v ~ A t ) ;  for n = 5, 

d = 2 y 2 + Y t - Y - t - 2 y - 2  

lOAt  

and a / ( v ~ A t ) ;  etc. 

Let us now consider the case, when n is even: n = 2k for some k. In this case, we 

will also denote the midpoint  by So: So -- (tz + t,~)/2 = tz + (n /2  - 1 / 2 ) A t .  In this case, the 

distance between So and ti is not proport ional  to A t ,  so it sounds reasonable to introduce the 

following denotations: we will denote  t~ by s j ,  where j = (t~ - So ) /A t  = i - (n + 1)/2,  and 

correspondingly x~ by yj for the same j .  Then  j runs from - ( n / 2  - 1/2) to + ( n / 2  - 1/2).  

Proposit ion 3. I f  n = 2k, then the optimal statistical estimate is 

k-t~2 12iyi 

d = ~ n ( n  2 - 1)At  
i = - ( k - 1 / 2 )  
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and its error is equal to o ' / (dxt~/n(n 2 -  1 ) /12 ) .  

In part icular,  for n = 2, the optimal statistical estimate is 

d - YI/2 - Y-1/2 

A t  

and error  is equal to or~At; for n = 4, the optimal statistical estimate is 

d = (3/2)y3/2 + (1/2)yi/2 - (1/2)p- i /2  - (3/2)y-3/2 

5 A t  

and error  is equal to r etc. 

Let us now consider real-time algorithms. The  values of  t~ are known beforehand and 

therefore, definitions from Section ? can be simplified: 

Defini t ion 10. Suppose that an integer b and real numbers tl and A t  > 0 are given. Suppose 

also that x l , x 2 , . . . ,  x n , . . ,  is a potentially infinite sequence o f  real numbers. By a statisticr 

estimate for the derivative in the moment  tn, n >_ b, we mean the result o f  applying an optimal 

statistical estimate for the derivative to the values x,~, x n - 1 , . . . ,  xn+l-b and tn, t , ~ - l , . . . ,  t,~+1-6, 

where ti = tl + (i - 1)At .  

Defini t ion 11. Suppose that an integer b > 1 and a positive real number  C are  given. We  say 

that an algorithm computes statistical estimates for the deri~ztive in real time, with < C computationed steps 

per measurement i f  this algorithm works as follows: it reads xl ,  then after  <_ C computational 

steps reads x2 , . . . ,  reads Xb, after < C computational steps computes a statistical estimate for 

the derivative in the moment  tb, then reads Xb+l, after <_ C computational steps computes a 

statistical estimate for the derivative in the momen t  tb+l, etc. 

Remark. In case t i+l  - t i  = At  = const, the error  does not depend  on i or xi, so it can 

be computed before any measurements are known. Therefore,  we do not have to consider 

computations of  the error  if we are talking about real time algorithms. 

Theorem 18. There  exists an algorithm that computes statistical estimates for the derivative in 

real time, with <_ 10 computational steps per measurement. 

Remark. According to Propositions 2 and 3, we can precompute  the coefficients ai of the optimal 

statistical estimate, and  thus computing this estimate would take at most 2 b -  1 computational 

steps: b multiplications and b -  1 additions. Therefore,  if b <_ 5, and 2 b -  1 < 10, it is better to 

use the direct formulas  described after Propositions 2 and 3. If  b > 6, then 2 b -  1 > 10, and 

it is better to use the algori thm from Theorem 18. 

Theorem 19. There  exists an algorithm that computes statistical estimates for the derivative in 

parallel in real time, with <_ 5 computational steps per measurement. 

Remark. The  gain in running time is even bigger  than we can conclude from comparing these 

Theorems from the ones from the previous section. The  reason is that in Section 7 we counted 

computat ion of  a square root as 1 computational  step, while in the present Section, we need 

only ari thmetic operations,  and arithmetic operations are much faster than computing square 

root. So, not only we need fewer computational steps, but the steps are shorter. 

9D Optimal statistical estimates in case the function 

x (t)  is quadratic 

Defini t ion 12. Assume that we are  given an integer n >_ 2, a real number  rz > O, and n + 1 

real numbers to and tl < t2 < " "  < t,~. By a linear estimate for an interval derivative at 
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the point  to, we mean a linear function that transforms a sequence z l ,  . . . .  xn into a value 

d = a l x l  + a2x2 + " �9 " + anxn. We  say that a statistical estimate is n o n - ~ e d  i f  for arbitrary real 

numbers  a, b and c, and for arbitrary n independent  random variables ~i with average 0 and 

standard deviation or, the mathematical  expectation E[d] = E [ a l x l  + a2x2 + ' . .  + a,~x,~] is equal 

to b, where xi = a + b(ti - to) + c(ti - t0) 2 + (i. By an error o f  a statistical estimate we mean 

the standard deviation ~r[b - d] o f  the difference between b and d. We  say that a statistical 

estimate is optimal i f  it is non-biased, and its error is the smallest possible (among non-biased 

estimates). 

Theorem 20. I f  x ( t )  can be quadratic, then the optimal statistical estimate is equal to 

d = Y~iaix~, where ai = a + f l ( t i - t o )  +7 ( t~  - to) 2, where a ,  fl and 3' are  the solution~ 

o f  the following system o f  linear equations: 

a E ~ t  + f lZ , ( t~- to)  + 7Gr i t s - to )  2 = o; 

a Y ~ 4 ( t i - - t o  ) + f l ~ ] i ( t i - - t o )  2 + 7 E i ( t , - t o )  3 = 1: 

a Z 2 i ( h - t 0 )  2 + f l E ~ ( t , - t 0 )  3 + 7 E ~ ( t ~ - t 0 )  4 = 0 

Remark. In this case, we can repeat  Definitions 7 and 8 to define real-time algori thms and their 

complexity. The  result of  this application is as follows: 

Theorem 21 (x(t) is quadratic). There  exists a constant C > 0 such that for  every b, there 

exists an algori thm that computes  statistical estimates for the derivative in real time, with < C 

computat ional  steps per  measurement .  

Ren~zrk. In other words, this algori thm has the same nice proper ty  as an algori thm from 

Theorem 16: its running  time does not depend on b, so, we can use arbitrari ly big b, and still 

get the estimates in real time. 

10. Linear formulas are not helpful for interval estimates 

of derivatives 

Linear formulas are very simple to compute, so let's try them. In Section 6, we considered 

formulas that describe an estimate for the derivative as a l inear combination of xi: d = ~ i  a~zi. 

Computing a linear formula is computationally very easy, so it is reasonable to ask: can ~e  use 

linear estimates in the interval case as welt? We will prove that even in the simplest case, when 

the function is l inear (i.e., S = L), and the precision is fixed (ei = r l inear formulas are not 

helpful for interval estimates. 

Defini t ion 13. Assume  that we are  given an integer n > 2, a real n u m b e r  ~ > O, and n real 

numbers  t l  < t2 < " "  < tn. By a linear estimxae for an interval derivative we mean a linear 

function that transforms a sequence : c l , . . . ,  zn  into a value d = a l x l  + a2x2 + .  �9 �9 + anz,~. By 

a precision o f  a linear est imate we mean the m a x i m u m  possible value o f  the dif ference lb - d I 

for  all a, b and :ci such that [x~ - (a + bti)i <_ r 

Remark. So, if the precision is 0.1, it means that the real values b of  the derivative and the 

estimate d can differ by < 0.1, and therefore, the possible values of the derivative belong to 

the interval [ d -  0.1, d + 0.1]. Naturally, we are interested in the estimates with the best (i.e., 

the smallest) vaIue of  the precision. 

Theorem 22. For given n,  t l ,  � 9  t,~, a linear estimate has the smallest possible precision when 

a~ = - a l  = 1 / ( tn  - t l ) ,  and a2 = a3 . . . . .  an-1 = O. 
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Revru,,rk. So, the best estimates for the linear formulas are obtained when we use only 2 

measurements,  and the resulting estimate is the simplest numerical differentiation ( x , ~ - x l ) / ( t n -  

t l ) .  In other  words, if we restrict ourselves to linear estimates, then there is no way to use 

additional measurements  to improve the precision of our estimates of  the der ivat ive.  This 

means that in case the er ror  of the simple numerical estimate is too big, linear formulas cannot 

help in diminishing this error.  In other words, linear f~rm~das are not helpfid far interv~d estinu~tes 

of deriuatives. 

Part III. Proofs 

Proof  of Proposi t ion 1. Suppose that S is convex, and dt and d2 are possible values of the 

derivative. This  means that dl = xl(t0) and d2 = :/:2(t0) for some functions xi E S N f .  Let us 

prove that for every c~ E [0, 1], ad l+(1 -c~ )d2  is also a possible value. Indeed, since S is convex, 

and (as is easy to prove) .~" is convex, the function x( t )  = ~ x l ( t )  + (1 - a)x2( t )  also belongs to 

5 'Af ' ,  and therefore its derivative dx( to ) / dt = ~ dx  l ( to ) / dt + ( 1 - a  ) dx2( to ) / dt = adl  + ( 1 - a  )d2 

is a possible value. [] 

Proof  of Theorem 1. A linear function x( t )  = a + bt belongs to a function interval .~" if 

and only if  x~  < a + b t i  < x~" for all i from 1 to n. We are interested in the values of 

dx( t  + O)/dt  = b, so let us eliminate a from these inequalities. To do that, suppose that 

b is given, and let us find whether there exists an a for which the function x(t)  = a + bt 

satisfies all these inequalities. If  we move bti into the other  side of the inequalities, we get 

the following equivalent inequalities: x~ - bti < a < zi  + - bti. So, a must be not bigger than 

all the numbers  x~- - b t i ,  and not smaller than all the numbers z;( - b t i .  In other words, a 

must lie between m a x j ( x f  - btj) and min~(x~- - bti). Such a number  exists if and only if 

min i (x  [ - bti) >_ max~(x~" - btj), i.e., if and only if x~- - bti >_ x~ - btj for every i and j .  

So, the problem is reduced to the following: find the interval of all values of b for which 

x + - bti >_ x~ - bt3 for every i and j .  By moving all terms with b to the r ight-hand side, we 

can transform this inequality into the following: b ( t ~ -  t j)  <_ x + - x - f .  This inequality must be 

true for every pair  ( i , j ) .  If  i = j ,  it degenerates into 0 _< O, and is thus trivially true. If i > j ,  

then ti > t j ,  and  this inequality turns into b <_ ( x f  - x ~ ) / ( h  - tj). When i < j ,  then ti < tj ,  

and the above inequality turns into b >__ (xy  - x + ) / ( t j -  ti). So, b must be not smaller than 

all the numbers (x-f - x ~ - ) / ( t j  - t i ) ,  and not greater  than all the numbers (x + - x y ) / ( t ~ -  t~). 

These inequalities are equivalent to the condition that b is not smaller than the biggest of  

its lower bounds maxj>i  ((x~- - x+) / ( t j  - t i ) ) ,  and not bigger than the smallest of its upper  

bounds m i n i > j  ((X + -- x- f ) / ( t i  - t j ) ) .  

In other  words, b is a possible value of the derivative if and only if d -  < b < d +. Such 

values exist if and  only if d -  < d § and form the interval [d-,  d+]. [] 

Theorem 2 was proved in the main text. 

Proof  of Theorem 3. Suppose that we have an unlimited number  of processors (later on we 

will compute how many processors we actually need). First, let us compute x + = a:i + r and 

:c~- = z i -  ci for all i. This can be done in parallel on 2n processors. Since they are all working 

in parallel, we spend the time that is equivalent to only one computational  step. 

Now, we compute  the values (x + - xy)  and (ti - t j )  for i > j ,  and the values (x~- - x +) 

and (tj - ti) for j > i. All these subtractions can also be done in parallel,  and for that we 
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need 2 n ( n  - 1) processors (two for each pair (i, j )  except for i = j). The amount  of  time that 

we spend here is also equivalent to one computational step. 

Next, we compute the ratios (x  + - z2)/(t~ - to) and ( z ;  - z+)/(t~ - t d .  This can also 

be done in parallel, on n ( n -  1) processors, and takes the time of one computational step. 

After that, we have two sets of n ( n  - 1)/2 numbers each; for the first set, we must find 

the biggest, for the second set, we must find the smallest. It is known (see, e.g., [8]), that for 

every N ,  the best method of finding the maximum of N numbers P l , . - . , P N  in parallel takes 

_< N processors, and can be done in _< log s N + 1 computational steps. For completeness, let 

us add a description of this algorithm: 

N 

N =  

N = 

N = 

2. If  N = 2, then we simply compare the two numbers Pl and P'2. 

4. If N = 4, then we divide the numbers into pairs (Pl,P2) and (Pa. P4). Then, first. 

we find the maximum for each pair: i.e., max(pl ,p2) and max(pa, p4) tin parallel), and 

second, compare the two results to find the maximum of all four numbers Pi. 

8. If  N = 8, then we divide the eight numbers into 4 pairs: (Pl,P2),  (pa, P4), (Ps, p6) 

and (Pz, Ps). Then, for each pair, we compute its maximum: ql = rnax(pl, P2), q2 = 

max(pa, p4), q3 = max(ps, P6) and q4 = max(pT, Ps). This can be done in parallel, and 

therefore takes the times of one computational step. After that, we find the maximum of 

the resulting 4 numbers ql, q2, q3, q4 (we already know that this can be done in 4 steps). 

2 k. If  N = 2 k for some k, then we have the following recursive procedure: 

If k = 0, then the only number present is the biggest; 

If k > 0, then we divide N numbers into 2 k-1 pairs, in one step find the biggest 

of  all pairs, and then apply the same algorithm to find the biggest of  2 k-1 results. 

After each step, we halve the set of  numbers that we still need to compare, so in k 

steps we get the maximum. 

N ~ 2 k. Let us now consider the remaining case, when N ~ 2 k. In this case, we take the 

smallest number 2 k that is _> N,  add N - 2 k numbers that are equal to Pl, and apply 

the same algorithm. 

Since k is the smallest for which N < 2 k, we have N > 2 k--l, hence log 2 N > k - 1, 

and k < log s +1. So, we need < N processors and < log s N  + 1 computational steps. We 

can compute the minimum (to compute d +) and the maximum (to compute d- )  in parallel. 

Each computation takes _< l o g  2 ( n ( n  -- 1)/2) + 1 < log2(n2/2) + 1 = 2 l o g  2 n - -  1 + 1 = 2 log 2 n 

computational steps, and takes < n ( n -  1)/2 processors. To compute both estimates in parallel, 

we need < n ( n  - 1) processors. 

After we computed d + and d- ,  we must compare them to check whether d + _> d -  and 

thus whether .T" is compatible with L. This takes one more step. 

Now we have described all the stages of  our computation. In total, we need _< 1 + 1 + 

2 log s n + 1 = 2 log s n + 3 computational steps, and _< max(2n ,  2 n ( n  - 1), n ( n  - 1)) = 2 n ( n -  1) 

processors. [] 

Proof  of  Theorem 4. In the algorithm from Theorem 2, the biggest part of  computational 

time was spent on computing the expressions (xT, - x + ) / ( t i -  t j )  and (x  + - x - f ) / ( t i -  t j ) .  In 



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING.. .  159 

our case, we need these expressions for n - b < j < i < n. After  we computed the estimates 

d + and d~, we read the new values xn+l and t~+l. To compute d +~+1 and d~-+l, we must use 

the similar expressions for n + 1 - b < j < i _< n + 1. But the values of these expressions for 

i < n + 1 have already been computed on the previous stage, so we do not need to compute 

them again. The  only new values that we have to compute correspond to i = n + 1. 

So, the new algori thm is as follows: for every n, we follow the same steps as in algori thm 

from Theorem 2, with the only difference that the values of x.~,  x +,  and the expressions 

( x ; -  x + ) / ( t , -  t j )  and ( x  + - x - f ) / ( t ~ -  t j )  that we have already computed on the previous 

stage (for d + and d~-) we can use for d++t and d~+ t as well. 

Let us estimate the number  of computational  steps per measurement  for this algorithm. 

For a new value tn+l,  we must compute (b - 2) new pairs of expressions (one pair  for each j 

that lie between n + 1 - b and n + 1). To compute each pair, we need 5 operations, so totally, 

we need 5 ( b -  2) computational  steps. 

We must add  to this amount  9 computational  steps to compute + - X n + l  = X n + l  dr-~n+l and 

- d + x ~ + t  = x n + 1 - r  and 2 ( b ( b - 1 ) / 2 - 1 )  steps to find the smallest and the biggest values ( ,~4-t 

and dZ+ll. As a result, we get = 2+ b-10+b -b-2 = b2+4b-10 .  
[] 

Theorem 5 is proved in the main text. 

Proof  of Theorem 6. We consider the case when a function z ( t )  is quadratic, i.e., when 

x ( t )  = a + b ( t  - to )  + c ( t  - to)  2. In such a representation, the value of  the derivative d x ( t ) / d t  

in the point to equals b. 

If  n = 2, then for every b and arbi trary values z l ,  x2, r > 0 and r > 0, we can easily 

find a function x ( t )  that belongs to both Q and .T: indeed, it is sufficient to find a and c for 

which a + b ( t l  - to )  + c ( t~  - t0) 2 = xl and a + b ( t2  - to )  + c ( t~  - t0) 2 = x2. These two equalities 

form a system of  2 linear equations with 2 unknowns a and b whose determinant  is different 

from 0, therefore this system always has a solution. 

The  same is true for n = 1. So, if n < 2, then .Y" is always consistent with Q, and any 

value of the derivative is possible, i.e., the derivative" set is indeed equal to (-eez,  +oo) .  

Let us now consider the case n > 2. A quadratic function x ( t )  belongs to a function 

interval .T if and only if x-[ < a + b(t~ - to) + e( t~ - t0)  2 __ x ? for all i from 1 to n. We are 

interested in the value of b, so let us reformulate these inequalities in an equivalent form that 

does not contain a and e. In other words, let us eliminate a and c from these inequalities. 

First, let us eliminate a. This can be done in the same manner  as in the proof  of 

Theorem 1. Indeed,  suppose that b and e are given. When does there exist an a for which 

the above inequalities are  true? If  we move terms containing b and e to the other  sides of  the 

inequalities, we will obtain equivalent restrictions on a: 

x ?  - b ( t i  - to)  - c ( t i  - to )  2 < a < x.+, - b ( t i  - to)  - e ( t i  - to)  2. 

So, a must be not smaller than all the left-hand side expressions, and not bigger  than all the 

r ight-hand side expressions. For such an a to exist, every left-hand side expression must be not 

be greater  than the r ight-hand side one, i.e., for every i and j the following inequality must 

be true: 

x 7  - b ( t i  - to)  - c ( t i  - to) 2 <_ x + - b(t3 - to )  - c ( t j  - to) 2. 

Since the new set of inequalities is equivalent to the old set, the problem of  f inding the 

derivative set can be now reformulated as follows: we must find all b for which there exists a 
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c such that the inequalities 

z ~  - b( t i  - to) - c ( t i  - to) 2 <_ x f  - b ( t j  - to)  " c ( t j  - to) 2 

are true for all i and j .  

Let us now eliminate c f rom this new set of  inequalities. If  we move all terms with c into 

one  side, and  all o ther  terms into another  side, we get the following inequality: 

( x [  - x +)  - (b ( t i  - to) " b ( t j  - t o ) )  <_ c( t i  - to)  2 - c ( t j  - t0) 2. 

Since 

and 

b( t i  - to) - b ( t j  - to) = b( t i  - to - t j  + to)  = b( t i  - t j )  

c(t  - t o )  2 - c(t  - t o )  = - t o )  - ( t j  - t o )  

we can t ransform this inequality into the following simplified equivalent one: 

( x :  - x +)  - b( t i  - t j )  <_ c ( t i  + t3 - 2to)(ti - t3). 

For every pair (i, j ) ,  we have this inequality, and  we also have the inequality that is obtained 

f rom this one by changing  i and  j .  

The  resulting inequality for c depends on whether  the coefficient at c (equal to 

(ti  - t0) 2 - ( t j  -- t0) 2) is negative, positive, or  equal to 0. 

Let us first consider the case when (ti - t0) 2 = (tj - to) 2. Suppose for certainty that i > j .  

Then ,  we have two inequalities ( x ~ - -  x +)  - b ( t i -  t j )  ~ 0, and ( x - f -  x +) - b ( t j -  ti) _< 0. Since 

i > j ,  we can reformulate  these inequality as explicit restrictions on b: ( x  7 - x ; ) / ( t i  - t i )  

b <_ ( x  7 - x ~ ) / ( t i  - t j ) .  

Now, let us consider the remain ing  case, when (ti  - to) 2 ~ ( t j  - to) 2. For certainty (and 

without losing generality), let us assume that (t~ - to) 2 > ( t j  - to) 2. T h e n  the i , j  inequality is 

equivalent to the following: 

( 2 ;  - 2 7 )  - b(t ,  - t j )  < c 

(ti + t3 - 2t0)(ti - tj) - 
.i 

and  the j ,  i inequality is equivalent to the following one: 

( #  - x ; )  - b ( t ,  - t j )  
c <  

- ( t ,  + t j  - 2 to ) ( t i  - t j ) "  

So, for a given b, the value of  c for which all the desired inequalities are  true, exists if 

and  only if first, all the inequalities that do not contain c are true, and, second, any lower 

bound for c is not greater  than any upper  bound  for c, i.e., 

( x [  - x f  ) - b( t i  - t~) 

(ti + t j  - 2 to)( t~ - t j )  

( x ~  - x [  ) - b( tk  - t , )  < 
(tk + tl - 2to)(tk - h)  

for each quadruple  ( i , j , k , l )  such that ( t i -  t o ) 2 >  ( t j - t o )  2 and ( t k -  to)2 > ( t z -  to) 2. 
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W e  can express  this inequali ty direct ly in terms of  b by moving  all terms with b into one  

side o f  the equation:  

( t i  + t j  - 2t0)(t i  - t j )  - (tk + tz - 2t0)(t~ - tt) 

< b(t i  - t j )  _ b ( t k  - t l )  

- ( t i  + t j  - 2t0)(t i  - t j )  (tk + tt - 2t0)(tk - tl)" 

Cancel ing  s imilar  te rms in the n u m e r a t o r  and  the denomina to r  of  the fract ions that  are  

coefficients at b, we ar r ive  at the following simplif ied inequality: 

(t i  + t j  -- 2to)( t i  -- t j )  -- ('te + tl -- 2to)(tk -- t t )  < b Lt i + tj - 2to tk + tt - 2toJ ' 

I f  ti + t j  - 2to = tk  + tt - 2t0, then  the coefficient at  b is equal to O, and  therefore ,  this 

inequali ty turns  into the fol lowing one: 

=;- _ ~+ =; - ~/- 
< 0 .  

(t, + t j  - 2t0)(t~ -- t j )  - -  ( t k  + tl - 2t0)(tk - t~) - 

I f  ti  + t j  - 2t0 = tk + tz - 2t0 > 0, then  by mul t ip ly ing both sides of  the  inequali ty by this 

n u m b e r  we conc lude  tha t  (x-[  - x + ) / ( t i  - t j )  - ( x ;  - x ~ ' ) / ( t k  - t l )  < O, or (x~- - z ~ - ) / ( t i  - 

t j )  <_ ( x ~ - x T ) / ( t k - t t ) .  If  t ~ + t j - 2 t 0  = t k + t t - 2 t o  < 0, then  we get  the inequali ty 

(=7 - zD/(t, - tj) > (~  - ~)/(t~ - tl). 
Let us now consider  the r ema in ing  case, when ti + t j  - 2to ~ tk + h - 2to. In this case, 

we actually have  two inequalities: the one tha t  we gave above, and  the one  tha t  is obta ined  

by chang ing  i , j  to k , l  and  vice versa. So, without  losing general i ty ,  we can assume that  

ti  + t j  - 2t0 > tk + tz - 2to. In this case, 1 / ( t i  + t j  - 2to) < 1 / ( t k  + tt - 2t0), the coefficient at 

b is negative,  a n d  the inequali ty turns into the  following: 

( t i  + t~ - 2 to)( t i  - t j )  - t k  + t - l - Z ~ o ' ~ t k  - t l )  J 
1 1 ] >  

t ~ + t j - 2 t o  t k + t l - 2 t o  - 
b. 

For  the inequali ty that  is obta ined by chang ing  z , j  to k , l ,  the coefficient at  b is positive, 

so we get  the fol lowing inequality:  

[ x + - x ~  x ~ - x ~ "  ]/[ I 1 ] < b .  

(t~ + tj - 2to)(t, - tj) - (t~ + t ~ - ~ o - ~ - t ~  - t,) t, + tj - 2to t~ + t, - 2to - 

W e  also have the bounds  for b f rom the cases when (ti - to) 2 = ( t j  - to)2: 

( ~ :  - z ; ) / ( t ,  - t j )  < b < (~? - ~ ; ) / ( t ,  - t A .  

So, we reduced  the p rob lem to the inequali t ies that  do  not  d e p e n d  on b at  all, and  

inequalit ies of  the  type X < b and  b _< Y for  some expressions X and  Y.  T h e  inequali t ies that  

conta in  b are  consistent  if and  only if the m a x i m u m  of  the lower bounds  X is not  b igge r  than 

the m i n i m u m  of  all u p p e r  bounds,  and ,  if  they are  consistent,  then the in terval  of  possible 

values of  b coincides with the  set of  all possible values between these m a x i m u m  a n d  m i n i m u m .  
[] 
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Proof  of Theorem 7. The  formulas from Theorem 6 prompt  the following natural algorithm: 

1) First, we compute the values 'xi + = xi + ei,  x~- = xi - ~, t, - to and (ti - to) 2 for all i 

f rom 1 to n. 

2) For every i > j ,  we check whether (ti - t0) 2 = (tj - to) 2. 

2a) For all i > j ,  for which this equality is true, we compute the values t i -  tj, x + - z ~ - ,  

x T - x +, (x  + - x -~ ) / ( t ,  - t j ) ,  and ( x ;  - x + ) / ( t ,  - t j ) .  

2b) If (ti - t0) 2 # (tj - t0) 2, we permute i and j if necessary (so that (ti - t0) 2 > (tj - t0) 2) 

and compute the values ti - t j ,  ( ti - to) + ( t j  - to) = t~ + t: - 2to, l / ( t~  + tj - 2t0), x + - x~-, 

x ;  - x + ,  (x  + - x -~) / ( t ,  - t:) ,  ( z [  - x + ) / ( t ,  - tS), ( x  + - z ; ) / ( ( t i  - t s ) ( t ,  + t j  - 2t0)), 

and ( x ;  - x - f ) / ( ( h  - t j ) ( t i  + t: - 2t0)). 

3) Enumerate  all the pairs i , j  and k, l such that ( t~-t0) 2 > ( t j - t o )  2 and ( tk- t0)  2 > ( t t - t o ) L  

For each such quadruple, compare ti + tj - 2t0 with tk + tt - 2t0. 

3a) If  t i + t i - 2 t o  = t k + h - Z t o  > 0, then check whether ( z - ~ - z T ) / ( t , - t j )  > ( z : ( - z + ) / ( t ~ - t j ) .  

If  this inequality is not true, then ~" is inconsistent with Q. 

3b) If  t i + t j - 2 t o  = t k + t t - Z t o  < O, then check whether (x  + - z g ) / ( t j - t i )  > ( x g - x ~ ) / ( h - t k ) .  

If  this inequality is not true, then .~- is inconsistent with Q. 

3c) If  ti + tj - 2t0 < tk + tt - 2to, change i, j to k, l and vice versa, so that after that change 

we will have ti + tj - 2to > tk + tl - 2to. 

3d) If t, + tj - 2t0 > tk + tt - 2t0, then compute IVi+kl, Ni~kt, Di jm,  Ni+kt/Dij~t,  and Ni~kl/Diskt  

according to the formulas from the formulation of Theo rem 6. 

4) After we have done the previous steps, we can compute d]- = m a x  ((x~- - x + ) / ( t i  - t j ) ) ,  

= m i =  ) l ( t, - tj ) ) ,  = m a x (  N,~k~_/ D,:kz ), d~ = m i n (  N,~kff  D,jk, ), d + = 

ra in(d[ ,  d~'), and d -  = max(d~-, d2). If  d + < d - ,  then .Y" is not compatible with Q, else 

[d-, d +] is the desired derivative set. 

Let us now estimate the number  of computational steps for this algorithm: 

1) The  first part  of  the algorithm requires 4 steps for every i from 1 to n, i.e., overall, 4n 

steps; 

2) For every pair i > j ,  we make 1 comparison and then (depending on the result of this 

comparison) either 5 or 9 computational steps. Therefore,  for each pair, we need at most 

10 computational steps. Since there are n ( n  - 1)/2 pairs with i > j ,  we need at most 

t 0 n ( n  - 1) /2 = 5 n ( n  - 1) computational steps for this par t  of  the algorithm. 

3) For each quadruple (i, j ,  k, l) ,  we need 1 comparison, and then, depending on the result 

of  this comparison, either 1 more comparison (in cases 3a and 3b), or 5 computational 

steps (in cases 3c and 3d). So, for every quadruple, we need at most 6 computational 

steps. 
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4) 

To estimate the total number of steps for this part  of the algorithm, we must multiply 

6 by the total number  of quadruples. A quadruple (i, j ,  k, l) is a pair of different pairs 

( i , j )  and (k,1). So, the total number of quadruples is equal to P ( P  - 1)/2, where P 

is the total number  of pairs with the property (ti  - to)  2 > ( t j  - t~ - This number P 

is not greater than the total number of pairs n ( n  - 1)/2, so the number of quadruples 

is _< P 2 / 2  < ( n ( n -  1)/2)2/2.  Hence, the total number  of computational steps for this 

part  of  the algorithm is _< 6 ( n ( n - 1 ) / 2 )  2/2 = 3 ( n ( n -  1) /2)  2. 

T o  compute the minimum d~ of N <_ 1 / 2 ( n ( n -  1)/2)  2 numbers, we need _< U 

computational steps. Likewise, the number  of steps for computing the maximum d~- 

is _< l l 2 ( n ( n -  1)/2)  2. To  compute the values d + and d 7, we need _< n ( n -  1)/2 

computational steps. Then,  we need two steps to compute d + and d - .  So, totally, we 

need < - ( n ( n - 1 ) / 2 ) 2 + n ( n - 1 ) 1 2  computational steps for this final part  of the algorithm. 

By adding all these numbers we can now get the estimate for the total amount of 

computational steps for the entire algorithm: it is _< S, where S = 4 n  + 5 n ( n  - 1) + 3 ( n ( n  - 

1 ) / 2 ) 2 + ( n ( n - 1 ) / 2 ) 2 + n ( n  - 1 ) / 2 = 4 n + l l n ( n - 1 ) / 2 + 4 ( n ( n - 1 ) / 2 )  2 . If we compute 

all the expression in the parentheses, we arrive at the following result: S = 4n + l l n  2 - l l n  + 

n 4 - 2n a + n 2. Adding all the coefficients at 1, n, n 2, n a, and n 4, we arrive at the following 

formula: S = n  4 - 2 n  a + 1 2 n  2 - 7 n < n  4 + 1 2 n  2. [] 

Proof  of  Theorem 8. We can compute all the values from parts 2), 3) of  the previous proof  

in parallel: for that we need g n 4 processors (one for each quadruple). Totally, to compute all 

these expression, we need the time that is necessary for 6 computational steps: 

1) 

2) 

3) 

4) 

5) 

6) 

On 1st step, we compute x + = x i  + ei ,  x ~  = x i  - ~, t i  - to, and t i  - t j  for all i and j .  

On the 2nd step, we compute (ti - t0) 2, ( t i  - to) + ( t j  - to)  = ti  + t j  - 2t0, x + - x f  , and 

x [  - x + for all i and j .  

On the 3rd step, for every i > j ,  we check whether ( t i - t 0 )  2 = ( t j - t ~  2. For all 

i > j ,  for which this equality is true, we compute the values (xi + - x f ) / ( t i  - t j )  and 

( x ;  - x + ) / ( t i  - t j ) .  If  ( t i  - t0) 2 ~ (tj - t~ 2, we permute  i and j if necessary (so that 

(ti - t0) 2 > (tj - t~ 2) and compute the values 1/(t i  + t j  - 2t0), ( x  + - x f ) / ( t i  - t j ) ,  

(~.7 - z J - ) l ( t ,  - t~ ) .  

On the 4th step, we compute (x  + --  x f ) l ( ( t i  - t j ) ( t i  + t j  - 2t0)) and ( x ~  - x + ) / ( ( t i  - 

t j ) ( t ,  + t j  - 2t0)) for all i , j .  

On the 5th step, we compute the values N~kl and Dijkl for all i, j ,  k, I. 

On the 6th step, we compute all the fractions • N~kz/ D~jkt. 

Then,  we must find the maximum and the minimum of < ( n ( n  - 1)) 2 + n ( n  - 1)/2 

numbers. This amount  is _< 1 /4(n  4 - 2n 3 + n 2) + (1/2)n 2 - (1 /2)n  = (1 /4)n  4 - (1 /2)n  3 + 

(1 /4)n  2 + (1 /2)n  2 - (1 /2 )n  -- (1/4)n 4 - (1 /2)n  3 + (3/4)n 2 - (1/2)n.  Since n _> 3, n 3 >_ 3n 2, so 
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(1 /2)n  3 > (3 /2)n  2 > (3 /4)n  2, so (1/4)n 4 -  (1/2)n3 § (3 /4)n  2 -  (1 /2)n  = (1/4)n 4 -  ( (1 /2)n  3 -  

(3 /4 )n : )  - (1 /2)n  < (1 /4)~ 4. 

Computing maximum and minimum can be done in parallel, so it is sufficient to estimate 

the time that is necessary to compute one of  them, and then add 1 step for comparison of 

d + and d- .  To find the smallest of < (1 /4)n  4 numbers, we need _< log 2 ( (1 /4)n  4) 4- 1 --- 

4 log  2 n - 2 + l = 4 1 o g  2 n - I  steps. 

Totally, we need < 6 + (4 log 2 n - 1) = 4 log 2 n + 5 computational steps. [] 

Theorems 9 and 10 were proved in the main text. 

Proof  of  Theorem 11. Let us first figure out what conditions on ai are equivalent to the 

demand that a statistical estimate is non-biased. This demand means that E[d] = E [ a l x l  + 

. . .  + a,~x,,} = ~ i  aiE[xi] = b for all a, b and xi  = a + bti + ~i. Since E[~i] = 0, we conclude 

that E[xi] = a + bti, hence E[d] = ~ i  ai(a + bti) = a ( 2 i  ai) + b (Zi  t,). So, the condition that 

E[d] = b for all a and b means that a (~ ,  a~) + b (Z~ t~) = b for all a and b. Two linear 

function are identical if and only if their coefficients coincide, therefore, this condition is true if 

~'~i ai = 0 and ~ i  aiti = 1. So ,  these two equalities are necessary and sufficient for an estimate 

to be non-biased. 

In the following we will consider only non-biased estimates. Let us compute the error  

for such estimates. Since ~i are assumed to be independent, we can conclude that 0.2[d] = 

0 .2 [Y']i aixi] = Y~4cr2[aixi]. But xi  = a + bti + ~i, therefore, E[xi] = a 4- bti, x i  - E[xi] = ~i, 

a2 [xi] = E [ (x, - E[x,]) 2 ] = E [ ~ ]  = a ~-, hence, 0 .2 [aixi] = ai20. 2 and 0.2 [d] = Y':4 0.2 [aixi] = 

So, the error is proportional to ~ a~. Hence, the error is the smallest possible if and 

only if the sum ~ i  a~ is the smallest possibIe. 

So, the problem of  finding the non-biased statistical estimate with the smallest possible 

2 under error, is equivalent to the following mathematical problem: to minimize a function ~ i  ai 

the conditions ~ i  a i  = 0 and ~ i  aiti = 1. 

The  Lagrange multipliers method allows us to reduce this problem to the unconditional 

optimization problem F = ~ i  a2 + )h ~ i  ai + A2 ( E i  ait i  - 1) --* rain for some constants Ai. This 

problem can be easily solved by equating the derivative O F / O a i  of the minimized function F 

to 0: 2ai + )~1 + A2ti = 0. As a result, we get the expression ai = a + fl t i ,  where a = -1 /2A1 

and ~ = -1/2,~2. To find a and /3, let us substitute these expressions into the conditions 

~ i  ai = 0 and ~ i  aiti = 1. As a result, we get the following system of equations: 

i i 

2 = I .  
i i 

From the first equation, we conclude that c~ = ~ , 2  ( ~ i  ti) / ( ~ i  1) = - 2  (~ i  t i ) / n  = - 3 t .  

we substitute this expression into the second equation, we conclude that 

If  

The  coefficient at /3 can be easily represented as •i(ti  - t-) 2 = na~, therefore, /3 = 1/(r~a~). 

Hence, a = - ~ / ( " # ) ,  and ai = a 4-/3ti = (ti - -  t ) l (n0.~) .  
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So, we have deduced the expressions for ai that correspond to the optimal statistical 

estimate. Let us now find the error  of this estimate. This error is equal to ~ i a i  = 

c r ~ .  Substituting the above expression for ai into ~ia/2,  we conclude that ~ia2i  = 

~i((~ i - - t )2)2/(dr2tn)2= (~ ' i ( t i - - t )2 )2 / ( . ] n )  2. But ( ~ i ( t i - ~ ) 2 ) 2 = n f f t  2, therefore ~i82i = 

1/(~n2) ,  and the error is equal to o '~ /a /2  = ~/(ertn). [] 
Proof  of  Theorem 12. If we know ai, then after measuring xi,  we need only 2 n -  1 
computat ional  steps to compute the estimate d = Y~i a~xi: 'n multiplications and n - 1  additions. 

[] 

Proof  of  Theorem 13. If we have several computers  working in parallel, then we can make all 

the multiplications in parallel (taking the time of  only 1 computational step), and then compute  

the sum of the resulting n products in the time of  _< ].og 2 n 4- 1 computational steps (such an 

a!gori thm is given, e.g., in [8]) The  idea of such an algori thm that parallelizes addition is very 

close to the idea of finding maximum in log 2 n + 1 steps (see the proof  of Theorem 3): if 

n = 2 k for some k,  then we divide n products Pl = atxl ,p~.  = a2z2, . . .  into pairs; on 1st step, 

we add each pair, getting the results Pl + P2, Pa + P4,. �9  Pn- t  + P~; on 2nd step, we divide 

these n / 2  results into pairs, and compute the sum of each pair (getting Pl + P2 + Pa + P4, 

1)5 + P6 + P6 + pr + Ps, - �9 .), etc. [] 

Proof  of  Theorem 14. In this case, for a sequential algorithm, we need n - 1 computat ional  

steps to compute the sum ~ i t i ,  1 to compute t,  2n to compute ti - { and (ti - {)2, n - 1 

to compute  the sum Z i ( t i  - t)=, n to compute  ai = (ti - { ) / ( 2 i ( t i  - {)2),  and 2n - 1 to 

compute  d = 5-2.i aixi: totally, we need 7n - 2 computat ional  steps. [] 

Proof  of Theorem 15. For a parallel computer ,  we need _< log 2.n + 1 steps to compute ~ i  ti, 

1 step to compute t, 2 steps to compute ti - E and (ti - f )a  (because computations for different  

i can be done in parallel), log 2 n + 1 steps to compute  the sum ~ i ( t i  - ~')2 1 step to compute  

a, = ( t i -  { ) / ( ~ i ( t i -  ~)2) for all i, and log2n + 2 steps to compute d = ~-~iairci . Totally, we 

need 3 log.~ n + 8 computational steps. [] 

Proof of Theorem 16. Let us first reformulate  the formula for d from Theorem 11, so that 

is will become easier to compute in real time. According to Theorem 11, the optimal statistical 

estimate is equal to d -=- ~ i a i x i ,  where el = (ti  - ~-)/(rto't 2) and o'~ = (~7~i(ti - t ) 2 ) / n .  If  

we substitute the expression ~t 2 = ( ~ i ( t i -  t ) 2 ) / n  into the formula for ai, we conclude that 

~i = (t ,  - ~ ) / ( E , ( t ~  - g)=) .  I f  we use the easily verifiable fact that ~ i ( t i  - {)2 = E i  t ~ / n  - n{  2, 

then we arrive at a formula a~;= (ti - t ) / ( ~ i  t~ - nt2) .  Finally, if we substitute the expression 

for t, we conclude that 

Therefore ,  d =  ~ , a i x i  = ( ~ i x i t i - ( ~ i x i )  i ~ i t i ) / n ) / ( ~ i t ~ - ( ~ i t i ) 2 / n ) .  We can also 

express it in the following form: d = ( 5 ' 1 -  $ 2 S 3 / n ) / ( $ 4 -  S ~ / n ) ,  where we denoted $1 = 

~ i x i t i ,  $2 = Z i x i ,  Sa = ~ i t i ,  and $4 = ~ i t ~ .  In these terms, the error  is equal to 

For our case, a statistical estimate d~ for a derivative in the moment  t~, is equal to 

= ( s , , .  - & , . & o . / b ) / ( &  - S ,Jb), , , , h e r e  
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s,,o= i s o= 
i=n +i -b  i = n + l - b  

s,.,,= kt . 
i=n+ l - b  i=n+ l - b  

It is easy to check that SL~+I = Sx,,~ + x~+xt.+t -x~+l-b t~+l-b ,  $2,~+1 = S2m + xn+l - x n + l - ~ ,  

S3,n+l  S3,n + tn+l -- tn+i-b, and S4,n+I S4.n 2 2 = = +t~+ 1 - t . + l _  ~. So, we can apply the following 

algorithm: 

1) We reserve 4 variables .5'1, $2, $3, $4 that will contain the current values of the sums 

SI,.. For every moment t . ,  we also keep the values zi, x i t i ,  t i ,  and t~ for all i such that 

n - b < i < n. So, we must reserve 4 + 4b variables. 

2) The initial values of Si,,~ are 0. When n < h then after reading x,~ and t,~. we compute 

(and remember) the values z n t .  and t~, and update the values Si in the following 

manner: S1 :=  Sx + z , , t . ,  $2 :=  ,5'2 + x,~, $3 :=  Sa + tn, and $4 : =  $4  --t-- t 2. 

3) For n = b, we do this update, and also compute dn: { :=  S3/b, S :=  6 ' 4 - $ 3 { ,  

d .  :=  ($1 - S2{ ) /S ,  and e :=  a / v / S .  

4) For n > b, we must compute (and remember) the values xnt~ and t2~, and then update 

5'/ according to the following formulas: St :=  S1 + z~tn - X.-btn-b, $2 :=  $2 + x .  - X~-b, 

$3 $3 + t~ - t . -b ,  and $4 :=  $4 + t 2 2 = - t . _  b. After that we compute dn and e using 

the same formulas as for n = b. 

For n < b, we need 6 computational steps; for n = b, we need 6 + 6 = 12 steps to compute 

d~, and one division + one square root to compute e. For n > b, we need 10 computational 

steps for an update, 6 to compute d~, and 1 division + 1 square root to compute e. In all 

cases, we need at most 17 arithmetic operations + 1 square root per measurement. [] 

Remx~rk. The algorithm described in this proof is vulnerable to errors: if accidentally we input 

a wrong value of  ti for some i, then, we spoil $1, $3, $4, and thus spoil the resulting estimates 

dn for arbitrary big n. To make this algorithm more error-prone, we can periodically check 

its results by applying the formulas from Theorem 11 directly. This checking will practically 

not slow down the computations, since we do not need to do it for every measurement, just 

periodically (e.g., for every tenth or every hundredth measurement). 

Proof of Theorem 17. In this case, we can use an algorithm similar to the one from the proof 

of Theorem 16. Namely, if we have several processors that can work in parallel, then we can 

compute :c,,t,~ and t 2 in parallel (thus, in the time that is necessary for 1 computational step), 

update the values Si in parallel on 4 processors (thus spending the time of  2 computational 

steps), and then compute the value d~ as follows: first, compute t :=  Sa/b (1 step), then 

S :=  5'4 - S3t', s :=  v/~N, and N :=  6'1 - S2t in parallel (2 steps), and dn :=  N / S  and e :=  ~r/s 

(1 step). Totally, we need the time of 7 computational steps. [] 

Proof of Proposition 2. In this case, t = So, and 

k k k 

4 = 1/(2k + 1) Z(t - (1/(2k + 1)) + 2 = (2 e/(2k + 1)) 
j i=1 i=1 i=1 

k /2 The value of  the sum ~ = i  is known to be k(k  + 1)(2k + 1) /6  (this formula can be easily 

checked by mathematical induction). Therefore, crt2 = 2 ( 1 / ( 2 k  + 1)) (k(k + 1)(2k + X)/6)At  2 =  
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k(k  + 1 ) / 3 ) A t  2. Substituting these expressions into the formulas from Theorem 11 completes 

the proof. [] 

Proof  of  Proposi t ion 3. In this case, t" = so, and 

At2 n-i~2 
= 1 E ( t ,  _ = _ o  2 E 

n i /2 i=1 /2  

T h e  values i = 1/2, 3/2,  5 / 2 , . . . ,  ( n - l ) / 2  can be represented as ( 2 j - 1 ) / 2  for j = i, 2,. . . , /~. 
Here, i ~ = 1 /4 (2 j  - 1) 2, hence 

i 2=1/4 (2j-l) 2 . 

i = 1 / 2  

T h e  sum S = E ~ = I ( 2 j  - 1) 2 of the square of all odd numbers from 1 to n can be represented 

as the difference between the sum of  all numbers from 1 to n and all even numbers from 1 to 
n,  i.e., as S n .2 n / 2  " 2 = ~j=13 -- ~j=1(23) " The  first sum is equal to n(n  + 1)(2n + 1)/6,  the second 

n / 2  �9 2 
sum E~=1(23) is equal to 4 times the sum ~]]._/]j2, i.e., to 4 ( n / 2 ) ( n / 2 +  1)(2n/2  + 1)/6  = 

n(n  + 2)(n + 1)/6. Therefore ,  the difference between these two sums is equal to n(n  + 1)(2n + 

l)/6-n(n+2)(n+ I)/6 = n(n+ i)((2n+ I) -(n+2))/6 = n(n+ l)(n- 1)/6 = n(n 2 - 1)/6. So, 

a2t = ( 2 / n ) ( 1 / 4 ) ( n ( n  2 -  1) /6)  = (n 2 -  1)/12.  Substituting these expressions into the formulas 

from Theorem 11 completes the proof. [] 

Proof  of  Theorem 18. Here, d = ( E i z ~ t i -  ( E i s : ~ ) ( t ) ) / ( n ~ )  The  value n~zt 2 is computed 

once (before the computations), so we can assume that it is already stored in the computer  as 

some value S. So here, we have only three expressions to update: S1 = ~ i  xiti,  S2 = ~ xi, 

and t. 

The  value t" is (as one can easily see) equal to the average of the first and the last values: 

1/2(t  +t .+l_b)  = 1/2(t l  + tl + + at(  + l - b ) )  = + at( - ( b -  i ) /2) ,  so its 

update  can be done according to a simple formula: f :=  t + At .  

The  update of SI and 5"3 can be done by the same formulas as above, with the only 

difference that we cannot read t,,, we must compute it. This computat ion is also simple: 

tn :=  tn-i + At .  

So, we arrive at the following algori thm: at every moment  of  time, we keep the values 

S1, S2t, and the values xi, ti and xiti for all i such that n - b < i < n. Initially, S1 and $2 

are  set to 0. t to tl - ( b -  1)~2At,  and tl  to the given value. 

Then,  while n < b, we read x,~, compute  tn :=  t,~-i + At  and znt~, update  S1 and 5'2. 

S i  :=  Si + x ,  tn and $2 :=  5'2 + x,~, and  update  t" :=  t +  At.  

For n = b, in addit ion to all those steps, we compute the first estimate d as (Si - S 2 t ) / S .  

For n > b, we read x~, compute  tn :=  th - I  + At  and x, t~,  update  t: t :=  t ' +  At ,  update 

Si  and 5'2 using more complicated formulas: S i  :=  Si + x,~t~ - X,-bt~-b, o02 :=  $2 + xn - xn-b, 

and compute d as (S1 - S 2 t ) / S .  

For n > b, we need 10 computat ional  steps; for n < b we need less. So, our algori thm 

uses < 10 computational  steps par  measurement .  [] 

Proof  of  Theorem 19. Let us describe what can be paraltelized in the algori thm from the 

previous proof: first, we can compute the new value of t,~, update t" and start updat ing $2 

(1 step), then, on the 2nd step, we end updat ing  $2, start updat ing $1. On the 3rd step, we 



the er ror  is the smallest if and  only i t  the sum )-..ia~" is the smallest poss~01e. Apply ing  

Lag range  multipliers method  to the result ing condit ional  opt imizat ion problem,  we conclude 

that  ei = a + 9(t~ - to) + "7(ti - t0) 2. The  l inear  equations for a .  ~, and  "t are  obtained,  if 

we substitute the above expression for at into the condit ions Y-~i ai = O, ~'~-i ai(ti  -- to) = 1, and  

~"2~i a z ( t i  --  ;k0)2 = 0. []  

Proof  of T h e o rem 21. According to T h e o r e m  18, the optimal estimate d is equal to ct( Xi) E~ 4- 

, 3 ( ~ i z i ( t i -  t o ) ) +  " 7 ( ~ i ( t i -  to)2). So, if we already know how to compute  a ,  fl, and  

h 

'7, w e  

will be able to compute  d in 5 steps (3 mult ipl icat ions and  2 additions) if we upda te  the three 

sums Zi=ci, ~ i z i ( t i -  to), and  ~ i ( t i -  to) 2 (.just like ~,e (lid it in the proof  of T h e o r e l n  i6) 

T h e  n u m b e r  of computa t ional  steps that is necessary to upda te  a sum, does not  depend  on b. 

T o  compute  a ,  3 ,  and  "7, we need to solve a system of 3 l inear  equations with 3 unknowns .  

If  we know the coefficients, then  the n u m b e r  of computa t ional  steps that we need to solve this 

system, does not  depend  on b. 

All the coefficients are of the type ~ i ( t i  - to) ~ for k = 0, 1, 2, 3, 4. T h e  n u m b e r  of steps 

that  we need to upda te  these sums does not  d e p e n d  on b. 

Add ing  all these numbers ,  we get the desired upper  b o u n d  C for the n u m b e r  of  compu-  

tat ional  steps that does not  depend  on b. [] 

P r o o f  of T h e o r e m  21]. A l inear  estimate is uniquely de te rmined  by a sequence of coefficients 

a l  . . . .  , a,~. A precision p of a l inear  estimate is def ined as p = max] Ei aixi  -- bl for all a, b 

and  xi  such that ]xi - (a + btO] < e. 

T o  simplify out  proofs, let us in t roduce  a new denotat ion:  namely,  let us denote  Ai = 

x~ - (a + bt,). Then ,  [A~ I _< e, z~ = (a + bt~) + A~, and  d -  b = Z~a~(a  + bt~) + ~ ,  a~A~ - b. 

SO, in these denotat ions,  the defini t ion of a precision p can be rewrit ten as follows: 

p =  m a x  ~i a i ( a + b t ~ ) + ~ _ a i A i - b  
a,b,IAil~ e 

Let us first prove that if ~ i  ai -~ 0, then p --- oz. Indeed,  suppose that  ~ i  a~ :fi 0. Let us 

fix some b and  Ai  such that 1Ai] _< e, and  consider  the dependency  of s = ~ i  ai(a  + bti) + 

~ i a ~ A i -  b on a. Since s = ( ~ a i ) a  + ( ~ i a i t i -  1 ) b +  ~ i a i A ~ ,  s is a l inear  funct ion of a 

with a non-zero coefficient at 0. Therefore ,  Is] --* c~ as a --~ oG and  hence, p = m a x s  = cx~. 

So, if p < zx~, then ~ i a ~  = 0. Likewise, we can prove that if p < ~ ,  then ~ aiti = 1. 

Indced,  suppose that ~ aiti :fi 1. Then ,  we can fix a, Ai ,  and  consider the dependency  of s 

on b. Here, s is a l inear  function of b with a non-zero coefficient, so Ist -*  oz as b ---* oz and  

hence,  p = m a x  s = zc. 

So, if there is an estimate with finite precision p, then for this estimate, ~ i  ai = 0 and  

}-~i aiti = 1. Let us consider  any such estimate. For it .s = ~-~.i mini .  So, 

[ 

p = m~x ~ a ~ ! .  
]~"d-<e 1 i [ 

Let us compute  this m a x i m u m .  Since Ai  lies between - e  and  s, the m a x i m u m  possible value 

of  ai /ki  is a t ta ined when At  = e if ai :> O, and  when ~Ai = - e  if ai < O. In both cases, this 
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maximum value is equal to la/le. Therefore,  the maximum possible value p of the sum is equal 

to (E,  lad) e. 

In particular,  if we take ai from the formulation of the theorem (i.e., a/~ = - a l  = 

1/(t,~ - t l )  and a2 = a 3 . . . . .  an-1 = 0), we can easily check that ~ i  a / =  0 and ~ i  a/ti  = 1. 

So, for this estimate, the precision equals ( E i  la~l)e = ( 2 / ( t n -  t l ) ) e .  This value is finite, so, 

there always exists an estimate with finite precision. 

Since ~ is fixed, the precision p = (~] i ]a / [ )e  is the smallest possible if and only if the 

sum ~ i  ]a/[ attains the smallest possible value. So, the problem of f inding an estimate with the 

smallest possible precision is equivalent to the problem of finding a sequence of real numbers 

a l , . . . ,  a,~ that satisfies the following conditional optimization problem: ~ i  ]a/] -'* rain under  

the condit ion that ~ i  a~ = 0 and ~ i  a/ti = 1. 

Let us first prove that this problem has a solution. Indeed, we already know a sequence 

a/ that satisfies both conditions. For this sequence, ~ i  ]a/I = 2/( tn  - t l ) .  Therefore,  while 

looking for the most precise estimate, we can restrict ourselves by the sequences for which 

E i  lad < 2 / ( t ~ -  t l ) .  For such sequences, for every i, lail <_ E i  [a/[ <_ 2 / ( t n -  t l ) .  The  set 

of  the sequences for which E i  [ai[ <_ 2/ ( tn  - t l)  is bounded,  and it is also closed. Hence, it 

is compact.  The  conditions ~ i  a~ = 0 and ~ i  a/ti = 1 also determine closed sets. Therefore,  

the set S of  all sequences, for which E i  ]ai] <_ 2 / ( t ~ -  t l ) ,  ~ i a i  = 0 and E i a / t i  = 1, is an 

intersection of  a compact set and a closed set, and is therefore a compact. A function ~ i  [a/I 

is continuous on this compact set S,  therefore, it attains its minimum in some point. So, there  

exists a sequence, for which the sum ~ i  ]a/] takes the smallest possible value. As we have 

already mentioned,  this means that this sequence has the smallest possible value of  p. 

Let us now find the sequence with the smallest possible value of p (or, what is equivalent, 

the smallest possible value of ~ i  [a/I). Let ai be such sequence. Let us prove that at most 

two of  its elements are different from 0. We will prove it by showing that if three different 

elements of  a~ are different from 0, then this sequence cannot be the one for which ~ i  [a/I 

is the smallest possible. Indeed, suppose that a~ # 0 for at least 3 different indices i. Since 

~ i  ai = 0, the values of  a~ cannot all be of one sign. So, we can choose the three of them 

that are  not all of one sign (i.e., either one is positive and two other are  negative, or one is 

negative, and two other are positive). Let us denote these three values by j ,  and l. So, aj  :fl 0, 

a k # O ,  and at ~ 0  for some j < k < l .  

Let us prove that by changing these three values we can diminish the value of E i  Jail, 

while still retaining the conditions ~ i  a/ = 0 and ~ i  a/ti = 1. We will try to take a sequence 

a' i that is defined by the formulas a} = aj  + eebj, a~ = ak + c~bk, and a '  z = at + c~bz for some 

real numbers c~ ~ O, bj, be, bt, and a~ = a/ for all i that are different from j ,  k, or I. 

We want to guarantee  that ~ i  a'i = 0 and ~ i  a{ti = 1. We assumed that the sequence a~ 

satisfies these conditions. So, if we substitute the above expressions for a' i into these formulas, 

and use the conditions that ~ i  a/ = 0 and ~ i  a/ti = 1, we can conclude that a' i satisfies these 

conditions if and only if b j + b k + b t  = 0 and bflj + b k t k + b t t l  = O. The  first equation is 

satisfied if bl = - ( b j  + bk). Substituting this value into the second equation, we obtain the 

equation bj(tj  - tl) + btr - tt) = O. Therefore,  the second condition is satisfied, if we take 

an arbitrary, bj, and bk = - b j ( t t -  t j ) / ( t l -  tk). From these two expression, we conclude that  

bt = - ( b j  + bk) = bj(tk - t j ) / ( t l  - tk). 

So, if we take an arbitrary bj, bk = - b j ( t l  -- t j ) / ( t t  - tk), and bt = bj(tk - t j ) / ( t l  - tk),  

then the resulting values d i satisfy both conditions ~ i  d i =  0 and Y']i diti = 1. 

Let us now estimate ~ i  last for these a~. Since aj  + c~bj --* aj as a --* O, we can conclude 
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that for sufficiently small c~, the expression aj + c~bj has the same sign as aj. Therefore,  for 

such a, laj + abj] = sign(aj + abj)(aj  + c~bj) = sign(aj)(aj  + abj)  = ]aj l+ sign(aj)abj.  Similar 

expressions are true for k and l, therefore, for sufficiently small a, ~ i  [a~l = Z i  lad + a E ,  

where E = sign(aj)bj + sign(ak)bk + sign(at)bt. Let us prove that E r 0. Indeed, we chose j ,  k 

and l in such a way that  two of the values aj,  ak, at are of  one sign, and the third value is of  

different sign. Suppose, for example that aj > 0, ak > 0 and az < 0. Then,  E = bj + bk - bz. 

We have already proved that bj + b~ + b~ = 0, therefore, Z = (bj + bk + bt) - 2bt = -2bt .  

According to the above expression for bt, it is r 0 if bj 7 ~ O. So, in this cases, E :fi 0. Likewise, 

we can consider all other combinations of signs and prove that in all cases, E ~ 0. 

Since E r 0, we can take a of the opposite sign with 1~, and find a sequence a' i, for 

which ~]i la'il < Z i  lait, and thus, a contradiction to our assumption that Z i  lai] attained its 

minimum in the given sequence ai. This contradiction proves that the assumption that ai is 

non-zero for at least 3 different i, is false. 

So, ai is different from 0 for at most 2 different values of  i. It cannot be different f rom 

0 only for one i, because from ~ i  ai = 0 we would then conclude that ai -=- 0, and hence 

~,i aiti = 0 ~ 1. Therefore ,  for optimal sequence ai, ai is different from 0 precisely for 2 

different values j < k. 

In this case, the conditions ~ i a i  = 0 and ~ i a i t i  = 1 turn into aj + a k  = 0 (hence 

aj = - a k )  and aj t j  + aktk = 1. Substituting aj = - a k  into the second equation, we conclude 

that ak = 1/(tk - t j)  and aj = - 1 / ( t k  - t j) .  For this sequence, ~ i  lad = 2/ ( tk  - t3). 

So, in order to find a sequence ai with the smallest possible precision p, we must find 

a pair j < k, for which the expression 2/ ( tk  - t j)  takes the smallest possible value. This 

expression is the smallest possible if and only if the difference tk - tj is the biggest possible. 

This is attained if tk is the biggest possible (i.e., k = n), and tj is the smallest possible (i.e., 

j = 1). Therefore,  the sequence ai for which p is the smallest coincides with the one given in 

the formulation of  the theorem. El 
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