Reliable Computing 1 (2) (1995), pp. 141-172

Applications of interval computations to
earthquake-resistant engineering: How to
compute derivatives of interval functions fast

Vwapik Kremovics, Davip Nemir, and Erren GuTIERREZ

One of the main sources of destruction during earthquake is resonance. Therefore, the following idea
has been proposed. We design special control linkages between floors that are normally unattached to
the building but can be attached if necessary. They are so designed that adding them changes the
building’s characteristic frequency. We continuously onitor displacements within the structure, and
when they exceed specified limits, the linkages are engaged in a way to control structural motion. This
idea can also be applied to avoid vibrational destruction of large aerospace structures.

[IpuroxeHye MHTEPBAABHBIX BBIYMCACHM K
CeIICMOYCTONYMBOM MHKEHepMH: KakK OBICTPO
BBIYVICAUTD ITPOM3BOAHBIE MHTEPBAABHBIX

PyHKIII

B. Kpeemriosuu, A. Hemme, E. [yruserec

Onuy M3 OCHOBHBIX HCTOYHHKOB Da3pYIUECHHH IMPH JEMIETPACEHHH — pe3oHaHC. B cBstam ¢ atum npen-
oXeHa creayouas uaesd. Ml paspaGaThiBaeM CrEUMA/IBLHBIE YIPasIAOUNME CBAIW MEXAY 3TXKaMH,
KOTOPBIE€ B HOPME HE COEIMHEHB C CAMHM 31aHHEM, HO HPH HEOOXOIMMOCTH MOTYT GHTh NMPHCOCIWHEHE.
OHy CO3JaHBl TaK, YTO WX N0GAB/EHME H3MEHAET DE3OHAHCHYIO YacTOTY 33aHHA Msl mocrenosatens-
HO OTCIEXHBAECM CMEIIEHHA B CTPYKTYpE, M, KOTRa OHH MPEBHLILIAIOT ONMPENE/ICHHBLIA lpenes, CBAM
BKTIOMAIOTCA /13 KOHTPONA JBHXCHUA CHCTEMBI OTa HAEA TakKE MOXET ObTh NPHMEHEH2, 4TOObI
NpeIoTBPaTHTL BUOPALIHOHHOE PaspyuieHHe B GO/ILIIHX A3POKOCMHYECKHX CHCTEMaX

Brief introduction to an engineering problem

The problem of resonance destruction. One of the main sources of destruction during
earthquake is resonance. The majority of the earthquake strikes are not powerful enough
to destroy a building in one blow, but the earthquake usually contains a wide spectrum of
vibrations with different frequencies. When the characteristic frequencies of the building lie
inside this spectrum area, resonance and eventually destruction can occur.

The vibrations can also occur, when a bridge, an oil platform, or an aerospace construction
encounters periodic waves. How can we diminish destruction? Before we enumerate different
methods, let us describe (briefly) the corresponding mathematical problem.

© V Kreinovich, D Nemir, E. Gutierrez, 1995



142 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

Physical and mathematical description of a resonance: in brief. A building (bridge, aerospace
construction, etc) consists of many basic parts (beams, etc). Earthquakes cause these parts to
displace, thus (ultimately) desiroying the building. The position of each part can be described
by describing the positions of its major points (endpoints, sometimes a midpoint, etc). In order
to describe the state of a building at any given moment of time ¢, we must describe the
positions Z,(t),1 < a < N, of all these points. Since we are interested not in the engineering
design itself, but only in the abnormalities, instead of the positions themselves, we will use
displacements AT,(t) = Z,(t) — {9, ie, the differences between the current and ideal positions
of these points.

How to describe dynamics? According to Newton’s law, to describe the dynamics, we
need to know the total force that acts on each point. This force F, consists of two parts:

F.=Fe+ F
o the external force F + that is caused by the earthquake itself;

o the internal, or structural force F? that is caused by the connection between different parts
of the building.

The structural force depends on the positions and velocities of all the points. Then, we can
get the accelerations d*Z,(t)/dt* as f, = F,/m,. Thus, we have a system of second-order
differential equations:

d*Z,(t)/dt? = f2(&, ... En,Fr. ., En) + f2
These equations can be reformulated in terms of displacements:
AT, (t)/dt? = (AR, ..., Afy,AFy, ..., AL,) + f°.

Since we are talking about small and not so fast displacements (large or fast displacements will
immediately ruin the building), we can expand ];:f into Taylor series, and neglect the terms
that are quadratic (or of higher order) in AZ; and AZ,. Thus, we arrive at a linear system
of second-order differential equations with constant coefficients. It is well how to solve such a
system:

e First, we reduce it to a first-order system by introducing new variables 7, = Z,. In terms
of Az, and v,, we get the following first-order svstem:

T = FUADY, . AEW Ty, .. Ta) + f5 1<a< N,

AZ, =7, 1<a<N.

Here, the additional index [ in the expression for the structural acceleration f indicates
that we are restricting ourselves to linear terms only.

These equations become easier to grasp and to solve if instead of 2/V vector unknowns
AZ, and 7,, we consider all 3-2N = 6N components of these vectors as new scalar
unknowns ¢i,...,¢en. In terms of these variables, we get a system of first-order linear
differential equations with constant coefficients:

Ga = Z Aoy + fa-



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. .. 143

e [t is well known how to solve such a system (see, e.g., [2]). Namely, if f, =0, then a
general solution of this system can be represented as linear combination of the functions
exp(Aqt) and t™ exp(Aqt), where A, are eigenvalues of the matrix Ag; (terms t™ exp{Aqt)
with m > 0 appear only if we have a degenerate eigenvalue).

These terms have different asymptotic behavior:
o If ReA, > 0, then the corresponding term becomes large as ¢ — oc.
o If Re A, <0, then the term tends to 0 as ¢t — .

e If Red, =0 (ie, if Ay = iw, for some real value w,), then we get an infinitely oscillating
term exp(iwat) = cos{wat) + isin{wyt). This real value wy is called an eigen frequency of
the system.

Buildings are usually stable, therefore Re ), < 0.

All this was true for f, = 0. What to do if f, # 0? An arbitrary non-zero force f, can
be represented {by means of Fourier transformation) as a linear combination of the sinusvidal
waves with different frequencies w. Since our equations are linear, in order to get the response
g to the initial force, it is sufficient to compute the system’s reactions for different frequencies,
and then add these reactions.

In particular, if one of the Fourier components of the force f, has a frequency that
coincides with one of the eigen frequencies w,, then the solution behaves as texp(iwst) when
t — oo. As a result, displacements and/or frequencies become larger and larger, and the
building can be destroyed. This phenomenon is called a resonance.

Strictly speaking, for reallife systems, there is always some friction, therefore, usually
Re A, < 0. The role of this friction is different for small and large frequencies:

o For small frequencies (that correspond to relatively smooth motion), this friction is small
and practically negligible (in physical terms: the materials have elastic behavior for such
frequencies). Therefore, although for ¢t — oo, the displacement will eventually tend to 0,
but meanwhile, for reasonable ¢, its time dependency is indistinguishable from t exp{iw,t)
and thus, the building may be destroyed.

e For bigger frequencies, that correspond to extremely fast changes of displacement and
velocity, there is usually a very serious resistance.

To give the reader who is not a specialist in mechanics an idea that this is really the case,
let us imaging ourselves pushing a piece of furniture. It is possible (with some force) to
move it to and fro slowly, but practically impossible to move to and fro fast.

Because of that, for high eigen frequencies, the resonance displacement will quickly tend
to 0, and therefore, such perturbations are of no serious threat to the building.

So, not all eigen frequencies cause destruction, but only small ones. How to avoid this resonance
destruction?

Active control. The brute-force idea is to add a huge auxiliary mass to damp the vibrations,
and to forcefully return the structures to their initial positions by applying computer-controlied
force (see, eg., [5, 10, 22, 31]; this idea is called active control).



144 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

In terms of our mathematical model, adding an additional force means adding an addi-
tional term to f, that compensates for the unwelcome (resonant) components of f,.

This method often works, but it has two main problems:

e this method requires lots of energy for control, and, e.g., spacecraft must be energy-
efficient;

e if not precisely implemented, this method can pour lots of additional energy into the
system in the wrong times, and thus cause additional destruction {17].

Semi-active control. There exist a modification of this method, called semi-uctive control, where
instead of implementing an out-of-phase force, structural changes are made in the system to
change its characteristic frequencies and thus avoid the resonance (see, e.g., [7, 10—14]).
A new approach. For semi-active applications, a new method was proposed in [23]. According
to this method, we do not add any energy to the system at all. Instead, we design special control
links that are normally unattached to the building but can be attached if necessary. They are so
designed that adding them changes the building’s characteristic frequency. We keep monitoring
displacements, and when motion is detected, the control linkages are alternatively engaged and
disengaged in such a way that energy in lower (more destructive) modes of vibration is shifted
into higher modes, where the energy is quickly dissipated through passive dumping within the
structure itself. This idea can be also applied to avoid vibrational destruction of large aerospace
structures.

This idea has been thoroughly checked theoretically, and verified through computer
simulation [23].
A brief mathematical description of the new approach. In terms of our above-given math-
ematical description of resonance destruction, the idea is as follows. When we engage an
additional linkage, we thus change the way how the displacements and velocities of different
points influence each other. In our terms, we change the structural force function }:":f. As a
result, the coefficients of the linearized system of equations will also change: instead of

q‘a = ZAabqb + fa.

we will have

do = ZAabe + fa
Aab 7/: Aab~

The idea is as follows: if the frequency of one of the components of the external force
coincides with one of the eigen frequencies of the system (i.e, with one of the eigen values
of the matrix Ag), then, we engage the control linkage; this changes the matrix and hence,
changes the eigenvalues that are no more equal to the frequencies of the external force.

In order to implement this idea, we must have a way to decide when to switch. We
have already mentioned that only small frequencies are potentially destructive. Therefore, it is
reasonable to estimate the potential danger of the existing displacements and velocities by the
total energy of all low-frequency components (i.e, of all the components whose frequency is
< wp for some chosen wp), and to engage the control linkage if and only if this engagement
decreases this total energy.

For a linear system, energy is a quadratic function of displacements and velocities (i.e., in
our terms, of the variables g;): terms that are quadratic in AZ, correspond to the potential



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. .. 145

(elastic) energy, and terms that are quadratic in velocity represent kinetic energy. For this
same reason, the total energy of low-frequency components is a quadratic function of g,, say
E = ¥ Euq.gs. When we engage a control linkage; we thus change the coefficients of the
linear system, and hence, we change the coefficients in the expression for its energy. The new
expression for energy will be E= ZE’abqaqb. The coefficients Eq, and Ea{, can be determined
before the control starts, so in course of the actual control, we know them.

So, for given ¢q, the question of whether to engage the linkage or not reduces to checking
a simple inequality: £ =3 Eqqaqp > E =3 Eabqaqb, or, what is equivalent, Z(E’ab——Eab)qaqb >
0.

In real life, we do not know the exact values of g, {i.e., of displacements and velocities).
If we substitute the imprecise values of g, into this inequality, then we may end up with a
wrong decision (and in these applications, wrong decisions can be fatal):

e We may not engage the linkage when it is necessary to, and thus fail to avoid destruction,
or

e We may engage the linkage when there has been no potential damage to the building,
and by engaging this linkage at the wrong time, actually worsen the situation and force
destruction.

Since imprecision in g, can lead to grave consequences, it is important to determine ¢, as

accurately as possible.
Related mathematical problem: brief informal description. To check for a resonance, one
must know not only the displacements z(2;), but the rates Z(¢;) with which they change. The
existing velocity sensors are much more expensive than the displacement sensors. So, if we are
designing a reasonably cost system, we cannot use velocity sensors. Instead, we must estimate
the velocity from the measured (and hence, approximately known) values of the displacements
z(t).

We must make control decisions really fast (in miiliseconds). Therefore, there is no time
to process lots of data. So, when estimating Z(t;), we can take into consideration only the
measurements in a few consequent points. Hence, all of them belong to a small time interval,
and therefore, on this interval, the function z(f) can be well approximated by its first few
Taylor expansion terms. In case this interval is sufficiently small, linear approximation is
sufficient, so we can assume that a function z(t) is linear. If this is not enough, we must add
second order terms, and consider the case when :r(t) is quadratic.

A reasonable system must rely on low-cost, reasonably priced sensors. Therefore, the

resulting measurements have a non-negligible error. This error leads to an error in the
resulting estimate for the derivative. In view of that, it is necessary to design methods of
computing derivative that would have the smallest possible error.
What we are going to do. In the present paper, we find the optimal estimates for the
derivatives for both cases: when the error is of statistical nature (in which case we know its
statistical characteristics), and when this error is systematic (in which case we know only the
interval of its possible values).

Interval estumates are considered in Part I, statistical estimates in Part II. Part III is
reserved for proofs.



146 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

Part I. Interval estimates

1. Interval estimates for the derivative; formulation of a
mathematical problem

1L Definitions

Definition 1. Suppose that for some integer n, we are given n real numbers t; < --- <i,, n
real number ¢; > 0 and z;, and n intervals F, = [z} .z]], i = 1,...,n, where ] = z; — ¢;
and T} = z; + ;. By a function interval we mean the set F of all continuous functions z(t)
such that for all i =1,...,n, z(t;) € Fi.

Remark. This definition was, in effect, originally proposed by R. E. Moore (see, e.g., discussions
of discrete functions in [20], Section 5.1, and [21], Section 2.5).

Definition 2. Suppose that a function interval F is given. We say that a class of functions S
is consistent (or compatible) with F if SNF # ¢.

Remark. In our case, this means that the measurement results (expressed by a function interval
F) are consistent with the supposition that the unknown function belongs to the class S.
Definition 3. Suppose that we are given a function interval F, a class S of differentiable
functions that is compatible with F, and a real number ty. A real number d is called a possible
value of the derivative dx(t)/dt wrt. S if d = 2(ty) for some z € SN F. The set of all possible
values will be called a derivative (or a derivative set) of F with respect to S in the point to, and
denoted by dF/dtis(to).

Remark. In other words, d is a possible value if there exists a function z(t) € S such that
dz(tg)/dt =d and |z; — z(t;)| < e fori=1,... . n.

Proposition 1. If S is a convex class of functions, then the derivative dF /dtlg is convex, ie.,
it is either an interval (open, closed, or semi-open), or a semi-line.

(All the proofs are placed in Part III, for reader’s convenience).

Remark. In this paper, we will consider only convex classes of functions, namely, the class of
all linear functions, and the class of all quadratic functions. Therefore, the derivative sets will
always be intervals (finite or infinite). .
Denotations. Let us denote the set of all linear functions z(t) = a + bt by L, and the set of all
quadratic functions z(t) = a + bt + ¢t by Q.

1.2. Main problem: first formulation

Given F and ty, to check whether F is compatible with L or (), and to compute the derivatives
df/dtiL and df/dtlQ
It is reasonable first to try L, and then, if L is incompatible with F, to try Q.

13. How to solve this problem?

Traditional and interval methods of numerical differentiation are not applicable to this
problem. There exist several methods of numerical differentiation, both in traditional numerical
mathematics (see, e.g., [4]), and in interval mathematics (see, e.g., Chapter 8 of [1], Section 5.4 of



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. .. 147

[3], [6, 16, 18], Chapter 11 of [19], [24—28]). However, we cannot directly apply these methods
to our problem, because:

e methods of traditional numerical mathematics usually give a numerical estimate, and do
not provide us with an interval of possible values; and we have already mentioned that
for our applications, this is crucial;

e methods of interval mathemalics are mainly designed for estimating the derivative of the
functions that are given by analytical expressions (1, 3, 6, 18, 19, 24—26]; definitions from
{16, 27, 28] are applicable to the case when we have finite interval estimates for z(t) for
all t, but in our case, we have such estimates only for t =1¢;,...,t =t,.

Comment. In general, there is no way to reconstruct a function for all ¢ from the observations in
finitely many points. In our problem, however, as we have already mentioned, high-frequency
components of the displacement function go to 0 real fast. As a result, we consider only
functions that are formed by low-frequency components and are therefore, very smooth. And
if we have a very smooth function that is defined on a small interval, then its linear or
quadratic terms provide a practically perfect approximation.

We can apply linear programming. These problems can be solved by reducing them to linear
programming. For linear functions z(t) = a + bt € L, (t) = b. Therefore, the upper limit
d* is the solution of the problem d — max under the condition that |a + bt; — z;| < ¢; for
1 £i < n, or, what is equivalent, —&; < a + bt; — 7; < ;. The lower limit d~ is the solution
of the problem d — min under the same constraints.

For quadratic functions z(t) = a +bt + ct?, d = b+ 2ctg, therefore, the limits can be found
by solving the following conditional optimization problems: b+ 2cty — max and b+ 2cty — min
under the condition that —¢; < a+bt; +ct2 ~2; <¢, i=1,...,n

In both cases, we have linear programming problems, and they can be solved using known

polynomial-time linear programming techniques (e.g., Karmarkar’s method [9]).
Why is linear programming not satisfactory. As we have already mentioned, we are in the
area of real-time control, therefore, the computation time must be as small as possible. The
computational time of an algorithm is roughly proportional to the total number of elementary
computational steps (arithmetic operations, comparisons, etc). Karmarkar’s method demands
Cn®3 steps, where n is a number of equations (i.e, in our case, the number of measurements),
and C is a rather big constant.

Even if we have several processors working in parallel, the general case of a linear

programming program is unlikely to get a dramatic speed-up (more formally, it belongs to the
class P that consists, crudely speaking, of problems with worst possible parallelization abilities,
see, eg., [8).
Why cannot we apply known methods of solving interval linear equations? Our problem
can be easily reformulated in interval terms. For example, for a linear case, the problem is to
find all possible values of b for which for some a, we satisfy the system of interval inclusions:
a+bt; — ; € [—¢;,&], 1 < i < n. This system is called an interval linear system (for a general
definition, see, e.g., [29, 30], and references therein), and the interval of all possible values of b
is called an optimal solution of such a system. There exist numerous methods of finding optimal
solutions of interval linear systems. These methods have been perfected for many years, and
the latest algorithms are very ingenious and fast (for the latest survey, see [30]).

The majority of these methods share the same good property: they are universel in the
sense that they are applicable to an arbitrary interval linear system. But this same good property



148 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

is the cause of the common problem of these algorithms, the problem that leads us to the
necessity to invent new ones. Namely, the problem of finding an optimal solution to an interval
linear system has been proved to be NP-hard {15]. This term means that no matter how smart
(and thus fast) an algorithm for solving such system can be, in some cases, its computation time
will increase exponentially (i.e., as a™ for some a > 1). An exponential function grows so fast
that for reasonable n, this time quickly exceeds the lifetime of the Universe. The fact that such
“worst” cases exist for these algorithms does not invalidate their usage in economic problems,
in some optimization problems, etc: if once in a while we do not get the optimal result, or it
takes too long to get this result, no big deal.

In our problem (earthquake-resistant engineering) milliseconds do count, and 100% relia-
bility (i.e, getting results in 100% of all the cases) is an issue. If once in a while, our system
fails, the building (or the spaceship) may be destroyed. Because of that specific feature of cur
problem, we cannot use the existing universal algorithms. We have therefore to design new
ones, that will be applicable to our problems only, but that will have a guaranteed (and small)
running time.

14. Final formulation of the problem

To find algorithms that Zompute derivative sets faster than the general methods of linear programming.
Comment. If we achieve that, then our algorithm will be faster than n3® and hence (for
sufficiently large n), its running time will be smaller than an exponential function.

2. First result: How to compute derivative set if we
know that z(t) is linear

Theorem 1. A function interval F is compatible with L if and only if dt > d~, where
d* = min;,; ((a:f ~z7)/(t:i — t]-)) and d~ = max;,; ((z,-' —z7)/(ti - tj)). If F and L are
compatible, then the derivative of F with respect to L is equal to [d~,d"].

Remark. The formulas from Theorem 1 prompt the following natural algorithm for computing
d*: set an auxiliary element where the current record will be siored to s := 400 (in Pascal,
to MaxInt), and then make two embedded loops for i and for j, inside which we update the
record values s by assigning s := min (3, (zf —z7)/(t; —-tj)). After the loops are over, s
contains the desired value d*. A similar natural algorithm can compute d~.

Since we are interested in computing the estimates for the derivative as fast as possible, a
crucial question is what is the running time of this algorithm. A running time is usually esti-
mated by the total number of elementary computational steps {i.e., comparisons, and arithmetic
operations) that we must perform to apply the algorithm. So, let us enumerate the number of
computational steps for the above-described algorithm.

Before we proceed, let us make one remark. With one exception, throughout the whole
paper, by a computational step, we will mean an arithmetic operation. There will be one
exception: while computing the statistical estimate, it is impossible to avoid computing a square
root, sa, for that case {and for that case only), we will add computing the square root to the list
»f elementary operatibns. Let us now return to our algorithm. Since we are given z;, #; and
;;, we first need to compute z7 = z; +¢; and =] = ; — ;. Each computation takes 1 step, so



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. . . 149

totally, we need 2n steps. After that, computing each pair of expressions (z; — z7)/(t: — t;)
and (zi —z;)/(t: —t;) takes 5 computational steps (3 subtractions and 2 divisions). Totally, we
need to compute n(n — 1)/2 such pairs (for all ¢ < j), so it takes 5n(n — 1)/2 computational
steps. Now, to compute d*, we must compare n(n—1)/2 such expressions, and find the smallest
one. We can find the smallest of n(n —1)/2 numbers in n(n —1)/2 — 1 steps. To compute
d~, we need the same number of comparisons. So, the total number of computational steps for
computing d* and d” is 2n+5n(n—1)/2+2(n(n—1)/2—1) =2n+5/2n?-5/2n+n?-n-2 =
7/2n% — 3/2n — 2 < 7/2n2. So, we proved the following result:

Theorem 2. For S = L, there exist an algorithm that given a function interval F, checks
whether it is compatible with L, and if it is compatible, computes the derivative of F in < 3.5n*
computational steps.

Remarks.

1) This estimate is much better than for Karmarkar’s algorithm.

2) As we have already mentioned, in earthquake-resistant engineering, every millisecond
counts. So, although our algorithm is faster than the known ones, it would be nice to
make it still faster. Our hope that this can be done is based on the following argument.
The algorithm that we have just described is based on the simplest possible idea of
solving an interval linear system: namely, wherever in this system we have an interval
(in our case, z; € [z7,z]]), we choose one of the possible endpoints. Thus, we get lots
of different non-interval linear systems. For each of these systems, we find a solution.
By comparing these solutions, we compute the biggest and the smallest values of the
unknowns (i.e., compute an optimal solution). This idea is known to be too expensive
time-wise: it turns out that not all possible linear systems have to be solved. By cutting
down on the number of these systems, we can drastically decrease the running time of the
algorithms that find optimal solutions of interval linear systems [29, 30] These “cutting”
ideas are not directly applicable to our case (at least we could not figure out how to
apply them), but their existence makes us hope that our (rather primitive) algorithm can
{probably) be further improved.

3) Another reasonable way to decrease the running time of an algorithm is to run it on a
parallel computer {in which several processors can run in parallel, ie, stmultaneously). If
we have several processors, then we can indeed decrease the computation time:

Theorem 3. For S = L, there exists an algorithm that given a function interval F, checks
whether F is compatible with L, and if it is compatible, computes the derivative of F in parallel.
The running time of this algorithm is smaller than the time of 2log, n+3 computational steps.

3. Second result: How to estimate the derivative in real
time
31 Motivation of the following definitions

In the previous sections, we considered the situation when we have to apply the algorithm
once. However, in the desired applications, we must monitor the derivative, i.e., with every



150 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

new measurement, produce a new estimate. This new estimate must be obtained in real tme,
ie., the computations must be done by the moment of the next measurement. Therefore, the
computation that uses z1,...,Zn, must produce the result before the moment ¢,.;, and can,
therefore, spend the computational time < ¢, — ..

Usually, the time intervals £;,; —1; are either equal, or approximately equal. In both cases,
the smallest m of these differences if positive, and the biggest M is finite: 0 < m < M < oc.
Therefore, to estimate the derivatives in the moment ¢, we must use time < M. If we denote
by At the time of one elementary computational step, then we conclude that for every n, we
can use < C computational steps, where we denoted C = M/At.

For both algorithms from Section 3, however, the number of computational steps increases
with 7n, so we cannot use them directly for monitoring

For a sequential computer, the fact that the computation time increases with 7 can be easily
understood. Indeed, since we must process all n values zy,...,x,, to each value we must apply
at least one elementary operation. The elementary operations that we considered (arithmetic,
comparisons, etc) require at most 2 variables. So, we need at least n/2 elementary operations

to process all the values z,...,z,. Therefore, the number of computational steps is > n/2,
and thus it tends to o0 when n — 0.
We cannot use all the values zy,...,2,. How many of them can we use?

Since processing & numbers requires > k/2 computational steps, and the number of steps
that we can use is limited by M/At, we can conclude that /2 < M/At, ie, that k < b,
where we denoted b = 2M/At. Therefore, there exists a constant b such that in estimating
the derivative, we can process only b values of z;.

For a parallel computer, we can have similar estimates. Indeed, the final result of the
computation is obtained by using some elementary operation. Each operation can handle
only two numbers. Therefore, any computation that can be performed in the time of one
computational step, can process at most 2 values ;. If we take computations that take the
time of 2 computational steps, then we can at best process 2 numbers, each of which is a result
of processing at most 2 numbers, ie., the result can depend on at most 4 different values z;.
In general, after the time that is necessary to perform k computational steps, we can process
at most 2% different values z;. Therefore, since the time is limited by < M/At computational
steps, we can process at most b = 2M/A% yalyes,

In both cases, to estimate the derivative, we can process at most b different values of ;.
So, we must choose b values out of n. Since we consider a process that needs monitoring,
the value of the derivative can change over time. So, to get the most precise estimate at the
moment t,, we must consider b latest values Z,, ZTp_1,....Zns1-p (Of course, if n < b, then we
can process all the values z;).

Let us formulate this situation in mathematical terms.

3.2. Definitions of real-time algorithms, and the complexity of such
algorithms

Definition 4. Suppose that an integer b > 1 is given. Suppose also that t; < t; < -+ <
th < -+, 1,%2,---,Ln,..., and €1 > 0,63 > 0,...,€6, > 0,... are three potentially infinite
sequences of real numbers. The values t; will be called moments of time. For a moment t,, by
a b-bounded function interval F, we mean the set of all continuous functions z(t) such that
z(t;) € F; = [z; — &, @; + &) for all i such that n—b < i < n. By a b-bounded mterval estimate for



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. . . 151

a derivative in the moment t,, we mean the derivative set dflb/ dtjs of the b-bounded function
interval.

Remark. In particular, for S = L, the b-bounded interval estimate for a derivative is equal to
(d5,d}], where

+ —_—

7 — -

d: = min L
n-b<j<i<n f; — tj

and - +
o z; —- ]

n n-—bn<l]a‘x<i$n tl' —tj )

Definition 5. Suppose that an integer b > 1 and a positive real number C are given. We say
that an algorithm computes interval estimates in real time with < C comndational steps per measurement
if this algorithm works as follows: it reads Iy,t1, T, 12, then after < C computational steps
generates d; and d¥; then reads z3 and t3, and in < C computational steps generates d; and
d; , etc.

Remark. In principle, one can apply an algorithm from Theorem 2 to estimate d and d} for
all n. Since we are processing < b numbers, this algorithm will require C' 2 3.56% computational
steps per measurement. The following theorem shows that we can do better.

Theorem 4. For S = L, there exists an algorithm that computes interval estimates in real
time, with < b® + 4b computational steps per measurement.

Remark. For parallel computers, if we apply an algorithm from Theorem 3 on every step, we
get the following result:

Theorem 5. For S = L, there exists an algorithm that computes interval estimates in parallel
in real time, with < 2log, b + 3 computational steps per measurement.

4. Third result: How to compute derivative set if x(t)
is quadratic

Theorem 6. Assume that tg is a real number.

If n < 2, then any function interval F is compatible with @}, and the derivative of F with
respect to @ in the point ty coincides with (—o0, +00).

If n > 2, then a function interval F is compatible with Q if and only if the following three
conditions are satisfied:

) (z7 —2F)/(ti = t;) < (xf —z7)/(te = ty) for all 4,7, k, 1 such that (t; —to)* > (t; — to)?,
(tk - to)2 > (tl - to)z, and t; + t; — 2 =tp + 1 — 2t > 0;
(

2) (zF —z7)/(t; = t:) > (z7 = zf) /(b= tg) for all 4,5,k such that (t; —t9)? > (t; — ta)?,
(tk - t0)2 > (tz - t0)2, and t; + tj 2=t +t - 25 < 0;

3) d* > d~, where d* = min(d}, dJ), d~ = max(d7, d),
dy = max(Nj/Dijxr), dy = min(NZy,/Dijur),

T, —I; I — I

k= (t; = t;)(t: + t; — 2to) Tt — )tk + 1 — 2t)




152 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

NE, = i -z B zp —z
R (4~ )t 4+t — 2t0) (e — t) (b + 8 — 2tg)”
1 1
Diju =

te+t — 2ty i+t — 2t

min and max are taken over all quadruples (4,7, k,1) such that (t; — t5)® > (t; — o),
(tk - to)2 > (tl - t0)2, and t;+1t; =2ty >t + 1 — 2tg,

and di = max ((x,-‘ —x7)/(t: —tj)), d{ = min ((z,+ -z;)/(t: —tj)), where min and
max are taken over all i > j such that (t; — to)? = (t; — to)*.

If F and @ are compatible, then the derivative of F with respect to @ in the point ty is equal
to [d™,d*].

Theorem 7. For S = Q, there exist an algorithm that given a function interval F and a point
to, checks whether F is compatible with (), and, if it is compatible, computes the derivative set.
This algorithm requires < n* + 12n® computational steps.

Remark. For big n, this method is worse than Karmarkar’s (that gives Cn3®). However, for
small n, it is reasonable to use, because a constant C in Karmarkar’s method is rather big.
Theorem 8. For S = @, there exists an algorithm that given a function interval and a value
to, checks whether F is compatible with @, and, if it is compatible, computes the derivative of
F in parallel. The running time of this algorithm is less than or equal to the time necessary
for 4log,n + 5 computational steps.

We can apply these algorithms to the case of real-time estimates, and get the following results:
Theorem 9. For S = @, there exists an algorithm that computes interval estimates in real time
with < b* 4+ 12b% computational steps per measurement.

Theorem 10. For S = @), there exists an algorithm that computes interval estimates in real
time in parallel with < 4log, b+ 5 computational steps per measurement.

Part II. Statistical estimates

5. Statistical estimates of the derivative: definitions and
the main result

Remark. In this section, we will consider the case when all the measurements are performed by
the same measuring device, and therefore, all the measurements have the same precision.
Denotation. For a random variable £, we will denote its mathematical expectation (average) by
E[¢], and its standard deviation /E[(§ — E[€])?] by o[€].

Definition 6. Assume that we are given an integ;er n > 2, a real number ¢ > 0, and n real
numbers t; < t3 < --- < t,. By a statistical estimate for an interval derivative we mean a linear
function that transforms a sequence Iy, ...,Tn into a value d = a ) + apTz + - -+ + apTn. We
say that a statistical estimate is non-biased if for arbitrary real numbers a and b, and for arbitrary
n independent random variables {; with average 0 and standard deviation o, the mathematical
expectation E[d] = Efa1z1 + @222 + - -+ + Ty} Is equal to b, where z; = a +bt; + §. By an
error of a statistical estimate we mean the standard deviation o[b— d] of the difference between



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. .. 153

b and d. We say that a statistical estimate is optimal if it is non-biased, and its error is the
smallest possible (among non-biased estimates).

Remark. We are interested in statistical estimates for which the error is the smallest possible. We
consider only linear functions as statistical estimates, because for the most common distribution
(Gaussian) it is known that the estimates for which standard deviation is minimal are linear.

Theorem 11. The optimal statistical estimate is d = }_; a;x;, where

= (=D (ned), = St and o = (Sle =27 /n

1

Its error is equal to o/(\/no;).

6. Computational complexity of the optimal statistical
estimate

Case when the times f; are known beforehand. Let us first consider the case, when the times
t; are known before the measurements, so that the coefficients a; can be precomputed.
Theorem 12. If the coefficients a; are known, then to compute the optimal statistical estimate
for the derivative, we need 2n — 1 computational steps.

Theorem 13. If the coefficients a; are known, then we can compute the optimal statistical
estimate for the derivative in parallel in the time that is necessary for < log, n+2 computational
steps.

General case. Let us now consider the general case, when the values of ¢; are not known
beforehand.

Theorem 14. In the general case, to compute the optimal statistical estimate for the derivative,
we need < Tn — 2 computational steps.

Theorem 15. If the general case, we can compute the optimal statistical estimate for the
derivative in parallel in the time that is necessary for < 3log,n + 8 computational steps.

7. Statistical estimates in real time

Definition 7. Suppose that an Integer b is given. Suppose also that z,,23,...,Z,,... and
t) <ty <---<t, <--- are two potentially infinite sequence of real numbers. By a statistical
estimale for the derivative in the moment t,, n > b, we mean the result of applying an optimal
statistical estimate for the derivative to the values X, Tn_1,...,Zns1-p and tn,tn_1, ..., tnsr1-b-
Definition 8. Suppose that an integer b > 1 and a positive real number C are given. We say
that an algorithm compules statistical estimates for the derrvative in real time, with < C comprdational steps
per measurement if this algorithm works as follows: it reads 1, t1, then after < C computational
steps reads z, and ty, ..., reads m,, ty, after < C' computational steps computes a statistical
estimate for the derivative in the moment t, and its error, then reads Ty,1, tpy1, after < C
computational steps computes a statistical estimate for the derivative in the moment ty,; and
its error, etc.

Remark. Since we are interested also in computing the error, and the formula for the error
contains a square root, we must add square root to the list of elementary computational steps.
The results are as follows:



154 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

Theorem 16. There exists an algorithm that computes statistical estimates for the derivative in
real time, with < 18 computational steps per measurement.

Remark. The nice property of this algorithm is that its running time does not depend on b, so,
we can use arbitrarily big b, and still get the estimates in real time. This running time can be
further diminished if we have several processors at our disposal:

Theorem 17. There exists an algorithm that computes statistical estimates for the derivative in
parallel in real time, with <7 computational steps per measurement.

Remark. In the next Section, we will consider a frequent case, when ¢;.; —t; = const. In this
case, as we will see, the number of computational steps can be made even smaller.

8. Optimal statistical estimates for the case when
measurements are made in consequent moments of
time

Definition 9. We say that the measurements are made in consequent moments of time if £, —t; = At
for some At > 0. In this case, t; = t; + (i — 1)At.

For this case, we can simplify the formulas from Theorem 11. Let us first consider the
case, when n is odd: n = 2k + 1. To simplify the formulas, let us denote the midpoint (tx+1)
by s¢, and other points by s_¢,...,5.1,80,...,51,..., Sk, where 5; = t;.rs,. Correspondingly,
let us denote by y;, —k < ¢ <k, the values that correspond to the points s;, i.e, ¥i = Tivpr1-
Proposition 2. If n = 2k + 1, then the optimal statistical estimate is

k 3Z'y,‘
d=3 k(k +1)(2k + 1)At

i=—k

and its error is equal to o/ (5t,/nk(k + 1)/3).

In particular, for n = 3, the optimal statistical estimate is

_ Ny
d 2A¢L

its error is equal to o/(v2At); for n =5,

d= 2 + Y1 — Y1 — 22
10At

and o/(v/2At); etc.

Let us now consider the case, when n is even: n = 2k for some k. In this case, we
will also denote the midpoint by so: so = (1 + t,)/2 = t; + (n/2 — 1/2)At. In this case, the
distance between sy and ¢; is not proportional to At, so it sounds reasonable to introduce the
following denotations: we will denote ¢; by s;, where j = (t; — s)/At =i — (n +1)/2, and
correspondingly z; by y; for the same j. Then j runs from —(n/2 - 1/2) to +(n/2 - 1/2).
Proposition 3. If n = 2k, then the optimal statistical estimate is

k172 124y
n? — 1)At

d=
i=—(k=1/2) n(



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. . . 155

and its error is equal to o/ (At‘/n(nz’ - 1)/12).

In particular, for n = 2, the optimal statistical estimate is
Yi2 —Y-1/2
d=—""0
At
and error is equal to o/At; for n = 4, the optimal statistical estimate is
(3/2)ys2 + (1/2)y12 — (1/2)y-1j2 — (3/2)y-3p2

d=
5At

and error is equal to o/(V5At); etc.

Let us now consider real-time algorithms. The values of ¢; are known beforehand and
therefore, definitions from Section 7 can be simplified:
Definition 10. Suppose that an integer b and real numbers t, and At > 0 are given. Suppose
also that T1,Z3,...,Zn,... Is a potentially infinite sequence of real numbers. By a staiistical
estimate for the derivative in the moment t,, n > b, we mean the result of applying an optimal
statistical estimate for the derivative to the values Tn,ZTn-1,...,Tnr1-b and tn, tn_1,. .., tnr1-b,
where t; = t; + (1 — 1)At.
Definition 11. Suppose that an integer b > 1 and a positive real number C are given. We say
that an algorithm computes statistical estimates for the derfvative in real time, with < C computational steps
per measurement if this algorithm works as follows: it reads xz,, then after < C computational
steps reads Ts,..., reads z,, after < C computational steps computes a statistical estimate for
the derivative in the moment t,, then reads zy1, after < C computational steps computes a
statistical estimate for the derivative in the moment ty.1, etc.
Remark: In case tip; —t; = At = const, the error does not depend on ¢ or z;, so it can
be computed before any measurements are known. Therefore, we do not have to consider
computations of the error if we are talking about real time algorithms.
Theorem 18. There exists an algorithm that computes statistical estimates for the derivative in
real time, with < 10 computational steps per measurement.
Remark. According to Propositions 2 and 3, we can precompute the coefficients a; of the optimal
statistical estimate, and thus computing this estimate would take at most 2b — 1 computational
steps: b multiplications and b — 1 additions. Therefore, if b < 5, and 2b—1 < 10, it is better to
use the direct formulas described after Propositions 2 and 3. If b > 6, then 26— 1 > 10, and
it is better to use the algorithm from Theorem 18.
Theorem 19. There exists an algorithm that computes statistical estimates for the derivative in
parallel in real time, with <5 computational steps per measurement.
Remark. The gain in running time is even bigger than we can conclude from comparing these
Theorems from the ones from the previous section. The reason is that in Section 7 we counted
computation of a square root as 1 computational step, while in the present Section, we need
only arithmetic operations, and arithmetic operations are much faster than computing square
root. So, not only we need fewer computational steps, but the steps are shorter.

9. Optimal statistical estimates in case the function
z(t) is quadratic

Definition 12. Assume that we are given an integer n > 2, a real number ¢ > 0, and n +1
real numbers ty and ¢, < ty < --- < t,. By a linear estimate for an interval derivative at



156 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

the point t;, we mean a linear function that transforms a sequence xi,....I, into a value
d =a1T) + ax2 + - - + anZn. We say that a statistical estimate is non-biased if for arbitrary real
numbers a,b and c, and for arbitrary n independent random variables §; with average 0 and
standard deviation o, the mathematical expectation E[d] = E[a1x1 + aox2 + - - - + a,Z»| is equal
to b, where z; = a + b(t; — to) + c(t; — to)? + &. By an error of a statistical estimate we mean
the standard deviation o[b — d] of the difference between b and d. We say that a statistical
estimate is optimal if it is non-biased, and its error is the smallest possible (among non-biased
estimates).

Theorem 20. If x(t) can be quadratic, then the optimal statistical estimate is equal to
d = Y ;a;x;, where a; = a + B(t; — tg) + v(t; — to)?, where «, 8 and ~ are the solutions
of the following system of linear equations:

oyl + BXt:i—t) + vLiti—it)? = G
aYiti—t) + BXiti—t)? + vLiti—-t)? = L
a¥i(ti—t)? + BXi(ti—t)® + YLiti—t)* = 0

Remark. In this case, we can repeat Definitions 7 and 8 to define real-time algorithms and their
complexity. The result of this application is as follows:

Theorem 21 (z(t) is quadratic). There exists a constant C > 0 such that for every b, there
exists an algorithm that computes statistical estimates for the derivative in real time, with < C
computational steps per measurement.

Remark. In other words, this algorithm has the same nice property as an algorithm from
Theorem 16: its running time does not depend on b, so, we can use arbitrarily big b, and still
get the estimates in real time.

10.  Linear formulas are not helpful for interval estimates
of derivatives

Linear formulas are very simple to compute, so let’s try them. In Section 6, we considered
formulas that describe an estimate for the derivative as a linear combination of z;: d = Y_; a;T;.
Computing a linear formula is computationally very easy, so it is reasonable to ask: can we use
linear estimates in the interval case as well? We will prove that even in the simplest case, when
the function is linear (i.e, S = L), and the precision is fixed (¢; = €), linear formulas are not
helpful for interval estimates.

Definition 13. Assume that we are given an integer n > 2, a real number € > 0, and n real
numbers t; < t; < .-+ < t,. By a linear estimale for an interval derivative we mean a linear
function that transforms a sequence Zi,...,Z, into a value d = a12; + a2y + -+ + apZTy. By
a precsion of a linear estimate we mean the maximum possible value of the difference [b — d|
for all a,b and z; such that |z; — (a + bt;)] < €.

Remark. So, if the precision i1s 0.1, it means that the real values b of the derivative and the
estimate d can differ by < 0.1, and therefore, the possible values of the derivative belong to
the interval [d — 0.1,d + 0.1]. Naturally, we are interested in the estimates with the best (ie,
the smallest) value of the precision.

Theorem 22. For given n, ti,...,t,, a linear estimate has the smallest possible precision when
anp = —A1 = 1/(tn—t1), and Ay = A3 = " = Anp-] =0.



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. .. 157

Remark. So, the best estimates for the linear formulas are obtained when we use only 2
measurements, and the resulting estimate is the simplest numerical differentiation (z,—z1)}/(t,—
t1). In other words, if we restrict ourselves to linear estimates, then there is no way to use
additional measurements to improve the precision of our estimates of the -derivative. This
means that in case the error of the simple numerical estimate is too big, linear formulas cannot
help in diminishing this error. In other words, linear formudas are not helpful for interval estimaies
of dertvatives.

Part III. Proofs

Proof of Proposition 1. Suppose that S is convex, and d; and dp are possible values of the
derivative. This means that d; = £;(tp) and d» = Z2(fp) for some functions z; € SNF. Let us
prove that for every a € [0,1], ady+(1—a)ds is also a possible value. Indeed, since S is convex,
and (as is easy to prove) F is convex, the function z(t) = az1(t) + (1 — a)zy(t) also belongs to
SNF, and therefore its derivative dz(to)/dt = adz,(to)/dt+(1—a) dza(to)/dt = adi+{(1—a)d,
is a possible value. g
Proof of Theorem 1. A linear function z(t) = ¢ + bt belongs to a function interval F if
and only if 27 < a+bt; £ zf for all i from 1 to n. We are interested in the values of
dz(t + 0)/dt = b, so let us eliminate a from these inequalities. To do that, suppose that
b is given, and let us find whether there exists an a for which the function z(t) = a + b¢
satisfies all these inequalities. If we move bt; into the other side of the inequalities, we get
the following equivalent inequalities: z; — bt; < a < z7 — bt;. So, @ must be not bigger than
all the numbers x:’ — bt;, and not smaller than all the numbers z; — bt;. In other words, a
must lie between max;(z; — bt;) and min;(z] — bt;). Such a number exists if and only if
min;(z; — bt;) > max;(z; — bt;), ie, if and only if 2] — bt; > z7 — bt; for every i and j.
So, the problem is reduced to the following: find the interval of all values of b for which
r; — bt; > x; — bt; for every ¢ and j. By moving all terms with b to the right-hand side, we
can transform this inequality into the following: b(t; — t;) < z7 — z;. This inequality must be
true for every pair (4,7). If © = J, it degenerates into 0 < 0, and is thus trivially true. If ¢ > 7,
then t; > t;, and this inequality turns into b < (z7 — z7)/(t: —t;). When 7 < j, then t; < t;,
and the above inequality turns into b > (zj — z7)/(t; — t:). So, b must be not smaller than
all the numbers (z; —z;)/(t; — t:), and not greater than all the numbers (z;" — z7)/(t: — t;).
These inequalities are equivalent to the condition that b is not smaller than the biggest of

its lower bounds max;; ((z]' —zf)/(t; - ti)), and not bigger than the smallest of its upper

bounds ming; ((z7 — 27)/(t: - t,-)).

In other words, b is a possible value of the derivative if and only if d~ < b < d*. Such
values exist if and only if d~ < d*, and form the interval [d~, d*]. »
Theorem 2 was proved in the main text. .

Proof of Theorem 3. Suppose that we have an unlimited number of processors (later on we
will compute how many processors we actually need). First, let us compute z;7 = z; + ¢; and
z; = x; —¢; for all 2. This can be done in parallel on 2n processors. Since they are all working

in parallel, we spend the time that is equivalent to only one computational step.

+—

Now, we compute the values (z] ~z7) and (t; —t;) for i > j, and the values (z] — ;)

and (t; — t;) for j > i. All these subtractions can also be done in parallel, and for that we



158 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

need 2n(n — 1) processors (two for each pair (1, j) except for i = j). The amount of time that
we spend here is also equivalent to one computational step.

Next, we compute the ratios (z; —z)/(t; — t;) and (z; — z)/(t; = t;). This can also
be done in parallel, on n(n — 1) processors, and takes the time of one computational step.

After that, we have two sets of n(n — 1)/2 numbers each; for the first set, we must find
the biggest, for the second set, we must find the smallest. It is known (see, e.g., [8]), that for
every N, the best method of finding the maximum of N numbers p;,...,pny in parallel takes
< N processors, and can be done in < log, N + 1 computational steps. For completeness, let
us add a description of this algorithm:

N =2. If N =2, then we simply compare the two numbers p; and p;.

N =4 1f N = 4, then we divide the numbers into pairs (p;.p2) and (p3.pq). Then, first,
we find the maximum for each pair: ie., max{p;, p;) and max(ps,ps) (in parallel), and
second, compare the two results to find the maximum of all four numbers p;.

N =8. If N = 8, then we divide the eight numbers into 4 pairs: (p1,p2), (P3,P4), (D5, Ds)
and {p7,ps). Then, for each pair, we compute its maximum: ¢ = max(pi, p2). ¢z =
max(ps, pa), g3 = max(ps,ps) and g4 = max(py,ps). This can be done in parallel, and
therefore takes the times of one computational step. After that, we find the maximum of
the resulting 4 numbers ¢y, g2, g3, ¢4 (we already know that this can be done in 4 steps).

N =2k If N = 2* for some k, then we have the following recursive procedure:

If £ =0, then the only number present is the biggest;

If k> 0, then we divide N numbers into 2¥~! pairs, in one step find the biggest
of all pairs, and then apply the same algorithm to find the biggest of 2¥~! results.

After each step, we halve the set of numbers that we still need to compare, so in &k
steps we get the maximum.

N # 2% Let us now consider the remaining case, when N # 25 In this case, we take the
smallest number 2* that is > N, add N — 2% numbers that are equal to p;, and apply
the same algorithm.

Since k is the smallest for which N < 2*, we have N > 2*°! hence log, N > k - 1,
and k < log, +1. So, we need < N processors and < log, NV + 1 computational steps. We
can compute the minimum (1o compute d*) and the maximum (1o compute d~) in paraliel.
Each computation takes < log, (n(n ~1)/2) +1 < logy(n?/2) + 1 =2logyn —1+1 = 2log, n
computational steps, and takes < n{n—1)/ 2 processors. To compute both estimates in parallel,
we need < n(n — 1) processors. ]

After we computed d* and d~, we must compare them to check whether d* > d™ and
thus whether F is compatible with L. This takes one more step.

Now we have described all the stages of our computation. In total, we need <1+ 1+
2logyn+1 = 2log, n+3 computational steps, and < max(2n, 2n(n-1),n(n- 1)) =2n(n-1)
processors. 0
Proof of Theorem 4. In the algorithm from Theorem 2, the biggest part of computational
time was spent on computing the expressions (z; —z7)/(t; — t;) and (zf — z7)/(ti = t;). In



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. .. 159

our case, we need these expressions for n — b < 7 <4 < n. After we computed the estimates
d} and d, we read the new values T,;1 and t,.,. To compute d,TH and d,_,,, we must use
the similar expressions for n +1~b < j <% < n+ 1. But the values of these expressions for
it < n + 1 have already been computed on the previous stage, so we do not need to compute
them again. The only new values that we have to compute correspond 10 ¢ =n + 1.

So, the new algorithm is as follows: for every n, we follow the same steps as in algorithm
from Theorem 2, with the only difference that the values of z;, z;, and the expressions
(z7 —z])/(t: = t;) and (z; — z;7)/(t; —t;) that we have already computed on the previous
stage (for d} and d;) we can use for dj,; and d,, as well.

Let us estimate the number of computational steps per measurement for this algorithm.
For a new value t,4;, we must compute (b~ 2) new pairs of expressions {one pair for each j
that lie between n+1 —b and n + 1). To compute each pair, we need 5 operations, so totally,
we need 5(b — 2) computational steps.

We must add to this amount 2 computational steps to compute T, = Tn4; + €n41 and

ZTpi1 = Tnyl—Ent1, and 2(b(b-1) /2— 1) steps to find the smallest and the biggest values (d,,,,

and d,,,). As a result, we get 2+5(6—2)+2(n(n—1}/2—1) = 24+-5b—10+45°—b—2 = H2+45-10.
=

Theorem 5 is proved in the main text.

Proof of Theorem 6. We consider the case when a function z(t) is quadratic, ie, when
z(t) = a + b(t — to) + c(t — to)?. In such a representation, the value of the derivative dz(t)/dt
in the point g equals b.

If n = 2, then for every b and arbitrary values z;, z2, €; > 0 and €2 > 0, we can easily
find a function z(t) that belongs to both @ and F: indeed, it is sufficient to find a and ¢ for
which a +b(t; — to) +c(t; — t0)? = 71 and a +b(t2 —to) + c(t2 — t0)? = z2. These two equalities
form a system of 2 linear equations with 2 unknowns a and b whose determinant is different
from 0, therefore this system always has a solution.

The same is true for n = 1. So, if n < 2, then F is always consistent with @, and any
value of the derivative is possible, ie., the derivative set is indeed equal to (—o0, +00).

Let us now consider the case n > 2. A quadratic function z(t) belongs to a function
interval F if and only if x7 < a + b(t; — o) + c(t; — tp)> < z7 for all ¢ from 1 to n. We are
interested in the value of b, so let us reformulate these inequalities in an equivalent form that
does not contain a and c. In other words, let us eliminate a and ¢ from these inequalities.

First, let us eliminate a. This can be done in the same manner as in the proof of
Theorem 1. Indeed, suppose that b and ¢ are given. When does there exist an ¢ for which
the above inequalities are true? If we move terms containing b and ¢ to the other sides of the
inequalities, we will obtain equivalent restrictions on a:

7 = b(t; — to) — c(ti —to)? < a <z — b(t; — to) — c(t: — to)*.

So, a must be not smaller than all the lefi-hand side expressions, and not bigger than all the
right-hand side expressions. For such an a to exist, every left-hand side expression must be not
be greater than the right-hand side one, ie, for every ¢ and j the following inequality must
be true:

CEi_ - b(t, - to) - C(ti - to)z S CII;’ - b(t] - to) - C(tj - t0)2.

Since the new set of inequalities is equivalent to the old set, the problem of finding the
derivative set can be now reformulated as follows: we must find all b for which there exists a



160 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

¢ such that the inequalities
Ii_ - b(tl - to) - C(ti - t0>2 S I;- - b(tj - t()) - C(tj - t0)2

are true for all ¢ and j.
Let us now eliminate ¢ from this new set of inequalities. If we move all terms with ¢ into
one side, and all other terms into another side, we get the following inequality:

(27 = zF) = (Bt: — to) = b(t; = to)) < cft: — to)” — clt; — to)*.

Since
b(t, - to) hand b(t] - to) = b(t, - to - tj + to) = b(t-, - tJ)

and
oft: = to)? — oft; — ta)? = c((t: — to)? = (t; — t0)?)

= c((t: — to) + (t; — t0) ) ((t: — to) — (t; — to)) = clt: +t; — 2to)(t: — t;)

we can transform this inequality into the following simplified equivalent one:

(.’Ii_ - l’;-) - b(ti - tj) < C(t,' + tj - 2t0)(ti - tj).
For every pair (4,7), we have this inequality, and we also have the inequality that is obtained
from this one by changing i and j.

The resulting inequality for ¢ depends on whether the coefficient at ¢ (equal to
(t; — to)? — (t; — to)?) is negative, positive, or equal to 0.

Let us first consider the case when (t; — o) = (¢; — to). Suppose for certainty that i > j.
Then, we have two inequalities (z; —z]) —b(ti —t;) <0, and (zj —z]) = b(t; —t:) < 0. Since
i > j, we can reformulate these inequality as explicit restrictions on b: (x7 — z])/(t; — ;) <
b< (zf —7)/(t: — t)).

Now, let us consider the remaining case, when (t; — t9)? # (t; — to)%. For certainty (and
without losing generality), let us assume that (t; — tg)® > (¢; — t5)%. Then the i, inequality is
equivalent to the following:
(z —z7) = b(ti —t;)

T

(ti+t; = 2)(t: — t;) —

and the 3,7 inequality is eq(fivalent to the following one:

(zF —x7) = b(t; — t;)
=T AL - 2t)(ti— ;)

So, for a given b, the value of ¢ for which all the desired inequalities are true, exists if
and only if first, all the inequalities that do not tontain ¢ are true, and, second, any lower
bound for ¢ is not greater than any upper bound for ¢, ie,

(.’L‘T- - I;‘) - b(t-,' - t]‘) < (CL‘Z hast a:,") - b(tk - tl)

T

(ti +1i; - Zt())(ti - tj) - (tk + i - 2t0)(fk - t[)

for each quadruple (2,7, k,{) such that (t; —t0)? > (¢; — t0)? and (tx —t0)? > (8 — t0)*.



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. .. 161

We can express this inequality directly in terms of b by moving all terms with b into one
side of the equation:

1 IZ - Il_
(ti + tj - 2t0)(t,‘ - t]-) (tk + 1t — 2t0)(tk - tl)

b(ti - tj) b(tk - tl)

Tttt = 20) (- ty) (Bt b - 2h0) (B — )
Canceling similar terms in the numerator and the denominator of the fractions that are
coefficients at b, we arrive at the following simplified inequality:

+ + - 1
77 — ] i -1 [ 1 1

— - <b - .
(ti+t] —2t0)(ti—fj) (te + 1ty — 20)(tx — 1) — Lti‘}'tj ~2ty ke +t -2t

If t; +t; — 2tp = tx + t; — 2¢y, then the coefficient at b is equal to 0, and therefore, this
inequality turns into the following one:

- gt

_ + =
T _ Ty — Iy

<0.
(ti + tj - 2t0)(t,‘ - t]') (tk + 1t - 2t0)(tk - tl) -

If t; +1t; — 2tp = tx + &y — 2ty > 0, then by multiplying both sides of the inequality by this
number we conclude that (z7 — z7)/(t: — t;) — (zf —z;7)/(tx — 1) <0, or (z7 — z])/(t: -
t) < (zf —x7)/(te = t). IF ti+t; — 2tg = tx + t; — 2ty < 0, then we get the inequality
(z7 —27)/(ti = t5) = (2 —27)/{te = 1).

Let us now consider the remaining case, when t; +¢; — 2ty # tx + & — 2¢5. In this case,
we actually have two inequalities: the one that we gave above, and the one that is obtained
by changing %,j to k, and vice versa. So, without losing generality, we can assume that
ti+t; ~ 2t >t +t; — 2t5. In this case, 1/(t; +t; — 2tq) < 1/(te + ti — 2tg), the coefficient at
b is negative, and the inequality turns into the following:

7 — ] T} — 1 / 1 1 >b
(t,‘ +t; - 2t0)(ti — t]’) (tk + b - 2t0)(tk - tl) L+t~ 2t b+t — 2t '

For the inequality that is obtained by changing 1,7 to k,/, the coefficient at b is positive,
so we get the following inequality:

T - x5 Ty —zf / 1 1 <
(t,’ +1t; — 2t0)(t,~ - tj> (tk + 4 - 2t0)(tk - tl) L+t — 2t te +t — 2t —
We also have the bounds for b from the cases when (£; — t9)? = (¢; — to)%
(z7 —27)/(t: — ;) S b < (2] —27) /(L — ty).

So, we reduced the problem to the inequalities that do not depend on b at all, and
inequalities of the type X < b and b <Y for some expressions X and Y. The inequalities that
contain b are consistent if and only if the maximum of the lower bounds X is not bigger than
the minimum of all upper bounds, and, if they are consistent, then the interval of possible

values of b coincides with the set of all possible values between these maximum and minimum.
O



162 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

Proof of Theorem 7. The formulas from Theorem 6 prompt the following natural algorithm:

1) First, we compute the values z; = z; + &;, T, = 2; — €, t; — to and (t; — tp)? for all ¢
from 1 w0 n.

2) For every i > j, we check whether (t; —t5)? = (¢; — to)2.

2a) For all ¢ > j, for which this equality is true, we compute the values t; — t;, ;7 — 2,
z7 —zy, (@ —27)/(ti = 1), and (27 = 27)/(t: ~ t;).

2b) If (t; —to)? # (t; — tg)?, we permute i and J if necessary (50 that (t; —t0)? > (¢, -to 2)
and compute the values t; —t;, (t; —to) +(¢; —to) = ti +t; —2to, 1/(ti+1; —2t0) SR
57— ol (a7 = 3k - e — 3/t = 1), (a7 — 3/ (6 = 1)+ 1 - 20)),

1

and (27 — 27)/((t: = t;)(t: + t; — 2to)).

3) Enumerate all the pairs i, j and k, ! such that (t;—%5)% > (t;~%0)? and (te—t0)® > (ti—t0)>.
For each such quadruple, compare t; +¢; — 2¢p with x + £ — 2¢p.

3a) If t;+tj— 2ty = tg+t,—2to > 0, then check whether (2 ~z;)/(t:i—t;) > (z7 —z])/(ti—t;).
If this inequality is not true, then F is inconsistent with Q.

3b) If t;+t;—2t0 = ti+t,—2to < 0, then check whether (z] —x7)/(t;—t:) > (z7 —xf)/(ti—ti).
If this inequality is not true, then F is inconsistent with Q.

3c) If t; +t; — 2ty < ti -+ t; — 2tp, change 4, j to &, and vice versa, so that after that change
we will have ¢; + tj — 2t >t + 1 — 2.

3d) If t + tj - 2t0 >ttt — Qto, then compute IVJH, Ni;lcl! D,']'k[, ]V'Jkl/Dijkl, and N]kl/Dukl
according to the formulas from the formulation of Theorem 6.

4) After we have done the previous steps, we can compute d; = max ((I,-_ -z)/(ti - tj)>,
g = min ((zF = 27)/(t = 1,)), di = max(Nyy/Dia), & = min(Nee/ Digud), & =
min(dy,d}), and d- = max(dy,d;). If d* < d~, then F is not compatible with @, else
[d™,d*] is the desired derivative set.

Let us now estimate the number of computational steps for this algorithm:

1) The first part of the algorithm requires 4 steps for every ¢ from 1 to n, ie, overall, 4n
steps;

2) For every pair ¢ > j, we make 1 comparison and then (depending on the result of this
comparison) either 5 or 9 computational steps. Therefore, for each pair, we need at most
10 computational steps. Since there are n(n — 1)/2 pairs with 7 > j, we need at most
10n{n — 1}/2 = 5n(n — 1) computational steps for this part of the algorithm.

3) For each quadruple (i, j, k,1), we need 1 comparison, and then, depending on the result
of this comparison, either 1 more comparison (in cases 3a and 3b), or 5 computational
steps (in cases 3¢ and 3d). So, for every quadruple, we need at most 6 computational

steps.



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. .. 163

To estimate the total number of steps for this part of the algorithm, we must multiply
6 by the total number of quadruples. A quadruple (4,7, k,[) is a pair of different pairs
(¢,7) and (k,1). So, the total number of quadruples is equal to P(P — 1)/2, where P
is the total number of pairs with the property (t; — tg)2 > (t; — t°)2- This number P
is not greater than the total number of pairs n(n —1)/2, so the number of quadruples

is < P?/2 < (n(n ~ 1)/2)2/2. Hence, the total number of computational steps for this
2 2
part of the algorithm is < G(n(n - 1)/2) /2= 3(n(n - 1)/2) .

4) To compute the minimum dj of N < 1/2(n(n - 1)/2)2 numbers, we need < N
computational steps. Likewise, the number of steps for computing the maximum d5
is < 1/2(n(n - 1)/2)2. To compute the values df and di, we need < n{n — 1)/2
computational steps. Then, we need two steps to compute d* and d~. So, totally, we

2
need < (n(n—l) / 2) +n(n—1)/2 computational steps for this final part of the algorithm.

By adding all these numbers we can now get the estimate for the total amount of
computational steps for the entire algorithm: it is < S, where S =4n +5n(n 1) + 3(n(n -
2 2 2
1)/2) + (‘n(n - 1)/2) +n(n—1)/2=4n+1ln(n - 1)/2 + 4(n(n - 1)/2) . If we compute
all the expression in the parentheses, we arrive at the following result: S =4n+11n2-11n+

n* ~ 2n% + n%. Adding all the coefficients at 1, n, n?, n® and n? we arrive at the following
formula: S =n* - 2n®+12n% — Tn < n* + 12n% a

Proof of Theorem 8. We can compute all the values from parts 2), 3) of the previous proof
in parallel: for that we need < n* processors (one for each quadruple). Totally, to compute all
these expression, we need the time that is necessary for 6 computational steps:

1) On 1st step, we compute T =z; +¢&;, T; =1; — €, t; —to, and t; — ¢; for all 7 and j.

2) On the 2nd step, we compute (; — t0)?, (& —to) + (£; — o) = t; +¢; — 2to, z7 — z;, and

J
z; —z; for all i and j.

3) On the 3rd step, for every i > j, we check whether (t; — %)% = (¢; — t°)2. For all
i > j, for which this equality is true, we compute the values (z; — z;)/(t; —t;) and
(z7 =)/t — t;). I (t: — to)® # (t; — t°)%, we permute i and j if necessary (so that
(t: — to)? > (t; — to)z) and compute the values 1/(t; + t; — 2to), (z7 — z7)/(t: — t;),

(z7 =)/ (i = t5).

4) On the 4th step, we compute (z] — xj")/((t,- — )t +t; — 2t0)) and (z; — x;’)/((t,- -
t;)(t: +t; — 2t)) for all i, j.

3) On the 3th step, we compute the values Nifk, and Dyji for all 4,7, k,1.
6) On the 6th step, we compute all the fractions Nifkl / Diju.
2
Then, we must find the maximum and the minimum of < (n(n - 1)) +n(n-1)/2

numbers. This amount is < 1/4(n? — 2n3 + n?) + (1/2)n? - (1/2)n = (1/4)n* — (1/2)n3 +
(1/4)n? +(1/2)n® = (1/2)n = (1/4)n* — (1/2)n3 + (3/4)n% — (1/2)n. Since n > 3, n® > 3n?, so



164 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

(1/2)n® > (3/2)n? > (3/4)n?, so (1/4)n* — (1/2)n® + (3/4)n* = (1/2)n = (1/4)n* - ((1/2)n3—
(3/4)n%) = (1/2)n < (1/4)n.

Computing maximum and minimum can be done in parallel, so it is sufficient to estimate
the time that is necessary to compute one of them, and then add 1 step for comparison of
d* and d~. To find the smallest of < (1/4)n* numbers, we need < log, ((1/4)n4) +1=
4logy,n —2+1=4logyn — 1 steps.

Totally, we need < 6 + {4log,n — 1) = 4log,n + 5 computational steps. o

Theorems 9 and 10 were proved in the main text.
Proof of Theorem 11. Let us first figure out what conditions on a; are equivalent to the
demand that a statistical estimate is non-biased. This demand means that E[d] = Efaz, +
<4 @pZn] = ¥ 0:E[z;] = b for all a,b and z; = a + bt; + &. Since E[§;] = 0, we conclude
that Elx:] = a + bt;, hence Eld] = T a:{e + b&:) = a (T, a:) +b{L; ;). So, the condition that
E[d] = b for all a and b means that a(¥;a:) + b(X; %) = b for all a and b. Two linear
function are identical if and only if their coefficients coincide, therefore, this condition is true if
>:a; =0 and ¥ ;a;t; = 1. So, these two equalities are necessary and sufficient for an estimate
to be non-biased.

In the following we will consider only non-biased estimates. Let us compute the error
for such estimates. Since & are assumed to be independent, we can conclude that o?[d] =
2 [T aizi] = ¥;0%aiz;]. But z; = a + bt; + &, therefore, Elz;] = a + bt;, z; — E[zi] = &,
o?lz;] = E[(xi - E[zi])z] = E[¢?] = 0%, hence, 0%[a;z;] = a?0? and o%[d] = T; 0*[a;zi] =
o?(Liad).

So, the error is proportional to /3.;a?. Hence, the error is the smallest possible if and
only if the sum Y;a? is the smallest possible.

So, the problem of finding the non-biased statistical estimate with the smallest possible
error, is equivalent to the following mathematical problem: to minimize a function 3; a? under
the conditions > ;a; =0 and Y ;a;t; = 1.

The Lagrange multipliers method allows us to reduce this problem to the unconditional
optimization problem F = ¥, a?+ A ¥; ai+ A2 (T; ait; — 1) — min for some constants A;. This
problem can be easily solved by equating the derivative F/0a; of the minimized function F
to 0: 2a; + Ay + Agt; = 0. As a result, we get the expression a; = a + 0t;, where o = ~1/2);
and 0 = —~1/2X;. To find @ and G, let us substitute these expressions into the conditions
Yia; =0 and 3;a;t; = 1. As a result, we get the following system of equations:

aZl+,@Zt,— =O,
a) ti+8y ti=1

From the first equation, we conclude that o = —8(¥;t:)/(T;1) = =3(X:ti) /n= -0t If
we substitute this expression into the second equation, we conclude that

ﬁ(; 2 (Z ti)f/n) ~1

The coefficient at § can be easily represented as 3;(t; — £)? = no?, therefore, § = 1/(no?).
Hence, a = —t/(no?), and a; = a+ Bt; = (t; = £)/(no?).



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. . . 165

So, we have deduced the expressions for a; that correspond to the optimal statistical
estimate. Let us now find the error of this estimate. This error is equal to /023 ;a? =

o\/3 ;a2 Substituing the above expression for a; into ¥ ,;a?, we conclude that 3 ;a? =

_ N2 o2 i,
S, ((ti —t)2> [(e?n)? = (Zi(ti —t)2) /(o?n)?. But (Zi(t,- —t)2)2 = no?, therefore 3_; a? =
1/(0?n?), and the error is equal to o/Y;a? = o/(own). o

Proof of Theorem 12. If we know a;, then after measuring z;, we need only 2n — 1

computational steps to compute the estimate d = 3, a;7;: 7 multiplications and n — 1 additions.
0

Proof of Theorem 13. If we have several computers working in parallel, then we can make all
the muliiplications in parallel {taking the time of only 1 computational step), and then compute
the sum of the resulting n products in the time of < log,n + 1 computational steps (such an
algorithm is given, eg., in [8]) The idea of such an algorithm that parallelizes addition is very
close to the idea of finding maximum in log,n + 1 steps (see the proof of Theorem 3): if
n = 2* for some k, then we divide n products p; = ayTy, P2 = G2Z2, . .. INto pairs; on st step,
we add each pair, getting the results py + p2,P3 + Pa, ..., Pr—1 + Pn; on 2nd step, we divide
these n/2 results into pairs, and compute the sum of each pair (getting p; + p2 + p3 + P4,
Ps+DPs+Pe+ P17+ P, ) elc m
Proof of Theorem 14. In this case, for a sequential algorithm, we need n — 1 computational
steps to compute the sum ¥ ;t;, 1 to compute ¢, 2n to compute t; —  and (t; ~£)%, n — 1
to compute the sum ¥;(t; — )%, n to compute a; = (t; - t_)/(zi(ti - t_)z), and 2n ~1 to
compute d = )_; a:T;: totally, we need Tn — 2 computational steps. a
Proof of Theorem 15. For a parallel computer, we need < log,n + 1 steps to compute 3_;t;,
1 step to compute Z, 2 steps to compute ¢; —t and (t; —)? (because computations for different
i can be done in parallel), log,n + 1 steps to compute the sum 3 ;(t; — )2, 1 step to compute
a; = (t; ~ f)/(zi(ti - f)z) for all 4, and log, n + 2 steps to compute d = ¥; a;z;. Totally, we
need 3log, n + 8 computational steps. D
Proof of Theorem 16. Let us first reformulate the formula for d from Theorem 11, so that
is will become easier to compute in real time. According to Theorem 11, the optimal statistical
estimate is equal to d = ¥, a;z;, where a; = (t; — £)/(no?) and o} = (Zi(t,- - f)2>/n. If
we substitute the expression o7 = (Zi(ti -t )2) /m into the formula for g;, we conclude that
a; = (& —f)/(zi(ti —5)2). If we use the easily verifiable fact that ¥©;(t; — )2 = ¥, t2/n —nf?,
then we arrive at a formula a;'= (¢; ~ )/ (5;t2 — nt?). Finally, if we substitute the expression
for , we conclude that

a; = (ti - (;ti)/n>/(¥tf - n(?ti)2>.

Therefore, d = 3 ;0;z; = (Zixiti — () (3 ti)/n)/(zi 22— (Tit)? /n) We can also
express it in the following form: d = (S) — $253/n)/(Sy — S%/n), where we denoted S; =
Yixits, So = T2, S3 = T,t, and Sy = T;t2. In these terms, the error is equal to
e=g/\St? —ntt=0/\/S; - S3/n

For our case, a statistical estimate d, for a derivative in the moment t,, is equal to

dn = (S1.n — S2nS32/b)/(San — 53 ,/b), where



166 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

n n
Sin = Iiti, S2. = Lis
i=n+l-b i=n+1-b
n n 2
53,71 = >ty Sin = PO,
i=n+1-b i=n+l-b

It is easy to check that §) ny1 = S1n + Tnirtnel = Tnsi-blnsri-b S2ns1 = S2n + Tnt1 = Tnsi-bs
S3a41 = Ssn+tner = tasiop, and Sqns1 = Syn +12,, ~t2.,_,- So, we can apply the following

algorithm:

1) We reserve 4 variables S;, Sy, S3, S4 that will contain the current values of the sums
Sin. For every moment ¢,, we aiso keep the values x;, x;t;, £, and t2 for all 4 such that
n—b <1< n. So, we must reserve 4 + 4b variables.

2) The initial values of 5;, are 0. When n </ then after reading x, and f,, we compute
(and remember) the values T,t, and t2, and update the values S; in the following
manner: S := S) + Tytn, Sy := S + Tn, S3:= S3 +tp, and Sy := Sy + 2.

3) For n = b, we do this update, and also compute d,: f := S3/b, S := S4 — Sif,
dn := (81 — S2t)/S, and e := 0 /V/S.

4) For n > b, we must compute (and remember) the values ,t, and t2, and then update
S; according to the following formulas: Sy := S} + Tnty — Tn—sbn-b, S2 1= S2+Tn — Tn-s,
S3 = S3 +tn —tnp, and Sy := Sy +t2 —t2_,. After that we compute d,, and e using
the same formulas as for n = b.

For n < b, we need 6 computational steps; for n = b, we need 6 +6 = 12 steps to compute

dn, and one division + one square root to compute e. For n > b, we need 10 computational
steps for an update, 6 to compute d,, and 1 division + 1 square root to compute e. In all
cases, we need at most 17 arithmetic operations + 1 square root per measurement. 0
Remark. The algorithm described in this proof is vulnerable to errors: if accidentally we input
a wrong value of t; for some %, then, we spoil Sy, S3, Ss, and thus spoil the resulting estimates
d, for arbitrary big n. To make this algorithm more error-prone, we can periodically check
its results by applying the formulas from Theorem 11 directly. This checking will practically
not slow down the computations, since we do not need to do it for every measurement, just
periodically (e.g., for every tenth or every hundredth measurement).
Proof of Theorem 17. In this case, we can use an algorithm similar to the one from the proof
of Theorem 16. Namely, if we have several processors that can work in parallel, then we can
compute Tnt, and t2 in parallel (thus, in the time that is necessary for 1 computational step),
update the values S; in parallel on 4 processors (thus spending the time of 2 computational
steps), and then compute the value d, as follows: first, compute t := S3/b (1 step), then
S:=8,—=5¢, s:=vN,and N:=8; — Sf in parallel (2 steps), and d,, := N/S and e :=0/s
(1 step). Totally, we need the time of T computational steps. a
Proof of Proposition 2. In this case, £ = sy, and

ol =1/(2k+ 1) Y (6~ D) = (1/(2k + 1)) f(mt)? + i(mt)i’ = (24¢%/(2k + 1)) zkj i
i=1

=1

i i=1

The value of the sum Y, 4% is known to be k(k + 1)(2k + 1)/6 (this formula can be easily
checked by mathematical induction). Therefore, 07 = 2(1/(2k + 1)) (k(k +1)(2k + 1)/6) At? =



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. .. 167

(k(k +1)/ 3)At2. Substituting these expressions into the formulas from Theorem 11 completes

the proof. 0
Proof of Proposition 3. In this case, £ = sp, and
1 _ At2 n-1/2
o == (t,—-)2=—-—-—2212
ne n i=1/2

The values ¢ = 1/2, 3/2, 5/2,...,(n—1)/2 can be represented as (2j—1)/2 for j =1,2,...,k.
Here, 12 = 1/4(2j — 1)?, hence

niﬂz’? =1/4 (f:@j - 1)2) .

i=1/2 i=1

The sum S = 55_,(2j — 1) of the square of all odd numbers from 1 to n can be represented
as the difference between the sum of all numbers from 1 to n and all even numbers from 1 to
n, ie,as S =37, j2 = Z?ﬁ@j)z. The first sum is equal to n(n + 1)(2n + 1)/6, the second
sum Z;’fl(Qj)z is equal to 4 times the sum Z?ﬁjz, e, to 4(n/2)(n/2+ 1)(2n/2 + 1)/6 =
n{n +2){n+1)/6. Therefore, the difference between these two sums is equal to n{n+1)(2n +
1)/6—n(n+2)(n+1)/6 =n(n+1)((2n+1)=(n+2))/6 = n(n+1)(n=1)/6 = n(n?~1)/6. So,
o2 = (2/n)(1/4) (n(n2 - 1)/6) = (n? — 1)/12. Substituting these expressions into the formulas
from Theorem 11 completes the proof. O
Proof of Theorem 18. Here, d = (Zi it — (s Ii)(t—))/(no'f) The value no? is computed
once (before the computations), so we can assume that it is already stored in the computer as
some value S. So here, we have only three expressions to update: S; = >, zit;, S = ¥, 7,
and t.

The value { is (as one can easily see) equal to the average of the first and the last values:
= 1/2tn +tas1s) = 1/2(ts + t1 + Atn + At(n+ 1= b)) = tr + At(n = (b= 1)/2), s0 its
update can be done according to a simple formula: ¢ : =% + At.

The update of S; and S;3 can be done by the same formulas as above, with the only
difference that we cannot read t,, we must compute it. This computation is also simple:
ty = th1 + AL

So, we arrive at the following algorithm: at every moment of time, we keep the values
S1, Sot, and the values z;, ¢; and z;t; for all 7 such that n — b < ¢ < n. Initially, S; and S,
are set to 0, £ to t; — (b~ 1)/2At, and ¢; to the given value.

Then, while n < b, we read z,, compute t, := t,_; + At and z,t,, update S; and S.
S) := 51 + Zntn and Sy := Sy + z,,, and update £ ;=1 + At.

For n = b, in addition to all those steps, we compute the first estimate d as (S; — S2t)/S.

For n > b, we read x,, compute t, := t,_; + At and Znt,, update &: f:=f + At, update
S and S using more complicated formulas: S) := S1 + Tty — Tn_ptn-s, S2 1= S2+ T — Tps,
and compute d as (S; — S»t)/S.

For n > b, we need 10 computational steps; for n < b we need less. So, our algorithm
uses < 10 computational steps par measurement. a
Proof of Theorem 19. Let us describe what can be parallelized in the algorithm from the
previous proof: first, we can compute the new value of t,, update ¢ and start updating Sz
(1 step), then, on the 2nd step, we end updating .S;, start updating 5;. On the 3rd step, we



the error is the smallest if and only it the sum ) ;af 1s the smallest possible. Applying
Lagrange multipliers method to the resulting conditional optimization problem, we conclude
that a; = a + 3(t; — to) + ¥(t; — to)®. The linear equations for a. 3, and 7 are obtained, if
we substitute the above expression for g, into the conditions Y, a; =0, ¥_; a:(t; — to) = 1, and
Zi al(t,‘ - t0)2 = 0. d
Proof of Theorem 21. According to Theorem 18, the optimal estimate d is equal to (y( > J,'L) +

,8<Z,~ zi{t; — to)) +7(Zi(ti - to)z). So, if we already know how to compute &, 3, and v, we
will be able to compute d in 5 steps {3 multiplications and 2 additions) if we update the three
sums 3, Iiy 35 Zi(t — to), and 3;(t — t9)® (just like we did it in the proof of Theorem 16)
The number of computational steps that is necessary to update a sum, does not depend on b.

To compute o, 3, and 7, we need to solve a system of 3 linear equations with 3 unknowns.
If we know the coefficients, then the number of computational steps that we need to solve this
system, does not depend on b.

All the coefficients are of the type ¥ ;(t; — to)'“ for £k =0.1,2,3,4. The number of steps
that we need to update these sums does not depend on b.

Adding all these numbers, we get the desired upper bound C for the number of compu-

tational steps that does not depend on b. m|
Proof of Theorem 22. A linear estimate is uniquely determined by a sequence of coefficients
ai,...,a,. A precision p of a linear estimate is defined as p = max|Y_; a;z; — b| for all a,b

and z; such that |z; — (a + bt;)] < €.

To simplify out proofs, let us introduce a new denotation: namely, let us denote A; =
Ir; — (0. + bt,) Then, IAJ S g, T; = (a + bt,) + Ai, and d - b= Zi a,—(a + bt,) + Zi a,;Ai - b.
So, in these denotations, the definition of a precision p can be rewritten as follows:

p= max IZai(a%-bt,-)%—Za,-Ai—b

abliil<e |73

. Letus first prove that if 3_;a; # 0, then p = occ. Indeed, suppose that 3~;a; # 0. Let us
fix some b and A; such that |A;] < ¢, and consider the dependency of s = ¥ a;{a + bt;) +
Sia:d;—bon a. Since s = {§;a;)a+ (X;a:t — 1) b+ Y04, s is a linear function of a
with a non-zero coefficient at 0. Therefore, [s| — c0 as @ — oo and hence, p = maxs = oc.

So, if p < oc, then ¥;a; = 0. Likewise, we can prove that if p < oc, then 3 a;t; = 1.
Indced. suppose that 3_a;t; # 1. Then, we can fix a, 4;, and consider the dependency of s
on b. Here, s is a linear function of b with a non-zero coefficient, so |s] — c0 as b — oo and
hence, p = maxs = oc.

So, if there is an estimate with finite precision p. then for this estimate, 3_;a; = 0 and
S :ait; = 1. Let us consider any such estimate. For it s = ¥, a;4;. So,

p = max

!
Za,—Aii .
iAi!Sfl : |

Let us compute this maximum. Since A; lies between —¢ and ¢, the maximum possible value
of a;A\; is attained when A; = ¢ if a; > 0, and when A; = —¢ if a; < 0. In both cases, this



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. . . 169

maximum value is equal to |a;le. Therefore, the maximum possible value p of the sum is equal
o (Zilail)e.

In particular, if we take a; from the formulation of the theorem (ie, a, = —a; =
1/(ta—t1) and a2 = a3 = --- = ap—; = 0), we can easily check that ¥;a; =0 and ¥;a;t; = 1.
So, for this estimate, the precision equals (3, |a:|)e = (2/(tn - tl))e. This value is finite, so,
there always exists an estimate with finite precision.

Since ¢ is fixed, the precision p = (T;|a:|) € is the smallest possible if and only if the
sum Y_;|a;| attains the smallest possible value. So, the problem of finding an estimate with the
smallest possible precision is equivalent to the problem of finding a sequence of real numbers
ai, - -.,0n that satisfies the following conditional optimization problem: };la;] — min under
the condition that 3 ;a; =0 and Y, et = 1.

Let us first prove that this problem has a solution. Indeed, we already know a sequence
a; that satisfies both conditions. For this sequence, ¥ ;la;] = 2/(t, — t1). Therefore, while
looking for the most precise estimate, we can restrict ourselves by the sequences for which
Tilail € 2/(t, — t1). For such sequences, for every i, |a;] € ¥ilai] < 2/(tn — t1). The set
of the sequences for which Y;[a;| < 2/(tn — t1) is bounded, and it is also closed. Hence, it
is compact. The conditions 3 ;a; = 0 and }; a;t; = 1 also determine closed sets. Therefore,
the set S of all sequences, for which ¥;a;] < 2/(t, — t1), X;0: =0 and ¥;a:¢; = 1, is an
intersection of a compact set and a closed set, and is therefore a compact. A function Y_; |a;]
is continuous on this compact set S, therefore, it attains its minimum in some point. So, there
exists a sequence. for which the sum ¥;]|a;| takes the smallest possible value. As we have
already mentioned, this means that this sequence has the smallest possible value of p.

Let us now find the sequence with the smallest possible value of p (or, what is equivalent,
the smallest possible value of 3;|a;]). Let a; be such sequence. Let us prove that at most
two of its elements are different from 0. We will prove it by showing that if three different
elements of a; are different from 0, then this sequence cannot be the one for which ¥;|a;|
is the smallest possible. Indeed, suppose that a; # 0 for at least 3 different indices 7. Since
>ia; = 0, the values of a; cannot all be of one sign. So, we can choose the three of them
that are not all of one sign (i.e, either one is positive and two other are negative, or one is
negative, and two other are positive). Let us denote these three values by j, and l. So, a; # 0,
ar # 0, and a; # 0 for some j < k < (.

Let us prove that by changing these three values we can diminish the value of ¥; |ail,
while still retaining the conditions 3 ;a; = 0 and }_; a;t; = 1. We will try to take a sequence
a; that is defined by the formulas a} = a; + ab;, aj = ax + abk, and a; = a; + ab; for some
real numbers a # 0, b;, by, b, and a] = a; for all ¢ that are different from j, k, or [.

We want to guarantee that 3, a; =0 and Y, ait; = 1. We assumed that the sequence a;
satisties these conditions. So, if we substitute the above expressions for a; into these formulas,
and use the conditions that };a; = 0 and _; a;t; = 1, we can conclude that a! satisfies these
conditions if and only if b; + bx + b = 0 and b;t; + bety + bty = 0. The first equation is

satisfied if & = —(b; + bx). Substituting this value into the second equation, we obtain the
equation b;(t; — t;) + bi(tx — t;) = 0. Therefore, the second condition is satisfied, if we take
an arbitrary- b;, and by = —b;{t; — t;)}/(t; — tx). From these two expression, we conclude that

b = —(bj -+ bk) = bj(tk - tj)/(tl - tk).

So, if we take an arbitrary b;, by = —b;(t; — t;)/(ti — t&), and b = b;{te — t;)/(ti — t&),
then the resulting values a satisfy both conditions Y ;a! = 0 and ¥; alt; = 1.

Let us now estimate 3, |a}] for these a]. Since a; + ab; — a; as & — 0, we can conclude



170 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

that for sufficiently small o, the expression a; + ab; has the same sign as a;. Therefore, for
such a, la; + ab;| = sign(a; + ab;)(a; + ab;) = sign(a;)(a; + ab;) = |a;| + sign(a;)ab;. Similar
expressions are true for k and [, therefore, for sufficiently small a, ¥;lail = ¥, |ai] + o,
where £ = sign(a;)b; + sign(ax )bk + sign(a;)b;. Let us prove that £ # 0. Indeed, we chose j, k
and ! in such a way that two of the values a;, ag, a; are of one sign, and the third value is of
different sign. Suppose, for example that a; > 0, ax > 0 and a; < 0. Then, & =b; + by — b;.
We have already proved that b; + by + b = 0, therefore, £ = (b; + b + b)) — 2b = -2b;.
According to the above expression for by, it is # 0 if b; # 0. So, in this cases, T # 0. Likewise,
we can consider all other combinations of signs and prove that in all cases, X # 0.

Since £ # 0, we can take o of the opposite sign with £, and find a sequence a, for
which 3 ;la}| < ¥;la:|, and thus, a contradiction to our assumption that Y;|a;| attained its
minimum in the given sequence a;. This contradiction proves that the assumption that a; is
non-zero for at least 3 different i, is false.

So, a; is different from 0 for at most 2 different values of 7. It cannot be different from
0 only for one %, because from Y ;a; = 0 we would then conclude that a; = 0, and hence
Yiait; = 0 # 1. Therefore, for optimal sequence a;, a; is different from 0 precisely for 2
different values 7 < k.

In this case, the conditions 3 ;a; = 0 and 3 ;a:ti = 1 turn into a; + ax = 0 (hence
a; = —ag) and a;t; + agti = 1. Substituting a; = —ax into the second equation, we conclude
that a; = 1/(tx — t;) and a; = —=1/(tx —t;). For this sequence, 3_; |a;| = 2/(tx — ¢;).

So, in order to find a sequence a; with the smallest possible precision p, we must find
a pair j < k, for which the expression 2/(t; — t;) takes the smallest possible value. This
expression is the smallest possible if and only if the difference tx — t; is the biggest possible.
This is attained if ¢ is the biggest possible (i.e, k = n), and £; is the smallest possible (i,
j = 1). Therefore, the sequence a; for which p is the smallest coincides with the one given in
the formulation of the theorem. ]

Acknowledgements

This work was supported by a NSF Grant No. CDA—9015006, NASA Research Grant No. 9—
482, and a grant from GSA, administered by Materials Research Institute and the Institute
for Manufacturing and Materials Management. The authors are thankful to Misha Koshelev
who tested our sequential algorithms by programming them in Pascal, to Sergey Shary and
Vyacheslav Nesterov for valuable discussions and important preprints, and to the anonymous
referees for their thoroughness and help.

References

{1] Aberth, O. Precise mumerical analysis. Wm. C. Brown Publ,, Dubuque, Iowa, 1988.
[2] Bellman, R. [ntroduction to matrix analysis. McGraw Hill, N.Y,, 1970.

{3] Bohlender, G., Ulrich, C, Wolff von Gudenberg, J., and Rall, L. B. Pascal—SC. A computer
language for scientific computations. Academic Press, N.Y., 1987.



APPLICATIONS OF INTERVAL COMPUTATIONS TO EARTHQUAKE-RESISTANT ENGINEERING. . . 171

[4] Burden, R. L. and Faires, J. D. Numerical analysis. Prindle, Weber & Schmidt, Boston, MA,
1985.

[5] Chung, L. L., Lin, R. C, Soong, T. T., and Reinhorn, A. M. Experimental study of active control
for MDOF seismic structures. Journal of Engineering Mechanics 115 (8) (1989), pp. 1609—1627.

(6] Corliss, G. F. Applications of differentiation arithmetic. In: Moore, R. E. (ed.) “Reliability in
computing”, Academic Press, N.Y., 1988, pp. 127—-148.

[7] Dehghanyar, T. ], Masri, S. F,, Miller, R. K., and Caughey, T. K. On-line parameter conirol
of noniinear flexible structures. In: “Proceedings of the 2nd International Symposium on
Structural Control, Martinus-Nijhoff, Boston, MA, 1987", pp. 141~159.

[8] Jaja, J. An introduction to purallel algorithms. Addison-Wesley, Reading, MA, 1992.

[9] Karmarkar, N. A new polynomial-time algorithm for linear programming. Combinatorica 4 (1984),
pp- 373—396.

{10] Kobori, T. State-of-the-ari of structural control research in Japan. In: “Proceedings of the US
National Workshop on Structural Control, October 25—26, 1990, pp. pl—p2l.

[11] Kobori, T. et al. US. Paient No. 5,036,633.

f12] Kobori, T., Kanayama, H., and Kamagata, S. A proposul of new antiseismic siructure with active
seismic response conlrol system - dynamic inlelligent building. In: “Proceedings of the 9th World
Conference on Earthquake Engineering, Tokyo—XKyoto, Japan, VIII”, pp. 465—470.

[13] Kobori, T., Kanayama, H., and Kamagata, S. Active seismic response control systems for nuclear
power plant equipment facilities. Nuclear Engineering and Design 111 (1989), pp. 351—356.

[14] Kobori, T., Yamada, S., and Kamagata, S. US. Patent No. 4,922,667,

[15] Kreinovich, V., Lakeyev, A., and Noskov, S. Optimal solution of interval linear systems is intractable
(NP-hard). Interval Computations (1) (1993).

[16] Markov, S. Interval differential equations. In: Nickel, K. E. (ed.) “Interval Mathematics 19807,
Academic Press, N.Y., 1980, pp. 145—164.

[17] Meirovitch, L., Baruch, H., and Oz, H. A comparison of control techniques for large flexible
structures. Journal of Guidance 6 {4) {(1983), pp. 302-310.

[18] Moore, R. E. Awtomatic local coordinate iransformations lo reduce the growth of error bounds in
interval computation of solwion of ordimary differential equations. In: Rall, L. B. (ed.) “Errors
in Digital Computations, Proceedings of a Symposium”, John Wiley & Sons, N.Y., 1965,
pp. 103—140.

[19] Moore, R. E. Interval analysis. Prentice Hall, Englewood Cliffs, N.J., 1966.

[20] Moore, R. E. Mathematical elements of scientific computing. Holt, Rinehart and Winston, N.Y,,
1975.

(21] Moore, R. E. Methods and applications of interval analysis. SIAM, Philadelphia, 1979.



172 V. KREINOVICH, D. NEMIR, E. GUTIERREZ

[22] Nemir, D. C, Koivo, A. ], and Kashyap, R. L. Pseudolinks and the self-tuning comtrol of a
non-rigid Imk mechanism. IEEE Transactions on Systems, Man and Cybernetics 18 (1) (1988),
pp. 40—48.

[23] Osegueda, R. A., Nemir, D. C, and Lin, Y. ]. On-line adaptive stiffness conirol to tailor modal
energy contents in structures. In: “ADPA/AIAA/ASME/SPIE Conference on Active Materials
and Adaptive Structures, Alexandria, VA, November 5—8, 1991".

[24] Rall, L. B. Applications of software for awlomatic differentiation in numerical comprdation. In: Ale-
feld. G. and Grigorieff, R. D. (eds) “Fundamentals of Numerical Computations (Computer-
Oriented Numerical Analysis)”, Springer-Verlag, Wien, N.Y., 1980, pp. 141-156.

[23] Rall, L. B. Awomaic differentiation: techniques and applications. Lecture Notes in Computer
Science 120, Springer-Verlag, Berlin-Heidelberg-N.Y., 1981.

{26] Rall, L. B. Differentiation and generation of Taylor coefficients in Pascal—SC. In: Kulisch, U. W.
and Miranker, W. L. (eds) “A New Approach to Scientific Computation”, Academic Press,
N.Y, 1983, pp. 291-309.

[27] Ratschek, H. and Schroder, G. Uber die Abteitung von intervallwertigen Funktionen. Computing
7 (1971), pp. 172-187.

[28] Sendov, B. Some topics of segment analysis. In: Nickel, K. E. (ed.) “Interval Mathematics 19807,
Academic Press, N.Y., 1980, pp. 203-222.

[29] Shary, S. P. Soluiion of “outer” and “inner” problems for an interval system of linear algebraic
equations. Ph.D. Dissertation, Kransoyarsk—Ekaterinburg, 1991 (in Russian).

[30] Shary, S. P. A new dass of algorithms for optimal soluwtion of interval linear systems. Interval
Computations (2) (1992), pp. 18—29.

[31] Soong, T. T. Active structural control: theory and practice. Longman Scientific, Essex, 1990.

Received:  May 25, 1992 Electrical Engineering Department and
Revised version:  January 12, 1994 Computer Science Department
University of Texas at El Paso

El Paso, TX 79968

USA



