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Summary. Certain reciprocal and adjoint transformations available for one-
dimensional non-steady gasdynamic flow are applied to an existing solution to construct
new exact solutions of the governing equations. The particle trajectories and the
pressure-density relations on these trajectories are calculated. An application of the
adjoint transformation in studying the flow between a piston and a non-uniform shock
wave is indicated.

1. Introduction. The development and application of transformation theory in
gasdynamics and magnetogasdynamics has a long history. In particular, the subject
of the invariance properties of the governing equations has received considerable atten-
tion. The work of Bateman [1], Haar [2] and Prim [3] established the invariance of the
gasdynamic equations under certain important transformations. These were later
discussed by Tsien [4], Bateman [5] and Power and Smith [6] and further developments
were made more recently by Power and Tunbridge [7], Power and Walker [8], Nikol'skii
[9], Smith [10], Tomilov [11], Rykov [12], Ustinov [13] and Movsesian [14] when results
were derived for both unsteady and magnetogasdynamic flows.

Some applications of an invariant transformation in one-dimensional non-steady
gasdynamics were given by Ustinov [13] and in a later paper an example of a generaliza-
tion of this transformation and its use was given. The governing equations of one-
dimensional non-steady flow were taken in the form

Pi + (pu)x = 0, (1-1)

p(u, + uux) + px = 0, (1.2)

s(p, p) = F(r), (1.3)

where p, p, u, s are respectively pressure, density, speed and entropy, and F is an arbitrary
function; and Ustinov found that under the transformation

(It = p dx — pu dt, (1-4)

d£ = pu dx — (p + pu ) dt, (1.5)

the governing equations were invariant provided new flow variables P, R, U, S (each

* Received February 22, 1972; revised version received January 4, 1973.
** Now with Touche Ross & Co., 27 Chancery Lane, London WC2A INF.
*** Now at University of Western Ontario, Canada.



242 S. P. CASTELL AND C. ROGERS

functions of t, £) were introduced according to

p = R~\ p — Pu = U, S = s (1.6)

and

dx = (P + RU2)dr — RU d£, dt = RU dr — R (1.7)

Here r is the usual stream-function and £ that first introduced by Martin [15].
This transformation was then used, in particular, to generate a new solution for

non-steady one-dimensional homentropic perfect gas flow from a solution derived by
Sedov [16]. Ustinov also discussed an application of the transformation in an analysis
of the flow between a piston and a non-uniform shock moving into a gas at rest.

Here we follow the work of Ustinov and, in a similar manner, apply the reciprocal
and adjoint transformations given by Rogers [17, 18] to the Sedov solution. It is to be
noted that under the Ustivov transformation (1.1)—(1.7), for homentropic flow, the
perfect gas law of the original flow maps into a perfect gas law for the transformed flow.
However, under reciprocal and adjoint transformations a given perfect gas solution is
associated with a multi-parameter family of solutions in the reciprocal and adjoint
spaces, each member having its own equation of state.

2. The Sedov solution under the reciprocal transformation. The exact homentropic
solution of Eqs. (1.1)—(1.3) which Sedov [16] found for a perfect gas depends on an
arbitrary function of the time t which takes different forms according to the value of
the adiabatic exponent y. The solution is (Ustinov [13])

u(x, t) = (1 - e) f r(l + cr"2')172, (2.1)
to

p(*' ° - 4 (i+ (l-t)/2 c

p(x, t) V» y Vn
PJ = 7 ~ 1Po Po

€^° (1 + rV2<

(2.2)

(2.3)7Put«

where e = (7 — l)/(y + 1), y > 1, x0 , t„ , p0 , p„ are arbitrary constants,

r(x, t) = - a'1, (2.4)
.To

and where a(t) is a function of the time t, arbitrary to the extent that it depends on the
value of e, and defined by

dt = <o(l + a2')"172 da. (2.5)

This solution was also discussed by Nikol'skii [9] and Ustinov followed him in
presenting it in the above form.

Now Rogers [17] found that under the transformation

x' = x. (2.6)

Oj dt' = pu dx — (p + pu + a2) dt (2.7)
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the equations (1.1)—(1.3) were invariant provided that new reciprocal flow variables
p', p , u', s' (each functions of x', t') were introduced according to

p' = a4 - a2aj{p + a2), (2.8)

p' = a3(p + a2)p/(p + pii + a2), (2.9)

u' = —citu/ip + a2), (2.10)

s' = s'(s), (2.11)

and the a( (i = 1, 2, 3, 4) are arbitrary (constant) parameters.
Thus, given the homentropic Sedov solution (2.1)-(2.5) p, p, u, s (each functions

of x, t) of Eqs. (1.1)—(1.3), a four-parameter family of solutions may be constructed
in (x', t')-space, given by (2.8)—(2.11), together with s' = constant and

x' = x, di dt' = f(x, a) dx + g(x, a) da,

where

j/ \ (1 t)Po%n (, i X 26-2^ — 2 € i x £ — 1 / "I I -2<\l/2f(x, o) = — a^l + —i o- Jcr J — ff (1 + ff )

.T + i?" )' Jg(x, a) =

, (1 — tf PoX g
-r , 2

t-0

Po
„ 7-1Po

a(l + ~2 ff2< 2j<r 2<J ^"2 o-2< 2(1 + <r 2e) + a2j<o(l + <r2') W2,

a = t2X02Po/yPoto2 ■

It is readily verified that

/(\ \ 2 / ->.2 \ <l+.)/2«H \ .7.. €U (1 — e)/2e/i , -2eM/2l i £ 26-2 |Kx,c)dx- (1+eK « (l + o- ) (^1 + —2 <r J

and setting
^ (1 + e)/2<i

P' T_t ° = 1, (2.12)
Po

/I \2 (1 €/2 60^1^ = 1; (2.13)
to

a2t0 = 1, (2.14)
/I \ ^ 2 ( 1 — € ) /2 €

t( ')pf   = a, , (2.15)
(1 + e)r0

.fo = 1, (2.16)

then we get

CLf = aj(l + a-2y/2(l + x\2t~yi + l)/2t - J gi(x, <r) da - a!

where
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/ \ r /1 i 2 2f —2\ — 2«-| (1 + e ) /2 e /-t i 2e\ —1/2f/iOc, <t) = [(1 + X tr )<r ] (1 + a )
I 2r/i | 2 21 — 2\ — 2 e-i (l-e/2e) 2«-2/-| i -2«\/-j i 2«\-l/2 . /. 2«\-l/2+ a: L(1 + X a )<r J (7 (1 + <r )(1 + <j ) + (1 + a )

Eqs. (2.13) and (2.15) give

«i = e/(l — e2) = (t2 — 1)/4y.

The equation to the particle trajectories is given by dx' = u' dtin view of (2.6),
(2.7) and (2.10) this yields simply

dx = u dt. (2.17)

Thus, under this reciprocal transformation particle trajectories transform to particle
trajectories. This is not to say that the particle trajectories will have the same shape
in both spaces; in view of (2.5), (2.17) may be written

dx = (1 T e)X° - ff-\l + <t-2')UX(\ + ex2')"1/2 da.
to Xo

Since x' = x, this integrates to give

x' = Aan~'\ (2.18)

A an arbitrary constant. The equation to the particle trajectories in the reciprocal
space is now given parametrically by (2.18) and

a J' = a,(l + tr"2e)1/2(l + A2yi + l)/2(

- (1 + A2)"*'"2'/, - A2(l + A2)'1-<)/2,/2 + 7, - a, ,

where

fi = J v <1 + °(1 + a2') 1/2 da,

r2 = / <T(1 + e,(l + cr2')1/2 da,

h = / (1 + cr2')~1/2 da.

Introducing a new parameter 9 by sinh2 9 = a'1, we have the particle trajectories given
parametrically by

x' = A sinh(1-e)/< d,

I' = — {<f'(l + A2)"~t)/2'[(al£ + 2)A2 + (1 + al£)] coth 6
Q-i

- e-lA\l + AT~')/2'6 + 73(e, 6) - a,},

with a, = e(l — e2)"1, e = i, %, I3(§, 6) = 2 cosh 6, 73($, d) = f(| sinh 26 — 6), and
h(b 9) = 5/4(| sinh 40 — sinh 26 + §0).

Fig. 1 shows a typical particle trajectory, given by A = 1, in the three cases e =
ill
2> 3? 5-
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£ -1/0

t -1/-3

£ -i/-e

a oooo i. oooo l. oooo e. oooo e. oooo a. oooo

Fig. 1. Reciprocal transformation: particle trajectory A = 1 for the three cases £ = s, 3, 5.
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From (2.1)-(2.4) and in view of (2.12)-(2.16) we have
(1 + A2)<1 + ')/2e _<1+i)

v = ; °
I o

gi + a2)"-"72 (l-e)
2  0- ,(1 - e):

u = (1 + ff"2f)'/2
to

along particle trajectories x = x' = Ao-'1-" in the reciprocal space. Substituting these
values in (2.8) and (2.9) yields p' and p as functions of <r along the particle trajectories.
Fig. 2 gives the result of this substitution, showing p' plotted against p' for the case
A = 0, e = ai = 0.208 and a2 = a3 = a4 = 1. Also shown is the curve pn, that is
p'3/2, and it is seen that the general shapes of the curves agree well. This indicates that,
by suitable choice of values for a, (i = 2, 3, 4), the flow in the reciprocal space could be
made to approximate closely that of a perfect gas.

3. The Sedov solution under the adjoint transformation. We now apply in a similar
fashion the adjoint transformation given by Rogers [18] to the Sedov solution (2.1)-(2.5).
Thus, if p(x, t), p(x, t), u(x, t), given by (2.1)-(2.5), constitute a solution of equations
(1.1)—(1.3), so also does the four-parameter adjoint system

u(x, t) = axpu/{j> + pu + a2), (3.1)

p{x, I) = a3(p + pu + a2)/p(p + a2), (3.2)

p(x, I) = a4 + (a,2a3/(50 + pu2 + a2)) (3.3)

in the (x, <)-space where, as before, the o; (i = 1, 2, 3, 4) are arbitrary constants, and the
adjoint space is defined by

dx = p dx — pu dt, (3.4)

cii dt = pu dx — (p + pu + a2) dt. (3.5)

Along the particle trajectories we have dx = u dt; in view of (3.1), (3.4) and (3.5)
this reduces to

aip(p + ct2) dx = 0,

or x = constant = b, say (ap / 0, p ^ — a2). Upon setting

„ (l + <)/2<. -.2 2 (1 —t)/2ev>,a tji _ (] — e) p„X0 a 
7-1 — ~ 'Po to

a2t„ = 1, pual~l)/lt (I — e)b = 1,

X'O ~~ 1 , CI i — € (1 6 ) ,

the particle trajectories are given by
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p» p
a B800 a oooo

a 1000 aeooo o. 9000 0.4000 a 0000 aeooo ^

Fig. 2. Reciprocal transformation: p' and p'i against p' on particle trajectory A = 0.
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X = - J [(1 + bV'-2),-"]cl-)/2V-'(l + <r~2<)1/2(l + a2Y1/2da,

aJ = - J {[(1 + bV'-V2']'1""72'

+ [(1 + b2a2'-2)a-2']n-')/2'b2a2'-2(l + a~2') + 1}(1 + <r2<)~1/2 da.

It is readily verified that along these trajectories (x = b)

m (Yl 1 h2 2« —2\ -2e-i (1 + € )/2eV = T 1(1 + o a )<j J ,
l0

to r/1 I 12 2(-2n -2«n(l-«)/2<
P = ^ _ \2 L(1 + 0 <7 )<7 J

u = {~£ ba'-1 (1 + «7~2,)1/2
^0

in general, and for e _ i
2)

„ 1 /? 2 I \3/2 -3V = T (o + a) a ,

p = 4^o (62 + 0")1/2(7_1,

M = 2I(1 + a)1/V1-

Substituting these values in (3.1)-(3.3) yields p and p as functions of a along the particle
trajectories for e = §. The effect of this substitution is shown in Fig. 3; ft is plotted
against p in the two cases 6 = 0, b = 1 with « = J, fli = 0.667, a2 = a3 = a4 = 1 in
each case. For comparison, p7 = p3 is plotted in addition and here it is seen that the
agreement between shapes is rather less good than is the case for the reciprocal trans-
formation.

4. Use of the adjoint transformation in studying piston-driven shocks. In a manner
similar to that employed by Ustinov [13], we indicate an application of the adjoint
transformation in examining the one-dimensional adiabatic motion of a gas in the region
between a piston and a strong shock wave which arises as a result of the piston following
an arbitrary law of motion and moving into a gas at rest. If U0(t) is the speed of the
shock wave, pa(x) is the density distribution of the gas at rest into which it moves, then
the conditions of conservation of mass and momentum through the shock may be written
as

P0U0 = p(Uo — u), (4.1)

p = pouUo , (4.2)

dx = U0 dt, (4.3)

Po = 0, (4.4)
where p(x, t), p(x, t) and u{x, t) is the solution for the gas flow between the piston and
the shock.
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0.4000 aaooo l.eooo i.eooo e. oooo 2.4000 ^

Fig. 3. Adjoint transformation: p and pi against p on particle trajectories b = 0, 1.
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Now suppose we have a solution set p(x, t), p(x, I), u(x, t) for homentropic flow in
the adjoint space. Then a new solution set p(x, t), p(x, t), u(x, t) is given by the inverse
transformation to be (Rogers [18])

p(x, t) = —a2 + a^23 t , (4.5)
(p + pu — a4)

®

«<*. 0 - errH"—)- <4J>
where

p dx — pu dt = dx, (4.8)

pu dx — (p + pu2 + a2)dt = di dt. (4.9)

Since (4.8) and (4.9) may be rewritten as

(p + PM2 + a2) _  -

p(p + a2) p(p + a2) 1 "1Uj

dt = t—7—r dx - t-41-^ di, (4.11)
(p + a2) (p + a2)

then p, p, u may be derived as functions of x and t by combining (4.5)-(4.7) with (4.10)
and (4.11).

Now it may readily be shown that, with a2 = 0, along dx/dt = U0 , I is constant, so
that evidently the law of motion of the piston is given by x = 0, t < 0, while that of the
shock is given by t = 0, x > 0. That is, to each homentropic solution p(x, t), p(x, t),
u(x, t) of the one-dimensional non-steady gasdynamic equations there corresponds a
three-parameter family of solutions, (4.5)-(4.7) with a2 = 0, and, further, this family
of solutions is that of a flow of a gas between a piston and a non-uniform shock moving
into a gas at rest provided the law of motion of the piston and of the shock are given by

dx = u dt, t < 0, (4.12)

U0(t) = dx/dt = (p + pu")/pu, x > 0 (4.13)

respectively, where the relation between the (x, t) and (x, t) spaces is given by (4.8)
and (4.9). In addition to the conservation of mass and momentum conditions there will
also be a conservation of energy requirement to be met which will limit solutions found.

As an example, consider a family of solutions given by Ustinov [13] for high-tempera-
ture flow of a perfect gas, when the temperature may be considered to depend only on
the time. In this case

P = p = (y- 1 )W)VyMl-y),

u = <t>{l)(x + h), V = ip(t){x + Kf,

,(J\ = 1 j fj\ _ <>>' + <t>2
^ (7 + 1) i W^ 2\p '
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where h is a constant. The family may be considered parameterized in terms of the
arbitrary function of time \If this solution is now to be used to generate a piston-
driven shock flow of a perfect gas in the (x, 0-space, then ip(t) and the available parameters
must be so chosen that the equation of state

and the energy equation

p = constant • p"

ITT 2 _  -  2 4_ A,.2
2^° ~ (n - 1) p + 2U

are satisfied for t = 0, x > 0 when p, p, u and UQ are evaluated from (4.5)-(4.7) and
(4.13).
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