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Abstract We use Klee’s Dehn–Sommerville relations and other results on face num-
bers of homology manifolds without boundary to (i) prove Kalai’s conjecture provid-
ing lower bounds on the f -vectors of an even-dimensional manifold with all but the
middle Betti number vanishing, (ii) verify Kühnel’s conjecture that gives an upper
bound on the middle Betti number of a 2k-dimensional manifold in terms of k and
the number of vertices, and (iii) partially prove Kühnel’s conjecture providing upper
bounds on other Betti numbers of odd- and even-dimensional manifolds. For mani-
folds with boundary, we derive an extension of Klee’s Dehn–Sommerville relations
and strengthen Kalai’s result on the number of their edges.

Keywords f -vector · Dehn-Sommerville · Manifold · Boundary · Triangulation

1 Introduction

In this paper we study face numbers of triangulated manifolds (and, more generally,
homology manifolds) with and without boundary. Here we discuss our results defer-
ring most of definitions to subsequent sections.

Our starting point is a beautiful theorem known as the Dehn–Sommerville rela-
tions. It asserts that the upper half of the face vector of a triangulated manifold with-
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out boundary is determined by its Euler characteristic together with the lower half of
the face vector. In this generality the theorem is due to Vic Klee [8].

Perhaps the most elegant way to present the Dehn–Sommerville relations is via
the h-vector of a manifold. The entries of this vector are certain (alternating) linear
combinations of the face numbers. On the level of h-vectors, the Dehn–Sommerville
relations for triangulated spheres and odd-dimensional manifolds merely state that the
h-vector of these complexes is symmetric. In the case of spheres, the components of
the h-vector are also known to be positive as they equal dimensions of algebraically
determined nonzero vector spaces [20, Chap. 2].

Motivated by Dehn–Sommerville relations together with several commutative al-
gebra results on Stanley–Reisner rings of triangulated manifolds, Kalai suggested
[15, Sect. 7] a modification of the h-vector, the h′′-vector, as the “correct” h-vector
for (orientable) manifolds without boundary. The h′′-vector of orientable manifolds
(both odd-dimensional and even-dimensional) has since been shown to be symmetric
[15] and nonnegative [16].

Our first result is an extension of Klee’s Dehn–Sommerville relations to manifolds
with boundary. Specifically, we show that for a triangulated manifold with a fixed
boundary Γ , the upper half of the h-vector is determined by the Euler characteristic,
its lower half, and the h-vector of Γ . This result is not entirely new. In the language of
f -vectors it was first worked out by Macdonald [12] and then rediscovered by Klain
[7] and Chen and Yan [2]. However its h-vector form appears to be absent from the
literature. We then use this result to define a suitable version of the h′′-vector for
manifolds with boundary as well as show that it is symmetric and nonnegative.

Our next result concerns new inequalities on the face numbers and Betti numbers
of manifolds without boundary. Kalai conjectured (private communication) that the
face numbers of a 2k-dimensional manifold with all but the middle Betti number
vanishing are simultaneously minimized by the face numbers of a certain neighborly
2k-dimensional manifold. We verify this conjecture. We also prove a part of a con-
jecture by Kühnel [11, Conjecture 18] that provides an upper bound on the middle
Betti number of a 2k-dimensional manifold in terms of k and the number of vertices.
Both results turn out to be a simple consequence of the Dehn–Sommerville relations
and results from [16].

Kühnel further conjectured [11, Conjecture 18] an upper bound on the ith Betti
number (for all i) of a (d − 1)-dimensional manifold with n vertices in terms of i, d ,
and n. We prove that this conjecture is implied by the g-conjecture for spheres. In
particular, Kühnel’s conjecture holds for manifolds all of whose vertex links are poly-
topal.

In the last section we return to discussing manifolds with boundary. Here we derive
a strengthening of Kalai’s theorem [6, Theorem 1.3] that provides a lower bound on
the number of edges of a manifold in terms of its dimension, total number of vertices,
and the number of interior vertices. Our new bound also depends on the Betti numbers
of the boundary.

The structure of the paper is as follows. In Sect. 2 we review necessary back-
ground material. In Sect. 3 we derive the Dehn–Sommerville relations and define the
h′′-vector for manifolds with boundary. In Sect. 4 we deal with Kalai’s and Kühnel’s
conjectures. Finally, in Sect. 5 we prove a new lower bound on the number of edges
of manifolds with boundary.
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2 Simplicial Complexes and Face Numbers

In this section we review necessary background material on simplicial complexes,
Dehn–Sommerville relations, and Stanley–Reisner rings of homology manifolds. We
refer our readers to [20, Chap. 2] and the recent paper [16] for more details on the
subject.

Recall that a simplicial complex Δ on the vertex set [n] = {1,2, . . . , n} is a col-
lection of subsets of [n] that is closed under inclusion and contains all singletons {i}
for i ∈ [n]. The elements of Δ are called faces. The maximal faces (with respect to
inclusion) are called facets. The dimension of a face F ∈ Δ is dimF := |F | − 1 and
the dimension of Δ is the maximal dimension of its faces. For a simplicial complex
Δ and its face F , the link of F in Δ, lk(F ), is the subcomplex of Δ defined by

lk(F ) = lkΔ(F) := {
G ∈ Δ |G ∩ F = ∅ and G ∪ F ∈ Δ

}
.

In particular, the link of the empty face is the complex itself.
A basic combinatorial invariant of a simplicial complex Δ on the vertex set [n] is

its f -vector, f (Δ) = (f−1, f0, . . . , fd−1). Here, d − 1 = dimΔ, and fi denotes the
number of i-dimensional faces of Δ. Thus f−1 = 1 (there is only one empty face) and
f0 = n. An invariant that contains the same information as the f -vector, but some-
times is more convenient to work with, is the h-vector of Δ, h(Δ) = (h0, h1, . . . , hd)

whose entries are defined by the following relation:

d∑

i=0

hiλ
i =

d∑

i=0

fi−1λ
i(1 − λ)d−i . (1)

A central object of this paper is a homology manifold (over a field k), that is, a
(d − 1)-dimensional pure simplicial complex Δ such that for all ∅ �= F ∈ Δ, the
reduced simplicial homology H̃i(lkF ;k) vanishes if i < d − |F | − 1 and is iso-
morphic to k or 0 if i = d − |F | − 1. A complex is pure if all of its facets have
the same dimension. The boundary faces of Δ are those faces F �= ∅ such that
H̃d−|F |−1(lkF ;k) = 0. When Δ has no boundary faces, we write ∂Δ = ∅, and Δ is
called a homology manifold without boundary. Otherwise, ∂Δ is the set of boundary
faces together with the empty set. We will assume that ∂Δ is a (d − 2)-dimensional
homology manifold without boundary. Under certain conditions this assumption is
superfluous, see, for instance [13]. As demonstrated by the suspension of the real
projective plane whose “boundary” would be the two suspension points for any field
whose characteristic is not two, some additional assumption is required. We say that
Δ is orientable if the pair (Δ, ∂Δ) satisfies the usual Poincaré–Lefschetz duality as-
sociated with orientable compact manifolds with boundary. The prototypical example
of a homology manifold (with or without boundary) is a triangulation of a topological
manifold (with or without boundary).

A beautiful theorem due to Klee [8] asserts that if Δ is a homology manifold
without boundary, then the f -numbers of Δ satisfy linear relations known as the
Dehn–Sommerville relations:

hd−i − hi = (−1)i
(

d

i

)(
(−1)d−1χ̃ (Δ) − 1

)
for all 0 ≤ i ≤ d. (2)
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Here χ̃ (Δ) := ∑d−1
i=−1(−1)ifi is the reduced Euler characteristic of Δ. Proofs of

several results in this paper rely heavily on Klee’s formula (2) and its variations,
while other results are concerned with deriving analogs of this formula for manifolds
with boundary.

In addition to the Dehn–Sommerville relations, we exploit several results on the
Stanley–Reisner rings of homology manifolds. If Δ is a simplicial complex on [n],
then its Stanley–Reisner ring (also called the face ring) is

k[Δ] := k[x1, . . . , xn]/IΔ, where IΔ = (
xi1xi2 · · ·xik : {i1 < i2 < · · · < ik} /∈ Δ

)
.

(Here and throughout the paper k is an infinite field of an arbitrary characteris-
tic.) Since IΔ is a monomial ideal, the ring k[Δ] is graded, and we denote by
k[Δ]i its ith homogeneous component. The Hilbert series of k[Δ], F(k[Δ], λ) :=∑∞

i=0 dimk k[Δ]i · λi , has the following properties.

Theorem 2.1 (Stanley) Let Δ be a (d − 1)-dimensional simplicial complex. Then

F
(
k[Δ], λ) =

∑d
i=0 hiλ

i

(1 − λ)d
.

Theorem 2.2 (Schenzel) Let Δ be a (d −1)-dimensional homology manifold, and let
θ1, . . . , θd ∈ k[Δ]1 be such that k[Δ]/Θ := k[Δ]/(θ1, . . . , θd) is a finite-dimensional
vector space over k. Then

F
(
k[Δ]/Θ,λ

) =
d∑

i=0

(

hi(Δ) +
(

d

i

) i−1∑

j=1

(−1)i−j−1βj−1(Δ)

)

· λi,

where βj−1 := dimk H̃j−1(Δ;k).

Theorem 2.1 can be found in [20, Theorem II.1.4], while Theorem 2.2 is from [18].
In view of Theorem 2.2, for a (d − 1)-dimensional homology manifold Δ, define

h′
i (Δ) := hi(Δ) +

(
d

i

) i−1∑

j=1

(−1)i−j−1βj−1(Δ). (3)

We remark that if |k| = ∞, then a set of linear forms {θ1, . . . , θd} satisfying the
assumptions of Theorem 2.2 always exists, e.g., choosing “generic” θ1, . . . , θd does
the job.

The following theorem summarizes several results on the h′-numbers of homology
manifolds that will be needed later on. For 0 < m = (

x
i

) := x(x − 1) · · · (x − i + 1)/i!
where 0 < x ∈ R, define m〈i〉 := (

x+1
i+1

)
. Also set 0〈i〉 := 0.

Theorem 2.3 Let Δ be a (d − 1)-dimensional homology manifold. Then

1. h′
0 = 1, h′

1 = f0 − d , and for all 1 ≤ i ≤ d ,

h′
i ≥

(
d

i

)
βi−1 and h′

i+1 ≤
(

h′
i −

(
d

i

)
βi−1

)〈i〉
.
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2. Moreover, if Δ is a homology manifold without boundary that is orientable over k,
i.e., βd−1(Δ) = β0(Δ) + 1, then

h′
d−i − h′

i =
(

d

i

)
(βi − βi−1) for all 0 ≤ i ≤

⌊
d

2

⌋
. (4)

Part 1 of this theorem was recently proved in [16] (see Theorems 3.5 and 4.3
there). Part 2 is a simple variation of Klee’s Dehn–Sommerville relations, see
[15, Lemma 5.1]. It is obtained by combining (2) and (3) with Poincaré duality for
homology manifolds.

Equation (2) implies that all homology spheres and odd-dimensional manifolds
without boundary satisfy hi = hd−i for all i. While this symmetry fails for even-
dimensional manifolds with χ̃ �= 1, Theorem 2.3 together with Poincaré duality sug-
gests we consider the following modification of the h-vector and yields the following
algebraic version of (2).

Proposition 2.4 Let Δ be a (d − 1)-dimensional homology manifold without bound-
ary. Assume further that Δ is connected and orientable over k. Let

h′′
d := h′

d and h′′
i (Δ) := h′

i (Δ) −
(

d

i

)
βi−1(Δ) = hi −

(
d

i

) i∑

j=1

(−1)i−j βj−1

for 0 ≤ i ≤ d − 1.

Then h′′
i ≥ 0 and h′′

i (Δ) = h′′
d−i (Δ) for all 0 ≤ i ≤ d .

In view of Proposition 2.4 and results of [17] that interpret h′′-numbers as di-
mensions of homogeneous components of a Gorenstein ring, h′′ can be regarded as
the “correct” h-vector for orientable homology manifolds without boundary. What
is the analog of h′′ for manifolds with boundary? We deal with this question in the
following section.

3 Dehn–Sommerville for Manifolds with Boundary

Klee’s equations (2) generate a complete set of linear relations satisfied by the
h-vectors of homology manifolds with empty boundary. More generally, one can fix
a (nonempty) homology manifold Γ and ask for the set of all linear relations satisfied
by the h-vectors of homology manifolds whose boundary is Γ . Deriving such rela-
tions and defining what seems to be the “correct” version of the h′′-vector is the goal
of this section.

We have the following version of Dehn–Sommerville relations:

Theorem 3.1 Let Δ be a (d − 1)-dimensional homology manifold with boundary.
Then

hd−i (Δ) − hi(Δ) =
(

d

i

)
(−1)d−1−i χ̃ (Δ) − gi(∂Δ) for all 0 ≤ i ≤ d,

where gi(∂Δ) := hi(∂Δ) − hi−1(∂Δ).
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Proof Write fi := fi(Δ) and hi := hi(Δ). Let f b
i := fi(∂Δ) and define hb

i and gb
i

in a similar way. Also let f ◦
i := fi(Δ) − f b

i be the “interior” f -vector, and let h◦
i

be defined from f ◦ according to (1). With this notation, we obtain from [20, Corol-
lary II.7.2] that

(−1)dF
(
k[Δ],1/λ

) = (−1)d−1χ̃ (Δ) +
d∑

i=1

f ◦
i−1λ

i

(1 − λ)i
.

Substituting Theorem 2.1 in the above formula yields

(−1)d
∑d

i=0 hd−iλ
i

(λ − 1)d
= (−1)d−1χ̃ (Δ) +

d∑

i=1

f ◦
i−1λ

i(1 − λ)d−i

(1 − λ)d

= (−1)d−1χ̃ (Δ) +
∑d

i=0 h◦
i λ

i

(1 − λ)d
,

which is equivalent to

d∑

i=0

(
hd−i − h◦

i

)
λi = (−1)d−1χ̃ (Δ)(1 − λ)d .

Subtracting
∑d

i=0 gb
i λi from both sides and noting that h◦

i + gb
i = hi , implies the

result. �

While Theorem 3.1 appears to be new, f -vector forms of the same equality have
appeared before. Chen and Yan gave a generalization which applies to more general
stratified spaces [2]. However, we believe that the first place where an equivalent
formula appears is due to Macdonald [12].

We now turn to finding the right definition of h′′ for orientable homology mani-
folds with boundary. Recall that a connected (d − 1)-dimensional homology mani-
fold Δ is orientable over k if Hd−1(Δ, ∂Δ;k) ∼= k. By Poincaré-Lefschetz duality, if
Δ is such a manifold, then Hi−1(Δ, ∂Δ) ∼= Hd−i (Δ). Write βi−1(Δ, ∂Δ) to denote
dimHi−1(Δ, ∂Δ).

We start by expressing gi(∂Δ) in terms of its Betti and h′-numbers. Substitut-
ing (3) in gi(∂Δ) = hi(∂Δ) − hi−1(∂Δ) and recalling that dim(∂Δ) = d − 2, we
obtain

gi(∂Δ) =
[
h′

i (∂Δ) − h′
i−1(∂Δ) +

(
d − 1

i − 1

)
βi−2(∂Δ)

]

+
(

d

i

) i−1∑

j=1

(−1)i−j βj−1(∂Δ). (5)
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Theorem 3.2 Let Δ be a (d − 1)-dimensional homology manifold with nonempty
boundary. If Δ is orientable, then for all 0 ≤ i < d ,

h′
d−i (Δ) −

(
d

d − i

)
βd−i−1(Δ)

= h′
i (Δ) − gi(∂Δ) −

(
d

i

)
dim Im

(
Hi−1(Δ)

ψ→ Hi−1(Δ, ∂Δ)
)
,

where gi(∂Δ) := h′
i (∂Δ)−h′

i−1(∂Δ)+ (
d−1
i−1

)
βi−2(∂Δ) and ψ is the map in the long

exact sequence of the pair (Δ, ∂Δ).

Proof If i = 0, then both sides are equal to 0. For 0 < i < d , using (3) and Theo-
rem 3.1, we obtain

h′
d−i (Δ) −

(
d

d − i

)
βd−i−1(Δ)

= hi(Δ) − gi(∂Δ) + (−1)d−1−i

(
d

i

)[

χ̃(Δ) +
d−i∑

j=1

(−1)jβj−1(Δ)

]

= hi(Δ) − gi(∂Δ) + (−1)d−1−i

(
d

i

)[
d∑

j=d−i+1

(−1)j−1βj−1(Δ)

]

= hi(Δ) − gi(∂Δ) + (−1)i
(

d

i

) i−1∑

j=0

(−1)jβj (Δ, ∂Δ),

where the last step is by Poincaré-Lefschetz duality. Substituting (3) and (5) in the
last expression then yields,

h′
d−i (Δ) −

(
d

d − i

)
βd−i−1(Δ)

= h′
i (Δ) − gi(∂Δ) −

(
d

i

) i−1∑

j=0

(−1)j−i−1[βj (Δ, ∂Δ) − βj−1(∂Δ) + βj−1(Δ)
]
.

The result follows, since by long exact homology sequence of the pair (Δ, ∂Δ), the
last summand equals −(

d
i

)
dim Im(Hi−1(Δ) → Hi−1(Δ, ∂Δ)). �

Theorem 3.2 suggests the following definition of the h′′-vector and shows (to-
gether with Theorem 2.3) that it is symmetric and non-negative.

Definition 3.3 Let Δ be a (d − 1)-dimensional orientable homology manifold with
a nonempty boundary. We define

h′′
i (Δ) :=

{
h′

i (Δ) − gi(∂Δ) − (
d
i

)
dim Im(Hi−1(Δ) → Hi−1(Δ, ∂Δ)) for i ≤d/2

h′
i (Δ) − (

d
i

)
βi−1(Δ) for i >d/2.
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Note that in the case of the empty boundary and i < d , this definition agrees with
the one given in Proposition 2.4.

4 Manifolds without Boundary: Kalai’s and Kühnel’s Conjectures

In this section we settle a conjecture of Kalai that provides lower bounds for the
face numbers of even-dimensional homology manifolds with all Betti numbers but
the middle one vanishing. We also partially settle a conjecture by Kühnel on the
Betti numbers of homology manifolds. Throughout this section, Δ denotes a (d − 1)-
dimensional orientable homology manifold without boundary. Note that if k is a field
of characteristic two, then this class includes all triangulated topological manifolds
without boundary.

We start by discussing even-dimensional manifolds. The following result was con-
jectured by Kühnel [11, Conjecture 18].

Theorem 4.1 Let Δ be a 2k-dimensional orientable homology manifold with n ver-
tices. Then

(
2k + 1

k

)
βk(Δ) ≤

(
n − k − 2

k + 1

)
.

Moreover, if equality is attained then βi = 0 for all i < k.

Proof Choose a nonnegative real number x such that

h′
k −

(
2k + 1

k

)
βk−1 =

(
x

k

)
.

It exists since according to Theorem 2.3, h′
k − (2k+1

k

)
βk−1 ≥ 0. Moreover, the same

theorem implies that h′
k+1 ≤ (

x+1
k+1

)
. Thus

(
2k + 1

k

)
βk

by (4)= h′
k+1 − h′

k +
(

2k + 1

k

)
βk−1 ≤

(
x + 1

k + 1

)
−

(
x

k

)
=

(
x

k + 1

)
.

Finally, since h′
1 = n − 2k − 1, another application of Theorem 2.3 shows that h′

k ≤
(
n−k−2

k

)
, hence x ≤ n − k − 2, and

(2k+1
k

)
βk ≤ (

n−k−2
k+1

)
, as required. Furthermore,

equality implies that h′
i = (

n−2k−2+i
i

) = (h′
i−1)

〈i〉 for all 2 ≤ i ≤ k + 1, which by
Theorem 2.3 is possible only if βi = 0 for all i < k. �

Theorem 4.1 implies that if βk ≥ 1, then n − k − 2 ≥ 2k + 1, or equivalently,
n ≥ 3k + 3. In other words, having a non-vanishing middle Betti number requires
at least 3k + 3 vertices. (This result was originally proved by Brehm and Kühnel
for PL-triangulations [1].) Moreover, if such a homology manifold, Mk , has exactly
3k + 3 vertices, then

βk(Mk) = 1, βi(Mk) = 0 for i < k, and
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hi(Mk) = h′
i (Mk) =

(
k + 1 + i

i

)
for i ≤ k + 1.

In particular, the face numbers of Mk (whether it exists or not) are uniquely deter-
mined by (1) and (2). These face numbers turn out to be minimal in the following
sense (as was conjectured by Gil Kalai, personal communication):

Theorem 4.2 Let Δ be a 2k-dimensional orientable homology manifold with βk �= 0
being the only non vanishing Betti number out of all βl , l ≤ k. Then

fi−1(Δ) ≥ fi−1(Mk) for all 1 ≤ i ≤ 2k + 1.

Proof Substituting βl = 0, l < k, in Theorem 2.2 and (2), we obtain that

hj (Δ) = h′
j (Δ) and hk+j+1(Δ) = hk−j (Δ)+(−1)j

(
2k + 1

k − j

)
βk(Δ) for 0 ≤ j ≤ k.

Equation (1) then implies

fi−1(Δ) =
i∑

j=0

(
2k + 1 − j

2k + 1 − i

)
h′

j (Δ), if i ≤ k, and (6)

fi−1(Δ) = r

k∑

j=0

[(
2k + 1 − j

2k + 1 − i

)
+

(
j

2k + 1 − i

)]
h′

j (Δ)

+ βk(Δ)

[
i−k−1∑

j=0

(−1)j
(

k − j

2k + 1 − i

)(
2k + 1

k − j

)]

if i ≥ k + 1. (7)

Since (i) the same formulas apply to the f -numbers of Mk , (ii) the coefficients of
the h′-numbers in (6) and (7) are nonnegative, and (iii) βk(Δ) ≥ 1 = βk(Mk), to
complete the proof it only remains to show that h′

i (Δ) ≥ h′
i (Mk) for all i ≤ k and

that the coefficient of βk in (7) is nonnegative for all i ≥ k + 1.
The latter assertion follows by noting that the sequence

aj =
(

k − j

2k + 1 − i

)(
2k + 1

k − j

)
, 0 ≤ j ≤ i − k − 1

is decreasing (indeed, aj/aj+1 = (k + 2 + j)/(i − k − 1 − j) > 1), and hence
a0 − a1 + · · · + (−1)i−k−1ai−k−1 ≥ 0.

To verify the former assertion, we use the same trick as in the proof of Theo-
rem 4.1. Let 0 ≤ x ∈ R be such that h′

k(Δ) = (
x
k

)
. Then according to Theorem 2.3,

h′
k+1(Δ) ≤ (

x+1
k+1

)
while h′

k+1(Δ) − h′
k(Δ) = (2k+1

k+1

)
βk ≥ (2k+1

k+1

)
. Thus we have

(
2k + 1

k + 1

)
≤ h′

k+1(Δ) − h′
k(Δ) ≤

(
x + 1

k + 1

)
−

(
x

k

)
=

(
x

k + 1

)
.
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Hence x ≥ 2k + 1, and so h′
k(Δ) ≥ (2k+1

k

)
. Applying Theorem 2.3 once again, we

infer that h′
i (Δ) ≥ (

k+1+i
i

) = h′
i (Mk) for all i ≤ k. �

In addition to Theorem 4.1, Kühnel conjectured (see [11, Conjecture 18]) that a
(d − 1)-dimensional manifold with n vertices satisfies

(
d+1
j+1

)
βj (Δ) ≤ (

n−d+j−1
j+1

)
for

all 0 ≤ j ≤ �d/2� − 1. The case of j = 0 merely says that every connected compo-
nent of Δ has at least d + 1 vertices. The case of j = 1 follows from Kalai’s lower
bound conjecture [6, Conjecture 14.1] that was recently settled in [16, Theorem 5.2].
For other values of j we have the following partial result. We recall that a (d − 1)-
dimensional homology sphere Γ is said to have the hard Lefschetz property if for a
generic choice of θ1, . . . , θd,ω ∈ k[Γ ]1, the map

k[Γ ]/(θ1, . . . , θd)i
·ωd−2i−→ k[Γ ]/(θ1, . . . , θd)d−i

is an isomorphism of k-spaces for all i ≤ d/2. It is a result of Stanley [19] that in the
case of char k = 0 all simplicial polytopes have this property, and it is the celebrated
g-conjecture that all homology spheres do.

Theorem 4.3 Let Δ be a (d − 1)-dimensional orientable homology manifold with n

vertices. If for every vertex v of Δ the link of v has the hard Lefschetz property (e.g.,
char k = 0 and all vertex links are polytopal spheres), then

(
d + 1

j + 1

)
βj (Δ) ≤

(
n − d + j − 1

j + 1

)
for all 0 ≤ j ≤

⌊
d

2

⌋
− 1.

If equality is attained for some j = j0, then βi = 0 for all i �= j0, 0 ≤ i ≤ �d/2� − 1.

Proof Since all vertex links of Δ have the hard Lefschetz property, Theorem 4.26 of
[21] implies that for a sufficiently generic choice of θ1, . . . , θd,ω ∈ k[Δ]1 and every
j ≤ �d/2� − 1, the linear map

k[Δ]/(θ1, . . . , θd)d−j−1
·ω−→ k[Δ]/(θ1, . . . , θd)d−j

is surjective. The dimensions of the spaces involved are h′
d−j−1 and h′

d−j , respec-
tively (see Theorem 2.2). Also, by [16, Corollary 3.6], the dimension of the kernel of
this map is at least

(
d

d−j−1

)
βd−j−2. Therefore,

h′
d−j ≤ h′

d−j−1 −
(

d

d − j − 1

)
βd−j−2 for all j ≤ �d/2� − 1. (8)

Apply Poincaré duality and (4) to rewrite this inequality in the form

h′
j +

(
d

j

)
(βj − βj−1) ≤ h′

j+1 −
(

d

j + 1

)
βj ,

or, equivalently,
(

d + 1

j + 1

)
βj ≤ h′

j+1 −
[
h′

j −
(

d

j

)
βj−1

]
. (9)
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Let 0 ≤ x ∈ R be such that h′
j+1 = (

x+1
j+1

)
. Then by Theorem 2.3, h′

j − (
d
j

)
βj−1 ≥

(
x
j

)
, and so the right-hand-side of (9) is ≤ (

x
j+1

)
. Also, since h′

1 = n − d , h′
j+1 ≤

(
n−d+j

j+1

)
, and hence x ≤ n − d + j − 1. Thus

(
d+1
j+1

)
βj ≤ (

x
j+1

) ≤ (
n−d+j−1

j+1

)
, as re-

quired.
If equality occurs for some j = j0, then x = n − d + j0 − 1, and we obtain that

h′
i+1 = (

n−d+i
i+1

) = (h′
i )

〈i〉 for all i ≤ j0. By Theorem 2.3 this can happen only if

βi−1 = 0 for all i ≤ j0. Moreover in this case, hi+1 = (
n−d+i

i+1

)
for all i ≤ j0, hence Δ

is (j0 + 1)-neighborly (that is, every set of j0 + 1 vertices of Δ is a face of Δ).
What about βi for i > j0? To prove that all these Betti numbers vanish as well, note

that for equality
(

d+1
j0+1

)
βj0 = (

n−d+j0−1
j0+1

)
to happen, the inequality in (8) should hold

as equality for j = j0. The same argument as in the proof of [16, Theorem 5.2] then
shows that hj0(lkv) = hj0+1(lkv) for every vertex v of Δ. Since, by our assumptions,
all vertex links of Δ satisfy the g-conjecture, and since Δ is (j0 + 1)-neighborly, we
conclude that for every vertex v, hi(lkv) = hj0(lkv) for all j0 ≤ i ≤ (d − 1)/2, and
that h(lkv) = h(lkw) for all vertices v and w of Δ. This information about links
turns out to be enough to compute the entire h-vector of Δ. Indeed, it follows from
[5, Remark 4.3] that

hr(Δ) = (−1)r
(

d

r

)
+

r−1∑

i=0

(−1)r−i−1 (d − 1 − i)!i!
(d − r)!r! · n · hi(lkv).

Hence

gr+1(Δ) = hr+1 − hr

=
(

d + 1

r + 1

)[
(−1)r+1 + n

r−1∑

i=0

(−1)r−ihi(lkv)

(d − i)
(
d
i

) + n · hr(lkv)

(r + 1)
(
d+1
r+1

)
]
,

and since hj0(lkv) = hj0+1(lkv) = · · · , we infer that for all j0 + 1 ≤ r ≤ (d − 1)/2,

gr+1
(
d+1
r+1

) + gr
(
d+1

r

) = n · hj0(lkv)

[
− 1

(d − r + 1)
(

d
r−1

) + 1

(r + 1)
(
d+1
r+1

) + 1

r
(
d+1

r

)
]

= 0.

Therefore,

(−1)r−j0
gr+1
(
d+1
r+1

) = gj0+1
(

d+1
j0+1

) = hj0+1 − hj0(
d+1
j0+1

) = βj0 .

Substituting this result in (9) with j = j0 + 1 and using that all βi for i < j0
vanish, yields

(
d+1
j0+1

)
βj0+1 ≤ [hj0+2 + (

d
j0+2

)
βj0 ] − [hj0+1 − (

d
j0+1

)
βj0] = gj0+2 +

(
d+1
j0+2

)
βj0 = 0, and so βj0+1 = 0. Assuming by induction that βj0+1 = · · · =

βr−1 = 0, a similar computation using (9) with j = r then implies that βr = 0 for
all j0 < r ≤ (d − 1)/2. �

Kalai conjectured [6, Conjecture 14.2] that if Δ is a (d −1)-dimensional manifold
without boundary, then h′′

j+1(Δ) − h′′
j (Δ) ≥ (

d
j

)
βj (Δ). This is an immediate con-
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sequence of (9). Thus Kalai’s conjecture holds for all manifolds whose vertex links
have the hard Lefschetz property.

5 Rigidity Inequality for Manifolds with Boundary

In this section we return to our discussion of the face numbers of homology manifolds
with nonempty boundary. The goal here is to strengthen Kalai’s result [6, Theorem
1.3] asserting that if Δ is a (d − 1)-dimensional manifold with boundary and d ≥ 3,
then h2(Δ) ≥ f ◦

0 (Δ), where as in Sect. 3, f ◦
0 (Δ) denotes the number of interior

vertices of Δ. Our main result is

Theorem 5.1 If Δ is a connected (d − 1)-dimensional homology manifold with non-
empty orientable boundary and d ≥ 5, then

h2(Δ) ≥ f ◦
0 (Δ) +

(
d

2

)
β1(∂Δ) + d β0(∂Δ). (10)

If d = 4 and the characteristic of k is two, then

h2(Δ) ≥ f ◦
0 (Δ) + 3β1(∂Δ) + 4β0(∂Δ). (11)

Since the boundary of a 3-manifold with boundary is a collection of closed sur-
faces, using a field whose characteristic is two maximizes the relevant Betti numbers,
so we have restricted ourselves to this case. Before beginning the proof of this the-
orem we establish some preliminary results pertaining to rigidity in characteristic
p > 0. In characteristic zero the cone lemma, gluing lemma, and Proposition 5.5
follow easily from the work of Kalai [6] and Lee [10].

Definition 5.2 A (d−1)-dimensional complex Δ is k-rigid if for generic θ1, . . . , θd+1

linear forms and 1 ≤ i ≤ d + 1, multiplication ·θi : k[Δ]/(θ1, . . . , θi−1)1 →
k[Δ]/(θ1, . . . , θi−1)2 is injective.

It follows from Proposition 5.5 below that if Δ is k-rigid, then the k-dimension
of k[Δ]/(θ1, . . . , θd) is h2(Δ) and of k[Δ]/(θ1, . . . , θd+1) is g2(Δ). In fact, it is not
hard to see (but we will not use it here) that the converse holds as well.

Lemma 5.3 (Cone lemma) If Δ is k-rigid, then the cone on Δ,C(Δ), is k-rigid.

Proof Observe that k[C(Δ)] ∼= k[Δ] ⊗k k[x0]. Hence for any θ0 of the form x0 +∑n
i=1 αixi , θ0 is a non-zero-divisor on k[C(Δ)]1 and the quotient ring k[C(Δ)]/(θ0)

is isomorphic to k[Δ]. The assertion follows. �

Lemma 5.4 (Gluing lemma) If Δ1 and Δ2 are (d − 1)-dimensional k-rigid com-
plexes and there are at least d vertices in Δ1 ∩ Δ2, then Δ1 ∪ Δ2 is k-rigid.
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Proof Set Δ = Δ1 ∪ Δ2. Since Δl (l = 1,2) is a subcomplex of Δ, there is a natural
surjection k[Δ] −→ k[Δ]l . Consider the following commutative square

k[Δ]/(θ1, . . . , θi−1)2 −−−−→ k[Δ1]/
(
θ1, . . . , θ i−1

)
2 −−−−→ 0

�⏐⏐·θi

�⏐⏐·θi

k[Δ]/(θ1, . . . , θi−1)1 −−−−→ k[Δ1]/
(
θ1, . . . , θ i−1

)
1 −−−−→ 0.

(12)

Here, θ is the image of θ in k[Δ1]. Suppose ω is in the kernel of the left-hand vertical
map. Then its image in k[Δ1]/(θ1, . . . , θ i−1)1 must be in the kernel of the right-hand
vertical map, and hence zero when restricted to k[Δ1]/(θ1, . . . , θ i−1)1. Similarly, ω

is zero when restricted to k[Δ2]/(θ1, . . . , θ i−1)1. But, if there are at least d vertices
in Δ1 ∩ Δ2, then ω = 0 in k[Δ]/(θ1, . . . , θi−1)1. �

Proposition 5.5 Let Δ1, . . . ,Δb be k-rigid (d − 1)-dimensional complexes with dis-
joint sets of vertices. If Δ = ⋃

Δi , then for generic linear forms Θ = (θ1, . . . , θd)

and ω,

dimk
(
k[Δ]/Θ)

2 = h2(Δ) +
(

d

2

)
(b − 1) and

dimk ker
[(

k[Δ]/Θ)
1

·ω→ (
k[Δ]/Θ)

2

] = d(b − 1).

Proof Suppose that w is in the kernel of ·θ1 : k[Δ]1 → k[Δ]2. Using a commutative
square analogous to (12), we see that restricted to each vertex set w is zero. Hence
w = 0. Therefore,

dimk
(
k[Δ]/(θ1)

)
2 = dimk k[Δ]2 − dimk k[Δ]1 = (f1 + f0) − f0 = f1.

Now replace k[Δ] with k[Δ]/(θ1) in (12) and consider multiplication by θ2. The
same argument shows that any w in the kernel must restrict to a multiple of θ1 on the
vertex set of each Δj . The dimension of the space of such w in (k[Δ]/(θ1))1 is b−1.
Thus,

dimk
(
k[Δ]/(θ1, θ2)

)
2 = f1 − (f0 − 1) + (b − 1).

Continuing with this reasoning we see that for each i the dimension of the kernel of
multiplication by θi on (k[Δ]/(θ1, . . . , θi−1))1 is (i − 1)(b − 1). Hence, for i ≥ 2,

dimk
(
k[Δ]/(θ1, . . . , θi−1)

)
2 = f1 − (i − 2)f0 +

(
i − 1

2

)
+

(
i − 1

2

)
(b − 1).

Setting i = d + 1 finishes the proof. �

Proof of Theorem 5.1 First we consider the situation when d ≥ 5. Let Γ be the sim-
plicial complex obtained from Δ by coning off each component of the boundary of Δ.
Specifically, let c1, . . . , cb be the components of the boundary of ∂Δ. We introduce
new vertices n + 1, . . . ,n + b and set

Σ = (
(n + 1) ∗ c1

) ∪ · · · ∪ (
(n + b) ∗ cb

)
and Γ = Δ ∪ Σ.
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Then Γ is a (d − 1)-dimensional pseudomanifold that is k-rigid. The proof is by
induction on d . Any Δ homeomorphic to S2 is k-rigid. This follows from [14, Corol-
lary 3.5]. So the cone lemma implies that the closed star of a vertex in a three-
dimensional k-homology sphere is k-rigid. Now, using the gluing lemma we can
take the union with closed stars of other vertices until we see that an arbitrary three-
dimensional k-homology sphere is k-rigid. Since for every vertex v ∈ Δ, the link of
v in Γ is a k-homology sphere, induction on d implies that this link is k-rigid. Hence
the closed star of v in Γ is k-rigid for all v ∈ Δ. Taking the union of the closed stars
of the noncone points using the gluing lemma shows that Γ is k-rigid.

Observe that f0(Γ ) = f0(Δ) + b and f1(Γ ) = f1(Δ) + f0(∂Δ). Thus h2(Γ ) =
h2(Δ)+h1(∂Δ)−(d −1)β0(∂Δ). For Σ we have f0(Σ) = f0(∂Δ)+b and f1(Σ) =
f1(∂Δ) + f0(∂Δ). Hence, h2(Σ) = h2(∂Δ) − (d − 1)β0(∂Δ).

Consider the face rings k[Γ ] and k[Σ], and let θ1, . . . , θd,ω ∈ k[Γ ]1 be generic
linear forms. Since Σ is a subcomplex of Γ , there is a natural surjection φ : k[Γ ] −→
k[Σ]. Let θi denote the image of θi under φ, and consider k(Γ ) := k[Γ ]/(θ1, . . . , θd)

and k(Σ) := k[Σ]/(θ1, . . . , θd). Then φ induces a surjection k(Γ ) −→ k(Σ). De-
noting by I ⊂ k(Γ ) its kernel, we obtain the following commutative diagram whose
rows are exact:

0 −−−−→ I2 −−−−→ k(Γ )2 −−−−→ k(Σ)2 −−−−→ 0
�⏐
⏐·ω

�⏐
⏐·ω

�⏐
⏐·ω

0 −−−−→ I1 −−−−→ k(Γ )1 −−−−→ k(Σ)1 −−−−→ 0.

(13)

Since Γ is k-rigid, dim k(Γ )2 = h2(Γ ) and the middle vertical map is an injec-
tion. Hence the left vertical map is also an injection. By the cone lemma and the
argument which proved that Γ is k-rigid, each of the b components of Σ is k-rigid.
Proposition 5.5 says that dimk k(Σ)2 = h2(Σ) + (

d
2

)
β0(∂Δ).

By Proposition 5.5, the dimension of the kernel of the right vertical map is
dβ0(∂Δ). Applying the snake lemma, we find that the dimension of the cokernel
of ·ω : I1 → I2 is at least dβ0(∂Δ) and thus dim I1 + dβ0(∂Δ) ≤ dim I2.

What are the dimensions of I1 and I2? From exactness of rows, we infer that

dim I1 = dim k(Γ )1 − dim k(Σ)1

= (f0(Δ) + b − d) − (f0(∂Δ) + b − d) = f ◦
0 (Δ), (14)

and

dim I2 = dim k(Γ )2 − dim k(Σ)2

= h2(Γ ) − h2(Σ) −
(

d

2

)
β0(∂Δ)

= h2(Δ) − g2(∂Δ) −
(

d

2

)
β0(∂Δ)

≤ h2(Δ) −
[(

d

2

)
β1(∂Δ) −

(
d

2

)
β0(∂Δ)

]
−

(
d

2

)
β0(∂Δ)

= h2(Δ) −
(

d

2

)
β1(∂Δ), (15)
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where the penultimate step follows from [16, Theorem 5.2] applied to connected
components of ∂Δ and from the observation that for a (d − 2)-dimensional com-
plex ∂Δ, its g2-number equals the sum of the g2-numbers of its connected compo-
nents minus

(
d
2

)
β0(∂Δ). Comparing the right-hand-sides of (14) and (15) and using

dim I1 + dβ0 ≤ dim I2, implies the result.
Two modifications are necessary when d = 4. First, each component of the bound-

ary of Δ is a closed surface, so the Dehn-Sommerville relations tell us that the g2 of
each component is 3β1. Second, to show that Σ is k-rigid the induction must be-
gin with any closed surface instead of just S2. In his thesis [4], Fogelsanger proved
that any triangulation of a closed surface is generically 3-rigid in the graph-theoretic
sense. Fogelsanger used three properties of generic 3-rigidity: a cone lemma, a gluing
lemma, and a result of Whiteley’s concerning vertex splitting [22]. Our cone lemma
and gluing lemma cover the first two. Whiteley’s vertex splitting result, combined
with [10, Theorem 10] due to Carl Lee, is characteristic independent. Hence, Fogel-
sanger’s proof shows that a triangulation of a closed surface is k-rigid. �

Now we give a series of examples that show that for any d ≥ 5, β1, β0 and f ◦
0 ,

Theorem 5.1 is optimal. We recall a family of complexes introduced by Kühnel and
Lassman.

Theorem 5.6 [9] For every d ≥ 4 and n ≥ 2d − 1 there exists a complex Md(n) with
n vertices such that

• Md(n) is a Bd−2-bundle over the circle. In particular, Md(n) is a manifold with
boundary.

• Depending on the parity of n and d the boundary of Md(n) is either Sd−3 × S1

or the non-orientable Sd−3-bundle over the circle. Hence, for d ≥ 5, the first Betti
number of ∂Md(n) is one for any field. When d = 4 and the characteristic of k
is 2, then β1(∂M4(n)) = 2.

• h2(M
d(n)) = (

d
2

)
.

• All of the vertices are on the boundary of Md(n). The link of every vertex is com-
binatorially equivalent to a stacked polytope.

Evidently, Md(n) for d ≥ 5 is an example of equality in Theorem 5.1 with
β1(∂Δ) = 1 and f ◦

0 = 0. For spaces with β1(∂Δ) > 1, begin with two disjoint copies
of Md(n). Choose two (d − 2)-faces on their respective boundaries and a bijection
between their vertices. Now identify these vertices and associated faces according to
the chosen bijection. The resulting space has no interior vertices and is a manifold
with boundary whose boundary is topologically the connected sum of two copies of
the boundary of Md(n). Thus the first Betti number is now two. Direct computation
shows that h2 of the new space is 2

(
d
2

)
. Repeating this operation of connected sum

along the boundary b times with Md(n) produces an example of equality in Theo-
rem 5.1 with β1(∂Δ) = b and f ◦

0 = 0. To construct Δ with f ◦
0 = m > 0 simply take a

complex with f ◦
0 = 0 and subdivide a facet m times. Each such subdivision increases

h2 and f ◦
0 by one while leaving the topological type of the complex unchanged.

To produce spaces Δ with β0(∂Δ) > 0, begin with any of the above examples.
It is possible to subdivide a facet d times so that there is now a facet with interior
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vertices. See [3] for the algorithm. Removing the open facet leaves a manifold whose
boundary has two components, the original and the boundary of the simplex. The new
space will have the same number of interior vertices and its h2 will have increased
by d .

In dimension three, the same constructions lead to examples of equality in Theo-
rem 5.1 with arbitrary f ◦, β0, and even β1. Since the boundary of a three-dimensional
manifold Δ must have even Euler characteristic, this is the best we can hope for.

All of the complexes constructed using the procedures have the property that the
link of every boundary vertex is combinatorially a stacked polytope, and the link of
every interior vertex is a stacked sphere.

Conjecture 5.7 If d ≥ 4 and Δ is a connected (d − 1)-dimensional homology mani-
fold with nonempty orientable boundary, then equality occurs in Theorem 5.1 if and
only if all of the links of Δ are combinatorially equivalent to stacked polytopes or
stacked spheres.
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