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Zusammenfassung

Die vorliegende Dissertation behandelt die Anwendung von Methoden des überwachten
Lernens auf zwei Probleme recht unterschiedlicher Natur, die aus dem Bereich der
Neurowissenschaft sowie aus der computergestützten Bildverarbeitung stammen. Die
dabei zur Lösung von Klassifikationsproblemen eingesetzten Kernalgorithmen erlau-
ben auch die Behandlung komplexer Objekte, die nicht notwendigerweise Elemente
eines euklidischen Vektorraumes sein müssen. Im Beispiel der vorgestellten Anwen-
dungen handelt es sich dabei um Zeitreihen neuronaler Aktivität beziehungsweise um
digitale Bilder, die durch eine Ansammlung lokaler Deskriptoren beschrieben werden.
Die Flexibilität von Kernalgorithmen wird ermöglicht durch die Verwendung einer
Kernfunktion, die die Ähnlichkeit der zu behandelnden Objekte als numerischen Wert
repräsentiert. Die Herausforderung bei der Anwendung besteht nun darin, geeignete
Kernfunktionen zu finden, die die Ähnlichkeit der Objekte adäquat beschreiben und
zugleich bestimmte mathematische Anforderungen erfüllen müssen.

Der Schwerpunkt der vorliegenden Arbeit liegt auf der Entwicklung und Anpassung
von Kernfunktionen für die Dekodierung neuronaler Aktivität und für die Kategori-
sierung von Bildern; beide Themen werden in jeweils einem Teil dieser zweiteiligen
Arbeit behandelt.

Der erste Teil beschäftigt sich mit der Verwendung von Kernalgorithmen für die De-
kodierung neuronaler Aktivität. Es wird dabei versucht, aus Sequenzen von Aktions-
potenzialen, die als Antwort auf einen visuellen Stimulus gemessen wurden, wesent-
liche Attribute dieses Stimulus zu rekonstruieren. Die bisher verwendeten Methoden
der Neurowissenschaft berücksichtigen dabei meistens nur die Häufigkeit von Aktions-
potenzialen in einem bestimmten Zeitintervall, lassen jedoch die zeitliche Verteilung
dieser Ereignisse außer Acht. Mit den in dieser Arbeit zum Teil erstmals vorgestellten
Kernfunktionen wird eine weitergehende Analyse dieser so genannten “Spike Trains”
ermöglicht. Ähnlichkeit zwischen zwei Sequenzen wird nicht nur durch die Häufigkeit
der Aktionspotenziale beschrieben sondern es werden dabei auch eventuell auftreten-
de zeitliche Muster berücksichtigt. Die Funktionsfähigkeit der Kernfunktionen wird
sowohl an simulierten Daten getestet sowie auch auf echten Messungen aus einem neu-
rophysiologischen Experiment. Diese Anwendung erlaubt es wiederum Rückschlüsse
zu ziehen, inwieweit zeitliche Muster in Sequenzen von Aktionspotenzialen wirklich
bedeutsam sind für die Kodierung von Attributen visueller Stimuli im beobachteten
Organismus. In einer zweiten Anwendung wird die gleichzeitig gemessene Aktivität
mehrerer Neuronen als Grundlage für die Rekonstruktion benutzt und dabei stellt
sich heraus, dass die Präzision der verwendeten Kernalgorithmen zum Teil deutlich
höher ist als die der derzeit üblichen Methoden in der Neurowissenschaft.



Im zweiten Teil der Dissertation wird die Support Vektor Maschine als ein promi-
nenter Vertreter der Kernalgorithmen benutzt, um Objekte in Bildern zu kategori-
sieren. In der computergestützten Bildverarbeitung hat es sich erwiesen, dass dabei
eine Repräsentation der Bilder als Ansammlung von Bildteilen besonders vorteilhaft
ist. Diese Bildteile beschreiben begrenzte Regionen, die in einem vorherigen Verar-
beitungsschritt als besonders auffällig ausgewählt wurden. Um eine Kernfunktion für
diese Art von Bildrepräsentation zu definieren, wurde die geometrische Anordnung der
Bildteile vernachlässigt und zwei in der neueren Literatur vorgeschlagene Kernfunk-
tionen für Mengen kamen zur Anwendung. Die Nützlichkeit dieser Herangehensweise
wurde bei Tests auf zwei Standarddatensätzen für Objektkategorisierung überprüft,
und ein Vergleich mit anderen Methoden ergab sich durch die Teilnahme an einem
offenen Wettbewerb für visuelle Kategorisierung. Insbesondere bei der Interpretati-
on der Wettbewerbsergebnisse stellt sich heraus, dass die Verwendung von Support
Vektor Maschinen klare Vorteile in der Klassifikationsleistung ermöglicht.



Summary

In this thesis we are concerned with the application of supervised learning methods to
two problems of rather different nature – one originating from computational neuro-
science, the other one from computer vision. The kernel algorithms that will be used
allow classification of complex objects that need not to be elements of a Euclidean
vector space. For example in the applications presented below these objects are time
series of neural activity and images described by a collection of local descriptors.
The flexibility of kernel algorithms is achieved through the use of a kernel function
that specifies similarity of the objects as a numerical value. To make an applica-
tion successful, one has to find appropriate kernel functions that adequately describe
similarity and at the same time must fulfil certain mathematical requirements.

The focus of our work is the development and adaptation of kernel functions for
decoding of neural activity and for image categorisation. Each topic is treated sepa-
rately in one of the two parts of this thesis.

In part I the application of kernel algorithms for decoding of neural activity is
explored. Sequences of action potentials that were measured as response to a visual
stimulus are used to reconstruct characteristic attributes of the stimulus. Most of the
current methods in neuroscience consider only the number of action potentials in a
certain time interval and neglect the temporal distribution of these events. With the
kernel functions for neural activity that are proposed in this thesis an extended anal-
ysis of spike trains is possible. The similarity of two sequences is not only determined
by the frequency of spikes but also takes potential temporal patterns into account. An
evaluation of the kernels is performed on artificially generated data as well as on real
recordings from a neurophysiological experiment. Experiments on this second type
of data allow some conclusions about the actual importance of temporal patterns for
the encoding of stimulus attributes in the organism under consideration. In a second
set of experiments the simultaneously recorded activity of multiple neurons is taken
as a basis of reconstruction. Here the results show that the tested kernel algorithms
can perform reconstruction in most cases with a significantly higher precision than
current methods of computational neuroscience.

The second part of this thesis presents an application of support vector machines
as one prominent example of kernel algorithms to the task of object categorisation.
Computer vision research has found that it is advantageous for many problems to
represent images as a collection of image parts. These parts describe bounded regions
of the image that have been previously selected for being particularly salient. To
define a kernel function on this type of image representation, we neglected geometrical
relations among the image parts and applied two recently proposed kernel functions



for sets. The usefulness of this approach was tested on two standard data-sets for
image categorisation and was compared to other methods when taking part in an
open challenge on visual object categorisation. Results of the challenge show that
the use of support vector machines in object categorisation can provide a substantial
advantage in performance.
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1 Introduction

In this thesis we are concerned with the application of machine learning methods to
two rather distinct problems of science and engineering. In Part I different variants
of a learning algorithm are used to analyse data that was recorded in a neurophys-
iological experiment; in Part II one of the current problems in computer vision –
image categorisation – is approached with machine learning tools. A method that is
applied in both parts of the thesis is the support vector machine (SVM). After a brief
introduction into machine learning the derivation of SVMs will be presented.

We will apply methods of inductive inference. Inductive inference is reasoning from
the specific to the general. In contrast to deductive inference, where attributes of a
particular query instance are deduced from a set of general rules, inductive inference
tries to derive a general rule from given training examples that allows to correctly
characterise unknown new query cases.

Consider the inference problem of learning a function1 f : x 7→ y = f(x) from a
finite set of training examples D = {(xi, yi)}i=1...N . Here, xi ∈ X is a description
of the data-objects and yi ∈ Y are the associated target variables, whose values on
new data-points we aim to predict. For example, x could be the grey-value represen-
tation of an image and y could be a list of names of objects on this image. Suppose
further that the data is distributed according to an unknown probability distribution
(xi, yi) ∼ P (x, y). To measure the quality of a predictor f , we define the risk R[f ] as

R[f ] =

∫

dP (x, y) L(x, y, f(x)) , (1.1)

where L(x, y, f(x)) is a loss-function. The loss-function specifies the severity of a
mistake and is adapted to the particular problem setting. For instance in the example
above, not detecting an object could be penalised stronger than misclassification of
an object.

The aim of inductive learning is to find a function that minimises the risk under
a given loss function. The difficulty of this task begins with the evaluation of inte-
gral (1.1), which is impossible since P (x, y) is unknown. We can obtain an estimate
of the risk – the empirical risk – from the training set D by

Remp[f,D] =
1

|D|

∑

(xi, yi)∈D
L(xi, yi, f(xi)) . (1.2)

1In a somewhat simplified notation, we will call an induced rule or predictor a function, although
there are situations conceivable where this is not appropriate (e.g. if more than one answer is
correct).
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1 Introduction

Unfortunately, minimising this quantity directly in f does in general not lead to good
results. This effect has been observed empirically and is called over-fitting. An an-
alytical treatment of this problem and methods to handle it have been developed in
various contexts. One approach was formulated in the framework of regularisation
[Tikhonov and Arsenin, 1977], another treatment has been given by statistical learn-
ing theory [Vapnik, 1998]. The core idea is one of the important insights of inductive
learning and shall be qualitatively reviewed in the following.

Successful learning in the sense of minimising the risk (1.1) is not possible without
making prior assumptions about the functions that will be considered as explanation
of the given training data. An intuitive requirement could be formalised regarding
the smoothness of the function, otherwise function values on unseen data-points can
be totally unrelated to training examples. But even smooth functions can vary very
quickly and lack any local consistency at relevant scales (e.g. think of f(x) = sinωx
for ω →∞). Informally, if the class of possible hypotheses is rich enough to explain
any conceivable data, it is hard to identify the correct one without additional require-
ments. A more formal and general definition of these ideas has been derived in the
framework of statistical learning theory by the notion of a capacity of a function class.
The theory allows to bound the true risk (1.1) by the empirical risk (1.2) and a term
that depends on the capacity of the function class. Minimising those bounds leads to
the principle of structural risk minimisation [Vapnik, 1998]. In practise, this amounts
to choosing a function class with minimal capacity, e.g. selecting the hyperplane with
the largest margin among many possible hyperplanes that separate two data-clouds.
We will refer to this principle below when introducing the SVM algorithm.

In other areas of inductive learning different concepts are used to attack the issue of
over-fitting. In the framework of regularisation, an appropriate norm of functions is
minimised together with the empirical risk. In Bayesian inference an a priori chosen
probability distribution over functions implements a similar concept of weighting
hypotheses independently of the data.

1.1 Support vector learning

As a prominent example of kernel methods we briefly review the formulation of sup-
port vector machines (SVMs), that will mostly be used throughout this thesis. We
first give a geometric derivation of the SVM based on optimal separating hyperplanes,
that is the most intuitive approach to the algorithm and can be found in the liter-
ature [Schölkopf and Smola, 2002]. Starting with the linear version, the separable
and non-separable cases will be treated and then used to illustrate the idea of the
kernel trick. After that, we will sketch a line of arguments that leads to the support
vector algorithm in the framework of regularisation and shed a different light on the
role of kernels. More comprehensive treatments of SVMs and kernels can be found in
e.g. [Vapnik, 2000, Burges, 1998, Schölkopf and Smola, 2002] and references therein.

Let us consider a binary classification problem given by a data-set of labelled

14



1.1 Support vector learning

<w,x>+b=+1
<w,x>+b=-1

<w,x>+b=0

w

ρ =
2

‖w‖

Figure 1.1: Two-dimensional illustration of a separating hyperplane (solid line) and the as-
sociated margin-hyperplanes (dashed line). Equations for the hyperplanes are given in
canonical form and the margin is then ρ = 2

‖w‖ .

training examples D = {(xi, yi)}i=1...N , where xi ∈ X are the data-points and yi ∈
{−1,+1} are the labels. The result of the training process is a decision function
f(x) that is used as a predictor for the labels of new points y⋆ = sgn(f(x⋆)). When
considering the separable case, it is assumed that the two classes can be separated
by a hyperplane (suppose for the moment that X ⊆ R

n). Given such a hyperplane
that separates the positive from the negative examples – a separating hyperplane –
let us define the margin ρ as the shortest distance from the hyperplane to the closest
data-point. It can be shown that the capacity of the class of separating hyperplanes
decreases with increasing margin. Therefore, following Vapnik’s principle, in SVM
training the optimal separating hyperplane is computed as the one with the largest
margin of separation. In geometrical terms, it is equivalent to the perpendicular
bisector of the shortest line connecting the convex hulls of the two classes. In practise
it is the result of an optimisation problem that will be sketched briefly in the following.

Consider a situation as illustrated in Figure 1.1. Any hyperplane is specified by its
normal direction w and its offset b through the equation 〈w, x〉 + b = 0. Note that
due to the zero on the left hand side, there is a scaling freedom in w and b. Given
the direction w of a separating hyperplane and of two parallel margin-hyperplanes
going through the closest data-points on each side, a maximal margin is achieved for
separating hyperplanes that lie exactly in the middle of the two margin planes. Then
w and b can be rescaled such that the margin hyperplanes obey 〈w, x〉 + b = ±1.

15



1 Introduction

This rescaled representation is called canonical form of a separating hyperplane and
eliminates the scaling freedom. The margin of any separating hyperplane in canonical
form can now be easily computed as ρ = 2

‖w‖ . In order to find the hyperplane
that separates the classes with the maximal possible margin, we solve the following
constrained optimisation problem

minimise
w, b

1

2
‖w‖2

s.t. yi(〈w, xi〉+ b) ≥ 1, ∀ i = 1 . . .m .

(1.3)

Here, the margin is maximised while correct classification of the data-points is assured
by the constraints (recall that ρ ∼ 1/‖w‖). As the objective function is quadratic
and the constraints are linear, equation (1.3) is a convex optimisation problem.

When dealing with the non-separable case, the conditions for correct classification
are relaxed to yi(〈w, xi〉+ b) ≥ 1− ξi to allow some data-points to lie on the wrong
side of the separating hyperplane. The amount of misclassification is measured by the
slack-variables ξi ≥ 0 ∀i = 1 . . .m that define the distance of a wrongly classified
point to its margin hyperplane in canonical units. Naturally, for an optimal solution
the amount of misclassification has to be minimised together with the inverse margin.
The optimisation problem for the non-separable SVM is thus

minimise
w, b

1

2
‖w‖2 +

C

m

m∑

i=1

ξi

s.t. yi(〈w, xi〉+ b) ≥ 1− ξi and ξi ≥ 0, ∀ i = 1 . . .m .

(1.4)

Here the constant C defines the trade-off between separation with a large margin and
minimal classification error.

The global optimum of the convex problem (1.3) can be found by standard methods
of optimisation. Treatment of the non-separable case (1.4) then requires only marginal
modifications. First, the constraints are taken into account by introducing Lagrange-
multipliers αi ≥ 0 leading to the Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m∑

i=1

αi[ yi(〈w, xi〉+ b)− 1] . (1.5)

This function is minimised with respect to the primal variables w and b, and max-
imised with respect to the dual variables α. Stating the conditions for optimality
and substituting them back into equation (1.5) leads to the dual optimisation prob-
lem (1.6) that is usually solved in practise:

maximise
α

m∑

i=1

αi −
1

2

m∑

i,j=1

αiαjyiyj 〈xi, xj〉

s.t.

m∑

i=1

αiyi = 0 and αi ≥ 0, ∀i = 1 . . .m .

(1.6)

16



1.2 Kernel functions

When dealing with the non-separable case, the only modification in the dual problem
is an upper bound on αi leading to the modified constraints

m∑

i=1

αiyi = 0 and 0 ≤ αi ≤
C

m
, ∀i = 1 . . .m . (1.7)

In practise the dual problem (1.6) is solved by standard methods of convex optimi-
sation, e.g. interior point methods, or by special solvers that are designed for the
sparseness properties of SVMs such as sequential minimal optimisation [Platt, 1999].
The resulting decision function is an expansion in the data-points of the form

f(x) = sgn

(
∑

i

αiyi 〈x, xi〉+ b

)

. (1.8)

From the optimality conditions for the Lagrangian (1.5) it can be derived that αi = 0
for all data-points that are correctly classified and lie outside the margin. This
confirms the intuition that the optimal separating hyperplane is only determined by
the points close to it. The data-samples xi that appear in the expansion (1.8), i.e.
that have a αi 6= 0, are called support vectors.

1.2 Kernel functions

The linear classification algorithm described above, has been introduced for vectorial
data-points xi ∈ X = R

n whose geometrical relations like distances and scalar prod-
ucts have a meaning in the context of the problem to be solved. For several reasons,
it turns out to be very useful to map the data into a new feature space, before the
classification step. This so-called feature map Φ : x 7→ Φ(x) can be useful to turn a
not linearly separable problem into one that can be solved with a linear classifier in
feature space. Furthermore, a feature map is the first processing step when the given
data is of non-vectorial or even non-numerical nature in order to extract numerical
values that describe each data item appropriately.

To apply the support vector algorithm to this new data representation, we only
have to replace each data-point xi by Φ(xi) in the formulas for the decision func-
tion (1.8) and the dual optimisation problem (1.6) and (1.7) respectively. Inter-
estingly, the data appears only in scalar products that change from 〈x, x′〉 into
〈Φ(x), Φ(x′)〉. Thus, instead of choosing a feature mapping Φ and then comput-
ing the scalar product, it is often computationally more attractive to specify directly
the function k(x,x′) := 〈Φ(x), Φ(x′)〉. This function k(x,x′) is called kernel function
and is positive definite2 if and only if it corresponds to a valid scalar product in some
feature space. Therefore, choosing an appropriate positive definite kernel function

2k(x,x′) is a positive definite function if and only if the matrix Ki,j = k(xi,xj) is a positive definite
matrix for all choices of vectors xi. A real valued matrix K is positive definite if and only if it is
symmetric and ∀v : v

⊤
Kv ≥ 0.
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1 Introduction

amounts to implicitly working with a (possibly non-linear) data embedding but cir-
cumventing at the same time the burden of computing the explicit mapping Φ(x).
Note that this so called kernel trick not only enables the geometrically motivated
linear support vector algorithm to achieve non-linear decision boundaries in vectorial
input spaces but also allows the application to non-vectorial or non-numerical input
data. This embedding property will be of great use for later applications where the
data-objects are sequences of neural activity and images represented as sets of local
descriptors. A more intuitive interpretation of the kernel function is to look at it as
a similarity measure for the specific type of data at hand.

The dual optimisation problem for an SVM with a given kernel function that is
mostly solved in practise is:

maximise
α

m∑

i=1

αi −
1

2

m∑

i,j=1

αiαjyiyjk(xi,xj)

s.t.

m∑

i=1

αiyi = 0 and 0 ≤ αi ≤
C

m
, ∀i = 1 . . .m .

(1.9)

The SVM is not the only algorithm that benefits from the kernel trick. In fact, a
number of methods, that can be expressed in terms of scalar products of the data,
have been extended with kernels to yield new powerful applications. Among the most
prominent are kernel principal component analysis (kPCA, [Schölkopf and Smola,
2002, Chapter 14]), kernel canonical correlation analysis (kCCA, [Kuss and Graepel,
2003]), kernel Fisher discriminant (KFD, [Schölkopf and Smola, 2002, Chapter 15])
to name a few. All these methods are relatively loosely subsumed under the term
kernel methods.

Inspired by the success of SVMs and other kernel methods the development of
kernel functions for specific data types and particular applications has experienced
a boost of activity. Standard kernel functions on vector spaces are the linear kernel
klinear(x,x

′) = 〈x, x′〉, the polynomial kernel kpoly(x,x′) = (1 + 〈x, x′〉)p and the
Gaussian radial basis function (RBF) kernel krbf(x,x

′) = exp(−‖x−x′‖2/2σ2). More
advanced kernels have been developed to operate on complex structures like e.g. the
string kernel of Lodhi et al. [2002] that will be used in a modified form in Part I,
kernels on graphs [Kashima et al., 2003] or kernels on generative models [Jaakkola
and Haussler, 1999]. Kernels on sets [Kondor and Jebara, 2003, Wolf and Shashua,
2003] will be applied to images in Part II of this thesis. Endowed with such flexibility,
support vector machines have been successfully applied in many fields (see e.g. the
web-page of Guyon). In the field of computer vision, applications to handwritten digit
recognition [LeCun, 2000] and face detection [Kienzle et al., 2004] represent state of
the art algorithms.
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Part I

Kernel Methods for the Analysis of

Neural Activity





The goal of neural science is to understand the functioning of the brain and the
nervous system in humans and animals – how an organism can perceive and act,
or even think and remember. Scientists collect data about the anatomical structure
of nerve cells and nerve fibres and the physiological processes therein. They record
electrical traces of signals that are transmitted from the sensory neurons to the cortex
and others that evoke activity of the organism’s muscles. Trying to understand the
meaning of this electrical activity has lead to many questions: What information do
these signals represent? How is this information encoded in the electrical activity –
what is the code that is used for communication between distant parts of the nervous
system? How does the brain processes all that input when solving certain tasks and
how are particular strategies actually implemented by the biological building blocks
that we know?

Some of these questions can be addressed by a reconstruction analysis. Recon-
struction is trying to decode the neural signals. For example when examining the
electrical activity of sensory neurons, the goal is to reconstruct the associated vari-
able that describes the corresponding sensory modality. Equivalently, for recordings
from the motor pathway, a reconstruction analysis seeks to infer the intended action
from a neural signal. Application of different decoding methods and the interpreta-
tion of their reconstruction precision can shed light on some of the aforementioned
questions. A particular hypothesis about the neural code that is represented by a
decoding method can be tested against other hypotheses, assuming that higher re-
construction accuracy correlates with the validity of the implied code. The highest
achievable precision can then be used to derive a lower bound on the amount of
information that is conveyed by the neural signals under consideration.

In response to medical needs and backed by the increasing amount of knowledge
and technical expertise that has already been accumulated in neuroscience over the
past decades there is a growing interest in development of devices that can directly
interact with the nervous system. The engineer’s dream is to build technical systems
that can replace missing or malfunctioning parts of the human body (prostheses,
artificial sensors for hearing and vision) or to extend it beyond its natural capabil-
ities (thought controlled human-machine interaction). Possible applications include
brain-computer interfaces that can help severely handicapped people to interact with
their environment, motor-prosthetic devices as a convenient replacement for passive
prostheses or more powerful sensory enhancements like hearing aids or even artificial
eyes. The challenge is the interpretation of neural signals for the control of exter-
nal devices or the generation of neural activity patterns as a meaningful input to the
brain. The use of neural activity for control involves a reconstruction problem. When
building for example a motor-prosthetic device, the prosthesis’ control unit has to de-
code neural signals measured in the patient’s motor pathway in real time and react
upon it with high precision (see for example Wessberg et al. [2000]). Therefore, from
an engineering point of view, reliability, speed and precision of the reconstruction
step are central questions that crucially determine the overall performance.

As a consequence we consider two largely entangled, although different motivations
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for reconstruction – gaining scientific insight and engineering technical applications.
These two viewpoints can sometimes lead to diverging strategies and conclusions
when designing and analysing reconstruction experiments. We will refer to this di-
chotomy frequently throughout Part I and point out which implications follow from
the respective viewpoints.

Kernel algorithms like support vector machines and Gaussian processes are only
recently becoming an accepted tool as reconstruction methods [Shpigelman et al.,
2003, Eichhorn et al., 2004, Hung et al., 2005]. Instead, widely used standard methods
are Bayesian reconstruction [e.g. Dayan and Abbott, 2001], basis functions [Zhang
et al., 1998] or the older population vector method [Georgopoulos et al., 1986]. We
believe that kernel algorithms have some advantages in comparison to the classical
reconstruction methods that let them appear as an interesting alternative:

1. Non-Euclidean Geometry: By construction, kernel methods easily allow
the use of non-euclidean scalar products or distances in input space. Kernel
functions can be designed to reflect the notions of similarity that correspond to
a particular hypothesis of neural coding. Competing hypotheses are represented
by different kernel functions and can be tested within identical algorithms to
assess their performance. From a scientific point of view, this is the most
interesting feature of kernel methods.

2. Decoding Accuracy: Support vector classifiers have shown competitive or
superior performance in a wide range of applications when compared to other
machine learning algorithms (e.g. k-nearest neighbour or naive maximum like-
lihood estimators). We will show in the experimental section that SVMs and
Gaussian processes can outperform classical methods for reconstruction in terms
of accuracy. As the precision of decoding is one of the key interests when engi-
neering artificial neural interfaces, this feature of kernel methods is important
from an application point of view.

The application of kernel algorithms to stimulus reconstruction from neural activity
patterns will be explored in Part I of this thesis, which is structured as follows.
Chapter 2 gives a general introduction to basic concepts of neuroscience where the
reconstruction problem is described in detail and classical approaches to this problem
are explained. In Chapter 3, this task is reviewed from a machine learning perspective
and arguments for the usefulness of kernel machines in this framework are discussed.
Moreover, three kernel functions are presented that seem well suited for an application
to time series of neural activity, and the underlying assumptions about the neural code
are described. The validity of those assumptions is tested in Chapter 4 in a binary
discrimination task on data from a generative model that allows to control spike
correlations. Furthermore, the kernels are tested in a similar setting on data from
neurophysiological recordings at high temporal resolution. A more applied viewpoint
is taken in Chapter 5 where the same kernel functions are applied to the extended task
of reconstructing eight stimulus conditions from the activity of a population of twenty
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neurons. In this second set of experiments the impact of algorithmic improvements
that were introduced to increase reconstruction accuracy by the use of output space
structure is analysed. Finally, an overall discussion of the findings and directions for
further research are presented in Chapter 6.
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2 Fundamental concepts in neuroscience

The brain and the nervous system have been subject of research for centuries, but
still its structure and functioning remain a largely unresolved secret that is of central
relevance for human identity. Insights into the mechanisms and principles that govern
our perception and thinking, our reasoning and our decisions would have wide-ranging
implications not only in neurobiology and medicine. A clear understanding of the
human brain may alter drastically the way we think about ourselves as human beings,
about the nature of concepts as the free will, consciousness, responsibility, guilt and
conscience. The brain is still one of the few pieces of terra incognita in today’s
post-modern world of omnipresent scientific explanations.

In the early days of brain research, due to the lack of appropriate measurement
devices, phenomenological studies were the only means of inference about the brain
– a still relevant example is the classic of von Helmholtz [1870]. Since then, modern
science has accumulated huge amounts of data about the anatomical structure of
nerve cells and fibres, starting e.g. with Golgi [1903] and Ramón y Cajal [1894–1904],
and about the electrical activity of neurons – a field of research that was pioneered by
Adrian [1928, 1932]. Studies have been conducted in almost any part of the nervous
system and over a wide range of species including the human himself (see e.g. Engel
et al. [2005] for a recent review on invasive recordings from human brain). Below, we
present a brief summary of facts about the nervous system that are currently common
knowledge in neuroscience. General references are the books of Nicholls et al. [1992]
and Kandel et al. [2000], a lot of histological details can be found in Braitenberg and
Schüz [1998].

2.1 Brief overview of the nervous system

We here summarise a few basic facts about the nervous system of higher vertebrates,
in particular humans. This presentation is meant to provide the terminology for the
remaining chapters and does not aim at completeness in any respect.

2.1.1 Neurons

The human brain contains of the order of 1010 neurons [Braitenberg and Schüz, 1998,
Chapter 4]. Neurons are a major class of cells in the nervous system that can process
and transmit information in the form of electrical impulses. Many neurons are highly
specialised, and they differ widely in appearance (cf. Figure 2.2). A schematic sketch
is shown in Figure 2.1.
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2 Fundamental concepts in neuroscience

Figure 2.1: Schematic picture of a neuron. The cellular extensions of a neuron are called
axons and dendrites and they transmit electrical impulses between neurons and from
neurons to other cells of the nervous system. A neuron usually receives electrical impulses
through its dendrites and it transmits them to other cells via its axon. Axons end in a
special junction called synapse and are often covered with a myelin sheath.
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2.1 Brief overview of the nervous system

Figure 2.2: Drawing of different neurons stained with the Golgi method. Shape and exten-
sion of axons and dendritic tree show a considerable variation across species. (From
Rosenzweig et al. [1998].)
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2 Fundamental concepts in neuroscience

Typically, neurons have two types of cellular extensions that connect them with
other neurons and conduct electrical impulses along their excitable cell membrane.
Dendrites form a profusely branched tree of cellular extensions and are assumed to
receive signals from other cells. The axon of a neuron can be much longer than the
dendrites (up to 1000 times the diameter of the cell body), and it transmits electrical
impulses to other neurons or non-neural cells such as muscles or glands. Most types
of axons are covered by an electrically insulating myelin sheath, that increases the
speed of propagation of electrical impulses along the axon.

Between neurons, signals are transmitted through specialised junctions called synap-
ses. Here the cell membranes of the two neurons almost touch each other and form
a gap – the synaptic cleft which is about 20 nm wide. Synapses are asymmetric both
in structure and in how they operate. Only the so-called pre-synaptic neuron se-
cretes neurotransmitters, which bind to receptors facing into the synapse from the
post-synaptic cell. The pre-synaptic nerve terminal generally buds from the tip of
an axon, while the post-synaptic target surface typically appears on a dendrite or
a cell body. A pre-synaptic excitation induces an increase in the potential of the
post-synaptic neuron in the case of an excitatory synapse or it reduces the post-
synaptic potential when transmitted over an inhibitory synapse. Chemical synapses
allow the neurons of the central nervous system to form interconnected neural cir-
cuits. On average, a neuron in human brain has between 105 and 106 synapses that
connect it with up to five thousand other neurons (cf. Braitenberg and Schüz [1998],
Chapters 34 and 35).

2.1.2 Neural activity

Axons and dendrites transmit electrical signals that form the basis of communication
in the nervous system. These signals consist of potential changes produced by elec-
trical currents flowing across the cell membranes. Currents are carried by ions such
as sodium, potassium, and chloride. Neurons use two types of signals: localised po-
tentials and action potentials. The localised, graded potentials can spread only short
distances which are usually limited to 1 or 2 millimetres. They play an essential
role at special regions, such as sensory nerve endings (where they are called receptor
potentials) or at junctions between cells (where they are called synaptic potentials).
Localised potentials enable individual cells to perform their integrative functions and
to initiate action potentials. The action potentials are regenerative pulses that are
conducted rapidly over long distances in the nervous system without attenuation.

Neural activity data is acquired by measuring the voltage (in orders of mV) at the
tip of a micro-electrode against body liquid in the surrounding region (cf. Figure 2.3).
The micro-electrode is placed inside the cell body of a neuron (intra-cellular record-
ing) or close to it (extra-cellular recording). When recording extra-cellular neural
activity in regions of high nerve cell density, typically the electrode picks up impulses
from more than one neuron in the vicinity of its tip. The goal of spike sorting is to
identify action potentials originating from different neurons and to correctly assign
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2.1 Brief overview of the nervous system

Figure 2.3: Left: Schematic picture of extracellular recording with a microelectrode. The
electric potential in the vicinity of one or several neurons is measured against the sur-
rounding body liquid. Right: Sketch of the tip of a so-called tetrode, a special type of
micro-electrode that allows simultaneous recording at four spatially proximate points
with distances of circa 10− 40µm (indicated by the grey areas).

them to their corresponding sources. An experimental improvement that facilitates
this task considerably is the use of tetrodes for recording. A tetrode is four micro-
electrodes in one, i.e. it can record the voltage at four spatially separated points on
its tip that have fixed distances of 10 − 40µm (cf. Figure 2.3, at the right). When
recording with tetrodes, slight differences in amplitude and shape of the waveforms
in the four channels allow a more robust assignment of spike events to distinguishable
sources. Using this and other techniques, modern neurophysiology allows simultane-
ous recordings from more than hundred neurons at a time (an example is the work of
Gray et al. [1995], it also contains additional details on tetrodes and spike sorting).

Time series of electrical activity of a single neuron contain variations at several char-
acteristic frequencies. After filtering the signal through a high-pass filter, a sequence
of stereotypical waveforms is obtained that have a width of about one millisecond
(cf. Figure 2.4). These are the action potentials or spikes, and their shape and du-
ration are virtually identical within an organism and across species. Due to their
stereotypical nature, it is commonly believed that most of the information in spiking
activity is contained in the times of occurrence of action potentials and not in the
exact shape of the individual waveform. Therefore a time series of voltage recordings
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Figure 2.4: Example of extracellular recordings. The upper panel shows an idealised plot of a
sequence of action potentials. Straight lines between waveforms indicate that variations
at low frequencies and below a certain threshold are ignored. At the level of abstraction
assumed for further analysis, each action potential is considered as a binary event (as
indicated in the lower panel). The data was recorded in one channel of a tetrode in
primary visual cortex (V1) of a behaving macaque (see Section 2.2.1).

can be abstracted as a sequence of binary events. The electrophysiological process in
a nerve cell that produces action potentials requires for every neuron a short period
of regeneration immediately after the emission of a spike, during which it is much
harder to evoke another action potential. This resting time is called refractory period
and is of order of 1− 2 ms. As a consequence, the time between consecutive spikes in
single-cell recordings is never much shorter than the refractory period.

In our work we will consider only the high-frequency action potentials for further
analysis, although there are indications that slower varying components, so-called
local field potentials, can also contain information (see e.g. Bullock [1997], Heeger and
Ress [2002, p. 146] or Logothetis and Wandell [2004, p. 744]).

2.2 From stimulus to neural response – principles of

encoding

In this section we present widely accepted knowledge about neural coding. For more
details see e.g. the books of Rieke et al. [1997], Dayan and Abbott [2001] or Gerstner
and Kistler [2002].

Two major tasks of the nervous system are the collection and processing of sensory
information and the control of the muscular system via motor commands. According
to these functions, nerve cells and fibres are structured in a so-called sensory pathway
and in a motor pathway. Information about external stimuli is processed and trans-
mitted by neurons along the sensory pathway, starting with sensory neurons (e.g. in
the skin or in the retina) and continuing in lower and higher areas of the cortex.
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2.2 From stimulus to neural response – principles of encoding

Figure 2.5: Schematic view of the visual pathway. Nerve fibres from both eyes cross at the
optic chiasm and are re-grouped according to whether they transmit signals from the
left or the right part of the visual field. (After Goldstein [1996].)

Neurons and nerves of the sensory pathway can be further subdivided with respect
to the sensory modality they are associated with. The connection patterns that were
found in the nervous system allow a clear distinction into visual pathway, auditory
pathway, olfactory pathway etc. Each of these sensory pathways consists of several
stations of processing. Also later stations of the pathway in the cortex – the so-called
lower and higher areas – are spatially separated regions, that can be assigned to the
type of sensory input they receive, i.e. there is a visual cortex, an auditory cortex etc.

Let us consider the visual pathway in more detail (see Figure 2.5). The photore-
ceptor cells of the retina transform light into neural signals that undergo further
processing by other neurons of the retina. These signals are sent to the lateral genic-
ulate nucleus (LGN), that is the next major processor of visual information. The
LGN sends projections directly to the primary visual cortex (V1) and in addition
receives many strong feedback connections from there. V1 is the earliest cortical vi-
sual area. It is highly specialised for processing information about static and moving
objects and seems to play a major role in pattern recognition.

Neurons in the visual cortex fire action potentials when visual stimuli appear within
their receptive field. A receptive field is a small region within the entire visual field.
Any given neuron only responds to a subset of stimuli within its receptive field. This
property is called tuning. In a series of classic experiments, Hubel and Wiesel [1968]
could classify nerve cells in V1 into simple cells and complex cells, according to the
types of stimuli these cells respond to. Both types of cells require a specific field-axis
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2 Fundamental concepts in neuroscience

orientation of a dark-light boundary and do not respond to diffuse illumination of the
entire receptive field. In contrast to simple cells, the demand for precise positioning of
the stimulus inside the receptive field is relaxed in complex cells. The meaning of the
signals arising from complex cells, therefore, differs significantly from that of simple
cells. The simple cell localises an oriented bar of light to a particular position within
the receptive field, while the complex cell signals the abstract concept of orientation
without strict reference to position.

Although the activity in higher areas in visual cortex can be related to more com-
plex types of stimuli, processing at this stage is in general not yet well understood.

2.2.1 A neurophysiological experiment

When setting up an experiment, neurophysiologists try to control the attributes of
a stimulus that are correlated with the activity of neurons under investigation; or
vice versa, they try to find neurons whose variability in activity correlates with the
variability in the presented stimuli.

Consider visual stimuli and let s(t) describe the time-dependent stimulus attribute
that is relevant for a recorded neuron, i.e. that correlates with its activity. For
example, for complex cells in V1, one relevant stimulus attribute is the orientation of
a dark-light boundary in their receptive field. Neurons in other areas might respond
to more complex stimuli, hence their activity depends on more complex attributes.
An example are H1-neurons in fly whose activity is related to the velocity of vertical
bars moving across their receptive field, or other neurons in higher visual areas of
monkey that are tuned to a predominant direction of movement of random dots.

Note that there is a difference between stimuli where the attribute s(t) varies during
presentation and stimuli with constant attributes, and that this difference does not
necessarily coincide with the division into static and dynamic stimuli. A dynamic
stimulus can still appear as a constant attribute to the corresponding neuron whose
activity is recorded, e.g. moving vertical bars with a constant velocity appear as a
constant stimulus to a fly’s H1-neuron. Thus, this distinction of stimuli depends
on the type of neurons under consideration. During a neurophysiological experiment,
stimulus attributes are varied – continuously over time or from trial to trial for stimuli
with constant attributes – and the activity of neurons is recorded as a time-series a(t).

As an example we describe an experiment that was conducted in the neurophysiol-
ogy department of the Max Planck Institute for Biological Cybernetics, Tübingen by
Andreas Tolias and coworkers (Dept. Logothetis). The recorded data-set of spiking
activity stems from a population of twenty simultaneously recorded complex cells
in primary visual cortex (V1) of a behaving macaque (Macaca Mulatta). It will be
analysed in more detail in Chapters 4 and 5. All experiments were conducted in full
compliance with the guidelines of the European Community (EUVD/86/609/EEC)
for the care and use of laboratory animals and were approved by the local authorities
(Regierungspräsidium).

The animal’s task was to fixate a small square spot on the monitor while gratings
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Angle = 0.0 o Angle = 22.5 o Angle = 45.0 o Angle = 67.5 o

Angle = 90.0 o Angle = 112.5 o Angle = 135.0 o Angle = 157.5 o

Figure 2.6: Sine wave gratings in eight different orientations that were presented as visual
stimuli in the neurophysiological experiment described in the text. The contrast level of
the patterns is at 30% (named ’high contrast’ in the text).

of eight different orientations (0 o, 22 o, 45 o, 67 o, 90 o, 112 o, 135 o, 158 o) and two
contrasts (2 % and 30 %) were presented (see Figure 2.6). The stimuli were positioned
on the screen so as to cover the classical receptive fields of the neurons. A single
stimulus of fixed orientation and contrast was presented for a period of 500 ms, i.e.
during the epoch of a single behavioural trial. All eight stimuli appeared 30 times
each and in random order, resulting in 240 observed trials for each contrast condition.
Recordings were performed extra-cellularly using tetrodes inserted in the specified
region of the animal’s cortex. Spike waveforms were sampled at 32 kHz, then high-
pass filtered, thresholded and time-stamped. Signals from different neurons recorded
by the same tetrode are separated afterwards during spike-sorting.

Figure 2.7 shows a subset of the resulting spike sequences of a particularly active
neuron, called neuron no. 7. In the upper panel, 30 trials of 800 ms of recorded activity
are shown for two stimulus conditions; in the lower panel, the 500 ms time window of
stimulus presentation is indicated.

When comparing the neural responses of neuron 7 for the two stimulus conditions,
one can observe two features that are characteristic for neural coding. First, the
difference between the two conditions in the number of spikes in a sequence during
stimulus presentation is larger than the variance of this quantity over spike sequences
of a fixed condition. Second, in the time window between 250 ms and 400 ms the
temporal distribution of spikes exhibits a typical pattern that is different for the two
stimulus conditions and repeatedly appears in almost all trials. The observations
of such features lead to the formulation of two principles of neural coding, namely
rate coding and temporal or correlation coding. In rate coding, spikes are assumed
to be independent and only their frequency is related to the stimulus attributes. In

33



2 Fundamental concepts in neuroscience

15
7.

5o    
an

d 
  1

35
o

Activity of Neuron 7

10

20

30

10

20

30

0 100 200 300 400 500 600 700 800
Time in ms

S
tim

ul
us

Figure 2.7: Neural activity of a complex cell in macaque primary visual cortex. For two ori-
entation angles of a visual stimulus, recorded spike sequences of 800 ms from 30 trials are
shown (see text for details). The bottom panel indicates stimulus on- and offset. Com-
paring the differences of spike sequences between the two stimulus conditions illustrates
the concepts of rate coding and temporal coding.

contrast, in temporal and correlation codes the timing of spikes, relative to stimulus
timing (e.g. stimulus onset) or relative to other spikes, conveys information.

Before these concepts are explained in more detail in the next sections, we need
to define some notation and briefly comment on the way neural data is represented
numerically.

2.2.2 Data representation of neural activity

Single neuron data Let a(t) be the analog voltage signal representing the activity
of a single neuron over time. Through filtering and thresholding spike events are
extracted from this signal and can be represented as a set t := {ti} of times ti
at which a spike occurred. The cardinality of that set |t| is the total number of
spikes in the sequence. The set t contains all the information we consider for further
analysis. In practise however, we will not work with this representation of spike
events as absolute times, but prefer a row vector v = (v1, v2, . . . , vNb

) of Nb bins of
spike counts, binned at different temporal resolutions. Each component vj indicates
the number of spikes in an interval [(j − 1) ∆t, j∆t[ of length ∆t. The temporal
resolution or bin-width ∆t of this representation determines at what precision the
temporal position of spikes can be resolved. Under the assumption that no neural
code requires a temporal precision higher than the width of a spike waveform (1 ms),
a bin-size of ∆t = 1 ms is the highest meaningful resolution and smaller bin-sizes do
not add information.

To get a representation that is comparable for different bin-widths, firing rates
are used instead of spike counts. The firing rate rj in an interval [(j − 1) ∆t, j∆t[
is the spike count divided by the interval length: rj = vj /∆t. We will refer to
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2.2 From stimulus to neural response – principles of encoding

the mean firing rate or average firing rate of a sequence t as the total number of
spikes in this sequence divided by the recording time T : r = |t| / T =

∑Nb

j=1 vj / T .
Thus, a sequence of spikes can be equally represented as vector of spike counts v =
(v1, v2, . . . , vNb

) or a vector of firing rates r = (r1, r2, . . . , rNb
), or it is summarised

by a single number r. Data from multiple trials will be indexed with an upper index
i = 1 . . . Ntr as v(i), r(i) or r(i).

Multiple neurons When analysing a population of neurons, often their neural ac-
tivity in a certain time interval is considered, and called activation state of that
population. We denote the activation state of Nn neurons as a column vector of
spike-counts vj = (v1

j , v
2
j , . . . , v

Nn

j )⊤. Thus, a sequence of Nb activation states of
Nn neurons is denoted as a matrix

v =








v1
1 . . . v1

Nb

v2
1 . . . v2

Nb

...
...

vNn

1 . . . vNn

Nb








. (2.1)

Identical notation applies to firing rates r, and multiple trials are again indexed with

an upper index (i) which leads to the notation scheme: v
neuron, (trial)
bin . If necessary,

the meaning of bold symbols will be specified explicitly to avoid ambiguities.
When analysing recordings of a neurophysiological experiment, often the stimulus-

response pairs of each trial are summarised in a data-set D =
{

(v(i), s(i))
}

or D =
{

(r(i), s(i))
}

where s(i) denotes the stimulus attributes.

2.2.3 Rate coding

From neurophysiological experiments we know the stimulus attributes that induce
activity of a particular neuron. In rate coding, the relation between stimulus and
activity of a neuron is quantified more precisely in mathematical terms with the
notion of a tuning function.

2.2.3.1 Tuning function of a single neuron

Adrian [1928] was the first scientist who measured action potentials of single cells and
he extensively studied the relation between attributes of a stimulus and the induced
neural activity in early sensory pathway. He established the concept of a rate code,
i.e. that the number of spikes per unit time – the firing rate – encodes the stimulus
attribute. For example, he found that for haptic stimuli the stimulus intensity, the
pressure applied, is proportional to the firing rate of the stimulated sensory neurons.
Encoding of stimulus attributes by firing rate can be found in many parts of the
nervous system and also applies to complex cells in primary visual cortex.

Figure 2.8 shows mean firing rates of complex cell no. 7 that was recorded in the
neurophysiological experiment described in Section 2.2.1 above (see also Figure 2.7).
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Figure 2.8: Tuning function of complex cell no. 7 (see text for details). Crosses indicate mean
firing rates for all eight stimulus conditions averaged over trials. The solid line is a cosine
tuning function of the form (2.3) fitted to the data.

The plot shows the cell’s mean firing rate averaged over 30 trials for all eight stimulus
conditions. Typically, complex cells are tuned to a specific orientation, i.e. they are
maximally active when dark-light boundaries with this orientation appear in their
receptive field. As one can approximately infer from Figure 2.8, neuron no. 7 is tuned
to an orientation somewhere between 100 o and 145 o.

The exact relation between a stimulus attribute s and a neurons firing rate is
described by the tuning function λ(s). This function is determined from the recorded
data for each neuron individually, and it contains all information of a rate code.
In most cases a tuning function λ(s) is either represented as an analytic function
λθ(s) depending on parameters θ or as a vector of numeric values in a discretized
stimulus space. We call the first type a parametric tuning function. The values of its
parameters are estimated by a least squared error fit of the parametric family λθ to
the data-set of recorded activity D =

{
(r(i), s(i))

}

θ⋆ = argmin
θ

Ntr∑

i=1

∣
∣
∣λθ(s(i))− r(i)

∣
∣
∣

2
. (2.2)

For orientation sensitive complex cells like neuron no. 7, a cosine function of the form

λθ(s) = θ0 + θ1 cos

(
s− θ2
θ3

)

(2.3)

is most commonly assumed. The second type of representation is called empirical
tuning function and is often used in a discrimination setting where the set of possible
stimulus attribute values is discrete: s ∈ {S1, S2, . . . , SNC

}. Each component λ(Sk)
of an empirical tuning function is simply the mean firing rate averaged over all trials

36



2.2 From stimulus to neural response – principles of encoding

with a fixed stimulus condition Sk

λ(Sk) =
1

N(Sk)

∑

i : s(i)=Sk

r(i) . (2.4)

In both cases, we will refer to values of a tuning function as λ(s), may it be a numer-
ical entry of an empirical tuning function or the evaluation of a parametric tuning
function. In the example in Figure 2.8, the crosses represent an eight-dimensional
empirical tuning function and the solid line is a parametric tuning function of the
form (2.3).

2.2.3.2 Population coding

Although some types of stimuli can be reconstructed fairly precisely from the activity
of a single nerve cell, the nervous system of most highly developed organisms uses
large numbers of neurons to represent information. This operating principle is named
population coding and entails several advantages, including a reduction of uncertainty
due to neural variability and the ability to represent stimulus attributes over a wider
range with high precision. Individual neurons in a population typically have different
but overlapping selectivities and sensitivities, so that many neurons respond to a
given stimulus at the same time. More details about population coding can be found
in the book of Dayan and Abbott [2001, Chapter 4] or in a recent review by [Averbeck
et al., 2006].

2.2.4 Beyond rate coding – temporal codes and correlation codes

Since the pioneering work of Adrian [1928, 1932] the concept of rate coding has been
widely adopted and many experimental results were interpreted under the assumption
that information is encoded exclusively in the mean firing rate of a spike sequence.
However, experimental results also indicate the relevance of other coding principles in
certain parts of the nervous system. In particular in the last fifteen years, neurosci-
entists have concentrated much more on the role of individual spikes and spike times,
inter-spike intervals and correlations of spikes in a sequence, or correlations among a
population of neurons. Because timing of individual spikes plays an important role
in these types of coding, they are called temporal codes. Other codes that depend
on coincident spike events or more generally on the relative temporal positions of
spikes are named correlation codes. Whether temporal or correlation coding plays
an important role in human or animal brain is the topic of a still ongoing and very
active debate. Without taking a serious standpoint nor aiming at completeness, we
would like to point out a few facts that support the existence of such codes:

1. Temporal structure in neural activity is visible. In many parts of the nervous
system scientists have recorded spike patterns of high regularity and repro-
ducibility. Often, a correlation between pattern and stimulus condition could
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be established. One of many examples are recordings in the olfactory system
of locust that was extensively studied by Laurent [2002]. Temporal structure is
also apparent in the data-set shown in Figure 2.7. Clearly in the time window
between 250 ms and 400 ms there is a structure in spike times that is stable over
trials in one class and varies with the stimulus condition.

2. Reaction times have been measured in psychophysical experiments for different
types of tasks. They indicate that based on the physiological limits of nerve
cells, only very few spikes (one or two) could have been transmitted from one
layer to the next along the sensory and motor pathway to eventually evoke
the desired action [Thorpe et al., 1996] (see also e.g. VanRullen et al. [2005],
Johansson and Birznieks [2004]). To estimate a firing rate, at least two spikes
are needed, and reliable estimates require averaging over a substantial time
window or a population of many neurons. Such short reaction times do not
allow for precise estimation of firing rates – but still behavioural studies show
that humans can reproducibly perform precise actions very quickly. This is a
strong indication, that information about sensory input cannot only be encoded
in firing rates of single neurons alone.

3. Discrimination experiments on spike-data recorded in fly’s H1-neuron show that
the discriminability of two conditions increases significantly when a distribution
of temporal spike patterns is taken into account, compared to the discriminabil-
ity that can be achieved from spike count distributions alone (see Rieke et al.
[1997, Figure 4.22]).

2.3 Reconstruction – decoding of neural activity

2.3.1 Motivation

In the previous sections we exemplified on the visual system how neurons in sensory
pathway respond to particular stimuli. Their responses, the neural signals, are sym-
bols that do not resemble in any way the external world they represent. When we see,
not the pattern of light intensity that falls on our retina is transmitted, but millions
of spike sequences reach the brain through our optic nerve. When we hear, not the
acoustic waveforms are processed by the brain, but patterns of spikes from roughly
thirty thousand auditory nerve fibres. All the myriad tasks our brains perform in
the processing of incoming sensory signals are based on these sequences of spikes. In
order to act on the results of these computations, the brain sends out sequences of
spikes to the motor neurons. Spike sequences are the language in which the brain
receives sensory input, the language the brain uses for its internal operations, and
the language of the commands that are sent out to the organism. An essential task of
computational neuroscience is to understand this language, to decode the significance
of spike sequences, and after all to test if this linguistic analogy is at all helpful.
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Figure 2.9: Schematic diagram of a reconstruction analysis for the example of complex cells
in primary visual cortex. The stimulus angle is reconstructed from the preprocessed
neural activity of each trial and compared to the true attributes of the stimulus shown.

What does it mean to understand the neural code? Historically one fallacy was
the idea of a little homunculus sitting inside the head. He takes the perspective of
the brain and tries to solve the tasks that usually the brain is confronted with. The
little man observes a continuous influx of myriads of spike trains that are collected
by the sensory neurons. From this he forms the percepts of the world and finally acts
upon it. Although this viewpoint is problematic in the sense that thereby one can
never get to the true essence of what it means to perceive and experience the world,
it still provides a useful concept when analysing neural activity. We as observers are
inevitably in the situation of a homunculus when we measure neural activity at some
point of the nervous system and try to understand what these signals could mean to
the organism. In this sense understanding the neural code means to be able to act
as an imagined homunculus.

A reconstruction analysis is one step in the technical realisation of this programme.
The aim of reconstruction is to infer the stimulus attributes from the neural response
that was recorded at some point in the sensory pathway. Although in the thesis at
hand only reconstruction in sensory pathway is considered, the same analysis can be
applied to neurons of the motor pathway, where attributes of motor actions are the
target values for reconstruction.

For the example of static visual stimuli the reconstruction process is illustrated
schematically in Figure 2.9. In a neurophysiological experiment, visual stimuli with
varying attributes are presented to an organism in a set of trials, and neural activity of
the responding nerve cells is recorded. After preprocessing, a reconstruction method
is used to infer the stimulus attributes in each trial srec from the recorded spike
sequences. When comparing srec with the true value strue, which is known from the
experimental conditions, the difference between the two provides an estimate for the
quality of the applied reconstruction method.

Two kinds of conclusions can be drawn from such a setup. First, under the as-
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sumption that methods based on valid hypotheses about neural coding achieve higher
accuracy than other methods that do not capture essential features of the code, re-
construction allows testing of neural coding paradigms. The quality of a particular
method directly relates to the hypotheses it implements, and wrong hypotheses should
on average achieve worse results. Second, the highest achievable reconstruction ac-
curacy indirectly provides a lower bound on the amount of information about the
stimulus that is conveyed by a spike sequence. If a method can perfectly reconstruct
the stimulus from neural signals, it implies that all information about the recon-
structed attributes must be contained in the data at hand. However, only a lower
bound on this information is obtainable since any reconstruction method might be
suboptimal.

2.3.2 Methods

As implicitly mentioned above, the choice of a reconstruction method depends on the
assumptions about neural coding that one is willing to make. We give a brief overview
of classical approaches to reconstruction that, like most of the standard methods, rely
exclusively on rate coding, i.e. they assume that a neuron’s tuning function contains
all relevant information. The two methods for population decoding and the Bayesian
reconstruction method will be applied in Chapter 5.

2.3.2.1 Single neurons

To reconstruct a stimulus attribute srec from the given firing rate r̂ of a single nerve
cell, the most direct approach would be to search for the stimulus value where the
tuning function is closest to r̂

srec = argmin
s

|r̂ − λ(s)|2 . (2.5)

For parametric tuning functions this minimum is found by analytic measures, for
empirical tuning functions an exhaustive search over the stimulus space yields the
answer.

2.3.2.2 Population decoding

When decoding the activity of neuronal populations the question arises how to op-
timally combine information that is distributed over many neurons. Although here
as well, almost all approaches assume rate coding for the individual neurons, addi-
tional difficulties come from possible interactions of neuronal firing and so-called noise
correlations (a recent review on these issues was given by Averbeck et al. [2006]).

We restrict our presentation to approaches that assume independent neurons and
neglect any interactions among multiple neurons. In this case the individual tuning
functions can be concatenated to a population tuning function as

λ(s) =
(
λ1(s), λ2(s), . . . , λNn(s)

)⊤
. (2.6)
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Let D =
{

(r(i), s(i))
}

i=1...Ntr
be the data-set of recordings from Ntr trials and Nn

neurons. The elements r(i) represent (Nn×1)-matrices, i.e. column vectors of average
firing rates as introduced with the notation in Section 2.2.2.

Vector methods Vector methods were invented to reconstruct directional or posi-
tional attributes of a stimulus, e.g. for reconstruction of wind directions from neural
activity in the cercal system of cricket [Theunissen and Miller, 1991] or to infer po-
sition information from hippocampal place cells in rats [Zhang et al., 1998]. One of
the first methods to reconstruct directions from multiple neurons was presented by
Georgopoulos et al. [1986] under the name population vector. In the original work the
authors could discriminate between eight different movement directions in 3D-space
from recordings in primary motor cortex (M1) of a rhesus monkey.

The population vector approach assumes that each neuron has a corresponding
preferred direction

s
(n)
pref = argmax

s
λn(s) (2.7)

where the tuning function achieves its maximum. Here we used a bold symbol for
the stimulus attribute s to emphasise its vectorial nature. The preferred directions of
neurons are assumed to be equally distributed among the population. To reconstruct
the stimulus vector spop.vect from a given activation state of a population r̂, each
neuron’s preferred direction is weighted by its activity relative to its maximum firing
rate rmax

n and the vector sum gives the result

spop.vect =

N∑

n=1

r̂n
rmax
n

s
(n)
pref . (2.8)

Note, that when inferring positions rather than directions the length of the vector spref

is crucial for reconstruction precision, whereas for inference of directions a neuron’s
preferred direction is usually normalised to |spref| = 1.

Template matching The idea of template matching is very intuitive. To reconstruct
a stimulus attribute stemplate from an activation state vector r̂, the stimulus that
created the best matching activity pattern is selected from the estimated tuning
functions

stemplate = argmax
s

〈r̂, λ(s)〉 . (2.9)

In machine learning terminology this approach would correspond to a nearest neigh-
bour classifier. It seems to work best in discrimination settings where the set of
stimulus attributes s ∈ {S1, S2, . . . , SNc} is limited, and reconstruction has to choose
one of the Nc possible outcomes.
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2.3.2.3 Bayesian reconstruction

When looking at examples of neural recordings (e.g. Figure 2.7) one can generally
observe a certain amount of variance among the activity patterns. A part of this
variance can be explained by an encoding model relating some properties of spike
sequences, as e.g. their mean firing rate, to the variability of stimulus attributes. The
remaining variance inside a class of neural responses belonging to identical stimuli
that cannot be explained by an encoding model is called noise.

The origins of this unexplained variance can be manifold. It could be due to some
hidden variables that are not controlled during the experiment, as for example cortical
input from other cells to the measured neurons. Noise can also be induced by errors
in the elaborate measurement process, e.g. during thresholding or spike sorting, or it
could be due to physiological processes in the nerve cell that are of chaotic or truly
random nature. In any case, this variability suggests a stochastic description of the
encoding process, the translation of stimuli into spike sequences. During reconstruc-
tion the inverse problem of decoding spike sequences and inferring the corresponding
stimulus attribute has to be solved. In the following we will show how these two
questions are related by the rules of probability and give a brief introduction into
what is commonly referred to as Bayesian reconstruction.

Again, the stimulus attribute is denoted with s and the set of event-times that
represent the corresponding spike sequence is abbreviated with t. A stochastic de-
coding model would be expressed as the conditional probability distribution p(s|t),
the probability that stimulus s was shown given that the sequence t was recorded
(sometimes also called the response-conditional ensemble [Rieke et al., 1997]). The
encoding model is a probabilistic model p(t|s) that specifies the probability of a cer-
tain spike sequence t to be generated as response to a stimulus with the attribute s.
The decoding model is related with the encoding model via Bayes rule:

p(s|t) =
p(t|s) · p(s)

p(t)
. (2.10)

In the context of Bayesian inference the probability p(s|t) is named the posterior dis-
tribution, p(t|s) is the likelihood, p(s) is the prior distribution over stimulus attributes
and p(t) is the evidence or marginal likelihood. To be able to compute the posterior,
i.e. to get the decoder and do reconstruction, we have to make assumptions about
the encoding process, i.e. we have to specify the likelihood p(t|s) and we have to know
the prior distribution over stimuli p(s). In experimental situations with artificial
stimuli often the prior p(s) is chosen as the relative frequency of presented stimuli,
and the focus of research lies on the encoding model p(t|s).1 Note that it is not nec-

1However, a living organism in a real world scenario, where stimuli are not controlled and thus not of
highly reduced variability as in the experiments, is not in this comfortable situation. Considering
for example the visual system, stimuli are distributed according to natural image statistics, i.e.
the characteristics of images that appear regularly in the organism’s habitat. Knowledge about
the prior distribution of visual input p(s) can be a crucial part of a fast and accurate vision system
and therefore knowledge about natural image statistics is generally of high interest.
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essary to specify explicitly the marginal likelihood p(t). It can be determined as the
normalising constant of the nominator of Equation (2.10): p(t) =

∫
ds p(t|s) p(s).

Suppose we had complete knowledge about the likelihood function p(t|s) and the
prior p(s) for a particular organism in a particular experiment. Hence, to infer some-
thing about the stimulus from a particular spike-sequence t̂ we compute the posterior
p(s|̂t) that contains everything we can possibly know about the decoding process. A
homunculus that was forced to act upon sensory input could use this probability dis-
tribution to minimise the risk R(ŝ, t̂) of a decision that assumes the spike-generating
stimulus attribute to be ŝ based on a given loss-function L(s, s′)

R(ŝ, t̂) =

∫

ds p(s|̂t)L(s, ŝ) . (2.11)

For example, when assuming the mean squared error as loss-function L(s, s′) =
|s− s′|2, the mean of the distribution s̄ is the optimal point estimate

s̄ = E [s] =

∫

ds p(s|̂t) s = argmin
s′

∫

ds p(s|̂t)
∣
∣s− s′

∣
∣2 . (2.12)

Another choice of interest is the most probable value for the stimulus attribute, i.e.
the value of s where the posterior distribution p(s|̂t) is maximal. This point estimate
is commonly referred to as maximum a posteriori (MAP) estimate. If the prior
distribution p(s) in Bayes’ formula (2.10) is non-informative, i.e. it does not depend
on the value of s, we can neglect p(s) and the normalising denominator, and the
posterior is proportional to the likelihood: p(s|̂t) ∝ p(̂t|s). In this case the most
probable value is called maximum likelihood (ML) estimate of s.

The encoding model All assumptions and knowledge about the structure of the
neural code enter through the likelihood function p(t|s). Its functional form and
its parameters fully describe the encoding process. To illustrate the machinery of
Bayesian reconstruction, we will assume simple rate coding. It relies on the assump-
tion of independent spikes, i.e. the probability of a spike at time t is independent of
all other spikes at times other than t and is uniquely determined by a global firing
rate λ. A random process with such properties is called Poisson-process. The number
of spikes N in a sequence of unit length generated by a Poisson-process is distributed
according to a Poisson-distribution with rate λ

p(N) = Poisson (N ; λ) =
λN

N !
exp(−λ) . (2.13)

The average mean firing rate of such sequences is λ. For a rate code the relation
between the stimulus attribute and the mean firing rate is fully specified by the
tuning function λ(s). We will assume a parametric tuning function λθ(s) and show
later how its parameters θ can be inferred from a data-set D =

{
(r(i), s(i))

}
by

using Bayes’ formula once more. Our knowledge about the parameters is represented
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in a probabilistic manner by the posterior p(θ|D). In a fully Bayesian treatment
the likelihood is an integral over all possible parameter values weighted with their
respective probability

p(t|s) =

∫

dθ p(t|s, θ) p(θ|D)

=

∫

dθ Poisson (|t|; λθ(s)) p(θ|D) .

(2.14)

For the sake of simplicity in practical applications the integral in Equation (2.14) is
often replaced by a MAP or ML point estimate of the parameter values

p(t|s) = p(t|s, θ̃) with θ̃ = θMAP or θ̃ = θML

where
θMAP = argmax

θ

p(θ|D) and θML = argmax
θ

p(D|θ) .

The posterior distribution of the parameters p(θ|D) is inferred from the data-set by
applying Bayes rule again

p(θ|D) =
p(D|θ) p(θ)

p(D)

where p(D|θ) is the likelihood function for the whole data-set D given the parame-
ter values θ. Under the reasonable assumption that all trials are independent this
expression factorises into a product of Poisson-distributions

p(D|θ) =

Ntr∏

i=1

p(t(i)|θ, s(i))

=

Ntr∏

i=1

Poisson
(

|t(i)|; λθ(s(i))
)

.

(2.15)

Any assumptions about the parameters can be put into the prior distribution over
parameters p(θ), for example a sensible range for the inverse frequencies θ3 of the
cosine ansatz (2.3).
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The main contribution in Part I of this thesis is the exploration of kernel methods
for stimulus reconstruction from neural activity. In this chapter we will explain why
reconstruction can be seen as a learning problem and why it is attractive to solve
this task with kernel methods. We will introduce three kernel functions that seem
particularly well suited for sequences of neural activity patterns and point out the
associated hypotheses about the neural codes they are likely to detect.

3.1 Reconstruction as a learning problem

In reconstruction of sensory information, one tries to establish a relation between an
attribute s of a stimulus and the associated neural activity t that was measured while
the stimulus was presented. In almost all methods, some properties of the neural pop-
ulation have to be estimated before the method can be used for reconstruction. For
example the neuron’s tuning function or its preferred direction (cf. Section 2.3.2) are
estimated from the data by using some of the measured (t(i), s(i))-pairs. Furthermore,
the reconstruction model is determined by other design decisions, e.g. the choice of
a parametric family for the tuning function (like Equation (2.3)) or the choice of the
model class itself (e.g. linear models).

From a machine learning perspective, all these steps can be identified with concepts
of inductive learning. The estimation of neuron properties is the training phase of a
learning algorithm. Choosing a model class or a particular type of tuning function
restricts the richness of functions that can be implemented by the reconstruction
method, and this can be viewed as a regularisation step. Moreover, Bayesian recon-
struction (see Section 2.3.2) is in itself a framework for inductive learning and these
concepts have their natural correspondence in Bayesian inference (e.g. regularisation
is equivalent to specifying a prior distribution over model parameters and performing
MAP inference).

Therefore, by making the correspondences explicit, we will treat reconstruction as
a learning problem and apply the machinery of machine learning. In particular we
will maintain a clear separation of training and test data and compute generalisation
errors to assay the validity of a reconstruction model. As learning algorithm we apply
kernel methods that have some interesting properties which make them appealing for
reconstruction. In particular we will use support vector machines for the analysis in
Chapter 4 and additionally Gaussian processes and other learning algorithms for the
experiments presented in Chapter 5.
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Besides their current popularity in the machine learning community, kernel algo-
rithms are interesting for an application in reconstruction for two reasons. First, they
allow by construction a non-linear geometry in input space – a feature that is very
likely to be useful when aiming to decode temporal codes and correlation codes in
spike sequences (see e.g. the related discussion by Victor [2005a]). Second, a specific
coding hypothesis is encapsulated solely in the kernel function. This property facili-
tates a straightforward comparison of different hypotheses under identical conditions,
which is an essential goal of reconstruction. Furthermore, kernel methods (such as
SVMs and Gaussian processes) have shown competitive performance in other ap-
plication domains and exploring their usability could improve decoding devices in
biomedical engineering.

3.2 Kernels for patterns of neural activity

When using kernel methods, the question arises what kernel functions are suitable
for the analysis of spike sequences or sequences of firing rates. This leads to the more
profound question, what general properties a similarity measure on spike sequences
should have.

As mentioned above, most common approaches to reconstruction assume rate cod-
ing. However, in this study we are interested in finding structures in the data in
addition to rate codes. In the previous chapter we briefly reviewed arguments that
support the existence of such structures, but there is an ongoing and active debate
about these issues. It is still unclear how much rate codes and temporal or correlation
codes contribute to the transmission of information and their importance may vary
depending on the part of the nervous system under investigation.

The main assumption that most researchers would agree on, is that similar stimuli
are encoded by similar spike sequences. Naturally this statement depends critically
on the concept of similarity that is assumed. Smoothness and similarity depend on
the metric or scalar product of the vector space where spike sequences are embedded
into. Concepts of smoothness vary from standard smoothness in Euclidean space to
rather complex models that encode smoothness in their parameters (e.g. smoothness
induced by the Fisher kernel [Jaakkola et al., 1998], see also [Oliver et al., 2000]). At
this point the strength of kernel machines comes into play. The inherent geometry
and thereby the notion of smoothness are defined uniquely by the kernel function.

Thus, from a kernel viewpoint we have to define what it means when two sequences
are similar. This means, we need to specify what kind of variability in a sequence
of spikes is attributed as noise and what kinds of variation change the information
conveyed by this sequence.

Given that the debate about the principles of neural coding has not settled yet,
we will state assumptions/hypotheses of what might be relevant properties and then
present kernel functions that feature these properties. In the subsequent two chapters,
tests of their accuracy in reconstruction are presented that imply indications for the
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validity of the underlying paradigms.

As a baseline, we apply the RBF-kernel

krbf(r,q) = exp

(

−
‖r− q‖2

2σ2

)

. (3.1)

It has been shown, e.g. see Schölkopf and Smola [2002], that using the RBF-kernel
penalises all order derivatives and therefore induces smoothness for a standard Eu-
clidean embedding of two spike sequences r and q. An SVM with this kernel function
allows non-linear class boundaries but contains a linear classifier as the limit-case
σ →∞.

In the remainder of this chapter we will present three kernel functions that cor-
respond to other notions of similarity which are thought to be relevant for spike
sequences. The basic assumption that all three similarity measures rely on is the idea
of a correlation code that encodes information through the appearance of typical
spike patterns in the data. Each instance of a pattern might be distorted by noise
and sensitivity to the temporal position of its occurrence might vary.

We will briefly summarise the hypotheses underlying our proposed kernel functions
before they are described in detail. The homogeneous spikernel considers weighted
contributions of patterns of different lengths up to a maximum number of bins and
allows arbitrary temporal positioning of these patterns in the two sequences. Slight
distortions of the patterns are tolerated and their contribution to the kernel value
is averaged over the whole length of the two sequences. Local alignment kernels are
defined by the similarity of the longest pattern matching among the two sequences,
also independently of its temporal positioning. In contrast, global alignment tries to
match the two sequences over their whole length and assigns the quality of this match
as similarity value. Therefore it is more sensitive to patterns at larger scales and their
position in the sequence.

In the formulation presented below, application of these kernels to spikes sequences
or sequences of firing rates is a novel contribution to the field of reconstruction.

3.3 Spikernels

In this section we will present a kernel for sequences of firing rates that has been
used for SVM based reconstruction of dynamic stimuli. Problems that occur when
applying it to static stimuli in a discrimination scenario are discussed, leading to a
modified version of this kernel function.

3.3.1 Original spikernel

A recent study that used kernel methods for reconstruction was the work of Shpigel-
man et al. [2003, 2005] who tried to infer hand movement velocities from recordings
in macaque primary motor cortex. The authors introduced a new kernel function, the
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so-called spikernel, as a similarity measure for patterns of firing rates recorded from
a single or multiple neurons. The design of this kernel is based on four assumptions
that are repeated in the following:

1. The first assumption commonly believed by neuroscientists is that firing rate
patterns can be considered to be similar if their binned representations differ
only slightly in a bin-by-bin comparison, i.e. have a small Euclidean distance.

2. The encoding of external stimuli in the sensory pathway or motor commands
in the motor pathway may result in highly specific patterns. Such a pattern of
spike counts may change in a highly nonlinear manner as a function of behaviour
or of the external stimulus variable [Segev and Rall, 1998]. This assumption is
commonly made in models of neural computation [Pouget and Snyder, 2000].

3. Two firing patterns, although similar, may be misaligned in time. For their
similarity to become apparent, e.g. in terms of small Euclidean distance, it
might be necessary to realign them by introducing a certain time shift. In
comparing patterns, the induced score should be the higher the smaller this
time shift is. Biological plausibility for time shifted patterns may stem from
the spatial distribution of synaptic inputs on cortical cells’ dendrites [Magee,
2000].

4. Patterns of spike counts that encode similar values of an external target variable
at time t may be similar (in the sense described above) at that time but rather
different at times t±δ when the external variable is no longer similar. Therefore
similarity of patterns is weighted higher around a time of interest (i.e. the time
of prediction) than at points in time that are further apart.

Note, that the fourth assumption is specific for reconstruction of dynamically chang-
ing target variables. In the original work these were motor commands for hand moving
velocities that change continuously. Hand movements with a particular velocity might
be preceded or followed by movements with arbitrarily different velocities. Therefore
the neural activity at the time of interest is more important than spikes that occurred
some time before or after this point. If, in contrast, the kernel should be applied in
a discrimination setup with static stimuli, some modifications are necessary that will
be discussed in Section 3.3.2.

Based on these assumptions, Shpigelman et al. [2003] derive the design of the
spikernel by exploiting the analogy between sequences of firing rates and sequences
of letters – i.e. text. Inspired by the string kernel [Lodhi et al., 2002] that was
successfully applied in text-classification, its feature map is modified for an application
to sequences of firing rates. To understand the basic idea of the spikernel it is most
insightful to have a look at its feature map rather than at the kernel itself. A sequence
of firing rates r of length |r| is mapped to a function Φr(u) on R

n by

Φ : r 7→ Φr(u) , where Φr(u) = C
n
2

∑

i∈In,|r|

µd(ri,u)λ|r|−i1 . (3.2)
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The function Φr(u) specifies the similarity of sequence r to an arbitrary sequence u of
length n = |u| ≤ |r|. When thinking of the function Φr(u) as an infinite dimensional
vector, u can be thought of indexing the dimensions in the associated feature space.
In the formula above, In,|r| is the set of all ordered n-tuples i = (i1, . . . , in) of indices
i1 < i2 < . . . < in ∈ {1, . . . , |r|} and the sum runs over all such tuples i. Thus,
ri is an ordered sub-sequence of r of length n composed of ri = (ri1 , . . . , rin). C is
a normalisation constant and λ, µ ∈ [0, 1] are parameters of the kernel. The µ-part
of the sum is an exponential weight depending on the similarity of a sub-sequence
ri with the sequence u, that is measured in accordance with assumption one (see
above) by the squared Euclidean distance d(ri,u) =

∑n
k=1 ‖rik −uk‖

2
2. The λ-part in

Equation (3.2) implements a down-weighting of contributions from sub-sequences that
begin far away from the end of sequence r as it is required by the fourth assumption.
The application scenario that the authors had in mind when constructing the spikernel
was the reconstruction of a continuously varying target variable at time tpred from
the preceding time series of neural activity. Therefore the prediction time, i.e. the
time of interest, is at the end of the input sequence. Note, that assumption three is
only indirectly implemented by the λ-term. In contrast to the string kernel, where
the total length of all gaps in a sub-sequences is penalised by a factor ∝ λin−i1 , only
the starting index i1 is considered in the feature map (3.2).

For the sake of simplicity we introduced the above feature map for sequences of
firing rates stemming from single neuron recordings. When extending the kernel to
a population of Nn neurons, a single entry rj in the sequence r is an Nn-dimensional
column vector containing the firing rates of all simultaneously recorded neurons in one
particular time bin (cf. Section 2.2.2). The coordinate u then becomes an Nn × n-
matrix u ∈ R

Nn×n and the Euclidean distance d(ri,u) =
∑n

k=1 ‖rik − uk‖
2
2 is a

difference of vectors rather than scalars.

For a fixed length n of considered sub-sequences, the kernel kn(r,q) of two se-
quences r and q is computed from the feature map Φr(u) by evaluating the standard
scalar product in function space, i.e. via integration over the coordinates u

kn(r,q) = 〈Φr(u), Φq(u)〉 =

∫

RNn×n

du Φr(u) Φq(u) . (3.3)

By finding recursive relations for Φr(u) the kernel can be computed in time O(|r| ·
|q| · n) as a dynamic program. We skip the technical details of this derivation (they
can be found in Shpigelman et al. [2003]) and give the resulting recursive equations
for the kernel function

kn(rx,q) = λ kn(r,q) + k′n(rx,q) (3.4)

k′n(rx,qy) = λ2 kn−1(r,q)µ
1
2
‖x−y‖2

2 + λ k′n(rx,q) . (3.5)

Here k′n(r,q) is an auxiliary variable and rx is meant to be a sequence whose last
element is x and all preceding elements are in r.

49
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As suggested by the authors, the final spikernel is a weighted sum of kernels for
different pattern lengths n = 1 . . . N where the weights are powers of another kernel
parameter p

kspike(r,q) =

N∑

n=1

pn kn(r,q) . (3.6)

Summing up, the spikernel has four parameters in total. The first two are the
maximal length of the considered sub-sequences N and the corresponding weighting
parameter p. For p > 1 similarity of long sub-sequences is weighted higher, and
conversely for p < 1 similarities on small scales have a bigger influence. The ker-
nel parameter µ controls the sensitivity of the spikernel to differences of a bin-wise
comparison of the sub-sequences. Small values (e.g. µ ≈ 0.1) let only very simi-
lar sub-sequences (i.e. with small Euclidean distance) contribute significantly to the
overall similarity score; in the limit case of µ = 0 only sub-sequences identical to u

would contribute and Φr(u) would be a histogram of all length n sub-sequences of
r, weighted by the λ-factor. For larger values of µ the similarity of sub-sequences
becomes less and less important and in the limit µ = 1 the µ-term has no effect at
all. The λ-parameter affects the importance of whether sub-sequences are close to
the prediction time at the end of the input sequence r. Here, small values lead to
a focus on sub-sequences that start close to the end of r whereas large values allow
relevant contributions of sub-sequences that are spread out over the whole recording
interval. The limit case λ = 1 weights all sub-sequences equally, independent of their
starting position. Although not considered here, choosing values of λ larger than one,
would reverse the time-dependence of the kernel; as if the time of interest was at the
beginning of the sequences.

3.3.2 Adaptation to static target variables

As pointed out earlier, the spikernel was designed for reconstruction of a continuously
varying movement velocity from a time series of neural activity in the motor path-
way. Here, the target variable at time tpred is reconstructed from the neural activity
preceding tpred. When computing the similarity of two such time series whose corre-
sponding movement velocities are identical at time tpred but may differ substantially
for earlier times, one has to take into account that the information about the motor
command encoded in the neural activity is concentrated around tpred. These consid-
erations lead to an exponential down-weighting of contributions of sub-sequences that
start far away from the end of the time series, i.e. far away from tpred. However, in a
reconstruction scenario based on static stimuli, as it will be explored in the following
chapters, this bias towards a certain time of interest seems undesirable. Although
relevant information in neural activity may be distributed non-uniformly also under
static stimulus conditions, e.g. a higher relevance right after stimulus onset time, this
temporal structure is a priori unknown. Therefore it is natural to assume that time
series of neural activity convey an equal amount of information about the stimulus
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3.3 Spikernels

attribute over the whole period of stimulus presentation.
As a consequence, an adaptation of the spikernel to static stimulus conditions is

required. Fixing the corresponding λ-parameter to λ = 1 is an immediate but poor
solution. The following small calculation clarifies the consequences of this choice.
Starting with the feature map

Φ : r 7→ Φr(u) = C
n
2

∑

i∈In,|r|

µd(ri,u)λ|r|−i1

the kernel kn(r,q) for length n sub-sequences is

kn(r,q) =

∫

RNn×n

du Φr(u) Φq(u) (3.7)

∝

∫

RNn×n

du
∑

i∈In,|r|

µd(ri,u) λ|r|−i1
︸ ︷︷ ︸

=1

∑

j∈In,|q|

µd(qj,u) λ|q|−j1
︸ ︷︷ ︸

=1

(3.8)

∝
∑

i∈In,|r|
j∈In,|q|

∫

RNn×n

du µd(ri,u)+d(qj,u) (3.9)

∝
∑

i∈In,|r|
j∈In,|q|

µ
1
2
‖ri−qj‖2

2 (3.10)

where in the last step we used a result of Shpigelman et al. [2003] to solve the integral.
The resulting expression is proportional to a sum of RBF-like kernels over all possible
pairs of length n sub-sequences of r and q, each one contributing with equal weight
independently of its position and the size of gaps it contains. As a consequence, the
spikernel does not penalise gaps in the sub-sequences anymore, as it is required by
assumption three, and the kernel function (3.10) will very unlikely detect temporal
patterns in sequences of firing rates. This supposition will be confirmed by simulation
results presented in Section 4.1.6.

3.3.3 Homogeneous spikernel

In the following we propose a new kernel function for sequences of neural activity
that is not biased towards a certain time of interest, and at the same time favours
contributions of sub-sequences with no or small gaps as in the original string kernel
of Lodhi et al. [2002]. Because of its close relation to the spikernel and its uniform
weighting of time we name it homogeneous spikernel.

We begin with the definition of a new feature map Ψ that is derived from the
original spikernel but directly penalises the difference between first and last index
(in − i1) of a sub-sequence ri.

Ψ : r 7→ Ψr(u) = C
n
2

∑

i∈In,|r|

µd(ri,u)λin−i1 . (3.11)
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To compute the kernel, we follow the lines of Shpigelman et al. [2003] and state two
recursive equations that relate the new feature vector Ψr(u) to the original spikernel
feature vector Φr(u).

Ψrx(u) = Ψr(u) + C
1
2 λµd(un,x) Φr(u1:n−1) (3.12)

In Equation (3.12) the sum over index n-tuples i ∈ In,|r| is separated into two parts,
the first part where rin is not equal to x and the second part where in specifies x. In
the following equation the feature map is written as a sum over the last index in:

Ψr(u) = C
1
2

|r|
∑

j=n

λµd(un,rj) Φr1:j−1(u1:n−1) . (3.13)

Note that the spikernel feature map vanishes for sequences that are shorter than n
(Φr(u) = 0 : |r| < n) and therefore the sum starts with j = n.

Using the two equations above we can compute a recursive formula for the new
kernel function khom

n

khom
n (rx,q) =

∫

RNn×n

du Ψrx(u) Ψq(u) (3.14)

=

∫

RNn×n

du
[

Ψr(u) + C
1
2 λµd(un,x) Φu1:n−1(r)

]

Ψq(u) (3.15)

= khom
n (r,q) + C

1
2 λ

∫

RNn×n

du µd(un,x) Φr(u1:n−1) Ψq(u) ,(3.16)

and further with Equation (3.13)

khom
n (rx,q) = khom

n (r,q)

+ C λ2

|r|
∑

j=n

∫

RNn×n−1

du Φr(u1:n−1) Φq1:j−1(u1:n−1)

∫

RNn

du µd(un,x) µd(un,qj) .

(3.17)

Using the solution of the second integral given by Shpigelman et al. [2003] this results
in

khom
n (rx,q) = khom

n (r,q) + C λ2

|r|
∑

j=n

kn−1(r,q1:j−1)µ
1
2
‖x−qj‖2

2 . (3.18)

Thus, the computation of the homogeneous spikernel is related to the original spiker-
nel by Equation (3.18), which allows a convenient implementation with similar time
complexity. The full kernel is computed as a weighted sum in the same way as the
original spikernel, hence

khomSpike(r,q) =

N∑

n=1

pn khom
n (r,q) . (3.19)
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3.4 Alignment scores

Spikernels belong to the so-called spectrum kernels of Leslie et al. [2002] whose associ-
ated feature maps represent each sequence as a smoothed and re-weighted histogram
of all its length n sub-sequences. We will now introduce a more direct (dis-)similarity
measure that is inspired by bio-informatics, where aligning sequences is a standard
method to compare strings of DNA, RNA or protein molecules. The idea of applying
this sort of similarity measure to neural data was introduced in Eichhorn et al. [2004].
Our assumptions about neural coding that lead to the application of alignment scores
to sequences of neural activity are similar to those earlier stated for the spikernel.

1. We assume that both, the number and the temporal position of spike events
convey information.

2. Both quantities may be distorted by noise. This noise is meant to be variance
generated by a small number of deleted or inserted spikes or by small shifts in
the temporal position of spikes.

In the following we describe two variants of alignment scores: Global alignments
and local alignments.

3.4.1 Global alignment

For an alignment we consider two sequences r = (r1, . . . , r|r|) and q = (q1, . . . , q|q|)
of symbols ri, qj ∈ Q. In general, alignments can be defined for finite sequences of
any type as long as a cost function on the set of sequence elements Q is given. We
consider sequences that represent neural activity as binned firing rates or spikes and
therefore assume non-negative, real-valued variables (Q = R+) below.

To achieve a global alignment of two sequences r and q, each sequence may be
elongated by inserting a special symbol (the dash, ’ ’) at any position, yielding two
edited sequences r′ and q′. The position at which a dash is inserted is also called
a gap. The first requirement is that r′ and q′ must be of equal length: |r′| = |q′|.
This allows to write them on top of each other such that each element ri of r is
either mapped to an element of q or mapped to a dash and vice versa. The second
requirement for a valid alignment is that no dash is mapped to a dash, which restricts
the length of any alignment to a maximum of |r|+ |q| (for an example see Figure 3.1,
on the left). Given a cost function for sequence elements and the dash fcost(x, y) :
(x, y) ∈ Q × {Q ∪ { }} 7→ R, the total cost of an alignment (r′,q′) is defined as the
element-wise sum of costs

fcost(r
′,q′) =

|r′|=|q′|
∑

i=1

fcost(r
′
i, q

′
i).

Typically the cost function assigns zero or negative costs to matches and positive
costs to mismatches and gaps, i.e. anything paired with a dash. An optimal global
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Figure 3.1: Global alignment of the two sequences r=’BAACB’ and q=’CACA’, illustrated
as walk on a directed acyclic graph. Horizontal and vertical edges of the graph denote
insertion of a gap in q or r respectively and a diagonal edge corresponds to a match
of two sequence elements. Appropriate costs of these operations are assigned to the
corresponding edges.

alignment of r and q is one that achieves the optimal total cost fopt
cost(r,q), i.e. the

minimum cost over all possible alignments (r′,q′)

fopt
cost(r,q) := min

(r′,q′)
fcost(r

′,q′), (3.20)

where the minimum is taken over all possible insertions of gaps.

At this point it is very instructive to realise that any global alignment of r and q

can be represented as a path in a directed acyclic graph G with NE = 3 |r|·|q|+|r|+|q|
edges and NV = (|r| + 1) · (|q| + 1) vertices. Figure 3.1 illustrates this idea. Every
edge corresponds to either a mapping of an element ri to an element qj (diagonal
edges dij) or to inserting a dash in sequence r at position i (horizontal edges hij) or
in sequence q at position j (vertical edges vij). Thereby, every global alignment can
be represented as a path starting at the most upper left vertex and ending in the
lower right vertex.

Finding an optimal global alignment is equivalent to finding a shortest path1 on
G between start and end where the weights on the edges are related to the costs as

1The literature on graph-algorithms frequently uses names referring to distances and metrics (like
’shortest path’) although the underlying edge-weights not necessarily need to fulfil the axioms of
a metric. In the current context, a shortest path is a path with minimal total weight.
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follows:
dij = fcost(ri, qj)

hij = fcost(ri, )

vij = fcost(qj , ).

(3.21)

Minimising the total weight of a path on the graph corresponds to minimising the total
cost of a global alignment. From graph-theory we know that a shortest path always
exists if there are no negative-weight cycles [Cormen et al., 2001, p. 582]. Since we
are dealing with an acyclic graph this condition is automatically fulfilled and we can
find an optimal global alignment and the optimal cost in time O(NV +NE) = O(|r| ·
|q|) using dynamic programming [Cormen et al., 2001, p. 592]. In bio-informatics
this technique has been introduced by Needleman and Wunsch [1970]. Note that
the optimal cost is unique whereas there might be several alignments achieving this
optimum. Waterman et al. [1976] have shown that under very general conditions
the optimal cost of a global alignment fopt

cost(r,q) is a metric on the space of finite
sequences. The only requirements on the cost function are positivity and definiteness:

fcost(x, y) ≥ 0 and fcost(x, y) = 0 iff x = y . (3.22)

If the cost function is only positive, i.e. fcost(x, y) = 0 does not imply x = y, the same
is true for fopt

cost(r,q) and it is called a semi-metric.
With these properties in mind it is not surprising that there exists a close relation

between global alignments and a class of metrics called edit-distances. The idea of
an edit-distance between two sequences r and q is to find the minimum number of
edit-operations it takes to transform one sequence into the other. As elementary edit-
operations usually shifts and insertions/deletions of sequence elements are considered.
More elaborate versions assign costs to the elementary operations and define an edit-
distance as the minimum total cost of editing. The equivalence to global alignments
and walking on an acyclic graph can be established by identifying the elementary edit-
operations with a combination of mismatches and gaps in global alignment or with
edges of the graph respectively. Depending on the type of edit-distance, establishing
such a correspondence can be non-trivial; we will not elaborate on this topic any
further.

When applying global alignments to time-series of neural activity, we parametrise
the costs with γ and µ as follows:

fcost(x, y) = fcost(y, x) := |x− y|

fcost(x, ) = fcost( , x) := γ|x− µ|
(3.23)

The parameter γ is called gap cost and we refer to µ as the gap mean. The cost of
a mismatch is proportional to the difference of bin-values. The affine gap-costs are
chosen with an application to bins of spike-counts in mind. Introducing a gap means
to ignore all spikes in the other sequence and should be penalised more, the more
spikes are deleted. Because the absence of spikes can also transmit information, the
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offset µ allows to specify a certain null-level activity at which gaps can be introduced
for free. The gap cost γ implements a scaling relative to the mismatch-costs. For very
large γ it is impossible to introduce gaps (except for values close to µ) and the optimal
cost of a global alignment is fopt

cost(r,q) ≈ ‖r − q‖1. When considering sequences of
individual spikes (bin-width of ∼ 1 ms) the interpretation of the parameters is slightly
different. Here the gap mean is more important, e.g. if µ = 0, inter-spike intervals can
be gapped away for free, all spikes are aligned and the optimal cost is proportional
to the total spike count difference fopt

cost(r,q) ∼
∑
ri −

∑
qi, which is equivalent to

assuming a pure rate code.

The cost function (3.23) is not definite (fcost(x, ) = 0 for x = µ) and therefore
the optimal cost fopt

cost is a semi-metric. Given two identical sequences, we can insert
bins with value µ anywhere in both, and the optimal global alignment cost will still
be zero.

3.4.2 Local alignment

When comparing two sequences via global alignment, one tries to match them over
their full length. Another useful measure is to look for smaller similar sub-sequences
without matching the whole sequence. In applications to DNA and protein sequences
this concept turned out to be more relevant than global alignments.

An optimal local alignment of two sequences r and q is defined as the global align-
ment among global alignments of all possible sub-sequences of r and q, that has
the smallest cost. This is sensible only, if the cost function for sequence elements
fcost(x, y) has also negative entries, otherwise it would always be optimal to not align
anything and stay with zero cost. Therefore it is helpful to think in the context of
local alignments in terms of negative costs or scores. We define the score function
fscore(x, y) := −fcost(x, y) as the negative cost and in an analogous way the opti-
mal score fopt

score(r,q) := −fopt
cost(r,q). The optimal local alignment is the one with

maximum score.

For an application to neural sequences, we introduce an additional positive reward
ρ for correct matches and define the score function as

fscore(x, y) = −|x− y|+ ρmin(x, y)

fscore(x, ) = −γ|x− µ| .
(3.24)

The parameter ρ is named match score, γ is the gap cost and µ the gap mean. Local
alignments will be used on binary sequences in the analysis of Chapter 4 and in that
case the interpretation of the score is straightforward. Let x, y ∈ {0, 1}, a mismatch
is penalised with fscore(0, 1) = −1, a match of spikes is rewarded with fscore(1, 1) = ρ
and a match of inter-spike intervals does not contribute fscore(0, 0) = 0. The µ-
parameter determines whether it is cheaper to drop out a spike or an empty bin.

Smith and Waterman [1981] have shown that finding the best local alignment is
a problem very similar to finding the optimal global alignment and the solution can
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be computed with similar time complexity O(|r| · |q|) using dynamic programming
techniques.

3.4.3 Related spike train metrics

A set of related distance measures for spike trains has previously been proposed by
Victor and Purpura [1996] and Victor [2005b]. The two most important families of
spike metrics, Dspike[q] and Dinterval[q], are weighted edit-distances on sequences of
single spike events and structurally akin to alignments. They depend on a parameter2

q that specifies the ratio between the cost of a mismatch and the cost for shifting
a spike one time unit. A global alignment of two binary spike sequences r and q

defined above, is equivalent to Dinterval[q] if the costs are specified as fcost(0, 1) =∞,
fcost(0, ) = q and fcost(1, ) = 1. An implementation of Dspike[q] can be achieved by
a global alignment of sequences of spike event-times where the costs are fcost(ti, tj) =
q|ti − tj | and fcost(ti, ) = 1. To our present knowledge, the application of edit
distances in reconstruction has not yet been studied thoroughly.

3.4.4 On the use of non-positive-definite similarity scores

In general kernel algorithms are formulated under the assumption that the kernel
function represents a scalar product in some associated reproducing kernel Hilbert
space (RKHS). Therefore, the kernel function is required to be a symmetric, positive
definite (pd) function. However, in practical applications it often occurs that similar-
ity measures of interest cannot be proved to be positive definite, or even worse, are
known to be indefinite. To use these similarity structures despite their shortcomings
in a learning setting with e.g. an SVM, there exist workarounds that are justified by
theoretical and experimental investigations [Ong et al., 2004, Haasdonk, 2005, Lin
and Lin, 2003]. In the following we will briefly review some of the standard tricks
that are commonly used in such cases:

1. One of the easiest approaches is the use of an empirical kernel map [Schölkopf
and Smola, 2002, p. 42][Schölkopf et al., 1999a]. Thereby, each data-point x
is mapped to a new representation Φ{z1,...,zn}(x) that is a concatenation of its
similarity scores on a set of prototypes {z1, . . . , zn} ⊂ X

Φ{z1,...,zn} : x 7→ (k(x, z1), . . . , k(x, zn))⊤ , (3.25)

where k(x, y) is a similarity score of interest. Any valid kernel can now be
defined on this new representation and is guaranteed to yield a positive definite
matrix. In our applications we will use the standard scalar product (i.e. a linear
kernel) and the set of training points as prototypes.

2Not to be confused with sequence elements qj in our notation.
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2. In many cases in practise, the non-positivity of the similarity score is only weak,
i.e. the score matrix has only few negative eigenvalues and their absolute value
is many orders of magnitude smaller than the largest eigenvalue. In such situa-
tions and especially for small problems with few training points, it is sufficient
to use the score ’as is’ and adapt the stopping criterion of the optimiser to
stop after a maximum number of iterations. This heuristic is based on the
assumption that after the first few optimisation steps the problem is basically
solved and variables change only in eigenvector-directions with negative eigen-
values. Alternatively, the stopping tolerance of the optimiser could be adjusted
so to stop when subsequent optimisation steps change the objective function
only by small amounts and are assumed to be due to negative eigendirections
with small eigenvalues. Some standard SVM-solvers, e.g. LIBSVM, are able to
deal with such cases automatically [Lin and Lin, 2003]. In our applications we
checked empirically the ratio of eigenvalues for each kernel matrix and found
that λmax

|λmin| > 108 in all cases, which we take as a justification for this approach.

3. Another option often used when dealing with similarity matrices that have a
partially negative spectrum, is called spectral translation. Here, all eigenvalues
of the score matrix are shifted into R+ by simply adding the absolute value of
the most negative eigenvalue to the spectrum. A clear interpretation of this
method is more difficult than for the other approaches which makes it more of
a heuristic.

An extensive discussion how to interpret SVM solutions that were found with a non-
pd kernel matrix has been given by Haasdonk [2005]. A theoretical framework for
the general use of indefinite kernel functions in learning was proposed for instance by
Ong et al. [2004].

As it turns out, we have to resort to these heuristics when using the cost of an
optimal global alignment or the score of the best local alignment of two sequences,
since both dis-/similarity measures are not provably positive definite. As mentioned
above, the cost of an optimal global alignment fopt

cost(r,q) defines a semi-metric on
the space of sequences; it could be isometrically embedded into a Hilbert space, if
and only if −fopt

cost(r,q)2 was conditionally positive definite (cpd). If only −fopt
cost(r,q)

was cpd, we could derive a related, although not isometric kernel for example as
k(r,q) = exp(−fopt

cost(r,q)). However, we cannot prove either of it. In the experiments
in Chapter 5 we use global alignment scores with an empirical kernel map and in the
simulations in Chapter 4 it is applied directly as

kalignGlob(r,q) = exp
(

−fopt
cost(r,q)

)

(3.26)

in combination with the SVM stopping heuristic described above (no. 2).
The score of the best local alignment of two sequences fopt

score(r,q) was reported by
Vert et al. [2004] to be indefinite. Still the authors can derive a pd-kernel by summing
over scores of all possible local alignments of two sequences. In their application to
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sequences of amino-acids, this kernel function can not be used directly because of
diagonal dominance issues and the authors also apply standard workarounds like
empirical kernel map and spectral translation. In our simulations in Chapter 4 the
local alignment score is used directly as

kalignLoc(r,q) = fopt
score(r,q) (3.27)

with the SVM stopping heuristic.
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This chapter is concerned with the assessment of reconstruction methods that are
based on support vector machines. In particular, the conjectured properties of the
kernel functions will be tested by simulations in a controlled environment. In a
second step, the methods are applied to real recordings from a neurophysiological
experiment. A comparison of the results will show how much of the findings on
artificial data translate to the more realistic scenario, and it allows to exclude some
coding hypotheses for the neurophysiological data-set under consideration.

All experiments in this chapter are performed with a simplified setting. Spike trains
from a single source (one neuron) will be analysed in a binary discrimination setting.
The temporal resolution is at the scale of individual action potentials, i.e. of order of
1 ms, such that in a binned representation of spike trains each bin contains at most
one spike, and is thus a binary sequence.

4.1 Experiments with simulated data

In a first series of experiments the sensitivity of kernel functions to specific types of
temporal correlations in spike-data will be tested in four different scenarios. These
correspond to various combinations of two ways of encoding information in spike
sequences. One way is rate coding (cf. Chapter 2), the other way is information coding
by spike patterns that are generated through characteristic short range temporal
correlations among spikes.

We will use artificial data to be able to control the code in the data and to verify,
which codes can be detected by the kernels. Whether such coding actually appears
in the nervous system of living organisms will not be subject of interest for the time
being. In the literature there exist a variety of approaches to generate sequences
of action potentials. Insights into the electro-physiological processes that take place
at synapses and membranes of nerve cells (starting e.g. with Hodgkin and Huxley
[1952]) have lead to sophisticated models of neural activity in individual neurons or
in small populations (for an overview see the book of Gerstner and Kistler [2002],
another example is Paninski et al. [2004]). Many of these models are too detailed
for our purposes; they quickly become complicated when focusing on modelling the
integration properties of a neuron or the exact shape of an action potential. On a
more abstract level, where spikes are represented as binary events, the standard model
for spike generation is a Poisson-process, that assumes independent spike events.
The rate at which spikes are created is either constant for a homogeneous or time-
dependent for an inhomogeneous Poisson process. The number of events generated
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4 An empirical evaluation of the kernels

by a homogeneous Poisson-process in a certain time interval is distributed according
to a Poisson-distribution; the length of inter-spike intervals follows an exponential
distribution. However, events of a Poisson-process, homogeneous or inhomogeneous,
are always independent. Even an inhomogeneous process with a stationary rate can
model spike correlations only on average, i.e. as a mean field. Therefore a more
sophisticated model for correlated spike activity will be formulated in the following.

4.1.1 The log-linear generative model

The idea to use log-linear models for generating spike sequences was inspired by an
article of Martignon et al. [2000]. In the original work, parameters of a log-linear
model are estimated from cortical recordings to analyse spike correlations in the
data. We will pursue the opposite approach, and use a log-linear model to generate
spike trains that exhibit second and higher order temporal correlations of predefined
magnitude.

Let xt be the activation state of a single neuron in a time window [t, t + δt[. If
the bin-width is chosen sufficiently small (δt = 1 ms) at most a single spike can occur
during this period and xt ∈ {0, 1} is a binary variable. A spike train is described as
a sequence x = (xt0 , xt0+δt, . . . , xt0+(Nb−1)·δt) of Nb binary random variables. The
generative model for spike sequences has the form of an auto-regressive model with
a memory of n states that is defined by the joint probability

P (xt, xt−1, xt−2, . . . , xt−n) =

exp



θ(0) +

n∑

i=0

θ
(1)
i xt−i +

n∑

i,j=0

θ
(2)
i,j xt−i xt−j +

n∑

i,j,k=0

θ
(3)
i,j,kxt−i xt−j xt−k + . . .





(4.1)
For simplicity we set δt = 1 and omit it in further equations, thus xt−i := xt−i·δt. The
parameters θ(k) describe the kth order correlation strengths of bins at different times,
while θ(0) acts as a normalisation constant. When generating spike sequences with
this model, correlations between variables are explicitly taken into account only for
bins that are closer than n · δt although the model does not prohibit correlations over
longer distances. To generate a time series, we assume that the memory is filled, i.e.
that we know the values of xt−1, xt−2, . . . , xt−n ∈ {0, 1} and compute the probability
πt of a spike at time t from the conditional probability

πt =
P (xt = 1|xt−1, xt−2, . . . , xt−n)

P (xt = 0|xt−1, xt−2, . . . , xt−n) + P (xt = 1|xt−1, xt−2, . . . , xt−n)
. (4.2)

When taking into account that all terms independent of xt cancel out, we can rewrite
πt as

πt =
α

1 + α
(4.3)
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where

α = exp



θ
(1)
0 xt +

n∑

i=0

(

θ
(2)
0,i + θ

(2)
i,0

)

xt xt−i +

n∑

i,j=0

(

θ
(3)
0,i,j + θ

(3)
i,0,j + θ

(3)
i,j,0

)

xt xt−i xt−j



 .

(4.4)
For practical reasons we consider only correlations up to third order. When using
higher orders the calculus remains qualitatively the same, only specifying the param-

eters (θ
(4)
i,j,k,l, θ

(5)
i,j,k,l,m etc. ) becomes tedious.

For xt = 0 all terms in the exponential of Equation (4.4) vanish which yields a 1 in
the denominator of Equation (4.3). Collecting terms with xt = 1 and redefining θ(k)

as
θ(1) ←− θ

(1)
0

θ
(2)
i ←−

(

θ
(2)
0,i + θ

(2)
i,0

)

θ
(3)
i,j ←−

(

θ
(3)
0,i,j + θ

(3)
i,0,j + θ

(3)
i,j,0

)

leads to

α = exp



θ(1) +

n∑

i=1

θ
(2)
i xt−i +

n∑

i,j=1

θ
(3)
i,j xt−i xt−j



 . (4.5)

By putting this expression back into Equation (4.3) and dividing by α in the nom-
inator and denominator we finally arrive at the probability πt for a spike at time
t

πt =
1

exp
(

−
[

θ(1) +
∑n

i=1 θ
(2)
i xt−i +

∑n
i,j=1 θ

(3)
i,j xt−i xt−j

])

+ 1
. (4.6)

To generate a whole spike sequence we repeatedly sample from probability (4.2) for
each new time bin taking the n preceding bins into account. At the beginning the
memory is initialised at random.

In absence of any second or higher order correlations (θ(2), θ(3) = 0), all binary
variables xt are independent and the process generates sequences with a binomially
distributed spike count c ∼ p(c) =

(
Nb

c

)
πc (1 − π)Nb−c where π = 1/(e−θ(1)

+ 1).
For Nb · π → ∞ this distribution approaches the familiar Poisson-distribution. A
description of discretized spike sequences with small bin-width (1 ms) by a binomial
process is more accurate than generating it from a Poisson-process. Instead of drawing
the spike count of each bin from a Poisson-distribution with rate λ = πt · δt, this way
the finite width of an action potential is taken into account and not more than one
spike per bin is generated. The model could easily be extended to multiple neurons
to mimic correlations among nerve cells of a larger population; e.g. Rajaram et al.
[2005] present a related approach that is formulated for continuous time.

Below we will generate four different data-sets by specifying the values of the
generating model parameters. The parameters of this third order model θ(1), θ(2)

and θ(3) fully describe the characteristics of generated spike sequences.
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4 An empirical evaluation of the kernels

4.1.2 Generating synthetic spike trains

Below we will apply reconstruction to four data-sets that were generated with the log-
linear model to assess the performance of the proposed kernel functions under different
conditions. These four scenarios correspond to various combinations of rate coding
and temporal coding – class-membership is encoded either by a sequence’s mean firing
rate or by spike correlations or both. The results of reconstruction in these prototype
scenarios can serve as a guideline to interpret results on neurophysiological data in
Section 4.2.

The mean firing rate of a sequence is mainly modulated by θ(1) whereas temporal

correlations are described by the vector θ
(2)
i and the matrix θ

(3)
i,j . When adjusting

the model parameters, θ(2) and θ(3) were chosen such that a particular pattern of
spikes or motif is likely to occur. Two different motifs appear, named M1 and M2,
that consist of three spikes with characteristic inter-spike intervals. The time scale of
these motifs is determined by the correlation time of the generating auto-regressive
model that is between 5 ms and 7 ms. In the plot of spike train samples of scenario B
in Figure 4.2, each motif appears repeatedly in one of the classes and two instances
are highlighted with an ellipse.

Two classes of data are generated that correspond to two different stimulus condi-
tions and contain each 50 spike trains. The bin-size is 1 ms and a sequence has 500
bins, i.e. is of 500 ms length. The average firing rate varies between 30 Hz and 55 Hz.
These parameters are chosen to mimic the characteristics of neurophysiological data
that will be analysed in Section 4.2. In the following we describe and motivate the
four scenarios and plot some sample sequences. A summary of the relevant statistics
is given in Table 4.1 and detailed descriptions of the parameter settings can be found
in Appendix A.

4.1.2.1 Scenario A: Pure rate coding

The first scenario serves as a baseline and is a pure rate coding approach. The class-
membership, i.e. the stimulus attribute, is coded solely by the probability of a single
spike event with additional modelling of a refractory period. This refractory period
is a time of approximately 1 − 2 ms length after the emission of an action potential
during which the neuron has to recover from hyper-polarisation and is unable to
generate immediately another spike. In practise this amounts to modelling a low

probability of two spikes in adjacent bins, i.e. θ
(2)
1 is small (cf. Equation (4.6)). The

class mean of the firing rate is 30 Hz in class one and 55 Hz in class two.

Kernel functions that are mainly based on the mean firing rate of a sequence, as the
RBF-kernel, are expected to perform well on this data-set. The more sophisticated
kernels, that are designed to detect temporal structure, have no advantage due to the
absence of spike correlations.
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Figure 4.1: Spike train samples of scenario A. Two classes with 20 sequences of 500 ms length
are shown. Spike sequences have no temporal structure and only the variability in their
mean firing rate encodes class membership. The mean firing rate is on average 30 Hz in
class one (top) and 55 Hz in class two (bottom).

4.1.2.2 Scenario B: Pure correlation coding

Scenario B models correlation coding as an example for non-rate codes. The average
firing rates are equal in both classes and therefore any decoding approach that relies
on firing rate alone should be unable to distinguish between the two classes. Only the
variability in temporal correlations of spikes encodes class membership. As mentioned
above, the second and third order correlations reveal themselves as typical motifs
appearing from time to time. In class one motif M1 is something like: spike-(short
interval)-spike-(long interval)-spike. In the other class the motif M2 is similar but
with the two inter-spike intervals exchanged (see the two ellipses in Figure 4.2). The
detailed parameter values of θ(1), θ(2) and θ(3) are given in Appendix A.

Since spike correlations are the only information that encodes class-membership,
this data-set can serve as a testbed to distinguish pattern sensitive kernel functions
from the ones that cannot find temporal structure at the time-scale of our generative
model.

4.1.2.3 Scenario C: Two ways of coding

In scenario C correlation coding and rate coding are both applied. Class-membership
is coded via different mean firing rates and by distinctive temporal correlations. Class
one has an average firing rate of 32 Hz similar to class one in scenario A, and in
addition it contains motif M1. Class two is dominated by the pattern M2 while
having an average firing rate of 54 Hz.

Conceptually, this scenario represents best the situation in real neurophysiological
data, where we assume that in addition to rate coding information is transmitted also
by other types of coding, largely depending on the part of the nervous system that is
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Figure 4.2: Sample sequences of scenario B. Two classes with 20 sequences of 500 ms length
are shown. The class mean of the firing rate is identical in both classes and they differ
only by temporal spike correlations. Ellipses highlight the two motifs M1 (top) and M2
(bottom) that correspond to the different correlation patterns in the two classes.
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Figure 4.3: Twenty sample spike trains from the two classes of scenario C. Here, similar to
scenario A, the two classes differ by their average mean firing rate, which is 32 Hz in class
one (top) and 54 Hz in class two (bottom). Additionally, the classes can be distinguished
by their temporal spike correlations that appear as motifs M1 and M2, as in scenario B.
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Figure 4.4: A subset of 20 spike sequences per class generated according to scenario D. Similar
to scenario A, the two classes differ by their average mean firing rate, that is 31 Hz in
class one (top) and 54 Hz in class two (bottom). Temporal spike correlations appear in
sequences of both classes as motif M2 and do not provide a cue for classification.

under investigation. Since both a difference in mean firing rate and in temporal spike
correlations distinguishes the two classes, all kernels should yield good classification
performance on this type of data.

4.1.2.4 Scenario D: Non-informative correlations

Scenario D is a variant of scenario A with additional non-informative temporal cor-
relations. In other words, for modelling both classes the same second and higher
order spike correlations are assumed and only motif M2 appears in the data. As in
scenario A, class-membership is encoded by the mean firing rate of a sequence.

This kind of data-set will allow to check whether kernels are distracted by correla-
tions that do not convey information about the stimulus. More precisely, a similarity
function that is sensitive to temporal correlations uniquely would be unable to distin-
guish between the classes in this scenario. Kernel functions insensitive to temporal
structure should achieve classification performances similar to scenario C, whereas
kernel functions sensitive to temporal structure might perform worse, depending on
whether they are mislead by non-informative correlations or not.

4.1.2.5 Summary

Table 4.1 gives an overview of the characteristics of the four data-sets. As an in-
dicator for the discriminability of two classes by a sequence’s mean firing rate, we
plot the smoothed class-conditional distribution of the mean firing rates for one data-
set instance of each scenario. The smallest achievable error rate of a classifier (the
Bayes-error, see e.g. Duda et al. [2001, p. 48]) is bounded below by half the area of
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4 An empirical evaluation of the kernels

Class 1 Class 2

Average firing

rate (in Hz)

Temporal

pattern

Average firing

rate (in Hz)

Temporal

pattern

Rate dis–

tribution

A 30 none 55 none

B 53 M1 54 M2

C 32 M1 54 M2

D 31 M2 54 M2

Table 4.1: Characteristics of the four synthetic data-sets. For each scenario the class mean of
the firing rate and the type of temporal motif are given. The plot in the rightmost column
shows the distribution of mean firing rates in each class, illustrating the discriminability
of the data-sets (cf. also Table 4.4). The mean of these distributions is the number in
the second and fourth column of the table.

the overlapping region of the two distributions. With the help of these figures the
discriminability of the data-sets can be compared and it can be observed that set A
is slightly easier to classify than set C and set D, although the class means of the
firing rate are almost identical.

The variance of firing rates around the class mean, i.e. the width of the class-
conditional distribution, was not explicitly controlled when creating the data-sets.
The generative model allows no direct manipulation of this quantity and it turned out
that the variance is larger, when correlations are introduced. A straightforward ap-
proach to control this variability could be achieved by rejection sampling of sequences
from the model according to a previously specified class-conditional distribution of
firing rate.

It is important to emphasise, that we do not claim these artificial data-sets to sim-
ulate any coding that is found in living organisms. The only conclusion that can be
drawn from analysing the different scenarios, is a statement about the sensitivity of
kernel-functions to different sorts of structural properties. Whether these codes ap-
pear in real physiological data will be subject of interest in the next section. However,
an extensive discussion of those questions is beyond the scope of this thesis.
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4.1 Experiments with simulated data

4.1.3 Transformation of spike sequences

When generating a synthetic data-set, model parameters were varied to obtain a
variability in the data that encodes class membership. Depending on the type of
coding that is assumed – rate coding or correlation coding – information about class
membership is conveyed by different structural properties of spike sequences that
distinguish the two classes. During experiments, the variability of these properties is
gradually reduced by manipulating spike sequences with two types of transformations.

There are two reasons for transforming the data in a controlled way. First, by re-
ducing the structural properties in the data that encode class membership, the task is
getting harder and differences in performance among the kernels can be emphasised.
Second, by selectively transforming structural properties of a specific type, i.e. the
mean firing rate of a sequence or temporal correlations of spikes, classification perfor-
mance of kernels that are sensitive to these features will change, such that they can be
identified more clearly. In the data-sets described above, the relevant structural prop-
erties are the mean firing rate of a sequence or its second and higher order statistics.
Thus, to reduce the variability of these properties we seek to find transformations
of spike sequences that either selectively reduce second and higher order correlations
among spikes while conserving their total number, or transformations that modify
the mean firing rate of a sequence without affecting spike correlations. The first type
of transformation is easy to achieve, the second one is much more difficult.

If the data stem from a generative model, these gradually transformed data-sets
could also be obtained by simply generating a particular data-set several times with
slightly changed model parameters, e.g. reduced higher order moments or different
mean rates. When faced with real data from neurophysiological experiments, how-
ever, this option is not available and therefore a generic solution is preferred, that is
applicable without any information other than the given data-set.

4.1.3.1 Jitter

The first type of transformation is called jitter, because it jitters the temporal position
of spikes. Spike times ti are modified by a normally distributed random variable ε:

ti −→ ti + ε, ε ∼ N (0, σjitter) (4.7)

The parameter σjitter is the standard deviation of the normal distribution and spec-
ifies the intensity of jitter. The jitter transformation conserves the total number of
spikes and therefore leaves the mean firing rate of a spike sequence unchanged. It
affects second and higher order correlations between individual spikes on a time scale
determined by σjitter.

A second option to corrupt spike correlations that is frequently applied in compu-
tational neuroscience is the shuffling of inter-spike intervals. This operation conserves
the frequency distribution of inter-spike intervals or the position of the first peak of
the auto-correlation function i.e. the mean distance between consecutive spikes. Since
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4 An empirical evaluation of the kernels

there is no need to distinguish between second and higher order correlations, this type
of transformation will not be used.

4.1.3.2 Equalisation of rate differences

While jitter allows to impair correlations between spikes, it is necessary to find an-
other transformation that can decrease the difference in the mean firing rates of
two sequences. In mathematical terms, the transformation should alter the mean
of a sequence of binary random variables without touching second and higher order
statistics. A theoretically pleasing approach would be to estimate all relevant cor-
relations from the given data and introduce new spikes according to the measured
statistics. However, estimating higher moments from limited amounts of data, as it
is a common situation in neurophysiology, tends to be erroneous and laborious. For
this reason, we avoid the intermediate estimation step and simply assume a uniform
distribution of spikes, neglecting any correlational structure.

From a practical point of view, a reduced difference in mean firing rate is achieved
by inserting spikes in the class with lower rate and/or by deleting spikes from the class
with higher rate. Accordingly, three types of equalisation transformations are defined
– equalisation by deletion, equalisation by addition and addDel equalisation. These
transformations are intended for an application to data-sets of two classes, one of
them with a lower class mean of firing rates than the other. When using equalisation
by deletion, some of the existing spikes are selected uniformly at random and removed
from sequences in the class with higher mean firing rates. When applying equalisation
by addition, new spikes are inserted at uniform random positions in the class with a
lower mean of the firing rates. The intensity of equalisation is defined as a relative
quantity, that specifies how much of the firing rate difference between the two classes
is removed. In other words, an equalisation intensity of 1 implies that the class mean
of firing rate of the resulting data-set is identical in both classes, an intensity of 0.5
means that the difference is only half as large as in the non-transformed data-set.

Generally, by assuming a uniform spike distribution when deleting or adding spikes,
second and higher order moments in the modified spike sequences are reduced. Hence,
when applying equalisation by deletion or addition to a data-set, second and higher
order correlations are modified asymmetrically, they are reduced in only one of the
classes. In order to manipulate data-sets in a more symmetric way, addDel equal-
isation transforms sequences in both classes; spikes are deleted from the class with
higher rate and at the same time spikes are inserted in the class with lower rate.
Nevertheless, consequences arise for the analysis of correlation codes in data that has
been equalised by the methods described above. Although equalisation does not ar-
tificially generate correlations but only reduces them, it still can in certain situations
increase the discriminability of a data-set, which might lead to wrong conclusions.
Experimental results that illustrate this behaviour are presented in Section 4.1.6.

Equalisation by deletion will be used for the analysis of scenario A where spikes are
uniformly distributed in time and spike correlations are negligible. Due to its effect
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4.1 Experiments with simulated data

RBF-Kernel σ { 10−1, 10−0.8, 10−0.6, 10−0.4, . . . ,103}

Homogeneous Spikernel

N { 5, 10, 20}

λ { 0.1, 0.3, 0.5, 0.7, 0.9}

µ { 0.1, 0.3, 0.5, 0.7, 0.9}

p { 0.76, 1.0, 1.32}

Local Alignment

match score { 0.33, 0.57, 1.0, 1.74, 3.03}

gap cost { 0.33, 0.57, 1.0, 1.74, 3.03}

gap mean { 0, 0.2, 0.4, 0.6, 0.8, 1}

Global Alignment
gap cost { 0.33, 0.57, 1.0, 1.74, 3.03, 5.28}

gap mean { 0, 0.2, 0.4, 0.6, 0.8, 1}

all Kernels C { 10−1, 100, 101, 102, . . . ,105}

Table 4.2: Parameter grids that were tried in model selection. For some parameters the grid
values are linearly spaced on a logarithmic scale of base two (e.g. ’match score’ and ’gap
cost’).

on spike correlations, equalisation is not used for the analysis of scenarios B, C and
D.

4.1.4 Experimental protocol

Each artificial data-set contains 100 sequences (50 trials in each class). We compute
two test-errors per data-set via two-fold cross-validation. That means, we use 50 %
of the data as training set, compute a test-error on the remaining 50 % and then
repeat with test and training sets swapped. On the training set we perform model
selection by cross-validation over ten folds, i.e. this time 9/10 of the data are used
as training set and 1/10 as validation set. In total numbers this means, we use 50
points to evaluate the test-error, and 45 (resp. 5) points for training (testing) in
model selection. One drawback of using cross-validation for computing test-errors
is the underestimation of variance of the results (see e.g. Bengio and Grandvalet
[2004]). To circumvent this restriction, we performed the whole procedure on six
independently created instances of the respective data-sets. As a result we get twelve
estimates of the test-error which are now considered as quasi-independent (although
two of them are mutually dependent because of the two-fold cross-validation).

Table 4.2 shows the set of parameters that were tried during model selection. To
estimate the total range of a parameter grid, we did some initial trials on typical
data. Most of the values are linearly or logarithmically spaced inside a sensible range.
Note that, in order to bound computational costs and because kernel evaluations are
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Figure 4.5: Classification results of scenario A. Each group of box-plots shows test-errors
of RBF-kernel, homogeneous spikernel, local alignment and global alignment (from left
to right) for increasing equalisation of firing rates by deletion. All kernel-functions,
including the ones for spike patterns, achieve comparable test-errors in this rate coding
scenario.

expensive, the total number of parameter combinations has to be limited. For kernels
that have many parameters (e.g. spikernel and local alignment) some of them can only
be qualitatively optimised and their performance might be suboptimal. Interpretation
of results is mostly concerned with a relative comparison of error rates and therefore
this limitation does not present a major drawback.

4.1.5 Results and discussion

In this section the experimental results will be presented. The twelve test-error
estimates are summarised in a box-plot that shows the mean (thick grey/red line)
and the median (thick black line), the upper and lower quartile (edges of the box)
and the total range of the results (black whiskers). 25 % of the data points have a
value that is smaller or equal to the lower quartile and 75 % of the data points are
smaller or equal to the upper quartile, hence the box contains 50 % of the test-errors.

4.1.5.1 Results of scenario A: Pure rate coding

Figure 4.5 shows results for scenario A with pure rate coding. The leftmost block of
box-plots contains test-errors for clean data without any transformation. All kernels
perform equally well at 8− 10 % test-error. With increasing equalization by deletion
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Figure 4.6: Classification results of scenario B. Each group of box-plots shows test-errors
of RBF-kernel, homogeneous spikernel, local alignment and global alignment (from left
to right) for an increasing length scale of jitter. Only homogeneous spikernel and local
alignment can classify sequences according to their spike correlations.

the class-conditional distributions of firing rate overlap more and more and discrim-
ination becomes harder. Consequently, the test-error reaches 50 % (chance level) at
the rightmost part of the plot were the average firing rate is identical for both con-
ditions. The most important conclusion from this experiment is the fact, that in
absence of any spike correlations there is no significant difference in the classification
performance of all four kernel functions. In particular, also the sophisticated meth-
ods that seek for spike patterns, classify as well as the RBF-kernel, which implements
on average a rate code when spikes are uniformly distributed. Consequently, any
differences in performance that appear in other scenarios must be induced by spike
correlations and the kernel’s ability to detect them.

4.1.5.2 Results of scenario B: Pure correlation coding

Such differences are found by experiments on data-set B (presented in Figure 4.6)
and reveal the kernels’ sensitivity to temporal correlations in spike sequences. Both
classes have identical average firing rates and we apply the jitter transformation to
gradually destroy short range temporal correlations generated by the log-linear model.
As expected, the RBF-kernel cannot see these confined patterns and performs at
chance level for all jitter intensities. The results of homogeneous spikernel and local
alignment show their ability to pick up the two different motifs in the sequences. On
the undisturbed data-set local alignment achieves zero test-error almost perfectly and
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Figure 4.7: Classification results of scenario C. Each group of box-plots shows test-errors of
RBF-kernel, homogeneous spikernel, local alignment and global alignment (from left to
right) for an increasing length scale of jitter. Homogeneous spikernel and local alignment
switch from correlation code to rate code.

performs slightly better than the homogeneous spikernel. This relation is reversed
if small amounts of jitter deteriorate correlations in the data – the homogeneous
spikernel is less sensitive to this partial corruption whereas the performance of local
alignment decreases quickly when the length scale of jitter surpasses two milliseconds.
Finally, global alignment does not show any sensitivity to spike correlations at this
short time scales and performs as bad as the RBF-kernel at 50 % test-error.

4.1.5.3 Results of scenario C: Two ways of coding

From the results of scenario C (see Figure 4.7) we can get insights, how the kernels
behave if information in the data is coded by both coding concepts, as a rate code and
via spike correlations. In scenario A we observed that all kernels react on differences in
mean firing rate. Figure 4.7 shows their performance when correlations are destroyed
by increasing jitter and the most reliable cue switches from correlational structure to
firing rate. Local alignment and homogeneous spikernel behave as in scenario B; the
test-error grows with increasing length scale of jitter until it saturates at a scale of
circa 2 ms, this time at a level of only 20 % to 25 % – the precision that is achieved by
rate coding alone. Thus these two kernels switch from temporal coding to rate coding.
As indicated in previous experiments, RBF-kernel and global alignment do not detect
spike patterns and cannot achieve higher accuracy than by rate coding. However, it
appears as a noticeable fact, that their performance is worse than in scenario A, where
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Figure 4.8: Classification results of scenario D. Each group of box-plots shows test-errors
of RBF-kernel, homogeneous spikernel, local alignment and global alignment (from left
to right) for an increasing length scale of jitter. Presence of non-informative spike
correlations does hardly affect classification performance.

they reached errors below 10 %. This can be explained by the larger overlap of the
class-conditional distributions in scenario C compared to scenario A (c.f. Table 4.1),
that leads to a larger Bayes-error as mentioned earlier (see Section 4.1.2). More
profound reasons, why additional local correlations in the data should disturb rate
kernels, can very likely be excluded, since the performance does not change when
correlations are eliminated with jitter.

4.1.5.4 Results of scenario D: Non-informative correlations

Experiments in scenario D were intended to verify, how much pattern sensitive kernels
are ’distracted’ by non-coding correlations that appear in both classes, while the
informative cue is a difference in firing rate. The box-plots in Figure 4.8 show that,
except for local alignment where a slight but hardly significant decrease in test-error
can be observed, corrupting the patterns has no effect on the performance of any
kernel, which is similar to the results in scenario C with large jitter (cf. Figure 4.7).

4.1.6 Further investigations

After presenting the main results of this study on synthetic data, we will show further
analyses that support theoretical considerations made earlier. In particular, it will
be shown that the original spikernel fails to detect the temporal motifs appearing in
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Homogeneous Spikernel

and orig. Spikernel

N { 5, 10, 20}

λ { 0.1, 0.3, 0.5, 0.7, 0.9}

µ { 0.1, 0.3, 0.5, 0.7, 0.9}

p { 0.76, 1.0, 1.32}

Original Spikernel

N { 2, 5, 10, 20}

λ 1

µ { 0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 0.999}

p { 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4}

both Kernels C { 10−1, 100, 101, 102, . . . ,105}

Table 4.3: Parameter grids for model selection during comparison of the two spikernels.

the data and that equalisation transformations can create strong artifacts in some
situations and might lead to wrong interpretations of results.

4.1.6.1 Advantage of homogeneous spikernel

The considerations of Section 3.3 that motivated the design of the homogeneous
spikernel will be supported by experimental results. The homogeneous spikernel is
an adaptation of the original spikernel to static stimuli, that was inspired by the
original spikernel’s conjectured failure to detect patterns that are equally distributed
over the whole length of a sequence instead of being concentrated at its ending. To
support this claim, a comparison of the two spikernel variants was performed under
similar conditions as the experiments in the previous sections. Parameter values
for model selection are given in Table 4.3. The original spikernel was tested with
two parameter sets, one time with the λ-parameter fixed to λ = 1 and a second
time with a variable λ ∈ (0, 1) that was subject to model selection. In the second
case as for the homogeneous spikernel, the number of different parameter values
had to be restricted, since the computational burden grows exponentially with the
dimensionality of parameter space.

Most interesting is the comparison in scenario B where the ability to detect tempo-
ral structure is tested. The results in Figure 4.9 clearly show the failure of the original
spikernel. Whereas the first version (with λ = 1) is totally insensitive to temporal
patterns as was presumed by earlier calculations (cf. Section 3.3.2), the second setting
(λ ∈ (0, 1)) can achieve, at least occasionally, correct classifications on clean data (cf.
leftmost group of box-plots in Figure 4.9). However, these results show a distinct
improvement achieved by the homogeneous spikernel.

A similar conclusion results from experiments in scenario C, presented in Fig-
ure 4.10. Surprisingly, the original spikernel with variable λ-parameter does not even
partly pick up the correlation code as it did in scenario B, and it is consistently
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Figure 4.9: Comparison of spikernels in scenario B. From left to right, box-plots of test-errors
of the original spikernel with λ = 1 and λ ∈ (0, 1) and of the homogeneous spikernel
are grouped together for increasing values of jitter. Only the homogeneous spikernel can
detect the correlation code of scenario B.
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Figure 4.10: Comparison of spikernels in scenario C. From left to right, box-plots of test-errors
of the original spikernel with λ = 1 and λ ∈ (0, 1) and of the homogeneous spikernel are
grouped together for increasing values of jitter. The original spikernel can classify spike
sequences only according to differences in mean firing rate.
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Figure 4.11: Artifacts of equalisation by deletion in scenario D. Each group of box-plots
shows test-errors of RBF-kernel, homogeneous spikernel, local alignment and global
alignment (from left to right) for increasing equalisation of mean firing rates by deletion.
Surprisingly low test-errors of homogeneous spikernel and local alignment for strong
equalisation can only be explained by artifacts introduced by this type of transformation.

worse than for fixed λ = 1 also in the rate coding regime. A possible cause for this
difference might be the suboptimal model selection with the reduced parameter grid
for λ ∈ (0, 1). In order to limit the number of combinations when optimising four
kernel parameters, only very few values can be tried for each parameter. Further
experiments, e.g. in scenario A and with improved model selection could shed more
light on this unusual behaviour.

As a conclusion we can state that modifying the original spikernel was a necessary
step to adapt it for a discrimination setting with static stimuli. In contrast to the
original spikernel that failed to detect spike motifs in our experimental setting, the
homogeneous spikernel is highly sensitive to short range temporal patterns as stated
in the initial assumptions on kernel design for correlation codes (cf. Section 3.3).

4.1.6.2 Artifacts of equalisation

A second issue that remains to be clarified and supported by experimental results
relates to the equalisation transformation of spike sequences. As explained earlier, this
can hardly be done without reducing second and higher order moments. In situations
where spike correlations in a data-set are strong but non-informative, i.e. identical in
both classes, equalisation by deletion will reduce them only in one class and thereby
increase the discriminability for kernel functions that can detect correlation codes.
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Figure 4.12: Comparison of three types of equalisation in scenario D. Each group of box-
plots shows test-errors of RBF-kernel, homogeneous spikernel, local alignment and global
alignment (from left to right) for full equalisation of mean firing rates by three different
methods. Test-errors of 50 % are expected and deviations to lower values indicate the
strength of artifacts generated by the corresponding equalisation method. For addDel
equalisation the effect is reduced but not negligible.

This effect is shown in Figure 4.11 for the example of scenario D.
On clean data (leftmost group of box-plots in Figure 4.11) test-errors are similar

for all kernels at the level obtained by rate coding (see also Figure 4.8). Equalisation
decreases the discriminability for rate coding and one would expect all kernels to
approach 50 % test-error at maximimum equalization intensity. Instead, homogeneous
spikernel and local alignment achieve test-errors significantly below chance also for
full equalisation. Without any knowledge about the underlying generative model, an
interpretation of these results would conclude that e.g. the homogeneous spikernel
has detected spike correlations in the data that encode class membership. As we
know, this is not the case and the small test-errors of homogeneous spikernel and
local alignment are an unwanted artifact of equalisation.

The effect can only be partially relieved when using the symmetric addDel equali-
sation. Figure 4.12 presents results of a comparison of all three types of equalisation
at full intensity in scenario D. The results show that artifacts are slightly stronger
for equalisation by addition and reduced but still significant for addDel equalisation.

In situations where both classes contain second and higher moments of unknown
value, the effect of equalisation on those cannot be easily predicted. Even addDel
equalisation could increase as well as decrease discriminability depending on the orig-
inal distribution of correlations in the two classes, and we can hardly infer the con-
tribution of spike correlations to encoding of class membership in the data.
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However, to estimate the contribution of correlation coding in real neurophysiolog-
ical data that exhibits a large difference of average firing rate between the classes,
it only remains the way of indirect inference by a comparison of the equalisation
methods. This approach will be illustrated on an example of neurophysiology data
in Section 4.2.

4.1.7 Interim conclusion

In this section several kernels for neural patterns, introduced in Chapter 3, were
tested on artificial data in four different scenarios, in order to assay their ability of
detecting temporal spike correlations. Class encoding short range motifs at a time
scale of about 10 ms were generated using a log-linear model, and could be detected
by homogeneous spikernel and local alignment. Whereas the first method is more
robust to distortions in these patterns than the second one, the latter can achieve a
higher precision for very distinct patterns. Whether these abilities are useful for an
analysis of neural activity recorded in a living organism, is not immediately clear.
Temporal correlations in the artificial data-sets are of particular type and scale and
might be different from the ones that encode information in a particular region of
the brain. For one cell type – complex cells in macaque primary visual cortex – this
issue is addressed in the section below and all four kernel functions are tested again
on neurophysiological recordings.

4.2 Application to neurophysiology data

After the kernels were tested in a controlled environment in the previous section, they
will be applied in the following to true spike activity recorded in a living organism to
see if they can prove useful for an analysis in a realistic scenario.

4.2.1 The data-sets

Three different data-sets are considered, named R1, R2 and R3, that consist of record-
ing from the neurophysiological experiment described in Section 2.2.1. The activity
of complex cell no. 7 is analysed for a subset of three stimulus conditions, namely an
orientation of 112.5 o, 135 o and 157.5 o. The mean firing rate of this neuron for these
stimulus conditions can be obtained from its tuning function shown in Figure 2.8.
The data was chosen to correspond roughly to the artificial scenarios C and B. Data-
set R1 consists of two classes with very different average firing rates, whereas this
difference is negligible for data-set R2. For all three conditions, recordings were taken
from the 500 ms time window of stimulus presentation. The spike sequences exhibit
a characteristic temporal structure, that can be easily recognised when plotting the
temporal evolution of average spike density (see lower panel in Figures 4.13, 4.14 and
4.15).
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4.2.1.1 Data-set R1

Each of the two classes of data-set R1 contains 30 recordings for stimulus condition
135 o and 157.5 o respectively. The average firing rate is 58 Hz in class 1 (135 o) and
33 Hz in class 2 (157.5 o). The two class-conditional distributions of the firing rate
overlap only very little (cf. Table 4.4) and therefore a discrimination task should be
easily solvable with rate coding approaches. In addition, a characteristic temporal
structure of spiking activity can be observed in the scatter plot of the data in the
first 100 ms, and more clearly in a plot of the smoothed time-course of the average
firing rate; both are shown in Figure 4.13.

Despite the limitations of interpretability that were mentioned above, data-set R1
will be transformed by addDel equalisation to eliminate the firing rate difference
between the classes. A comparison of these results with those achieved after equali-
sation by deletion and application of jitter allows to draw conclusions about the type
of correlations in the data and the ability of kernel functions to detect them.

4.2.1.2 Data-sets R2 and R3

Data-set R2 consists of recordings for stimulus orientations 135 o (class 1) and 112.5 o

(class 2). In contrast to set R1, the classes’ average firing rate differs by only 2 Hz
and the class-conditional distributions overlap almost completely. This implies that
classification with rate coding approaches is almost impossible. Still the two stimulus
conditions can be distinguished by their class specific temporal structure that is most
distinctive between 100 ms and 200 ms after stimulus onset. Exactly this recording
period is cut out and again analysed as a separate data-set R3. Plots of the spike
sequences of these data-sets and the temporal evolution of the average firing rate of
each class are shown in Figures 4.14 and 4.15 respectively.

For these two data-sets the small difference in average firing rate between the classes
is neglected and only jitter transformation will be applied for degradation of temporal
regularities. To account for the larger scale of distinctive structures in spike density,
values up to a standard deviation of 25 ms are used in all cases.

Table 4.4 shows the characteristics and class-conditional distributions of the three
neurophysiology data-sets. Compared to the artificial data-sets analysed in the pre-
ceding section, the class-conditional distributions peak more narrowly and the dis-
criminability is higher. The correlational structure of spikes observed in individual
sequences is by no means as regular as in the controlled scenario and appears almost
exclusively between 50 and 200 ms after stimulus onset. However, the time-dependent
spike density appears to be a distinctive feature for classification of stimulus condi-
tions, aside from total firing rate.

81



4 An empirical evaluation of the kernels

13
5o    

   
 a

nd
   

   
15

7.
5o

Spike sequences of dataset ’R1’

Time after stimulus onset (in ms)
50 100 150 200 250 300 350 400 450 500

 5

10

15

20

25

30

 5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160
Smoothed firing rate for data−set ’R1’

Time after stimulus onset (in ms)

F
iri

ng
 r

at
e 

in
 H

z

135o

157.5o

Figure 4.13: Data-set R1 consisting of recordings from complex cell no. 7 in macaque primary
visual cortex for stimulus conditions 135 o and 157.5 o (see Section 2.2.1 for details). The
upper panel shows all spike sequences for the two stimulus orientations. The lower panel
shows the temporal evolution of the firing rate averaged over all sequences in a class.
In both plots a temporal structure in spike density can be observed in the time window
from 50 − 200 ms. Smoothing was done with a Parzen-window density estimator using
a Gaussian kernel of width 5 ms.
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Figure 4.14: Data-set R2 consisting of recordings from complex cell no. 7 in macaque primary
visual cortex for stimulus conditions 135 o and 112.5 o (see Section 2.2.1 for details). The
upper panel shows all spike sequences for the two stimulus orientations. The lower panel
shows the temporal evolution of the firing rate averaged over all sequences in a class. The
two classes have almost identical mean firing rates and differ only by a subtle temporal
structure in spike density in the time window from 100 − 200 ms. (Smoothing as for
data-set R1, see Figure 4.13.)
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Figure 4.15: Data-set R3 is a subset of data-set R2 (see Figure 4.14 for details). In set R2
the time window from 100− 200 ms contains the most distinctive temporal structure in
spike density and is cut out and analysed as set R3. Left and right panel show plots
of spike sequences and spike density in the specified time window. (Smoothing as for
data-set R1, see Figure 4.13.)

Average firing rate

in class 1 (in Hz)

Average firing rate

in class 2 (in Hz)

Class-conditional

distribution

R1 33 58

R2 56 58

R3 60 66

Table 4.4: Characteristics of the three neurophysiological data-sets. The class-conditional
distribution of firing rates for the two classes is plotted in the rightmost column (cf. also
Table 4.1).
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4.2.2 Experimental protocol

Compared to the previous study, the experimental protocol had to be changed slightly
to account for fewer points (only 60 sequences in total). This time the test-error is
computed by a four-fold cross-validation and model selection is performed in an inner
loop of only five folds. In total numbers of samples this amounts to training (testing)
on 36 (resp. 9) points during model selection and computing a test-error from 15
samples (while trained on 45). Instead of six independent instances only the partition
into folds is varied during six repetitions. Thus, we get 24 estimates for the test-error
which are stronger correlated than the errors in the artificial scenarios, since only
one instance of each data-set is available and test-errors are computed by four-fold
cross-validation instead of two folds. For model selection the same parameter grids
were applied as in the earlier experiments (see Table 4.2), and results are presented
as box-plots using the same notation as above. Only for the homogeneous spikernel,
the parameter N that specifies the maximum length of considered sub-sequences, was
scaled up in order to account for temporal patterns at larger scales, as they appear e.g.
in the rate plot of Figure 4.15. Values of N are chosen from the grid N ∈ {10, 40, 70}.

4.2.3 Results and discussion

By analysing the results of reconstruction experiments on neurophysiological data it
can be seen how the kernels’ ability to detect temporal spike correlations in artificial
data allows scientific statements in these more realistic situations. In analogy to the
protocol that was applied to scenarios B and C, the spike sequences are manipulated
with jitter and the resulting change of test-errors indicates whether the data contains
any correlational structures that can be detected by the kernels.

Results for data-sets R1 and R2 are shown in Figure 4.16. On data-set R1 test-
errors are generally very low due to the almost perfectly separated class-conditional
distributions of firing rate (cf. Table 4.4). For clean data, the median is at 0 % for
all kernels and the mean test-error is almost zero except for the RBF-kernel which is
only slightly worse. When comparing these numbers with a jitter scale of σ = 25 ms
all test-errors increase, although hardly significant, a trend that can be observed
most clearly for local and global alignment. However, interpreting it as an indication
for short range correlational structure in the data in analogy to the reasoning in
scenario C (cf. Subsection 4.1.5.3) would need more significant justification.

Such a conclusion should be verifiable by results on the second data-set R2, shown
at the right of Figure 4.16. Here, the trend in the results is not consistent. Most
surprising are the test-errors of homogeneous spikernel, where mean and median
are circa 5 % above chance level for clean data and 10 % below for strong jitter.
When assuming that increased jitter cannot facilitate classification this behaviour
indicates that the variance of the test-errors is higher than suggested by the range of
the individual box-plots. Similar conclusions can be drawn from the results of RBF-
kernel and local alignment that have mean test-errors below 45 % for a jitter intensity
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Figure 4.16: Classification results on data-sets R1 (left panel) and R2 (right panel). Each
group of box-plots shows test-errors of RBF-kernel, homogeneous spikernel, local align-
ment and global alignment (from left to right) on clean data and after application of
jitter with σ = 25 ms. In both data-sets classification performance does not change
drastically after strong jitter transformation.

of σ = 25 ms, although at this noise level there should be no cues left that allow
correct classification. The only consistent trend is observed for global alignment,
where classification errors increase clearly from circa 37 % (mean and median) on
clean data to 50 % when disturbed by jitter. However, given the indications for high
variance in the other results, this fact does not allow a strong statement, neither
about the existence of correlational structure in the data nor about the ability of the
global alignment kernel to detect them.

Under the assumption that relevant spike correlations appear in the interval from
100 to 200 ms, the kernels’ abilities should show more clearly on set R3 where all parts
of the signal are cut off that are supposedly non-coding. These results are shown
in Figure 4.17. With the reasonable assumption that test-errors for higher jitter
variance should be non-decreasing and be not larger than 50 %, these results support
the earlier observation that performances of RBF-kernel, homogeneous spikernel and
local alignment have large variances. For all three kernel functions test-errors are in
some cases distinctively above 50 % and do not show a trend that is consistent with
the increasing jitter intensity. Only the results of global alignment are consistent over
the whole jitter range and again indicate its ability to detect relevant features in the
data. Although its absolute error rate around 40 % on both data-sets, R2 and R3,
is too large to make it a reliable tool, it can serve as an indicator for correlational
structure in neurophysiological spike data.
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Figure 4.17: Classification results on data-set R3. Each group of box-plots shows test-
errors of RBF-kernel, homogeneous spikernel, local alignment and global alignment (from
left to right) for an increasing length scale of jitter. Some results are inconsistent,
e.g. significantly above 50 %, thereby indicating a larger variance of the test-errors as
suggested by the upper and lower quartile (i.e. the box).
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Figure 4.18: Classification results on data-set R1 for two types of equalisation. Each group of
box-plots shows test-errors of RBF-kernel, homogeneous spikernel, local alignment and
global alignment (from left to right) for increasing intensity of addDel equalisation and
for full equalisation by deletion (rightmost group of box-plots).
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As a last support for the usefulness of global alignment, we show in Figure 4.18
results on data-set R1 with transformation by addDel equalisation and equalisation
by deletion. A comparison of test-errors for both equalisation methods at full in-
tensity (see the two rightmost groups of box-plots in Figure 4.18) allows to draw
conclusions, despite the unavoidable deterioration of correlational structure by these
transformations.

Supported by the results in Figure 4.12, we state the assumption that any decrease
of test-errors that is an artifact of equalisation should appear stronger with equali-
sation by deletion than for the more symmetric addDel equalisation. Homogeneous
spikernel and local alignment both show this trend in their results at the right side
of Figure 4.18. Their test-errors are smaller after equalisation by deletion than for
full intensity addDel equalisation. In contrast, the test-error of global alignment is
almost unchanged for both types of equalisation. Its better performance on set R1,
circa 30 % compared to 40 % on sets R2 and R3, is consistent with the larger difference
in correlational structure between the classes of R1.

Thus, as a summary we can say that global alignment is the only kernel that
showed consistent results in all three settings, and it achieved a test-error clearly
below chance-level on the difficult data-sets R2 and R3. Although the homogeneous
spikernel achieves better results on the undisturbed set R3, inconsistencies in its
performance have to be attributed to a high variance of test-errors that is larger than
suggested by the upper and lower quartile, and thereby prohibit a strong conclusion.

4.3 Summary

At the beginning of this chapter we set out to answer two questions: First, “Do
the three novel kernel-functions that were introduced in Chapter 3 actually have the
properties they were designed for?”, and second, “Can theses kernels be used to make
scientific statements about correlational structure in neurophysiological data?” Some
answers to these questions were given in the preceding two sections and they will be
discussed and summarised in the following.

Most apparent is the fact that the two kernels that could detect short range correla-
tional structure in artificial data were not able to correctly classify sample sequences
of real recordings. On the other hand, global alignment that proved to be insensitive
to short range stationary correlations in the artificial scenarios, seems to be the only
method that can consistently classify the neurophysiological data at hand, although
with a large error rate of circa 40 %.

As an immediate conclusion it follows that the analysed neurophysiological record-
ings convey no information in form of stationary local spike correlations like they
appear in the synthetically generated samples of the log-linear model. Comparing
qualitatively the appearance of these recordings with our artificial data-sets, the
most prominent difference is the temporal scale at which visible structures exist. As
it was observed for R1 and R2 in Figures 4.13 and 4.14 respectively, the distribution
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of spikes over the recording period is not uniform and distinctively structured for
each class. In contrast, in the artificial data-sets the spike density is uniform in time,
and encoding temporal patterns appear at arbitrary times in the sequence and are
not locked relative to stimulus onset.

This difference can explain the varying success of homogeneous spikernel, local
alignment and global alignment in both scenarios. Whereas global alignment takes a
spike sequence over its whole length into consideration,the other two methods look for
locally similar patterns independently of their position in the sequence. Thereby both
kernels fail to detect large scale structures in spike density, independently of whether
local similarities are averaged over the whole sequence (homogeneous spikernel) or
only the best match is used for classification (local alignment).

From a neuroscience point of view it is a relevant result, that it could be shown that
the analysed neurophysiological data does not contain short range spike correlations.
These patterns might be not immediately visible, in particular if they are not locked to
stimulus onset and perhaps masked by additional noise spikes. Given the very limited
amount of neurophysiological data that has been analysed, we will be careful in our
conclusions. Thus, it seems that stimulus encoding by stationary short range spike
correlations does not appear in the orientation sensitive complex cells of macaque
primary visual cortex that were analysed here.

These findings need to be supported by further analyses on neurophysiological data
as well as on simulated data. Global structures in spike density like the ones that
appeared in data-sets R1 and R2 at time scales of order of 100 ms can be modelled
with the log-linear model using time-dependent correlation parameters θ = θ(t).
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recordings from multiple neurons

In the preceding chapter we tested kernel functions in a controlled environment and
illustrated a way how they could be used for scientific reasoning about coding hypothe-
ses for neural data. In the current chapter, we will change our viewpoint slightly and
emphasise more the engineering perspective on the reconstruction problem. Thereby,
we will focus on performance and reconstruction accuracy and use all methods of
machine learning at our disposal when pursuing this goal. As a consequence, the
problem setting and the methods we apply are more complex than in Chapter 4 and
seem less appropriate for a scientific reconstruction analysis.

5.1 The problem setup

The following series of experiments is an attempt to explore the general usability of
kernel machines for the task of stimulus reconstruction in a discrimination setting
with eight different stimulus conditions. The data-set of neural activity was recorded
from a population of twenty neurons in primary visual cortex and we try to integrate
the information distributed over many neurons, i.e. perform population decoding.
To this end SVMs, Gaussian process regression, kernel dependency estimation and
a k-nearest neighbour classifier are applied to the problem. Except for Gaussian
process regression, that comes with its own anisotropic Gaussian kernel, each of
the methods is tested with an RBF-kernel, the homogeneous spikernel and global
alignment score. The performances of these methods is compared to three classical
reconstruction methods of computational neuroscience, namely Template Matching,
Population Vector and Bayesian Reconstruction (cf. Section 2.3.2).

5.2 The data-sets

The data-set we analyse was collected in the neurophysiological experiment described
in Section 2.2.1. From the 800 ms of recordings from twenty different neurons only
data in the 500 ms time window of stimulus presentation was used for reconstruction
(cf. lower panel of Figure 2.7). An overview of the data-sets is presented in Figures 5.1
and 5.2, where recordings of all trials and all neurons are shown for both contrast
levels with a resolution of ten bins à 50 ms.

As explained in Section 2.2.2, the highest reasonable resolution to represent the
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Firing rate sequences of 20 neurons (10 bins a 50 ms)
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Figure 5.1: An aggregated view of the neural activity of 20 simultaneously recorded neurons
in macaque primary visual cortex obtained in 240 trials with high contrast stimuli (see
Section 2.2.1 for details). The horizontal axis represents on its major scale the different
neurons (separated by dotted lines) and on its minor scale for each neuron a time series
of firing rates at a resolution of 10 bins à 50 ms. The vertical axis indexes the stimulus
orientation angles on its major scale and the individual trials on its minor scale. Firing
rates are coded by grey-values as indicated in the legend at the right. Note the particu-
larly active neuron no. 7 that was analysed in Section 4.2 and whose tuning function is
shown in Figure 2.7.
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Firing rate sequences of 20 neurons (10 bins a 50 ms)
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Figure 5.2: An aggregated view of the neural activity of 20 simultaneously recorded neurons
in macaque primary visual cortex obtained in 240 trials with low contrast stimuli (see
Section 2.2.1 for details). The meaning of the axes is identical to Figure 5.1. Compared
to recordings for high contrast stimuli, neuron no. 7 has lower firing rates in this setting
but other neurons show stronger activity, e.g. neuron no. 15.
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5 Kernel methods for the analysis of recordings from multiple neurons

activity of a single neuron in a trial is 1 ms, resulting for our data-set in a 500-
dimensional vector of spike counts v = (v1, v2, . . . , v500). For the subsequent recon-
struction analysis, unfortunately, computational costs prohibit a treatment at this
full resolution. Compared to experiments in Section 4.2, twenty times more neurons
and four times the number of trials have to be taken into account. In order to reduce
the computational burden, data is represented at reduced resolution, thereby sacrific-
ing temporal information. Three different representations corresponding to different
temporal resolutions are used that consist of 1, 2 or 10 bins of length 500 ms, 250 ms
and 50 ms respectively. Given that the time complexity of spikernel and alignment
score is quadratic in the length of input sequences, we gain a speedup by roughly a
factor of 502 = 2500 for a 10-bin representation. Hence, we are now working with
sequences of spike counts in contrast to binary sequences of single spikes that were
considered in Chapter 4.

In population decoding the question arises how to combine the activities of different
neurons. Depending on the kernel function we use different strategies. Let vn =
(vn

1 , . . . , v
n
Nb

) be a row vector containing Nb ∈ {1, 2, 10} bins of spike counts from
neuron n, (n = 1, . . . , 20) (cf. Section 2.2.2). With RBF-kernels (both the standard
kernel (3.1) and the anisotropic Gaussian covariance function (5.12)), spike count
vectors of all neurons are simply concatenated to yield

xRBF =
(
v1 v2 . . . v20

)
. (5.1)

Thereby, each neuron is assigned to an associated subspace and arbitrary correlations
among neurons can be exploited.

In contrast, the spikernel treats the activation state of all cells in a neural pop-
ulation as one complex letter of a sequence. Consider the column vector vb =
(
v1
b , v

2
b , . . . , v

20
b

)⊤
that represents the activation state of the neural population in

a time-bin b (cf. Section 2.2.2). Sequences of Nb bins from 20 neurons are arranged
as a matrix

xSpikernel =








v1
1 . . . v1

Nb

v2
1 . . . v2

Nb

...
...

v20
1 . . . v20

Nb








, (5.2)

where each column represents one letter. Thus, the activity of a population of Nn

neurons is represented in a Nn-dimensional vector space and activation states are
compared by the squared Euclidean distance (cf. Section 3.3.1).

Global alignment scores are computed separately for each neuron and then trans-
formed by an empirical kernel map into

Φ(vn,(i)) =
(

falignGlob

(
vn,(i),vn,(1)

)
, . . . , falignGlob

(
vn,(i),vn,(Ntr)

))

, (5.3)

where vn,(i) is a sequence of spike counts of neuron n in trial i and falignGlob(r,q) is
the cost of a global alignment of the sequences r and q. Thus, a spike count vector
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vn,(i) is represented via the empirical kernel map as a vector of alignment scores of the
nth neuron in all Ntr trials i = 1 . . . Ntr. The new feature vectors are concatenated
for all neurons to

x
(i)
alignGlob =

(

Φ
(
v1,(i)

)
, . . . , Φ

(
v20,(i)

))

(5.4)

and a linear kernel is used with this representation (cf. Section 3.4.4).

5.3 Loss-functions and structure in stimulus space

At this point we would like to say a few words on loss-functions and their role in
the reconstruction scenario. First, we will comment on the type of loss function that
should be used for evaluation, second, we will point out which of the algorithms do
actually exploit the similarity structure that is imposed by a loss-functions on the
output space.

In general, the significance of the loss-function depends on the goal that should be
achieved with a reconstruction task. As pointed out earlier in the introduction to
Part I of this thesis, we consider two different viewpoints.

In an engineering application, the loss-function is often specified in the context of
the task to be solved and can differ from the standard loss-functions that are com-
mon in machine learning evaluation setups. For example, when using reconstruction
in a thought controlled human-machine interface, there might be actions that can
cause potentially more damage than others and the total risk of a prediction is to be
minimised. In the simple example we consider here – the reconstruction of orienta-
tions – there could exist a non-uniform circular structure that has to be considered.
Naturally, for an engineering application it is obvious and perfectly admissible to use
all information and tricks at our disposal to maximise the overall performance of the
system, i.e. to minimise the expected loss according to the given loss-function. In
particular it can only be advantageous if the loss-function that is optimised during
learning is close to the loss-function that is used for evaluation in the end.

Our main scientific motivation for solving the reconstruction task is to test various
hypotheses about the way neural coding is performed in the organism. In order
to gain insight about the true code, the loss-function that is used to evaluate the
hypotheses, i.e. the kernel functions associated with them, should be similar to the
loss-function the organism actually minimises when making decisions. However, this
similarity structure, that is imposed on the stimulus space by a loss-function, would
have to be determined by psychophysical experiments. Measuring psychophysical
similarity metrics is a difficult task in itself and to our current knowledge there is
no such data available for oriented gratings in macaque monkeys. Moreover, very
likely the loss-function changes with the context in which the particular task has to
be solved.

So from both points of view, and in the absence of any additional assumptions and
constraints, it seems most reasonable to assume a simple linear loss-function that
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Figure 5.3: Left: Illustration of the circular similarity structure of the visual stimuli that were
shown in a neurophysiological experiment (cf. Figure 2.6 and Section 2.2.1). Stimuli are
maximally dissimilar for a 90o-difference of the orientation angles. Right: Appropriate
loss functions for the circular similarity structure shown in the left panel. The solid line
is the partly linear loss function (5.5), the dashed line is the distance (5.14) induced by
the kernel (5.13) and the dotted line is a quadratic loss function. Loss functions have
been scaled and shifted appropriately to align with each other.

takes the circular structure of the problem into account (cf. Figure 5.3)

L(α, β) = min{|α− β|,−|α− β|+ 180 o} . (5.5)

In the setting that we consider, predicting the orientation of gratings that were
presented to the animal is per se a regression task. The angle is a real valued variable
and can take on any value from the interval [0, 180 o). In the experiment only eight
different orientations were shown, which allows us to treat the reconstruction problem
as a multi-class discrimination task. The k-nearest neighbour (KNN) algorithm and
a number of SVM-classifiers combined in a ’one-versus-rest’ (1-vs-r) or in a ’one-
versus-one’ (1-vs-1) multi-class scheme work with this assumption. In particular,
these algorithms consider all eight classes as equivalent, e.g. the SVM in a multi-class
scheme optimises a hinge-loss on binary class-labels independently of how close the
angles of the respective classes actually are. One approach we followed to adapt
better to the circular structure of the eight classes, is to solve the full regression
problem using Gaussian process regression. As a generalisation of the two viewpoints
– classification and regression – the forth approach is kernel dependency estimation
(KDE). This classification algorithm tries to exploit structure that is imposed by a
loss-function on the output labels.
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5.4 The learning algorithms

In the following, we will briefly review the four learning algorithms that we used and
how they were adapted to the problem at hand.

5.4.1 K-nearest neighbour

The k-nearest neighbour classifier is a very intuitive and handy learning algorithm
[see e.g. Duda et al., 2001]. It is easy to use, requires no training and is immedi-
ately extendable to the multi-class case. When applied with an appropriate distance
measure it can become quite powerful. To classify a new point, the algorithm sim-
ply considers its k nearest neighbours (hence the name) and assigns the label of the
majority of them to the test point.1 Non-linear mappings of the input space can
be taken into account when the distance measure is derived from a kernel-function
according to:

d(x, y) = ‖x− y‖ =
√

〈x− y, x− y〉k =
√

k(x, x) + k(y, y)− 2k(x, y) (5.6)

Our motivation for using this simple classifier was to see, how much accuracy is
achieved due to an appropriate similarity measure (i.e. an appropriate kernel function)
and how much accuracy is due to the modern machine learning algorithms that were
applied.

5.4.2 Multi-class schemes for support vector machines

The standard strategy to combine (binary) SVM-classifiers to a multi-class system is
called ’one-versus-rest’. In Chapter 1 it was explained how to do binary classification
using SVMs by estimating a normal vector w and offset b of a hyperplane 〈w,Φ(x)〉+
b = 0 in the feature space. A given point x will then be assigned to class 1 if
〈w,Φ(x)〉 + b > 0 (and to class -1 otherwise). If there are M > 2 classes, we can
train M classifiers, each one separating one specific class from the union of all other
ones (hence the name ’one-versus-rest’). When classifying a new point x⋆, we simply
assign it to the class whose classifier leads to the largest value of 〈w,Φ(x⋆)〉+ b.

Another general method for constructing a multi-class classifier from binary clas-
sifiers is to train one classifier for each possible combination of two classes. For M
classes, M(M − 1)/2 binary classifiers are trained, one for each possible combination
of two classes. The method is referred to as ’one-versus-one’ and is more expensive
than ’one-versus-rest’ if M > 3. To predict the label of a new point, each of the
M(M − 1)/2 binary classifiers votes for one of two classes and then the point is as-
signed to the class that gained the most votes. To increase efficiency and precision
other methods for multi-class classification with SVMs have been proposed [Allwein

1Other voting schemes are possible, e.g. a weighted average of votes with weights proportional to
the inverse distance. We will use the standard version.
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et al., 2000, Platt et al., 2000, Weston and Watkins, 1999]. However, in practical ap-
plications these sophisticated methods do not seem to provide substantial advantages
in either precision or efficiency.

5.4.3 Gaussian process regression

Gaussian process regression (GPR) is a Bayesian regression method in which a Gaus-
sian process (GP) is used to describe the a priori uncertainty about a latent function,
see Rasmussen and Williams [2006] for a detailed description. In an experimental
study Rasmussen [1996] has shown that GPR performs very well compared to other
state of the art regression methods. Furthermore, the Bayesian framework comes
with the advantage that Bayesian model selection can be used to estimate all free
parameters of the model. Below we give a brief introduction to GPR and describe
its use for the given reconstruction task.

In general terms, the model is based on the common assumption of regression
analysis that observable targets y ∈ R depend on corresponding inputs x via a real
valued latent function f

y = f(x) + ε (5.7)

where ε ∼ N (0, σ2
noise) is a normally distributed noise term.

Following the Bayesian approach, an a priori uncertainty about the latent function
f has to be specified. In the GPR model the uncertainty is described by a zero mean
Gaussian process. A GP is a stochastic process which is defined by its marginal dis-
tributions. For any collection of inputs X = (x1, . . . ,xn) the corresponding function
values f = (f(x1), . . . , f(xn)) are jointly distributed according to a multivariate nor-
mal distribution f ∼ N (0,K), where the covariance matrix K is given element-wise
by a positive definite covariance function Kij = k(xi,xj). Note that the class of
admissible covariance functions coincides with the class of kernel functions described
in Section 1.2. Therefore GPR can be seen as a probabilistic kernel method. While
in SVMs the kernel function is interpreted as an inner product in feature space, in
GPR the covariance function describes the covariance of latent function values

k(x,x′) = cov(f(x), f(x′)) . (5.8)

From a GP point of view the choice of covariance function implies certain a priori
beliefs about the characteristics (such as smoothness, amplitude, etc.) of the latent
function, see again Rasmussen and Williams [2006]. The idea of using Gaussian
processes in this form has been introduced by O’Hagan [1978] in the statistics com-
munity and was carried over to the machine learning community by [Williams and
Rasmussen, 1996].

Given a data set D = {(yi,xi)|i = 1, . . . , n} the aim is to identify the latent function
f . It turns out that the posterior distribution over functions is again described by
a Gaussian process. Thereby the predictive distribution of a function value f(x⋆)

98



5.4 The learning algorithms

corresponding to an arbitrary test input x⋆ is a normal distribution f(x⋆) ∼ N (µ, σ2)
whose mean and variance are given by

µ = k(x⋆)T (K + σ2
noiseI)

−1y (5.9)

σ2 = k(x⋆,x⋆)− k(x⋆)T (K + σ2
noiseI)

−1k(x⋆) (5.10)

where k(x⋆) = (k(x⋆,x1), . . . , k(x⋆,xn))T .

As mentioned above, the formalism of Bayesian model selection can be used to
find point estimates of the noise variance σ2

noise and parameters of the covariance
function. This is implemented by maximising the marginal likelihood, also known as
the evidence, see Rasmussen and Williams [2006, Chapter 5] for details. Technically,
we minimise the negative log marginal likelihood

ln p(y|X) = −
n

2
ln(2π)−

1

2
ln |K + σ2

noiseI| −
1

2
yT (K + σ2

noiseI)
−1y (5.11)

in all free parameters using a conjugate gradient optimiser. The basic idea of this
procedure is to select the prior such that it agrees maximally with the observed data.
Not that the prior is chosen by taking the data into account, which is not valid from
a principled Bayesian perspective. However, the approach has shown to work very
well in practise.

Below we will use GPR to solve the reconstruction problem. To take the circular
structure of the targets into account we do not predict the stimulus angle α directly
but we consider the task as two independent regression problems on sin 2α and cos 2α
respectively. For symmetry reasons, we work with the doubled angle 2α as input
variable. For prediction, the means (5.9) of the predicted distributions of sin 2α and
cos 2α are taken as point estimates and are then projected onto the unit circle. Finally
we assign the averaged predicted angle to the nearest orientation which could have
been shown, i.e. to one of the eight classes.

An important step in using GPR is the choice of a covariance function. Assuming
x ∈ R

D we use the common RBF type covariance function of the form

k(x,x′) = v2 exp

(

−
1

2
(x− x′)TW−1(x− x′)

)

(5.12)

where v2 is the so called noise variance and W = diag(w1 . . . wD) is a diagonal
matrix of weights. This covariance function expresses that function values whose
corresponding inputs are close in input space have strong covariance and outputs
belonging to inputs far apart become almost independent. It is possible to show that
the distribution of functions generated by this covariance function are all smooth, i.e.
continuous and infinitely often differentiable. The w-parameters implement a scaling
of input dimensions and thereby control how important different input dimensions
are in a prediction. Estimating the w parameters from the data can be seen as an
instance of automatic relevance determination as described by Neal [1996].
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Bayesian model selection is used to estimate the parameters W, v and σ2
noise from

the data by minimising the negative log marginal likelihood (5.11). In order to use
a gradient based optimisation scheme, derivatives of the kernel-function with respect
to the parameters have to be computed. Therefore using GP-regression with kernel
functions that are non-differentiable with respect to the kernel parameters, e.g. the
homogeneous spikernel or an empirical feature map of the global alignment score,
becomes impractical. Therefore we restrict the use of GPs to the covariance function
(5.12). Another restriction relates to the number of parameters that have to be
estimated. Using covariance function (5.12) we have to estimate a weight wd for each
input dimension. Therefore analysing the data in high temporal resolution (10 bins
per neuron) would require to estimate 200 parameters from a training set of only 192
trials. Instead we give experimental results only for 1 and 2 bins per neuron, thereby
loosing much of the temporal structure.

5.4.4 Kernel dependency estimation

The choice of sin 2α and cos 2α to parametrise the stimulus orientation when us-
ing GPR was guided mainly by human insight into the symmetry properties of the
problem. A more principled way to predict in output spaces with non-canonical sim-
ilarities was proposed by Weston et al. [2003] under the name kernel dependency
estimation (KDE).

The goal of KDE is to learn a dependency between a general class of inputs X and
a possibly different class of output objects Y. In contrast to most kernel algorithms
that can perform classification or regression on complex input data such as images,
strings, trees or graphs but predict only a discrete label (classification) or a real valued
scalar (regression); in KDE also the outputs can be objects of arbitrary type. This is
achieved by definition of a kernel function in output space kO : Y × Y → R, thereby
embedding also the output objects in a feature space Fout. The type of output kernel
to be used is determined by the loss-function that is given as part of the task. Like
a kernel on the inputs induces a metric in input space (cf. Equation (5.6)), a loss-
function can be seen as a distance measure in output space induced by the output
kernel kO(yi, yj). Learning takes place by estimating a linear mapping between the
two feature spaces – the input feature space Fin induced by a kernel on the inputs
kI(xi, xj) and the output feature space Fout induced by kO(yi, yj). When predicting
the output y⋆ for a test input x⋆, the pre-image y⋆ = Φ−1

O (Φ⋆) of the estimated
solution in feature space Φ⋆ has to be found (remember that the explicit mapping
ΦO is in general not available). A sketch of the overall concept of KDE is shown in
Figure 5.4.

On a more technical level, the algorithm is a combination of kernel principal com-
ponents analysis (KPCA, see Schölkopf and Smola [2002, Chapter 14] and Schölkopf
et al. [1999b]) and kernel ridge regression (KRR, [Vovk et al., 1998]). First, the set of
training outputs yi ∈ Y is used to perform a KPCA-decomposition using the output
kernel kO(·, ·), thereby decorrelating the outputs in feature space. In a second step
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ΦI(x) ∈ Fin
ΦO(y) ∈ Fout

y ∈ Yx ∈ X

�✁ ✂ ✄☎ ✆✝✞✁ ✝✟

kI(x, x′)

✠✄☎✂ ✄☎ ✆✝✞✁ ✝✟

kO(y, y′)

✡☛✁ ✝☞ ✞✌✝✍✞✝✎✎☛✏✁

✑ ✞✝✒☛✓ ☞ ✍✝

y⋆ = Φ−1

O
(Φ⋆)

Figure 5.4: The scheme of kernel dependency estimation. Kernels both on inputs x and on
outputs y embed objects into feature spaces where a linear mapping is estimated.

an independent KRR-regressor is trained to each of the KPCA-components using the
kernel kI(·, ·) on the training inputs. When assigning a label y⋆ to a test point x⋆

the regressors predict the projections on the KPCA-components, i.e. scalar products
with elements of the feature space Fout. To reconstruct the corresponding element of
output space y⋆ ∈ Y, a pre-image problem has to be solved. In our application, where
only eight possible orientations exist, this can be done by a simple search for the best
matching angle. For more complex output spaces, several algorithms exist for finding
approximate pre-images (see e.g. Schölkopf and Smola [2002, Chapter 18]). The only
parameter of the KDE-algorithm that has to be optimised by model selection is the
ridge-parameter ǫ of KRR.

If we wish to implement a particular loss-structure, KDE requires a positive definite
kernel function that induces the desired metric. In order to approximate the linear
loss function (5.5), we chose the kernel on the outputs to be

kO(α, β) = cos(2α− 2β) . (5.13)

A quick calculation using formula (5.6) and some elementary trigonometric identities
shows that the induced distance is

dO(α, β) = 2 sin(α− β) , (5.14)

which is a fairly good approximation to the linear loss (5.5) and would even better
approximate a quadratic loss-function (see Figure 5.3). Note that the intuitive feature
map that was chosen for Gaussian process regression

ΦO(α) =

(
cos 2α
sin 2α

)

(5.15)

also leads to the kernel (5.13) which can be verified by

kO(α, β) = 〈ΦO(α), ΦO(β)〉 = cos 2α cos 2β+sin 2α sin 2β = cos(2α−2β) . (5.16)
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Hence, by approximating the linear loss (5.5) with a suitable kernel function, we
achieve the same feature space representation of the outputs as was suggested for
GPR by common sense.

Because of this identity in our application the KDE and GPR approach lead to
almost identical classifiers, although originating from two rather different views on
the learning problem. To see this remember the general correspondence between GPR
and kernel ridge regression (KRR).2 The mean of the predictive distribution (5.9) of
GPR is identical to the prediction of KRR if the same kernels are used and the noise
parameter σ2

noise is identified with the regularisation parameter ǫ. The KPCA-step
in KDE with the output kernel (5.13) leads to the basis (5.15) if all eight possible
outputs appear with equal frequency in the training set. Hence, in our scenario
KDE and GPR are closely related since they perform regression on the same target
variables and the regression methods make identical predictions.

However, both methods apply different strategies for model selection and were ap-
plied with different kernels. GPR uses gradient based methods for Bayesian model
selection, i.e. to perform numerical minimisation of the negative log marginal likeli-
hood (5.11), and is therefore not applicable when derivatives of the kernel function
with respect to its parameters are not available as it is the case for spikernel and
alignment scores (in particular since the latter is used in combination with empirical
kernel map). Therefore GPR was applied only with the anisotropic Gaussian ker-
nel (5.12). In contrast, model selection for KDE was performed by evaluating the
classifier on a validation set for different parameter settings and selecting the one with
the smallest validation error. This method has the advantage that it does not require
analytical derivatives of the kernel function but it is restricted to small numbers of
parameters and would be impractical for the anisotropic Gaussian kernel (5.12).

5.5 Experimental protocol

In all experiments the test error was computed over a five fold cross-validation using
exactly the same data split for all algorithms, balanced with respect to the classes.3

We use four out of five folds for model selection, i.e. to choose the parameters of kernel
and algorithm. With a data-set of 240 points, the test set contains 48 points (six
points per class) and the training set contains 192 points (24 per class). The model
selection itself is done via another level of five fold cross-validation. Afterwards, the
best model is trained on the four data folds that were used in model selection and an
independent test error is computed on the remaining fold.

The parameters of the KDE algorithm (ridge parameter ǫ) and the SVM (C) are
taken from a logarithmic grid (ǫ ∈ {10−5, 10−4, ..., 101}; C ∈ {10−1, 1, ..., 105}). The k

2The relation between GPR, Bayesian inference in linear models and kernel ridge regression is
discussed in more detail by Rasmussen and Williams [2006] in Chapters 2 and 6.2.

3The relative size of the classes in each fold is chosen to be identical to the relative sizes on the
whole data-set. I.e. in the data-set at hand we have the same number of points per class in every
fold.
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RBF-Kernel Hom. Spikernel Global Alignment

KDE
10 bins 16.8◦ ± 1.6◦ 12.5◦ ± 1.8◦ 13.8◦ ± 1.3◦

1 bin 12.8◦ ± 1.7◦

SVM (1-vs-rest)
10 bins 16.8◦ ± 2.0◦ 11.5◦ ± 1.5◦ 12.8◦ ± 0.9◦

1 bin 13.3◦ ± 1.6◦

SVM (1-vs-1)
10 bins 16.4◦ ± 1.6◦ 10.9◦ ± 1.2◦ 12.3◦ ± 1.5◦

1 bin 12.2◦ ± 1.7◦

KNN
10 bins 18.7◦ ± 1.5◦ 12.1◦ ± 1.0◦ 13.0◦ ± 2.0◦

1 bin 14.0◦ ± 1.7◦

GP
2 bins 16.2◦ ± 1.1◦ n/a n/a
1 bin 15.6◦ ± 1.7◦

Bayesian reconstruction 14.4◦ ± 2.1◦

Template Matching 17.7◦ ± 0.6◦

Population Vector 28.8◦ ± 1.0◦

Table 5.1: Mean test error and standard error on the low contrast data-set. The five best
results are in boldface.

in KNN is chosen from k ∈ {1, 2, 3, 4, 5, 6}. After we knew its order of magnitude, we
chose the σ-parameter of the Gaussian kernel from a linear grid (σ = 1, 2, ..., 10). The
homogeneous spikernel has four parameters: λ, µ, N and p. We chose N = 10 equal to
the maximum number of spike-count bins to take patterns of all possible lengths into
account. The parameters λ, µ and p are chosen from the following (partly linear) grids:
µ, λ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99} and p ∈ {0.05, 0.1, 0.43, 0.76, 1.09, 1.42, 1.75}.
For global alignment the two parameters are gap-cost and gap-mean. They were
chosen from logarithmic grids as:
gapCost ∈ {0.25, 0.35, 0.50, 0.71, 1.00, 1.41, 2.00, 2.83, 4.00} and
gapMean ∈ {0.03, 0.05, 0.10, 0.20, 0.40, 0.80, 1.60, 3.20}.

5.6 Results and discussion

In the following we report experimental results using the loss-function (5.5) (i.e. in
degrees) including the standard error ( σ√

N
). As reference values, we give performances

of the classical reconstruction methods Template Matching, Population Vector and
Bayesian reconstruction as described in Section 2.3.2. For Bayesian reconstruction we
assume independent neurons with Poisson characteristics. All three classical methods
are purely rate based, i.e. they only consider the total spike count of a neuron during
the recording period.

Table 5.1 and Table 5.2 show results for low contrast and high contrast stimuli
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RBF-Kernel Hom. Spikernel Global Alignment

KDE
10 bins 1.9◦ ± 0.5◦ 1.4◦ ± 0.3◦ 2.1◦ ± 0.4◦

1 bin 1.4◦ ± 0.5◦

SVM (1-vs-rest)
10 bins 1.5◦ ± 0.5◦ 1.4◦ ± 0.6◦ 1.0◦ ± 0.5◦

1 bin 1.4◦ ± 0.4◦

SVM (1-vs-1)
10 bins 1.2◦ ± 0.4◦ 1.3◦ ± 0.5◦ 0.8◦ ± 0.3◦

1 bin 1.1◦ ± 0.4◦

KNN
10 bins 4.7◦ ± 1.2◦ 1.1◦ ± 0.4◦ 1.0◦ ± 0.3◦

1 bin 1.7◦ ± 0.6◦

GP
2 bins 1.4◦ ± 0.4◦ n/a n/a
1 bin 2.0◦ ± 0.5◦

Bayesian reconstruction 3.8◦ ± 0.6◦

Template Matching 7.2◦ ± 1.0◦

Population Vector 11.6◦ ± 0.7◦

Table 5.2: Mean test error and standard error on the high contrast data-set. The five best
results are in boldface.

respectively. Test-errors are given for the KDE algorithm, for SVMs in two different
multi-class schemes, for KNN and for Gaussian process regression. Three kernel func-
tions were tested: the RBF-kernel, the homogeneous spikernel and global alignment,
each one with a resolution of 10 bins à 50 ms per neuron. Only for Gaussian process
regression the resolution had to be reduced further to 2 bins à 250 ms per neuron, as
was mentioned in Section 5.4.3. Additionally, the RBF-kernel was tested in a pure
rate coding scenario, given only a total spike count of each neuron (1 bin). Local
alignment scores were not used in these experiments, since for sequences of only 10
bins, local alignment is almost equivalent to global alignment, while the latter has
the advantage of fewer parameters and faster computation.

In general the results prove the ability of kernel methods to solve stimulus re-
construction tasks on data of cortical recordings. In the following, we will discuss
the improvement over classical methods and draw conclusions from a comparison of
reconstruction accuracies of different kernel functions and among the various algo-
rithms.

Kernel methods achieve higher reconstruction accuracy than classical methods

For both stimulus contrasts, the KDE algorithm, SVMs and KNN achieve almost
always higher reconstruction accuracies than the three classical approaches. Among
the latter ones, Bayesian reconstruction performs significantly better than the other
two methods, but still cannot match the accuracy of the kernel methods. This ad-

104



5.6 Results and discussion

vantage in performance is larger for clean data, where the best result (0.8◦ ± 0.3◦)
is still significantly better than one third of the reconstruction error of the Bayesian
approach (3.8◦ ± 0.6◦).

From an engineering point of view this is an important achievement. In particular,
this improvement seems not to be restricted to the sophisticated and time-consuming
kernel functions homogeneous spikernel and global alignment. For example an SVM
in a one-vs-one multi-class scheme achieves very good results even with a simple
and fast RBF-kernel on total spike counts. This is true for both the clean data-set
recorded with high contrast stimuli as well as for the more difficult data from low
contrast stimuli. From a scientific viewpoint, this general improvement in accuracy
does not imply strong conclusions.

Comparing the kernel functions A closer look at the test-errors reveals, that there
are no significant differences among the three kernel functions with one exception:
The RBF-kernel on a 10 bin data representation performs significantly worse on
low contrast data than homogeneous spikernel and global alignment. In absence of
other results, one could assume that this difference arises from an exploitation of
structure in the temporal spike count distribution by the pattern sensitive kernel
functions, as it was demonstrated in the previous chapter. However, when reducing
the temporal resolution and applying the RBF-kernel only to total spike counts, it
achieves accuracies comparable to the other two kernels, thereby proving that these
can be achieved already with rate (de-)coding. Thus, the RBF-kernel seems to be
hindered by the added dimensions, in particular on the low contrast data-set.

Although smaller differences in reconstruction accuracy among the kernel functions
are not significant and therefore do not allow reliable conclusions, there is an inter-
esting trend when comparing homogeneous spikernel and global alignment on both
data-sets. Whereas the homogeneous spikernel yields better accuracy on the more
difficult data of low contrast stimuli, global alignment achieves higher precision for
high contrast. This trend coincides with the findings of the previous chapter where
the two kernels were tested with an increasing amount of jitter noise.

From a practical point of view, no kernel can be singled out because of its recon-
struction accuracy alone. In view of the quadratic time complexity of homogeneous
spikernel and alignment score and considering related complications in model se-
lection (many parameters of the homogeneous spikernel) and with empirical kernel
maps, the use of an RBF-kernel on total spike counts seems to be the best trade-off
between accuracy and speed.

Comparing the algorithms When analysing test-errors of individual algorithms, we
can get indications how much of the improvements in reconstruction accuracy are
due to algorithmic improvements and what part can be attributed to an appropriate
similarity structure induced by suitable kernel functions. Most interesting in this
respect is the behaviour of the simple KNN classifier. Its good results indicate that the
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use of an appropriate kernel function has more influence on reconstruction accuracy
than the application of advanced classification algorithms. However, most differences
in test-error are not significant and conclusions have to be taken with care.

Further, it appears that exploiting structures in output space, as it was almost
identically performed by KDE and implicitly by Gaussian process regression, did not
improve the results. On the contrary, none of the two methods can achieve an advan-
tage in accuracy independently of the used kernel. In particular, Gaussian process
regression can hardly reach the level of Bayesian reconstruction on low contrast data.
A reason could be, that in our problem setup the similarity structure in output space
is still rather simple and homogeneous, so that these more sophisticated methods
cannot demonstrate their advantages over standard multi-class approaches.

For practical applications, the best choice among the evaluated algorithms is proba-
bly a one-versus-one scheme of SVMs, using an RBF-kernel. However, also the simple
and fast KNN method can already achieve good results when applied with the more
appropriate homogeneous spikernel or global alignment.

Did consideration of temporal structure pay off in comparison to pure rate de-

coding? As was mentioned in the introduction to this chapter, the complexity of
our problem setup and the applied methods are not very well suited to allow strong
scientific conclusions. One major drawback is the reduced temporal resolution of at
most 50 ms. At this scale, correlations among individual spikes cannot be resolved
anymore and statements about correlation codes are impossible. Still, the temporal
distribution of spike counts may contain structures at larger scales that could be
relevant for discrimination. However, in our results the differences among different
kernels do not provide evidence in favour of it.
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6.1 Summary

In Part I of this thesis we studied the application of kernel methods to the task of
stimulus reconstruction from neurophysiological recordings. We argued why this class
of algorithms can be useful in this application domain, although their use is currently
largely unexplored.

In order to use kernel algorithms for reconstruction we introduced three kernel
functions in Chapter 3 that can be applied to binary sequences of single spike events
as well as to real valued sequences of firing rates or spike counts. One of them – the
homogeneous spikernel – is based on a previously introduced kernel function that had
been applied to reconstruction of continuously varying stimuli, and we adapted it for
the use with static stimuli in our setting. The other two kernel functions – global
and local alignment – were introduced for the first time for the analysis of sequences
of neural activity. The underlying concept of alignment is structurally akin to edit
distances, that have been used earlier in the context of information extraction from
neural data.

To verify the conjectured properties of the kernels we tested them in a controlled
environment with simulated data in Chapter 4. Furthermore, we compared these
findings with the kernels’ behaviour in a similar setting that was based on a single
neuron’s high resolution data from neurophysiological recordings. When comparing
the results, we found that the coding hypotheses that were assumed for the design of
the kernels did not apply to the data-set under consideration. In particular, we could
not find a correlation code at short time scales. However, these findings need to be
supported by additional experiments with more data.

In a second study in Chapter 5 we applied kernel methods to population decoding
from twenty neurons in an eight-class discrimination setting. Driven by computa-
tional constraints and a more engineering objective, we operated on data with a much
coarser temporal resolution. Compared to standard population decoding methods
common in computational neuroscience, we could demonstrate a consistent improve-
ment in reconstruction accuracy through the use of kernel methods. This achievement
appears more interesting for engineering applications and is less relevant from a sci-
entific point of view. Furthermore, several approaches were investigated to increase
reconstruction accuracy by exploiting the similarity structure among the stimulus
conditions. However, modelling this structure in output space did not enhance the
performance.
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6.2 Further research

The application of kernel methods to reconstruction from neural activity is still at
its beginning and the presented studies are hardly more than a first step. More
investigations have to be done. We will briefly point out some research directions
that we consider worth exploring and related ideas.

• Development of new kernel functions: The kernels that we presented
were not well suited for stimulus reconstruction from real neurophysiological
recordings although they demonstrated the assumed properties in a controlled
scenario. Designing better kernels and thereby getting closer to a true under-
standing of the neural code, is one of the most interesting – although difficult
– problems that can be attacked with the toolkit of kernel methods.

• Analysis of kernel parameters: The analysis of neural data with kernel
methods is not restricted to the analysis of reconstruction accuracies. The pa-
rameter values of a kernel that lead to high accuracies may provide further
information about properties of the neural code. For example the length of en-
coding patterns and associated correlation times could be deduced by analysing
the evolution of performance for varying parameter settings.

• Localisation of coding regions: With kernel functions that implement rea-
sonable assumptions about the neural code and achieve good reconstruction
accuracies, the portions in a sequence of neural activity that contain most of
the information can be identified with a sliding window analysis. Both the size
and the position of the window can be varied and the dependence of reconstruc-
tion accuracy on these parameters could provide insights about the temporal
distribution of information.

• Relations to other approaches: In our work, the connections to related
approaches, as for example the framework of edit-distances [Victor, 2005b],
was mentioned only briefly. An extensive discussion of these relations and an
attempt to unify these concepts and possibly derive new kernels from it seems
promising in our view.
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7 Introduction

Computer vision is a traditional domain of computer science. Making a machine
perceive and process visual input in a meaningful way similar to humans is one of the
great dreams of artificial intelligence research. While on the quest for this big goal,
researchers have aimed to solve smaller sub-tasks on the way, thereby breaking the
problem in manageable pieces. Currently largely unsolved problems of computer vi-
sion include the task of object recognition, object detection and object categorisation.
In object recognition the aim is to decide whether a particular object is present in a
given test-image or not, on the basis of previously seen images. An extension to this
problem is object detection where the exact location of the object in the image has to
be determined. In contrast, object categorisation constitutes a more general problem
setting where the membership of an object in one of a number of entry-level cate-
gories is sought. To distinguish it from an object recognition task, the test-objects
are unknown to the method and only images of objects from the same and from other
categories are allowed to be used for building the categorisation system.

This latter problem intrinsically conveys the need for generalisation. In contrast to
object recognition, where exactly the same object has to be recognised, the category
membership shall be generalised to unseen instances and the amount of generalisation
needed depends on the particular category and cannot be modelled independently in
advance. For example, a category including all breeds of dogs requires a much higher
need for generalisation than, say, the category of all elephants. Without stressing
the example too much, there has been a general understanding in the computer
vision community, that machine learning approaches can be very helpful to solve
the increasingly demanding tasks of current computer vision. On the other hand, a
fervent development in machine learning over the past fifteen years has made powerful
algorithms available that allow a new perspective on many problems in a variety of
domains.

In Part II of this thesis we explore the viability of support vector machines in object
categorisation.

7.1 Image categorisation with support vector machines on

parts-based representations

Since the seminal work of Schmid and Mohr [1997] parts-based image representations
have become very popular in several domains of computer vision. This type of repre-
sentation consists of a collection of local image descriptors (LIDs), that are built from
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bounded regions of interest. An LID is a description of a patch of the image whose
location, size and shape are determined by an interest point detector. In contrast to
a holistic representation which encodes the image as a whole, parts-based approaches
are have the advantage of being robust to partial occlusion and cluttered background.
Successful applications of this technique include image retrieval [Schmid and Mohr,
1997], object recognition [Lowe, 2004] and scene recognition [Se et al., 2005], object
detection [Agarwal et al., 2004, Torralba et al., 2004] and in particular object cate-
gorisation. First approaches to object categorisation with parts-based representations
were based on probabilistic models for the LIDs of a category [Weber et al., 2000,
Fergus et al., 2003, Carbonetto et al., 2005]. These methods model a category by
a probability distribution over appearance, location and scale of image parts, esti-
mated from training data. Leibe et al. [2004] refined this idea and jointly perform
categorisation, detection and segmentation in an iterative procedure.

Support vector machines have been used extensively on images. Most early ap-
proaches have dealt with holistic image representations, either raw pixels or various
sorts of histograms ([Chapelle et al., 1999] is an early example of image classification
with histograms). The use of SVMs on parts-based image representations has been
hindered for some time due to the lack of appropriate kernel functions. The difficulty
to integrate geometrical relations between object parts into the similarity measure in
a translation- and rotation-invariant manner has lead to first approximations that are
purely appearance-based and completely ignore global geometry. A problem remains,
since parts-based image representations usually comprise a varying number of parts,
and standard kernel functions can only cope with a priori fixed input dimensionality
and are therefore inappropriate in this case. One of the first successful applications of
SVMs on parts-based representations was presented by Wallraven et al. [2003] where
it was used in object recognition. The kernel function that the authors propose, is
based on symmetric averaging over best matches (cf. Section 9.1). Their approach
showed promising results although the kernel turned out to be not positive definite.
Additionally, the authors introduce geometric constraints that are meant to favour
matching of features at similar locations in the image. However, these local position
constraints are computed with absolute pixel coordinates and will very likely fail to
work in real world scenarios on images of non-centred objects. Following work of
Eichhorn and Chapelle [2004] attacked the object categorisation task with SVMs and
applied two set kernels to parts-based image representations, comparing them with
the matching approach of Wallraven et al. [2003] on an object categorisation task.
Details of this study will be spelled out in following chapters of this thesis. At the
same time Csurka et al. [2004] found a different way to circumvent the problem of
varying input dimensionality by constructing a code-book of fixed size, based on a
clustering of the training data. In their approach every LID is represented by its
closest code-book entry and an image by a histogram of code-book entries. This bag-
of-key-points representation, inspired by the bag-of-words representation frequently
used in text processing, allows then the application of standard kernel functions. The
idea was quickly adopted by other researchers and has proven its usefulness in the
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Pascal Visual Object Classes challenge [Everingham et al., 2006]. Perhaps inspired
by the success of SVMs in this challenge, a number of other kernels on parts-based
image representations were subsequently proposed. Boughorbel et al. [2004] try to
cure the drawbacks of the matching idea by bounding the probability of the kernel
matrix being indefinite. Later, Boughorbel [2005] developed a modified matching
approach with an intermediate projection step that is akin to the quantisation step
in [Csurka et al., 2004]. Further exploiting the matching idea, Lyu [2005] proposed
a truly positive weighted matching kernel that allows to approximate the match-
ing kernel of Wallraven et al. [2003] by choosing appropriate weights. Additionally,
the author discussed an extension that allows to incorporate local geometry rela-
tions between parts. Addressing the issue of computational complexity, Grauman
and Darrell [2005] introduced a very efficient kernel function that can compare two
sets of LIDs with linear time complexity by measuring the co-occurrence of points
in multi-resolution histograms. Another line of development was pioneered by Holub
et al. [2005], who combined probabilistic methods with the discriminative power of
SVMs and used a Fisher-kernel [Jaakkola et al., 1998] to improve the accuracy of the
parts-based model of [Fergus et al., 2003]. In the same spirit Fritz et al. [2005] use
discriminative learning to improve the integrated categorisation/detection system of
Leibe et al. [2004] by adding a second layer where false positives are rejected with a
support vector classifier.
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A machine readable colour image in canonical form is normally given as a two-
dimensional (2D) structure of Nx × Ny pixels where each pixel bx,y represents the
colour information at a point (x, y) of the image, for example as a three-dimensional
vector in RGB-space

Ipixel = {bx,y }x=1 ... Nx
y=1 ... Ny

, bx,y ∈ [0, 1]3 . (8.1)

In numerous tasks of computer vision it has turned out to be of great help when
pixels are transformed into other, more appropriate representations. Here a main
distinction can be made between between a holistic representation, sometimes also
named global features of an image, and a parts-based representation that can be re-
garded as a collection of local features or local image descriptors (LID). A holistic
representation incorporates information of all pixels in the image – a widely used
example are histograms of all sorts. In contrast, in a parts-based representation only
information from selected regions of the image is taken into account and the rest is
neglected. The selection criterion for the size and shape of these regions of interest
can either be predefined and adapted to a certain task (e.g. sampling from an equally
spaced grid) or the regions are selected individually for each image, depending on
image structure, by an interest point detector (IPD). The latter technique is used in
many modern applications of parts-based representations and is one of the keys for
their robustness against translation and rotation of objects, partial occlusions and
other transformations. It has been applied successfully in problems as e.g. image
retrieval, object recognition and object detection, scene recognition, etc.

Building a parts-based representation can conceptually be divided into two steps.
First, the location, size and shape of regions of interest are determined by an IPD,
and in a second step the LID is computed with information extracted from these
image regions. As a result, a single LID contains the (x, y)-location of the region
of interest (named interest point) and the feature vector f itself that describes this
region. Additionally the descriptor may contain several more attributes a of the
image structure, such as scale, orientation, etc. An image where Nip interest regions
were detected is thus represented as a collection of Nip elements

ILID = { (xi, yi,ai, fi) }i=1 ... Nip . (8.2)
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8.1 Interest point detectors

An interest point detector (IPD) finds the location of salient regions in an image and
can optionally determine their size and shape, depending on the particular algorithm
that is used. It is the key tool that allows us to find similar object structures in
two images even when they are at different locations in different orientations and of
different size, and perhaps have undergone an affine distortion due to an out-of-plane
rotation in 3D. Much effort went into research to correct for all these transformations
in order to increase the stability and repeatability of detected regions.

There exists a large variety of methods mainly differing in their saliency criterion
and the types of transformations they compensate for. The simplest category are
interest point detectors that operate at a fixed scale and are covariant only to trans-
lation and rotation. Typical criteria for saliency are corners [Harris and Stephens,
1988], maxima in the Laplacian [Lindeberg, 1993] or local entropy maxima of the
intensity histogram [Kadir and Brady, 2001]; for a recent comparison see e.g. [Miko-
lajczyk et al., 2005]. In a second development step detectors were improved such that
they become covariant with scale, i.e. they can detect a structure independently of
its size relative to image resolution. This could be achieved by considering regions of
different size at a given interest point and maximising the Laplacian or some other
characteristic function in scale space [Lindeberg, 1994]. Examples are the detectors
of Lowe [2004] and Mikolajczyk and Schmid [2001]. The third and latest achievement
is the ability to estimate affine distortions of detected structures in order to be able to
normalise all regions to a circular shape and correct for small out-of-plane rotations
in 3D. Mikolajczyk et al. [2005] compare a selection of detectors of the third type and
give a snapshot of the current state of the art.

8.1.1 The Harris corner detector

To simplify our study and defer the problem of scale handling to later phases of
research, we have chosen for all our experiments the Harris corner detector [Harris
and Stephens, 1988] that operates on a fixed scale. Detection of salient structures with
the Harris-detector relies on the second moment matrix or auto-correlation matrix M .
This matrix describes the gradient distribution in the neighbourhood of a point x and
can thereby provide a simplified local description of image structure

M = µ(x, σI , σD) = σ2
D g(σI) ∗

(
I2
x IxIy

IxIy I2
y

)

∣
∣x, σD

. (8.3)

The local derivatives of the image Ix and Iy are computed with Gaussian derivative
kernels on the differentiation scale σD. Derivatives are averaged in the neighbourhood
of the point x by smoothing with a Gaussian window g(σI) at the integration scale
σI . The values of σD and σI determine the scale of detected salient regions and are
in practise set to equal values. The eigenvalues of the second moment matrix λ1, λ2

give an orientation invariant characterisation of the local neighbourhood at x. If
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both eigenvalues are small the region is rather homogeneous, one big and one small
eigenvalue indicate the presence of an edge, and two big eigenvalues characterise a
corner. To find corners, a response function of the second moment matrix is evaluated
which is conveniently expressed in terms of the trace and determinant of M

Rα(M) = λ1λ2 − α (λ1 + λ2)2 = detM − α (trM)2 . (8.4)

With the α-parameter set to α = 0.04, this response function assigns a saliency score
to each point of the image that expresses the cornerness of its local neighbourhood.
According to practical needs, either a varying number of salient regions is extracted
for all responses above a predefined threshold, or alternatively, a fixed number of
most salient regions is used for further processing.

8.2 Local image descriptors

The second step in building a parts-based image representation is the computation
of a feature vector fi from the image regions returned by the IPD. Here again, there
exist many different approaches to extract information from the image patches, often
involving gradients and higher order derivatives of the image; for a recent comparison
see e.g. [Mikolajczyk and Schmid, 2005]. In the present study we chose two prominent
representatives of local descriptors which will be described in detail in the following
sections. Namely these are SIFT descriptors introduced by Lowe [2004] and local
JETs proposed by Schmid and Mohr [1997].

As baseline variant we implement a simple approach that extracts raw image
patches of fixed size centred at each interest point. In this case the descriptor vector
fi contains all pixel intensities of a patch stacked in a single row.

8.2.1 SIFT

Figure 8.1: The SIFT key-point descriptor
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Figure 8.1 illustrates the structure of a SIFT descriptor [Lowe, 2004]. To compute
the descriptor, first the gradient magnitudes and orientations are sampled from a
region around the interest point. The contribution of each sample location is weighted
by a Gaussian centred at the descriptor window (indicated by a circle in the left panel
of Figure 8.1), in order to give less emphasis to points further away from the centre
and to make the descriptor more robust to small changes in window position. A
schematic view of the descriptor itself is shown in the right panel of Figure 8.1. It
contains a binned representation of the gradient orientations and magnitudes in the
four sample regions indicated at the left. The orientation is divided into eight bins
and each bin contains the sum of gradient magnitudes in this direction (indicated
by arrow length). To make the descriptor more robust against small rotations and
small shifts of the window, the contribution of each gradient sample is distributed via
trilinear interpolation to adjacent histogram bins. A rotation invariant representation
is achieved by re-orienting the histograms such that their maximum entry points
upwards. For the sake of simplicity we have shown on the right of Figure 8.1 only a
2 × 2 array of gradient histograms, whereas in Lowe’s implementation that we use,
resolution is increased to a 4× 4 array. Thus fSIFT is a 4× 4× 8 = 128-dimensional
feature vector.

Note that the SIFT-descriptor was developed and carefully calibrated in combi-
nation with a multi-scale difference of Gaussians interest point detector (DoG-IPD).
In order to achieve results that are better comparable for all versions of LIDs, we
use Harris interest points instead to ensure that all types of local descriptors are
computed at identical locations.

A popular modification of the SIFT descriptor was proposed by Ke and Sukthankar
[2004], who named it PCA-SIFT. However, this approach is not based on a PCA-
decomposition in the 128-dimensional descriptor space as the name might suggest.
Instead, the method of Ke and Sukthankar [2004] exploits the particular statistics of
image patches that were extracted by Lowe’s DoG-IPD and orientation- and scale-
normalised during the first steps of SIFT-computation. In contrast to patches at
random locations, they have particular statistics (e.g. they are centred at a local
intensity extremum) which allows to represent them by a smaller number of principal
components. The PCA-basis that is used, has been pre-computed on an independent
image set.

Another more direct extension to the SIFT-descriptor is achieved by a PCA-decom-
position of the high-dimensional descriptor space itself – an approach that was fol-
lowed e.g. by Farquhar et al. [2005] in their contribution to an object categorisation
challenge (cf. Section 10.4.3).

8.2.2 JET

The JET descriptor [Schmid and Mohr, 1997] is computed from higher order deriva-
tives of the image. One can show that a complete set of differential invariants can be
constructed that locally characterises the image and is invariant under rotation. By
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considering derivatives up to third order, the JET descriptor contains nine differential
invariants, making it a nine-dimensional feature vector:

fJET =
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−εijDjklDiDkDl

DijkDiDjDk

















(8.5)

Here i, j, k, l ∈ {1, 2} and Di, Dij and Dijk represent first, second and third order
derivatives of the image with respect to directions xi, xj and xk respectively. The
derivatives are computed by convolution with Gaussian kernels at scale σD; for exam-
ple D1 = Ix and D122 = Ixyy. The width σD specifies the size of the local region that
is described by the JET-LID. Furthermore, we implicitly assume summation over all
indices that appear twice in an expression (Einstein summation convention) and use
the fully antisymmetric tensor of rank two εij (ε12 = −ε21 = 1, ε11 = ε22 = 0).
According to this definition, e.g. the first component in the formula above, D, is
the average image intensity in the neighbourhood of the interest point at scale σD,
the second one is the squared norm of the gradient DiDi = I2

x + I2
y and the fourth

component is the Laplacian Dii = Ixx + Iyy.
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9 Kernel functions for LIDs

To combine the discriminative power of a support vector classifier with the conve-
nience of parts-based image representations, a kernel function for the latter is needed.
For the use in object categorisation such a kernel can be seen as a similarity function
of two images that assigns a high value if they contain objects of the same or similar
categories and low values otherwise. In particular, two images should also be recog-
nised as similar if objects that belong to a common category are located at different
positions in different orientations and sizes. In other words, the kernel should ideally
be covariant with translation, rotation and scaling of objects.

When working with parts-based image representations, the crucial step of separat-
ing appearance from geometry information has already been solved on the parts level.
That means, LIDs that cover an object in an image are themselves already a covari-
ant representation. In an LID {x, y,a, f} the location (x, y) and other attributes of
image structures a like orientation, scale or affine distortion are separated from the
appearance characteristics f , which is normalised to be invariant to changes in these
attributes. Consequently, when defining a kernel function only on appearance, it
automatically takes over these invariance properties. The obvious drawback of such
an approach is that geometrical relations of the parts are neglected and geometrical
structure of an image is taken into account only up to the size of interest regions.
Possible ways to overcome this limitation are still subject of research. One approach
is to represent geometrical relations between image parts as a graph structure and
use graph kernels [Kashima et al., 2003] on it. Another idea, where angles between
neighbouring parts are taken into account was proposed by Lyu [2005].

In this thesis we will limit ourselves to the use of appearance information in LIDs.
Therefore, a kernel function of two images has to be defined on two unordered col-
lections of appearance vectors L = {fi}i=1 ... Nip and L′ = {f ′i}i=1 ... N ′

ip
that have in

general different cardinalities Nip and N ′
ip. The varying number of set-elements and

the absence of a canonical ordering among them prohibit the use of standard kernels
like for instance the RBF-kernel on a concatenation of all appearance vectors of a set.
In the literature several approaches for kernel functions on sets have been proposed
that seem appropriate for such a data structure. We will apply three of these methods
to the categorisation problem and review them briefly in the following sections.

To evaluate the similarity of set-elements all three approaches perform an initial
computation of a similarity score between all appearance vectors {fi}i=1 ... Nip and
{f ′i}i=1 ... N ′

ip
of the two sets L and L′. The choice of this similarity measure can

vary and we will call it minor kernel. In many cases the positive definiteness of the
overall kernel function on sets depends directly on the positive definiteness of this
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9 Kernel functions for LIDs

minor similarity score, and hence the term ’kernel’.1 Our choices for the minor kernel
kminor(f , f

′) are the linear kernel

klinear(f , f
′) =

〈
f , f ′

〉
, (9.1)

the RBF-kernel

krbf(f , f
′) = exp

(

−
‖f − f ′‖2

2σ2

)

(9.2)

or the normalised cross correlation kernel

knormCC(f , f ′) = exp

(

−
1

2σ2

(

1−
〈f − µ, f ′ − µ′〉
‖f − µ‖ · ‖f ′ − µ′‖

))

. (9.3)

Here µ and µ′ are the means of the two sets L and L′ respectively.
Note that, in the limit case of large σ for both the RBF-kernel and the normalised

cross correlation kernel, higher order terms in the series expansion of the exponential
function are suppressed and both kernels then behave very much like a linear kernel.

9.1 Matching kernel

This similarity function was proposed by Wallraven et al. [2003] who applied it in an
object recognition task. Given two sets of local descriptors L and L′, at first a matrix
of similarity scores between L and L′ is computed via the minor kernel. The value
of the matching kernel of L and L′ is the symmetric average over the best matching
pairs

Kmatch(L,L′) =
1

2

[

K̂(L,L′) + K̂(L′, L)
]

,

K̂(L,L′) =
1

|L|

|L|
∑

i=1

max
f ′j∈L′

kminor(fi, f
′
j) .

(9.4)

Here, the max-operation destroys the positive definiteness of this similarity score
and therefore it is not a kernel-function in the strict sense. When applying SVMs
with this kernel, we therefore have to resort to one of the workarounds that were
discussed in Section 3.4.4. Despite these manageable problems, the matching kernel
was successfully applied by Wallraven et al. [2003] and we can report good results as
well. The matching kernel has a computational complexity of O(N2

ip), where Nip = |L|
is the set cardinality.

9.2 Bhattacharyya kernel

The name of this kernel function arises from its derivation based on the Bhattacharyya
affinity [Bhattacharyya, 1943]. This similarity measure is defined for probability

1Note that by defining an appropriate minor kernel the concept of set kernels can be extended to
sets of arbitrary objects.

122



9.2 Bhattacharyya kernel

distributions and is positive definite

kbhatt(p, p
′) =

∫
√

p(x)
√

p′(x) dx . (9.5)

9.2.1 Definition in input space

To derive a kernel function between two sets L = {fi}i=1 ... Nip and L′ = {f ′i}i=1 ... N ′
ip

,

these are characterised by the distribution of their elements. Since a histogram rep-
resentation of the distributions is impractical (its size grows exponentially with input
space dimensionality), Kondor and Jebara [2003] suggested to represent the sets by
a Gaussian distribution: {fi} ∼ N (µ,Σ) and {f ′i} ∼ N (µ′,Σ′). In this case the
Bhattacharyya-affinity can be computed as a closed expression of the parameters of
the Gaussians and thereby defines a kernel on sets – the Bhattacharyya-kernel :

Kbhatt(L,L
′) = |Σ|−

1
4 |Σ′|−

1
4 |Σ†|

1
2 e−

1
4〈µ, Σ−1µ〉− 1

4〈µ
′, Σ′−1µ′〉+ 1

2〈µ
†, Σ†µ†〉 , (9.6a)

where Σ† = 2
(
Σ−1 + Σ′−1

)−1
and µ† =

1

2

(
Σ−1µ+ Σ′−1µ′

)
. (9.6b)

When fitting a Gaussian distribution N (µ,Σ), the mean µ and the covariance Σ have
to be estimated from the data. Simply using the empirical values µemp and Σemp of
these first and second order statistics corresponds to a maximum likelihood estimate.
However, when estimating covariances from fewer points than dimensions the covari-
ance matrix is rank-deficient and not invertible, i.e. the corresponding Gaussian is
undefined. Adding a fraction of the identity to the empirical covariance matrix is
a common method to deal with these cases and is known as regularisation. In a
Bayesian framework this corresponds to specifying a conjugate prior over the covari-
ances and using the resulting maximum a posteriori (MAP) estimate. Hence, after
regularisation we have

µ = µemp , (9.7a)

Σ = Σemp + η tr(Σemp) · I . (9.7b)

Hereby a new parameter η > 0 is introduced, that adjusts the amount of regularisa-
tion. In general, adding a positive multiple of the identity ηI to a positive definite
matrix will shift its spectrum (i.e. the eigenvalues) by η in positive direction. In
regularisation, this effect is used to avoid eigenvalues close to zero or to suppress the
effect of noisy eigendirections. To achieve an amount of regularisation proportional
to the scale of the spectrum, we have chosen the above formulation where the added
fraction of I scales with the trace of the empirical covariance matrix, thus with the
sum of its eigenvalues.2 This way, the Bhattacharyya-kernel has only one regulari-
sation parameter η and it adapts the amount of regularisation automatically to the

2A covariance matrix is always positive definite and has therefore only non-negative eigenvalues
whose sum is an approximate measure for their order of magnitude.
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9 Kernel functions for LIDs

scale of the set elements. The larger η, the more similar the regularised covariance
matrices Σ and Σ′ are and the more the kernel depends only on the difference of
the set means. For identical covariance matrices (Σ = Σ′) the Bhattacharyya-kernel
reduces to

Kbhatt(L,L
′) = e−

1
8〈(µ−µ′), Σ−1(µ−µ′)〉 . (9.8)

9.2.2 Computing the kernel in feature space

The Gaussian approximation reflects only first and second order statistics of the
empirical distribution of the set-elements and therefore might be not sufficiently de-
scriptive, especially for low-dimensional input spaces. Hence, Kondor and Jebara
[2003] propose the use of a minor kernel kminor to implicitly map the set-elements
into a feature space – the corresponding reproducing kernel Hilbert space (RKHS).
As in classification where kernels can enable a linear classifier to capture non-linear
decision boundaries, the minor kernel allows to capture higher order statistics of
the empirical distribution by a multivariate Gaussian in a feature space of increased
dimensionality.

To estimate empirical means and covariances in feature space and to evaluate the
mixed terms in Equation (9.6b), it is necessary to represent the elements of both sets
in a common basis. Originally, Kondor and Jebara [2003] proposed to use the basis
obtained by a kernel-PCA decomposition of the union of the two sets L and L′. In
our implementation of the Bhattacharyya-kernel we have chosen a slightly different
approach and used a basis that is obtained through a Cholesky-decomposition of the
joint kernel matrix of the two sets. Details of our approach are given as pseudo-
code in Algorithm 1. The computational complexity of the Bhattacharyya-kernel is

Algorithm 1 Bhattacharyya kernel

Input: L = {fi}i=1 ... Nip , L′ = {f ′i}i=1 ... N ′
ip

, kminor, η

Output: Kbhatt(L,L
′)

Let G = {gi}i=1 ... Nip+N ′
ip

, where gi =

{

fi for 1 ≤ i ≤ Nip

f ′i−Nip
for Nip + 1 ≤ i ≤ Nip +N ′

ip

κi,j ← kminor(gi,gj) [Compute minor kernel matrix]
R← chol(κ), such that R⊤R = κ [Cholesky-decomposition]
Φi,: ← Ri,: for 1 ≤ i ≤ Nip

Φ′
i−Nip,: ← Ri,: for Nip + 1 ≤ i ≤ Nip +N ′

ip
[A representation in feature space]

µ← µemp = mean(Φ)
µ′ ← µ′

emp = mean(Φ′)
Σemp = cov(Φ) [Compute empirical values as usual]
Σ′

emp = cov(Φ′)
Compute regularised Σ and Σ′ according to Equation (9.7b)
Compute Σ†, µ† and Bhattacharyya-kernel according to Equations (9.6)
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9.3 Kernel principal angles

O((Nip +N ′
ip)3) due to the Cholesky-factorisation of the joint kernel matrix.

9.3 Kernel principal angles

A third means of comparing two sets L and L′ that we will apply, is the kernel
principal angles (KPA) measure introduced by Wolf and Shashua [2003]. In this
approach the alignment of the two subspaces spanned by the elements of the two sets
is used as a measure of similarity.

9.3.1 Definition in input space

Principal angles {θi}i=1 ... N between two subspaces UL and UL′ spanned by the ele-
ments of L and L′ are recursively defined as:

cos θk = max
u∈UL, v∈UL′

〈u, v〉

subject to 〈u, u〉 = 〈v, v〉 = 1

and 〈u, ui〉 = 〈v, vi〉 = 0 ∀ i = 1 . . . k − 1

(9.9)

where (ui, vi) = argmax
u∈UL, v∈UL′

〈u, v〉 are the argmax corresponding to the principal angle

θi. In other words, in an iterative procedure the angle between the two subspaces
along the best aligned direction is determined, this direction is projected out and
the procedure is repeated on the remaining lower-dimensional subspaces until no
dimensions are left.

The above definition of principal angles has been introduced already by Hotelling
[1936]. Wolf and Shashua [2003] proposed a function of principal angles that defines
under some restrictions a kernel for sets of vectors

Kkpa(L,L′) =

N∏

i=1

(cos θi)
2 . (9.10)

This function is positive definite in the domain of all sets of vectors L = {fi}i=1 ... Nip

whose elements fi span subspaces UL of equal dimensionalities. When assuming
linearly independent vectors fi, this condition restricts the kernel to sets of equal
cardinality. Consequences for our application will be discussed below.

Positive definiteness of the kernel (9.10) can be shown with the help of the Binet-
Cauchy theorem and we give a brief outline of the proof. Suppose the elements of
each of the two sets L and L′ are arranged as column vectors of a matrix

A = (f1, f2, . . . , fNip) and B = (f ′1, f
′
2, . . . , f

′
N ′

ip
) , (9.11)

where Nip = N ′
ip according to the above condition. Consider the QR-decomposition

of A and B as
A = QARA and B = QBRB , (9.12)
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9 Kernel functions for LIDs

where Q is an orthogonal matrix (Q⊤Q = I) and R is an upper triangular matrix. The
columns of Q form an orthonormal basis in the subspace spanned by the columns of
A or B respectively. It can be shown, that the cosine of the principal angles cos θi are
equal to the singular values σi of Q⊤

AQB. Hence, the kernel (9.10) can be computed
as the product of the squared singular values σ2

i or the squared determinant of Q⊤
AQB

Kkpa(L,L′) =

N∏

i=1

(cos θi)
2 =

N∏

i=1

σ2
i = det

(

Q⊤
AQB

)2
. (9.13)

From a special case of the Binet-Cauchy theorem it follows that for two matrices
QA and QB of equal size, their determinant det(Q⊤

AQB) can be written as the scalar
product of two vectors

det(Q⊤
AQB) = 〈ψ(QA), ψ(QB)〉 , (9.14)

were ψ(QA) and ψ(QB) are the so-called Grassman-vectors of QA and QB respec-
tively. Thus, decomposition (9.14) proves the positive definiteness of kernel (9.10).
The full proof has been given by Kondor and Jebara [2003].

Note, that the above reasoning only works if QA and QB are of equal size, i.e. if the
elements of L and L′ span subspaces of equal dimensionality. This constraint causes
problems in our application of set kernels to object categorisation, since the number
of parts in a parts-based image representation in general varies among images. In
Section 10.2 we will describe modifications that were necessary to solve this issue.

9.3.2 Computing principal angles in feature space

The main contribution of Kondor and Jebara [2003] was to augment the method
of principal angles with the kernel trick in order to compute principal angles in a
feature space induced by a minor kernel kminor. In practise that means, instead of
dealing with the set-elements fi in input space, one has to work with their map-
pings in feature space Φ(fi), that are only accessible through their scalar products
〈Φ(fi), Φ(fj)〉 = kminor(fi, fj). Kondor and Jebara [2003] propose three methods to
compute principal angles in feature space. We present pseudo-code for our implemen-
tation in Algorithm 2, which is almost identical to the eigen-decomposition approach
described in Section 3.2 of [Kondor and Jebara, 2003], except for the additional α-
parameter that will be explained in Section 10.2.

Note that using a linear minor kernel is equivalent to computing principal angles
in input space. In this case, if the number of linearly independent vectors in a set
fi ∈ L is larger than or equal to their dimensionality, they span the whole space and
hence all principal angles are zero. Consequently the KPA-kernel with such a set is
always one (Kkpa(L,L′) = 1 ∀L′) and learning is impossible.

The time complexity of the KPA-kernel is of order O(N3
ip) due to the eigen-decom-

position and singular value decomposition of the minor kernel matrices, and thus
similar to the Bhattacharyya-kernel.
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9.4 Set-mean kernel

Algorithm 2 Kernel principal angles

Input: L = {fi}i=1 ... Nip , L′ = {f ′i}i=1 ... Nip , kminor, α
Output: Kkpa(L,L′)

κA ← kminor(L,L)
κB ← kminor(L

′, L′) [Compute minor kernel matrices]
κAB ← kminor(L,L

′)

{u
(i)
A , λ

(i)
A } ← eig(κA)

{u
(i)
B , λ

(i)
B } ← eig(κB) [Compute eigenvectors u(i) and eigenvalues λ(i)]

v
(i)
A ← u

(i)
A /

√

λ
(i)
A

v
(i)
B ← u

(i)
B /

√

λ
(i)
B [Normalise and re-arrange eigenvectors]

VA = [v
(1)
A , v

(2)
A , . . . , v

(N)
A ]

VB = [v
(1)
B , v

(2)
B , . . . , v

(N)
B ]

σi ← svd(V⊤
A κAB VB) [Compute singular values]

Kkpa(L,L′) =
∏

i σ
α
i

9.4 Set-mean kernel

In addition to the set kernels from the literature we introduce the rather simple set-
mean kernel, that should provide a lower bound on the performance that is achievable
by simple methods. In this approach two sets of vectors are compared by computing
an RBF-kernel of the means with σ as the standard scale parameter

Kset-mean = exp

(

−
‖µ− µ′‖2

2σ2

)

. (9.15)
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10 Experiments

We conducted three series of experiments. First, all three types of local descriptors
were combined with all three set kernels and three different minor kernels to find the
most promising combination. In a second step we analysed the influence of the number
of interest points on the systems performance. Finally, we compare our categorisation
system with other methods by providing results on a widely used standard data-set
and by discussing several contributions to a recent challenge in object categorisation.

10.1 Combinations of LIDs and kernels

10.1.1 Experimental protocol

As data-set for the first experiments we used the ETH80-database that was proposed
for object categorisation by Leibe and Schiele [2003]. It contains in total 80 objects in
eight categories (apples, pears, tomatoes, toy-cows, toy-dogs, toy-horses, cups, toy-
cars), i.e. ten objects per category. Images of each object were taken from 41 different
viewpoints and with almost uniform blue background. We worked with a subset of
the database containing five widely separated views of each object (cf. Figure 10.1).1

All images come at a resolution of 128× 128 pixels and were converted to grey value
intensities.

The SVM classifier was used in a one-versus-rest multi-class setting and we report
the leave-one-out performance. More precisely this means that the test set contains
all five images of one object and the training set contains all images of the remaining
79 objects. The performance is the percentage of correct category prediction on the
test set and is averaged over all 80 possible combinations of training and test objects.

In a set of comprehensive simulations we evaluated all combinations of three LID-
types (JET, SIFT, images patches), three kernels (matching, Bhattacharyya, KPA)
and three minor kernels (linear, RBF, normalised cross-correlation). The SVM-
classifier, the kernels and the LIDs each contain parameters that are fixed at rea-
sonable values or need to be optimised.

We fixed the regularisation parameter of the SVM to C = 105 which means that we
are close to the hard margin limit. Tests with smaller values show that performance
hardly depends on this parameter and decreases for C < 10. The threshold of the
Harris-detector was set to a value such that it produces in average 40 interest points
per image (except for the KPA-experiments, which will be described below). Some

1More specifically, these are all images whose file-names end on ’*-000-000.png’, ’*-090-180.png’,
’*-090-090.png’, ’*-066-153.png’ and ’*-035-045.png’.
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10 Experiments

Figure 10.1: Subset of five widely separated views from the ETH80-database.

LID-types, such as SIFT, depend on a considerable number of additional parameters
that were left at their default values. The size of image regions that are extracted at
the interest points to compute the descriptor is fixed. For SIFT- and JET-descriptors
it is determined by the width of the Gaussian kernels that is set to 5 pixels. Raw
patches are extracted at a size of 5× 5 pixels. The region that influences the SIFT-
and JET-descriptors is effectively larger than 5× 5 pixels because the Gaussians do
not fall off to zero outside a radius with their standard deviation.

Remaining parameters of kernel or minor kernel are optimised during model selec-
tion. Leave-one-out performance is computed for each point of a logarithmic param-
eter grid and results of the best performing model are reported in Tables 10.1–10.3.
Boundaries of the grid were extended until a maximum was found. Typical per-
formance plots are shown in Figures 10.2, 10.3 and 10.4, where black dots indicate
grid points and maximum performance is marked with a circle; contour levels are
computed through linear interpolation.

Note, that by optimising the test-error directly we do not assay the generalisation
abilities of our system that would require to perform model selection and testing with
independent validation and test sets. Although not strictly correct from a machine
learning perspective, such a procedure is widely used in the computer vision com-
munity when testing categorisation systems and we adopted it for the sake of better
comparability.

10.1.2 Results and discussion

Results for the matching kernel and the Bhattacharyya kernel are presented in Ta-
ble 10.1. The KPA approach is not listed here because we applied it in a different
setting that is discussed in Section 10.2.

When comparing the results, the most obvious difference appears among the three
types of LIDs. SIFT descriptors are on average the best image representation and can
be handled equally well by the two advanced set kernels. Even the simple Set-mean
kernel achieves fairly good results with this descriptor (remember that chance-level
is at 12.5% for an eight-class problem). The second best LID is clearly the JET-
descriptor followed by the image patch description. This ranking correlates well with
the evaluation of LIDs given by Mikolajczyk and Schmid [2005], where SIFT-based
descriptors are reported to be best in terms of distinctiveness and robustness to
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Kernel Minor Kernel SIFT JET Image Patch

Set Mean 65.3% 42.0% 38.8%

Bhattacharyya

linear 74.0% 62.3% 51.0%

RBF 76.8% 71.8% 64.0%

NormCC 76.5% 71.2% 44.0%

Matching

linear 74.0% 20.0% 11.3%

RBF 76.8% 46.5% 42.5%

NormCC 78.8% 56.8% 39.5%

Table 10.1: Performance for matching and Bhattacharyya kernel

changes in viewing conditions.

A comparison of kernels shows, that the Bhattacharyya-kernel outperforms the
matching kernel on low-dimensional LIDs (JET and Image Patch) and reaches com-
parable results on SIFT-features. This indicates that the Bhattacharyya kernel does
not depend as strongly on the descriptive power of the image representation as the
matching approach. However, with highly discriminative SIFT-features the matching
kernel has a slight advantage and achieves the overall best result.

Also the influence of minor kernels depends very much on the type of LID they
are applied to. When used with SIFT-descriptors, both non-linear minor kernels can
improve performance only slightly over a linear minor kernel, thereby indicating that
this high-dimensional descriptor is sufficiently descriptive. In contrast thereto, the
use of a minor RBF-kernel can clearly improve categorisation accuracy on JET-LIDs
as well as for raw image patches. A normalised cross-correlation (NormCC) minor
kernel is similarly efficient when used on JET-features and here even outperforms
the RBF minor kernel when combined with the matching approach. However, this
does not hold for raw image patches. Although the NormCC minor kernel is still
clearly better than a linear minor kernel when used with the matching kernel, it is
even worse than a linear minor kernel in combination with the Bhattacharyya kernel.
A clear interpretation of this effect seems difficult. The absolute performance of
the NormCC minor kernel on image patches does not change drastically between
matching and Bhattacharyya kernel. Only the Bhattacharyya kernel seems to be
able to take more advantage of differences in set-means that are eliminated by the
NormCC minor kernel. This effect does not appear with JET-features where the
average patch intensity is one dimension of the descriptor and enters directly.

Figures 10.2 and 10.3 give a more detailed picture of how parameters of the Bhat-
tacharyya kernel influence its performance. The first plot (Figure 10.2) confirms the
above statement that SIFT features do not profit much from non-linear minor ker-
nels. When increasing the width σ while fixing the regularisation parameter η at
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Figure 10.2: Performance of a SVM with the Bhattacharyya kernel and a minor RBF-kernel
on SIFT features. The two axes represent the regularisation parameter η and the width
σ of the minor RBF-kernel on a logarithmic scale. Values are computed on a grid
indicated by the dots and a circle marks the parameter combination that reaches best
performance.

its optimal value, we move from the non-linear into the linear domain of the minor
RBF-kernel and can observe that the performance of the classifier remains almost
constant at high values. In contrast, when applied to JET features (Figure 10.3)
the Bhattacharyya-kernel does not tolerate such a wide range of σ-values and per-
forms optimal only in a narrow band of σ ∈ [10, 5000] that depends strongly on the
regularisation parameter η.

10.2 Experiments with kernel principal angles

In this section, we address the difficulties that occur when using the kernel principal
angles measure in our object categorisation setting.
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Figure 10.3: Performance of a SVM with the Bhattacharyya kernel and a minor RBF-kernel
on JET features. The two axes represent the regularisation parameter η and the width σ
of the minor RBF-kernel on a logarithmic scale. Values are computed on a grid indicated
by the dots and the circle marks the model with highest performance.
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10.2.1 Necessary modifications

As mentioned in Section 9.3, the KPA-approach yields a positive definite kernel ma-
trix only if the elements of the two sets to be compared span subspaces of equal
dimensionality. The sets of appearance vectors that form the parts-based image rep-
resentation in our categorisation system do in general not have equal cardinalities
due to the varying number of interest points that are detected in the image. First at-
tempts to overcome this problem, e.g. by padding smaller sets with additional entries,
failed (Eichhorn and Chapelle [2004] report a performance of merely 25%). Therefore
we adopted a new strategy and instead of extracting with the Harris detector a vari-
able number of interest points that have saliency responses above a fixed threshold,
we now use a fixed number of the most salient points in an image. This way we
achieve identical cardinality for all sets of LIDs and KPA is very likely to yield a
positive definite kernel matrix.2

Subsequently, a second problem arises from the fact that non-diagonal entries of
the kernel matrix are typically very small (10−100) compared to diagonal ones that
are of order one. Schölkopf et al. [2002] pointed out that kernel methods (e.g. SVMs)
do not perform well in such situations. As a solution they propose to reduce the
dynamic range of the kernel matrix Kij = k(xi, xj) by rescaling each entry with a non-

linear function Kresc
ij = f resc(k(xi, xj)) and use the squared matrix K̃ = Kresc⊤Kresc

afterwards as new kernel matrix to ensure positive definiteness. The second step is
equivalent to performing an empirical kernel map with a concatenation of the original
kernel and the non-linear rescaling. Using the whole data-set (training and test data)
for this operation would imply a transductive setting which is beyond the scope of
this paper. Therefore, in order to stay in the inductive learning domain, we compute
the empirical kernel map only with training points as prototypes (for more details on
this procedure cf. Section 3.4.4 and [Schölkopf et al., 2002]). The dynamic range of
kernel matrix entries is reduced by the transformation f resc(x) = sgn(x)|x|α, which
introduces a new scaling parameter α. In Figure 10.4 the behaviour of the KPA-kernel
as a function of its parameters is exemplified with an RBF minor kernel and SIFT
LIDs. In the limit case α → 0 the rescaling transformation can be approximated
by a first order Taylor-expansion: xα = exp(α lnx) ≈ 1 + α lnx. The constant shift
and the factor α are irrelevant for SVM training which leaves us effectively with a
function (cf. Equation (9.10))

KKPA-light(L,L
′) =

N∑

i=1

ln(cos θi) , (10.1)

where θi are the principal angles as defined in Section 9.3. This limit case, which is

2Note that not the number of set-elements but the dimensionality of the subspace they span is
important. Hence, if the vectors of a set are not all linearly independent, they span a space with
a dimensionality that is smaller than the set cardinality. However, this cannot happen when
using RBF-like non-linear minor kernels, because in this case the feature space mappings of the
set-elements are always linearly independent.
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10.3 Influence of the number of interest points

named KPA-light, corresponds to a particular rescaling of the KPA-kernel that does
not depend on the additional parameter α. As all other rescalings of KPA it is not
positive definite and applied in combination with an empirical kernel map in the same
way as described above.

Since small non-diagonal entries in KPA-kernel matrices made it necessary to ap-
ply rescaling in combination with an empirical kernel map, the restriction of KPA
to a constant number of interest points per image is technically not required any-
more. However, we did not perform experiments using the KPA-kernel without this
constraint.

10.2.2 Experimental results

For a fair comparison of KPA with the other two kernels, they were all applied to
identical image representations using a fixed number of interest points. Results in
Table 10.2 show that with the above modifications the KPA approach can achieve
competitive performance, especially in combination with an RBF minor kernel. This
finding corrects our evaluation of KPA that was given in an earlier study [Eich-
horn and Chapelle, 2004]. The overall picture given by Table 10.1 is not drastically
changed, although it becomes clear that using a constant number of interest points
significantly improves the performance of the system in most cases. Concerning the
influence of minor kernels in KPA, the results indicate a stronger dependence on non-
linear similarity measures for SIFT descriptors. Note, that the KPA kernel cannot
be used with a linear minor kernel on JET features and image patches, since their
dimensionality (JET: 9, Image Patch: 25) is less than the number of LIDs per image
(40 interest points). However, with a non-linear RBF minor kernel, KPA achieves
the best results on the low-dimensional LIDs. A NormCC minor kernel yields lower
performance than an RBF minor kernel on all three LID-types.

From Figure 10.4 we get a more detailed picture of the influence of the param-
eters of the KPA-kernel on its performance. Here the case of a RBF minor kernel
combined with SIFT features is shown. As can be already inferred from the KPA-
light entry in Table 10.2, the freedom to choose the α-parameter has barely an effect
on the performance, once it is small enough to reduce the dynamic range appropri-
ately. In contrast to the Bhattacharyya-kernel, however, the non-linearity introduced
through the minor kernel is of great importance (cf. Figure 10.2). Good performance
is achieved only for a narrow range of σ-values.

10.3 Influence of the number of interest points

To study the influence that a varying number of interest points has on the performance
of the system, we applied all three kernel functions with an RBF minor kernel to
SIFT based image representations of varying cardinality. In these experiments the
number of interest points was constant for all images (as in the previous section).
Kernel parameters are optimised for each number of interest points as described in
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Figure 10.4: Performance of a SVM with the KPA kernel and a minor RBF-kernel combined
with SIFT features. The two axes represent the scale parameter α and the width σ of
the minor RBF-kernel on a logarithmic scale. Values are computed on a grid indicated
by the dots and the circle marks the model with highest performance.

136



10.4 Comparison to other methods

Kernel Minor Kernel SIFT JET Image Patch

Set Mean 65.3% 39.3% 38.3%

Bhattacharyya

linear 77.0% 77.0% 60.8%

RBF 79.0% 72.2% 71.5%

NormCC 80.5% 74.5% 40.8%

Matching

linear 70.0% 18.5% 13.3%

RBF 78.5% 44.0% 45.5%

NormCC 81.3% 60.8% 44.3%

KPA

linear 51.0% n/a n/a

RBF 80.5% 78.5% 77.7%

NormCC 77.0% 61.5% 59.0%

KPA-light RBF 79.5% 76.8% 66.3%

Table 10.2: Performance of all three kernels with a constant number of Interest Points.

Section 10.1.1. Figure 10.5 shows the behaviour of all three kernel functions when
varying the number of interest points.

The accuracy of the system increases noticeably when more image parts are taken
into consideration and saturates at around 80 interest points at values between 86%
and 89%. The increasing precision has to be put in relation to the computational
costs growing at the same time quadratically (matching kernel) or even cubically
(Bhattacharyya kernel and KPA) with the set cardinality. Here a slight advantage
of the matching kernel for large numbers of interest points can be observed which is
strengthened in view of practical applications when considering its lower computa-
tional complexity.

10.4 Comparison to other methods

10.4.1 ETH80 data-set

When introducing the ETH80 image database, Leibe and Schiele [2003] provided base-
line categorisation results of some standard computer vision approaches. The best of
these methods could reach 86.4% leave-one-out performance by using the segmenta-
tion mask of the objects to learn a contour for each category. These experiments used
the full data-set of 3280 images. Comparing this result with the performances given
in Figure 10.5 shows that KPA and matching achieve comparable results when using
70 interest points. However, one should keep in mind that using the segmentation
mask of an object provides more information and thereby facilitates the task.
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Figure 10.5: The performance of all three kernels as a function of the number of interest
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10.4 Comparison to other methods

Motorbikes Faces Air-planes Cars-rear

Fergus et al. [2003] 92.5% 96.4% 90.2% 90.3%

Willamowski et al. [2004] 98.0% 99.3% 97.1% 98.6%

Opelt et al. [2004] 92.2% 93.5% 88.9% n/a

Carbonetto et al. [2005] 100% n/a 99.8% n/a

our results 97.0% 96.3% 95.0% 98.8%

Table 10.3: Categorisation results on the Caltech data-set.

Grauman and Darrell [2006] assessed the performance of their pyramid match ker-
nel under exactly the same conditions as we did. They achieved a recognition rate
of 83% using PCA-SIFT features [Ke and Sukthankar, 2004] from on average 153
Harris-detected interest points per image. Restricting their system to an average
of 40 interest points yields a recognition rate of 73%. In both cases their approach
achieves a performance that is clearly worse than any of the three kernels reported
in Figure 10.5, although it is faster to compute.

Generalising from results on this data-set has to be done with care. Images are
taken under fairly idealistic conditions and show only a small portion of the variations
that typically occur in real world scenarios (no occlusion, uniform background, no
noise). Still we can state that our categorisation system is competitive with the two
benchmarks given.

10.4.2 Caltech data-set

Using parts-based models for object categorisation has recently become a very active
field of research in computer vision. A first benchmark was set with the work of Fergus
et al. [2003] who provided the data-set of images they had used together with their
results. In the meanwhile, several other researchers have compared their methods on
this data-set.

We tested on four categories of the data set described in [Fergus et al., 2003],
namely ’motorbikes’, ’faces’, ’air-planes’ and ’cars-rear’, each one containing between
435 and 800 images. Furthermore, a background class is provided and the task is a
binary classification of images from one object category against the background. We
use the SVM-classifier with Bhattacharyya kernel and a RBF minor kernel and do
training and testing on the data splits as provided by the authors. In Table 10.3 the
results of our system are presented in comparison to several other approaches from
the literature.

The first row in Table 10.3 shows results of the original work that introduced the
data-set. The authors used a probabilistic model for each object class where the joint
probability distribution over appearance, shape and scale of the parts is assumed to
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factorise into independent distributions. Results in the second row are computed
with a linear SVM on a bag-of-key-points representation with 1000 words, identical
to the system described in [Csurka et al., 2004]. The third row shows results of a
boosting approach and the fourth row is a sophisticated probabilistic model that tries
to identify discriminative LIDs. Note that, except in [Fergus et al., 2003], all other
methods use affine invariant interest point detectors or combinations of more than
one detector to extract image parts. The combined categorisation/detection system
of Leibe et al. [2004] achieved 94.0% performance on the ’Motorbike’ category. With a
slightly different partitioning in training- and test-images the authors reached 93.9%
on the ’Cars-rear’ category [Leibe, 2004] where our system achieved with the same
data split 91.4%. As a conclusion, judged on the performances on the Caltech data-
set shown in Table 10.3, we can state that our method has been competitive at the
time of publication but is now outperformed by the latest developments.

The results in Table 10.3 indicate that the present/absent task on this data-set has
become too easy to allow a distinctive evaluation of state of the art categorisation
systems. Also, the data has been criticised because the background class exhibits sig-
nificantly different statistics than the object classes which makes the problem doubtful
for discriminative categorisation. To establish a more controlled and more challenging
comparison of the increasing variety of categorisation methods, in February/March
2005 the PASCAL Visual Object Classes challenge was organised.

10.4.3 PASCAL Visual Object Classes challenge

A more recent and comprehensive comparison of the precision of various categorisa-
tion systems was established during the ’PASCAL Visual Object Classes’-challenge
[PascalVOC 2005]. The goal of the challenge was to recognise objects from a num-
ber of visual object classes in realistic scenes. There were two main competitions –
categorisation and detection. We will focus only on the categorisation part of the chal-
lenge where the presence or absence of an object in a test image had to be predicted.
For categorisation four object classes were selected, namely ’motorbikes’, ’bicycles’,
’cars’ and ’people’. Besides training- and validation-data two different test-sets were
released. Data-set ’test1’ did contain images from the same data-bases that provided
the training and validation data, whereas data-set ’test2’ contained images collected
with Google image-search. Objects in the second test-set have a larger variability
in pose, scale and amount of occlusion and were deliberately selected to represent a
more challenging environment. In total, twelve teams entered in the competition and
we present a selection of results on the first test-set ’test1’ in Table 10.4. A com-
prehensive description of the challenge and its results can be found in [Everingham
et al., 2006].

As a general conclusion from the results in Table 10.4 we can state, that image
categorisation on the challenge data-set is much harder than on the Caltech data,
implying that the primary objective of providing a more discriminative testbed was
achieved. Since our method is not among the winners of the challenge, it is worth
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10.4 Comparison to other methods

Participant Model Motorbike Bicycles People Cars

Aachen 94.0 86.8 86.1 92.0

Edinburgh 72.2 68.9 57.1 79.3

Darmstadt ISM 82.9 n/a n/a 54.8
Darmstadt ISM+SVM 85.6 n/a n/a 64.4

Southampton comb. 97.2 89.5 88.1 91.3
Southampton LoG 94.9 86.8 83.3 89.8
Southampton Harr 94.0 85.1 84.1 90.1

INRIA-Jurie p1 96.8 91.8 91.7 96.1
INRIA-Jurie p2 97.7 93.0 90.1 93.8

INRIA-Zhang 96.4 93.0 91.7 93.7

MPI Tübingen 87.5 75.4 73.1 83.1

Table 10.4: Selected results of the PASCAL VOC challenge on test set test1.

taking a closer look at the competing contributions to learn some lessons.

We entered the challenge with our categorisation system based on a Bhattacharyya
kernel with an RBF minor kernel and using SIFT features. In retrospective, the
KPA-light method would have been an attractive candidate as well, since it provides
comparable performance with the advantage of having one less parameter to optimise.
But it has not yet been available at the time of the challenge.

The approach most closely related to ours is the method of the Southampton team
[Farquhar et al., 2005]. In contrast to all other contributions, they also circumvented
the construction of a code-book for a fixed length bag-of-key-points representation by
applying a Bhattacharyya-kernel directly to the collection of image parts. Compared
to our contribution, there are two main differences that might explain the better
performance they achieved. For interest point extraction they used two different
multi-scale detectors (Harris-affine and Laplacian of Gaussians) instead of the fixed
scale Harris-detector that we applied. Then they reduced the dimensionality of the
SIFT-features by a PCA-decomposition and used only the 20 largest components.
Even with only a linear minor kernel they could achieve good results, indicating
that reducing the dimensionality and thereby increasing the robustness of LIDs is an
important concept. By combining interest points from the two detectors via a novel
SVM-variant [Meng et al., 2005], the precision of their method is improved even a bit
more.

Considering other participants contributions, it seems that the design of stable
appearance descriptors is more important than the careful selection of interest points.
For example the two winning teams (INRIA-Zhang [Zhang et al., 2005] and INRIA-
Jurie) spent much effort on the selection of appropriate prototypes to build the code-
book for the bag-of-key-point representation. In contrast, interest point selection
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seems to play only a minor role, as long as there are enough parts extracted from
the image. For example, INRIA-Jurie did not use an interest point detector at all,
but sampled regions from a dense grid. Hence, the first lesson to learn from this
direct comparison of methods is that a dimensionality reduction step seems to be
crucial, may it be in form of a PCA-decomposition or via a clustering to construct
code-book-prototypes.

Another observation is, that except for the Darmstadt team, no one explicitly
used geometrical information to model object categories. The best performing sys-
tems were purely based on appearance descriptors. Currently it remains still an
open question, how to achieve an effective integration of geometric relations of ob-
ject parts to improve recognition performance. Approaches to this problem as the
one proposed by the Darmstadt team [Leibe et al., 2004] can not yet reach the level
of purely appearance-based systems. One reason might be the high variability of
object-geometry in realistic scenes, for example for bicycles seen from many different
viewpoints.

Last but not least, the results show competitive performance also for some prob-
abilistic models. The team from Aachen [Deselaers et al., 2005] trained a log-linear
model on a PCA-decomposition of raw image patches of different sizes extracted from
a regular grid and at Harris-affine interest points. The Edinburgh team implemented
logistic regression on a code-book histogram of SIFT-features (bag-of-key-points rep-
resentation). Adding a discriminative step to a probabilistic model can further im-
prove the accuracy as was clearly demonstrated by the second contribution from
Darmstadt [Fritz et al., 2005] that uses an SVM on top of the implicit shape model
(ISM) of Leibe et al. [2004] to reject false positives.
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11 Conclusion

In this second part of the thesis we have presented an approach to successfully combine
a parts-based image representation with a support vector classifier for application
in an object categorisation task. We proposed to use set kernels uniquely on the
appearance part of local image descriptors, thereby omitting to solve the problem
of incorporating global geometry in a translation and rotation covariant way. Three
approaches from the kernel literature where combined with three versions of local
image descriptors and the performance of all combinations was evaluated on the
ETH-80 data-set. Two of them – Bhattacharyya-kernel and kernel principal angles
(KPA) – were applied to parts-based image representations for the first time. Further
we investigated the influence of various parameters on the system’s performance and
demonstrated some modifications that were necessary to achieve good results with
the KPA-kernel. From this first series of experiments we determined a promising
pairing of kernel and LID type and compared this system to current state of the art
methods for image categorisation on the Caltech data-base and by participating in
an open challenge on visual categorisation.

Further research is necessary to handle global object geometry and enhance the per-
formance of categorisation systems on real world images. A possible direction to solve
the geometry problem is the application of graph-kernels to a graph-representation of
image parts where one is confronted with the challenge of at least bi-quadratic time
complexity. However, analysing successful contributions in the PASCAL-challenge
indicates that other technical advancements, like e.g. dimensionality reduction in
appearance space, have an important influence on categorisation performance.

As a general conclusion, one can say that the introduction of machine learning
techniques, and in particular SVMs, to object categorisation has advanced this field
substantially. However, this domain of computer vision remains full of interesting
problems and object categorisation is far from being solved.
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A Parameters of the generative model for

spike data

The artificial data-sets generated from the log-linear model (cf. Sect. 4.1.1) are de-
scribed by the parameters θ(1), θ(2) and θ(3). In Table A.1 we give detailed numbers
for all three parameters. The matrices Θ1 and Θ2 are specified below.

The leading ’-5’ in vector θ(2) always models a refractory period of length 1ms (one
bin). Since the log-linear model is symmetric in the order of the spikes, the matrices
Θ1 and Θ2 have non-zero entries only in the upper triangular half.

A B C D

Class 1

θ(1) -3.4 -3.5 -4 -4

θ(2) (-5 -2) (-5 0 0 0 4) (-5 0 0 0 4) (-5 4)

θ(3) 0 Θ1 Θ1 Θ2

Class 2

θ(1) -2.8 -3.5 -3.5 -3.5

θ(2) (-5 -2) (-5 4) (-5 4) (-5 4)

θ(3) 0 Θ2 Θ2 Θ2

Table A.1: Parameter values for the artificial data-sets. Θ1 and Θ2 are given below.

Θ1 =













0 −5 −5 −5 −5 −5 −5
0 0 −5 −5 −5 −5 5
0 0 0 −5 −9 −5 −5
0 0 0 0 −5 −5 −5
0 0 0 0 0 −5 −9
0 0 0 0 0 0 −5
0 0 0 0 0 0 0













(A.1)

Θ2 =









0 −5 −5 −5 −5
0 0 −5 −9 −9
0 0 0 −5 5
0 0 0 0 −5
0 0 0 0 0









(A.2)
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