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Abstract. Density functional theory (DFT) has become a routine tool for the

computation of electronic structure in the physics, materials and chemistry fields. Yet

the application of traditional DFT to problems in the biological sciences is hindered, to

a large extent, by the unfavourable scaling of the computational effort with system size.

Here, we review some of the major software and functionality advances that enable

insightful electronic structure calculations to be performed on systems comprising

many thousands of atoms. We describe some of the early applications of large-scale

DFT to the computation of the electronic properties and structure of biomolecules,

as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis

and computer-aided drug design. With this review, we hope to demonstrate that first

principles modelling of biological structure–function relationships are approaching a

reality.
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1. Introduction

An important goal of molecular biology is an understanding of the relationship between

structure and function. Often, it is not only the overall shape of the biological molecule

(such as the arrangement of α-helices and β-sheets in proteins) and the identity of its

building blocks (such as the sequence of nucleobases in DNA), but also its underlying

electronic structure that determines the function of the molecule. Quantum mechanical

(QM) simulations have played a crucial role in determining the electronic properties of

the amino acids, nucleic acids, carbohydrates, lipids and so forth that go into building a

biological organism. Yet, if first principles calculations are to become a truly predictive

tool in the biological sciences, then we require the ability to study the properties of these

molecules within their natural environment. For example, the bond breaking/forming

reactions in enzymes, the absorption of light by optically-active pigment molecules, and

the transport of electrons in DNA and proteins may all be studied using simplified

models in vacuum. However, we will argue that it is only by studying the complex

effects of the biological environment that the functional mechanism of the system may

be accurately quantified from first principles.

In this review, we begin by motivating the need to construct realistic, large-scale

QM models when studying biological systems. In particular, we find, by collecting

together literature spanning a wide range of biological fields, that QM system sizes

in excess of around 500 atoms are required for the accurate determination of many

properties of interest. Therefore, to focus our review, we limit ourselves to the literature

describing biomolecular simulations with a minimum of 500 atoms treated at the QM

level of theory. This size regime is typically at the limit of that which can be studied

using traditional QM calculations, which are at least three orders of magnitude more

expensive than molecular mechanics (MM) force fields and which typically scale as the

third (or greater) power of the number of atoms in the simulation. However, over the

last two decades, the ability of density functional theory (DFT) to treat large system

sizes has advanced dramatically, particularly with the advent of linear-scaling methods.

When combined with increasing computational processing power, this enables the almost

routine application of quantum mechanics to the description of the physics and chemistry

of complex biological molecules.

There have been excellent general reviews of both DFT [1] and linear-scaling

DFT [2, 3] in recent years. We will not attempt to re-visit the material covered

in these previous works, but rather focus on the specific challenges associated with

modelling biomolecules, summarise the recent successes, and assess how close we

are to routine first-principles descriptions of biological processes. We will therefore

review relevant methodology such as local orbital methods, linear-scaling algorithms,

embedding, electrostatics, spectroscopy and the advanced treatment of dispersion

and correlated electronic effects. Finally, in section 4, we will cover some of the

main applications of large-scale DFT to the study of biological function, including

the prediction of biomolecular structure and electronic properties, computational
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enzymology, metalloproteins, photosynthesis and computer-aided drug design. In

general, the chosen applications are paradigmatic problems that have been widely

studied, and are well-characterised through experimental measurements. However, a

vast range of biological problems are much less straightforward to access experimentally.

It is therefore an opportune time to reflect and consider if we are ready for truly

predictive first principles modelling that can explain the functional interactions and

chemistry of complex biological molecules.

1.1. Necessity for Large-Scale QM Simulations

Despite the huge complexity of biological organisms, many phenomena can be studied

in a relatively localised region, such as an active site of an enzyme, or a binding pocket,

or a chromophore. In these cases, quantum mechanical accuracy in the description

of for example bond-breaking, transition metal chemistry, intermolecular binding or

electronic excitations is both appealing and computationally feasible. Assuming that

one requires a QM treatment, then the choice is between a QM cluster approach and

a hybrid QM/MM simulation, in which a QM subsystem is embedded inside a larger

region treated at a less expensive molecular mechanics level of theory [4]. Ideally the

two methods should converge for sufficiently large QM regions. The advantage of the

former approach is simplicity – there is no need to assign an MM force field or to

model the boundary between the QM and the MM regions. The advantage of the latter

is that, in theory, properties of interest should converge with a smaller QM region.

Although the MM region does not explicitly account for electronic polarisation, this may

be accounted for in an approximate manner by embedding the system in a polarisable

continuum model [5, 6], or in a fully-atomistic polarisable medium [7, 8, 9]. As a

cautionary note, QM/MM results can depend sensitively on the methods used [10] and

one must be careful about how the boundary is treated. Shaw et al. give the example

of solvating a single QM water molecule in a bath of MM water [11]. One widely used

water model, despite performing well in purely MM simulations, undergoes significant

structural distortions when used in a QM/MM scheme. In this section, we summarise

the results of a number of studies that have explicitly considered the convergence of

a range of different observables with respect to the size of the QM region. We give

examples of both QM cluster and hybrid QM/MM studies of biological systems, and we

will show evidence that, in both cases, large-scale QM regions in excess of 500 atoms

are required to converge many properties of interest.

The first systematic study of the dependence of biological properties on the size of

the QM region was performed by Solt et al. [12]. Here, the authors studied the force

error on polar and apolar residues in the lysozyme protein using a QM/MM approach

with the QM region described by the PM3 semiempirical potential. As the size of the

QM region centred on the residue of interest is increased, the force error decreases.

However, perhaps surprisingly, the forces at the centre of the QM region do not reach

acceptable levels of convergence (< 0.1 eV/Å) until beyond 500 QM atoms (∼ 9 Å
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radius) for the polar region and 300 QM atoms (∼ 7.5 Å radius) for the apolar region.

More relevantly for the biological modelling community, the free energy of a proton

transfer reaction between a water molecule and a glutamic acid residue in the polar

region showed similarly slow convergence with the size of the QM region. For example,

increasing the radius of the QM region from 3 to 6 Å, decreases the free energy of proton

transfer by 3 kcal/mol. These effects are attributed to inconsistencies between QM

and MM treatment of long-ranged electrostatic interactions, and the neglect of explicit

polarisation in the latter. Indeed, the same effects have been observed in solution,

where it has been shown that spherical shells of QM water of ∼ 8 − 9 Å radius are

required to converge interaction energies between a series of small organic molecules

and water [13, 14].

Sumowski et al. also studied the effect of the environment on proton transfer

isomerisation energies, in this case to investigate the protonation states of a stacked

arginine pair in adenovirus Ad11, a motif that has been shown to be important for

binding to its receptor CD46 [15]. While small QM models favour proton transfer to

neighbouring residues to form a neutral arginine pair, inclusion of a larger, more realistic

computational model stabilises the zwitterionic form. As above, a relatively large QM

region (6 Å, 437 atoms) is required to converge the QM/MM isomerisation energies to

less than 1 kcal/mol. Although, interestingly, there is still a discrepancy in excess of

3 kcal/mol between the converged QM/MM result and the largest purely QM calculation

(1000 atoms), indicating that long-ranged electrostatics are particularly crucial here.

Another widespread use of QM in biological modelling is in enzymology, and

this is reflected in the number of studies that examine the dependence of computed

structural and energetic data on the number of atoms that are treated quantum

mechanically. Sadeghian et al. study base excision repair of oxidised guanine by the

bacterial glycosylase, MutM, using QM/MM with large-scale QM regions [16]. The

authors perform extensive convergence tests of the reaction pathways with the size of

the QM region studied. Particularly noteworthy is the barrier height of the second

stage of the proposed reaction (the deprotonation of a proline residue), which varies

from 28 kcal/mol using 143 QM atoms, to 6 kcal/mol using 278 QM atoms, to the

converged value of 14 kcal/mol using 493 atoms. All barrier heights and interaction

energies are converged to within 2 kcal/mol using QM clusters of radius 8 Å (∼ 600

atoms). These conclusions are broadly consistent with studies of nucleophilic attack

and proton transfer in acetylene hydratase [17], and of a methyl transfer reaction in

catechol-O-methyltransferase [18].

Spectroscopy is another field where charge transfer and polarisation are expected to

strongly influence computed results, and where the size of the QM region may be crucial.

Our own interests lie in computing the optical excited states of chlorophyll pigments

embedded in protein complexes for electronic excitation energy transfer. We found

that QM clusters of around 1500–2000 atoms were required to converge the observed

excitation energies to within 10 wavenumbers [19]. Isborn et al. computed the UV/vis

absorption spectra of the photoactive yellow protein (PYP) chromophore in aqueous
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and protein environments [20], and compared QM/MM calculations with a full QM

treatment of the system. In solution, it was found that quantum mechanical treatment

of 40-200 water molecules surrounding the chromophore are needed to converge the

peak position and width of the computed absorption spectrum. In the protein, the

effect of QM treatment is even more visible – upon extending the QM region from 104

to 723 atoms, the spectrum is red-shifted by 0.3 eV. It was confirmed that the 723 atom

result was converged by comparing with a calculation in which the entire protein was

included in the QM region. Similarly, Zuehlsdorff et al. show that around 380 QM water

molecules are required to converge time-dependent DFT calculations of the magnitude

of the solvatochromic shift of an alizarin dye in solution [21]. In this system, use of

an implicit solvent model actually shows qualitatively wrong behaviour (a blue shift of

the spectrum relative to vacuum) when compared with the full QM result (red shift).

It was further conclusively demonstrated that the origin of the red shift is the partial

delocalisation of the excitation onto a 7 Å volume of water surrounding the pigment, an

effect which cannot be modelled without explicit QM treatment of the environment.

Even stronger sensitivity to the environment has been observed when studying

NMR chemical shifts in proteins. For a DNA-enzyme complex, the computed 1H and
13C shifts of a particular DNA lesion were found to drop below acceptable thresholds

(0.1 and 0.5 ppm respectively) only when a QM cluster of radius 9 Å (1400 atoms)

was used [22]. Although this minimum radius reduces to around 8 Å when used in a

QM/MM scheme, this is still a formidable system size for conventional DFT approaches.

Similar results were obtained for the 46 amino acid fungal dockerin domain, which is

small enough that the entire protein may be treated quantum mechanically [23]. Here

a QM radius of at least 6 Å is recommended (albeit with less stringent thresholds on

convergence).

In contrast, local spectroscopic measurements may converge very quickly with the

size of the QM region. For example, manganese isotropic hyperfine coupling constants in

the oxygen evolving complex of photosystem II converge already after including around

100 atoms in the QM region, if used as part of a QM/MM protocol [24]. However, when

using QM-only clusters, more than 200 atoms are required due to structural artefacts

of the model that propagate into the inorganic core.

Summary: A consensus is forming that large QM regions are required to ensure

that spectroscopic and energetic observables are converged with system size. Although

QM/MM shows faster convergence than purely QM approaches, still QM regions in

excess of 500 atoms are required in many cases. Such system sizes are problematic

for many conventional QM approaches and so, in what follows, we outline some of the

methods that will in future enable these calculations to become routine.

1.2. Feasibility of Large-Scale Simulations

In this section we will summarise the electronic structure methodologies that are capable

of simulations at the length scales that we have described, focusing particularly on those
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that have been most actively used for biological applications. In practice, this restricts us

to codes based on the Kohn-Sham formulation of density functional theory [25, 26], and

its linear-scaling reformulations, as these are to date the only methodologies offering the

requisite balance of speed with accuracy. Traditional approaches to DFT are in general

based on finding eigenstates ψi(r) with eigenvalues ǫi of the Kohn-Sham equation:
(

−
h̄2

2m
∇2 + Vext(r) + VH(r) + Vxc(r)

)

ψi(r) = ǫiψi(r), (1)

where we have labelled eigenstates by a band index i but not by not by a k-point,

as models of biological systems are unlikely to display short-ranged periodicity, and

most calculations will be performed at the Γ point only, if a periodic model is used.

Here Vext(r) is the external potential of the nuclei, VH(r) is the Hartree potential of the

electron density, and Vxc(r) is the exchange-correlation potential. Spin labels have been

omitted. Atomic units will be used henceforth, in which h̄ = m = e = 1. Depending on

the basis set used, many calculations on biological systems rely on the replacement of

an all-electron representation of the potential of the nuclei by a representation based on

pseudopotentials, or the projector augmented wave (PAW) method [27], in which case

Vext becomes a nonlocal potential. The term in brackets is the Kohn-Sham Hamiltonian,

and it is the computational effort of evaluating and solving this Hamiltonian, in a self-

consistent manner, that dominates the computational effort of a DFT calculation. It

is therefore of considerable importance to consider appropriate choices of methodology

and basis set in which to express the solutions, and the scaling of the computational

effort associated with each.

Since we have established a fairly high lower bound for the number of atoms required

in realistic models of biological molecules, it becomes necessary to look beyond the

traditional eigenstate-based approach, towards linear-scaling approaches, if the entire

system is to be simulated within one calculation. Given that such approaches have only

become available in recent decades, the early history of the field of electronic structure

methods applied to full-sized biomolecules was dominated by methods based on splitting

larger model systems into multiple subsystems [28, 29]. Separate calculations can then

be run on these subsystems, after which results must be recombined, with some form of

self-consistency loop to account for mutual interactions and equilibration and to ensure

a single electron chemical potential for the system. In particular, accurate methods

require that the calculation of each fragment be performed in the Coulomb field of other

fragments, but that the field changes as the density evolves. One of the early methods

to accomplish this self-consistent cycle is attributed to Morokuma [30] in 1971. Many

of the methods in current use depend on the work of Kitaura [31], which developed the

so-called Fragment Molecular Orbital approach. The field was summarised in a review

by Gordon et al. [32] in 2012, so we will not address the technical details further in

this review. This subsystem strategy can work very well if practised with care, with

notable successes describing protein-ligand binding and drug design [33]. However, it

is inevitable that as the system size grows it becomes increasingly complex to choose

fragments in a way that cuts through as few covalent bonds as possible. There are also
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inevitable approximations associated with issues of continuity and treatment of kinetic

energies at boundaries between regions. The rest of this review will therefore focus on

methodologies where all of the QM system is treated concurrently in a single calculation,

removing the need for human judgement in breaking the model down into subsystems.

1.2.1. Choice of Basis Set. One of the most important demarcations between different

DFT methods is the type of basis set used. There is an apparently fundamental

distinction between methods based on an equal treatment of all space (via a plane-wave

basis or by real-space grids), and those based on the knowledge that the single-electron

wavefunctions of condensed matter systems strongly resemble superpositions of atomic-

like solutions (i.e. methods based on local orbitals). As we shall see, this distinction is

in fact not so clear, with many of the most successful methods able to harness beneficial

aspects of both approaches.

Plane waves have many advantages for total energy calculations: they offer an equal

treatment of all space, and systematic convergence using a single parameter with respect

to which the total energy is variational. They also offer advantages for calculation of

forces, in that there is no need for Pulay terms to ensure accurate forces [34]. They

necessitate the use of pseudopotentials or Projector Augmented Wave methods [27], and

while in the past this was often a source of error, in recent years there is an emerging

consensus that carefully-produced pseudopotentials can be precisely as accurate as all-

electron methods in describing quantities associated with valence states. The “Delta”

project, a collaborative effort between the developers of major DFT codes to validate

their datasets and methodologies, recently showed [35] that pseudopotentials associated

with a wide range of codes agree very well with each other, with pairwise differences

that are comparable to those between different high-precision experiments.

However, large basis sets become increasingly problematic for large biological

systems. One can estimate the scaling of the computational effort with respect to

two main factors: the number of basis functions M and the number of occupied

eigenstates N . In the case of plane-wave calculations, many parts of the calculation,

including those that dominate for small systems, such as construction of the density,

scale relatively benignly at first (e.g. as O(M lnM) × O(N)) due to the advantages of

the fast Fourier transform [36]. However, at larger sizes, eventually the requirement

of mutual orthogonalisation of all the eigenstates becomes the dominant source of

computational effort. This step is associated with O(N2)×O(M) scaling, which becomes

infeasible for large systems. Furthermore, the representation of large simulation cells

with significant vacuum (or implicit solvent) regions is problematic due to the large

memory requirements of storing N bands with M coefficients if both N and M are very

large. Leading DFT codes that make use of this plane-wave formalism include Quantum

Espresso [37], ABINIT [38], CASTEP [39], and VASP [40]: there are many examples of

applications of these tools to problems in the field of biochemistry, but few which meet

the size criteria we have identified above for inclusion in this review.

Closely related to plane-wave methods are approaches based on their real-space
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equivalent, namely the use of straightforward representation of eigenstates on a grid, a

topic reviewed by Beck [41] in 2008. The grids utilised can be either uniform, or multi-

resolution, such that computational effort can be focused selectively on regions where

wavefunctions are rapidly-varying. To ensure that the combination of finely-spaced grids

with large simulation cells does not result in a rapid explosion of the computational

effort required, various approaches have been used to improve the efficiency of grid-

based methods. GPAW [42, 43] utilises the projector augmented wave formalism to

ensure that relatively coarse grids can be used with high-accuracy, whereas RMGDFT

[44, 45, 46] and others use a multigrid approach. The approach used in PARSEC is

to bypass the use of an explicit basis and represent wavefunctions explicitly on a real

space grid [47, 48]. Liu, Yarne and Tuckerman [49] investigated the use of a so-called

Discrete Variable Representation, using continuous functions that satisfy the properties

of position eigenfunctions on an appropriate grid. The resulting approach has been

demonstrated in ab initio MD simulations [50]. RMGDFT, in particular, has been

applied to various biological systems, including prion folding [51, 52], but this has usually

been as part of a mixed scheme involving embedding a relatively small full-DFT region

within an orbital-free DFT treatment of a surrounding environment. There are also

grid-based codes with strengths in particular domains such as modelling excited states

and spectroscopy, including OCTOPUS [53].

As a result of the poor eventual scaling of plane-wave and grid-based approaches

for large systems, methods based on atom-centred local orbitals have traditionally

been a much more common choice for biological applications where the full system is

represented quantum mechanically. In this approach, a basis set is generated based on

the solutions of the Kohn-Sham DFT problem for an isolated atom. Extra flexibility of

this basis set is then generated by ‘splitting’ and ‘polarisation’ [54] of the orbitals to allow

variational freedom to describe the redistribution of density that occurs as part of bond

formation. Resulting basis sets are expressed as the product of a spherical harmonic and

a radial function, expressed either via a parameterisation in terms of simple functions

such as Gaussians, or numerically on a radial grid, as a so-called numerical atomic

orbital (NAO) basis:

φα(r) = ϕnαlα(rI)Ylαmα
(r̂I) , (2)

where for an ion labelled by I at RI , we define rI = r−RI , and nα, lα and mα are the

principle, orbital and angular quantum numbers of a local orbital labelled by α. The

major advantages of such a basis set are that it is relatively small compared to plane-

waves or grids in terms of the total number of functions required to achieve a given

accuracy, and that each basis function is localised, in that it is only non-zero within a

certain radius of the atom on which it is centred.

The use of truncated local orbitals means that for large systems, each local orbital

only overlaps with an approximately constant number of nearby atoms, a number that

does not grow with the size of the system. Constructing the Hamiltonian matrix in this
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representation requires the evaluation of all non-zero elements of:

Hαβ = 〈φα|ĤKS|φβ〉 , (3)

The effort of each such evaluation does not need to grow with the size of the system,

for local orbitals, and thus scales as O(1). Furthermore, the number of such evaluations

scales only as O(N), so we can see that, asymptotically, the computational effort of

evaluating Hαβ does not need to grow faster than O(N). Similarly, the number of

non-zero elements of the overlap matrix grows only linearly with system size:

Sαβ = 〈φα|φβ〉

However, to solve the Hamiltonian and find the KS eigenstates, one is still required to

either fully diagonalise the matrix by solving or to use techniques such as conjugate

gradients to find the low-lying eigenstates, both of which are O(N3) operations.

The ‘traditional’ mode of operation of a number of local-orbital based codes (some

of which also support the linear-scaling and/or adaptive local orbital schemes discussed

below) follows this general scheme and utilises NAOs, for example SIESTA [55], FHI-

AIMS [56], OpenMX [57], DMOL3 [58] and Conquest [59, 2]. Due to their advantages

in terms of analytical evaluation of matrix elements between local orbitals, Gaussian

type orbitals (GTOs) are also a very popular choice for local orbitals in biological

calculations, as used in, for example, Gaussian [60], CRYSTAL [61], NWChem [62],

FreeON [63] and TeraChem [64]. Finally, there is a class of hybrid methods which

combine local orbital and plane-wave basis sets within one calculation. One of the most

notable examples of such methodology is the CP2K code [65], which uses a dual basis of

atom-centred Gaussian orbitals and plane waves [66], with the former used to represent

the wavefunctions and the latter used to represent the electronic density.

Many of these codes have demonstrated good convergence to very close to plane-

wave-quality results for specific cases. However, the transferability of basis sets between

dissimilar environments must be carefully tested. Furthermore, high-accuracy forces can

be rather hard to obtain in local orbital methods due to the need for Pulay terms [34]

to incorporate the fact that the basis changes as the atoms move, and the associated

possibility of basis set superposition error (BSSE) [67].

In recent years, increasing attention has focussed not just on the total

computational effort required to achieve a given precision in large-scale DFT

calculations, but also on the degree to which this computational effort can be

parallelised. Sustained development of processor architectures is no longer delivering

significant improvements in single-core performance, but rather advancements are

coming through increasing on-chip parallelism and introducing novel architectures

such as Graphical Processing Units (GPUs). The performance characteristics

of existing methodologies on these new architectures can differ significantly from

previous generations, requiring regular re-evaluation of methodologies to extract best

performance from available hardware. DFT methods based on all broad classes identified

above have been adapted for GPU-based hardware, including real-space grids [68, 69],

plane-waves [70, 71], and GTOs [72, 73, 74].
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One relevant distinction in the context of large-scale simulation is between so-called

“strong-scaling” and “weak-scaling”. “Strong-scaling” refers to the ability to increase

the number of parallel cores for a fixed-size simulation and achieve a corresponding

decrease in the wall time taken. “Weak-scaling” refers to the ability to scale up the

size of the simulation, with a corresponding scaling of the computational resources,

while keeping wall time roughly constant. Corsetti investigated the performance of the

SIESTA code with respect to both metrics [75], for large boxes of water. The results

indicate that traditional DFT approaches are limited not just by the total computational

effort, but also by their limited ability to scale to very large computational resources.

Similar topics have been investigated by VandeVondele et al. in the context of the CP2K

code [76]. There have been recent proposals for DFT methodologies and basis sets whose

main virtues are that they can be efficiently parallelised to very large numbers of cores

[77].

1.2.2. Linear-Scaling Methods. For biological applications, the traditional DFT

approaches described above encounter a scaling-wall of computational effort, prohibiting

calculations much beyond around 1000 atoms. At the same time, they also encounter

severe limitations in terms of the computational memory required to perform such

calculations, which scales at least quadratically with system size. Fortunately, a parallel

trend in the DFT methodology literature, dating back as far as the early nineties, has

been the development of linear-scaling approaches to density functional theory. A review

of the early years of this field was produced by Goedecker in 1999 [78], describing the

foundational work of a number of research groups, including those of Yang [79, 80, 81],

Kohn [82, 83] and Vanderbilt [84]. A more recent summary was provided by Bowler

and Miyazaki [3]. We will not attempt to reproduce the material covered therein, but

rather summarise the state-of-the-art in terms of methods appropriate for high-accuracy

calculations on biomolecules. For example, while orbital-free DFT is making significant

progress in the description of metallic and simple semiconducting systems [85], it is

not yet widely applied to biological systems except in the context of improving the

description of the region surrounding an embedded system of interest [51] described with

a higher-level method. It would appear that for the moment, given the limited accuracy

of orbital-free representations of kinetic energy functionals based only on the density, the

higher-accuracy representation of the kinetic energy that is possible within Kohn-Sham

DFT is required to describe the variety of bonding present within a biological system.

In the previous section, we noted that the use of localised orbitals allows, within

KS-DFT based on a semilocal exchange-correlation functional, the construction of the

Hamiltonian in linear-scaling computational effort. To create a fully linear-scaling

approach, one must also be able to construct and optimise some representation of the

sum of the occupied eigenstates in linear-scaling computational effort. Central to many

of these schemes is the concept of locality, or “near-sightedness”, namely the idea that

properties in one region of a system are only weakly influenced by properties spatially

far away from this region. This near-sightedness, discussed by Kohn in 1996 [83], is
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closely associated with the existence of a gap at the Fermi level in the density of states.

The existence of such a gap means that, in the Kohn-Sham picture, the system can be

well-represented by a set of eigenstates which are either fully-occupied (below the Fermi

level) or fully-unoccupied (above the Fermi level). This is true of most components of

biological molecules, particularly the more structural components of most proteins, but

as we shall see in Section 3, it is not automatically true of model systems which have

not been prepared with sufficient attention to considerations of saturating bonds and

electrostatic screening.

A second crucial ingredient in linear-scaling methods based on KS-DFT is the

use of a density matrix representation. The one-electron density matrix can be

shown to completely specify a quantum-mechanical system, within the independent-

electron picture used within KS-DFT, such that all observables can be calculated from

it. McWeeny [86] provided an early review of the use of the density matrix within

electronic structure theory. The aforementioned linear-scaling DFT reviews trace later

developments in more detail than is possible here [78, 3]: the key points relevant to the

simulation of biological systems are described below.

The density matrix is a representation of the density operator ρ̂. For a single-

determinant wavefunction, as is used in KS-DFT to describe an insulating system, the

density matrix can be expressed in the position representation as:

ρ(r, r′) =
∑

i

ψ∗
i (r)fiψi(r) , (4)

that is, as a sum over the orbitals ψi(r) multiplied by their occupancy fi (0 for empty

states, 1 for filled states). The expectation value of any operator Â can be expressed

by taking its trace with the density operator, tr(ρ̂Â). For example, the kinetic and

potential energies (for a local potential) can be written as

Ekin = −
1

2

∫

∇2
r
ρ(r, r′)|r=r

′ dr′

Epot =
∫

ρ(r, r)Veff(r) dr .

As these are the components of the band structure energy, it is possible to express the

band structure energy of a system succinctly as EBS = tr(ρ̂Ĥ), and the total energy

ET = EBS − Edc , where Edc is a double-counting term depending only on the electron

density. Given that it is thus possible to express the total energy in terms of the density

matrix, without use of the eigenstates, it is natural to use it as the fundamental quantity

in a total energy calculation.

It is then necessary to minimise the energy with respect to this density matrix,

subject to constraints which ensure that the density matrix is a valid representation of

the corresponding system of Kohn-Sham single-particle states. The two constraints

which must be obeyed are of idempotency, that is to say equivalence to a set of

integer-occupied (fully empty or fully filled) states, and normalisation, that is to say,

representing the appropriate number of electrons Ne.
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The idempotency condition can be expressed as ρ̂2 = ρ̂, or
∫

ρ(r, r′′)ρ(r′′, r′) dr′′ = ρ(r, r′) . (5)

It is straightforward to verify that this is obeyed for the form given in eq 4. Meanwhile

the normalisation condition is tr(ρ̂) = Ne, or
∫

ρ(r, r) dr = Ne . (6)

Note that eigenvalues of the density matrix for an insulator will be zero or one: for a

spin-degenerate system, therefore, we must multiply by a factor of 2 in equation 6 for

doubly-occupied orbitals to obtain the correct number of electrons. Spin labels will be

omitted throughout this work for the sake of simplicity.

Extensive effort has been devoted to analysis of the properties of the density matrix,

particularly of its decay properties as a function of the separation of the two position

operators, |r−r′|. Via the connection to the range of a corresponding Wannier function

description, it can be shown [87] that the density matrix is a highly diagonally-dominant

operator, in that asymptotically there is a rapid decay of ρ(r, r′) as a function of

|r − r′|. This decay can be shown to be exponential for an insulator or a metal at

finite temperatures, but only algebraic in the case of a zero temperature metal.

This diagonal dominance means that if represented using localised orbitals similar to

those introduced above, the density matrix is expressible as a sparse matrix. Hernandez

and Gillan [88] introduced a form which is now widely-used:

ρ(r, r′) =
∑

αβ

φ∗
α(r)K

αβφβ(r
′) , (7)

where Kαβ is known as the density kernel. This is a sparse matrix representation of the

density matrix, which technically is expressed in terms of the (contravariant) duals φα(r)

of the local orbitals φα(r). The dual functions are bi-orthogonal to the direct functions,

hence they obey
∫

φα(r)φβ(r) dr = δαβ, and are in general more delocalised than the

direct functions. However, since in most approaches of this type, one never needs to

explicitly construct the duals, this is not usually problematic (though care must be taken

in general to ensure that all quantities correctly respect the covariant/contravariant

nature of localised orbitals).

The use of sparse matrices can thus be seen as the foundation for linear-scaling

reformulations of KS-DFT. In terms of the aforementioned sparse matrix forms of the

Hamiltonian, overlap, and density kernel, we can express the total energy as:

ET =
∑

αβ

KαβHβα − Edc[ρ(r)] , (8)

as well as the requirements for idempotency:

Kαβ =
∑

γδ

KαγSγδK
δβ , (9)

and normalisation
∑

αβ

KαβSβα = Ne . (10)
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The problem of finding the total energy is now to self-consistently minimise eq 8 while

maintaining the constraints of eqs 9 and 10. Approaches to do this can be divided into

three general classes as discussed in more detail in the aforementioned reviews [78, 89, 3]:

direct methods, purification methods, and variational methods.

Direct methods, such as the Fermi operator expansion (FOE) [90, 91, 92] and

the kernel polynomial method of Voter et al. [93], attempt to find the density kernel

corresponding to a given Hamiltonian and electron chemical potential. These must in

general be accompanied by self-consistency loops to ensure correct assignment of the

chemical potential and self-consistency of the density. Purification-based methods seek

to iteratively improve upon an initial guess for the density kernel, without knowledge

of the chemical potential. This class includes approaches such as that of Palser and

Manolopoulos [94], Niklasson et al. [95], and many more recent variations on this theme,

such as Rubensson et al. [96]. Finally, in variational methods, the interacting energy of

eq 8 is minimised with an approach that adheres to the constraints as the optimisation

proceeds. These approaches include the Li, Nunes and Vanderbilt (LNV) method [84],

and methods based on penalty functionals that penalise deviation from idempotency

[83, 97].

Within all of these linear-scaling techniques, in the simplest analysis of scaling of

computational effort with system size, computational time (for fixed number of CPU

cores) would scale as T (N) = AN+B, in the limit of large N for constant A, B where A

is the prefactor and B is a small constant related to operations that are independent of

the size of the system (such as electrostatic calculations in the context of a fixed-size cell).

The prefactor A is a hugely important consideration as it determines at what system

size there is a crossover to where linear-scaling calculations are more computationally

efficient than traditional approaches. To enable large calculations, one needs to keep

the size of the local orbital representation as low as possible such that this prefactor is

small, and this depends crucially on the choice of basis set. Significant effort has been

devoted to finding compact yet accurate combinations of fixed basis sets in the context

of linear-scaling approaches such as in OpenMX [57, 98], and SIESTA [55].

1.2.3. In Situ Optimised Local Orbitals. While the previous section made a

fundamental distinction between local-orbital methods and approaches such as plane

waves that treat all space equally, in fact several linear-scaling methodologies attempt

to achieve the best of both worlds. It is possible to harness the flexibility, power and

systematic convergence that can be achieved for plane waves and grids, while still

obtaining the scaling benefits of local orbitals. One way to achieve this is to use a

representation of the density in terms of a set of adaptable local orbitals, themselves

expressed in terms of a systematic underlying basis. The local orbitals can be used

to represent the density matrix either explicitly or implicitly, but crucially without

requiring direct construction of the eigenstates of the Hamiltonian. Codes undergoing

active development in this category include BigDFT [99], CONQUEST [59, 2], ONETEP

[100, 101] and MGMOL [102, 103]. This type of methodology is particularly attractive
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for biological applications, because there are in general many different forms of bonding

present in a biomolecule, and many different elemental species, yet it is important to

treat them all on an equal footing and not bias the results through a choice of basis

which may unintentionally be better adapted to describe one type over another.

CONQUEST uses the representation of the density matrix in eq 7, written in terms

of support functions that can either be fixed NAOs [104] or adaptive functions expressed

using B-spline (blip) functions [59] and optimised in situ. The former approach has been

used for large-scale demonstrations of modelling biological molecules [105, 106], but the

latter approach is not yet widely used for this purpose.

In a similar vein, the BigDFT code uses a basis of Daubechies wavelets of degree

16, on an adaptive real-space mesh with two levels of resolution, to represent its support

functions [107, 108]. Despite successful demonstrations to multiple inorganic systems,

and benchmarks showing scaling of a calculation for a DNA fragment consisting of

14,300 atoms to over 25,000 parallel cores [99], this combination of approaches is not

yet widely used for full-scale biomolecular applications.

The MGMOL code formulates the equations of DFT in terms of general non-

orthogonal orbitals instead of eigenfunctions. These are represented on a real-space

uniform mesh, using a finite difference discretisation to calculate kinetic energies. The

approach used is to directly compute the localised orbitals, truncated beyond a cutoff

radius, by minimising an energy functional with localisation constraints that only

minimally, and controllably, affect the overall accuracy. This also requires computation

of selected elements of the inverse overlap matrix, which is accomplished by inverting

principal sub-matrices of the global Gram matrix [109]. The code has been designed to

express excellent parallel scaling, with reports of MD calculations of up to 100,000 atoms

on 100,000 processors, with a wall-clock time of O(1) minute per molecular dynamics

step [110].

ONETEP uses in situ optimised local orbitals expressed in a basis of periodic

cardinal sine (psinc) functions on a regular real-space grid [100, 101] whose spacing is

controlled by a cutoff energy equivalent to a plane-wave cutoff. Multiple options are

available for density matrix optimisation: the approach utilises LNV, penalty functional,

and purification schemes [111], all employing highly-optimised parallel sparse matrix

algebra [112, 113]. The support functions, known as non-orthogonal generalised Wannier

functions (NGWFs), are optimised in situ and demonstrate controllable variational

convergence to plane-wave results [114] with respect to the radius of the functions,

and systematic elimination of BSSE [115]. Good computational scaling has been

demonstrated on calculations of amyloid fibril systems of 41,907 atoms, to in excess

of 30,000 parallel cores [116].

Summary: Linear-scaling methodologies based on systematically-described,

adaptive local orbitals are still relatively new and have not yet been widely used for

biomolecular simulations outside of their developer communities and research groups

collaborating closely with them. However, their success in describing biological systems,

to be examined in the following sections, suggests that they will find increasing use
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as the simulation of full-scale biomolecular systems becomes more widespread. One

pressing need is for systematic comparisons between these various approaches, since to

date we are not aware of any work that has attempted to examine either the ability of

the various schemes to provide equivalent, well-converged energy differences. Another

important area of investigation would be to compare the computational effort required

to achieve a given level of accuracy for different methods.

2. Required Functionality

2.1. Challenges Involved in Studying Biological Systems

Apart from the question of size, we can identify four further complications that make

modelling biological molecules more challenging than modelling the inorganic crystalline

systems for which DFT has become so successful. These are: i) the need for very

high accuracy, due to the relatively small energy scales associated with the accessible

microstates of a system at room temperature (typically overall precision well under

1 kcal/mol would be required for useful total energy comparisons); ii) the need to

combine multiple advanced functionalities of electronic structure codes to describe

solvation, strong correlations, dispersion, and excited states, possibly all at once; iii)

the need to extract useful information beyond just total energies, such as geometry and

spectroscopy; and iv), since biological molecules are relatively flexible and function at

finite temperature, the need to sample a very large number of geometrical conformations

of the biomolecule and solvent. In this section, we examine recent developments in the

functionality required to address these challenges.

On the subject of accuracy, it is important to consider whether sufficiently well-

converged calculations can be achieved with the linear-scaling methodologies discussed

above. In the case of adaptive local orbitals, this has been demonstrated for several

approaches. Fox et al. made a careful comparison of binding energies for a system

comprising a phenol molecule in a solvation shell of water [14]. Binding energies

were calculated firstly with adaptive support functions as in ONETEP (i.e. NGWF

optimisation), and with standard GTO basis sets in the NWChem code, with and

without counterpoise corrections [67] to address the issue of BSSE. These results

show that convergence is achieved relatively rapidly with increasing support function

radius in ONETEP, with a convergence to better than 0.05 kcal/mol by 8.0a0. By

comparison, results for the GTO basis sets without counterpoise corrections showed no

clear convergence to a well-defined answer (variations of ±10 kcal/mol) and those with

counterpoise required basis sets at the highly-expensive cc-pVTZ level before comparable

convergence to 8a0 NGWFs was achieved. It has been demonstrated that the use of such

accuracy settings is sufficient for high-accuracy forces, e.g. for geometry optimisation

and transition state searching [117].

These high-accuracy settings, however, mean that calculations are not as cheap

as one might hope for a linear-scaling method. To illustrate the challenge that all
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the requirements for biomolecular applications introduce over-and-above the normal

demands of a DFT calculation, we show in Figure 1 two plots of the total execution time

for single-point energy calculations using the ONETEP code on models of amyloid fibrils

of a range of sizes, run on 3840 cores of the UK’s national supercomputer ARCHER.

The size of the simulation cell was kept constant (80 × 80 × 175 Å) as the size of the

amyloid fibril model was varied.

The squares illustrate calculation times at relatively modest accuracy settings,

namely support function radii of 7 a0, expanded in a psinc basis with a 600 eV energy

cutoff, with kernel truncation at 20 a0, and no use of implicit solvent. The PBE

generalised gradient approximation was used in all calculations [118]. These settings

would be adequate for a preliminary investigation of the energy landscape, and total

wall-time for an electronic structure calculation is very clearly linear with system size,

and remains well under 1 hour even for a system of nearly 14,000 atoms. By contrast,

when adjusting all settings to a level which produces high-accuracy forces (as described

in Ref. [117]), namely 8 a0 support function radii, 800 eV psinc cutoff, kernel truncation

at 25 a0, and an implicit solvent description using a multigrid solver, there are two

significant changes to the profile of time as a function of system size. Firstly, there

is a constant offset, representing the computational time associated with the multigrid

solver. Secondly, the slope is increased by a factor of around five compared to the

coarser computational settings. However, recent work to extend the parallelisation

via hybrid OpenMP/MPI parallelism means that these calculations can be scaled to

many thousands of parallel cores [116], keeping the required wall-time within reasonable

bounds.

2.2. Electrostatics and Implicit Solvation

In most functional proteins, one of the purposes of the protein structure is to encapsulate

and protect a small number of sites from which the main functionality is derived, for

example the active site of an enzyme. As such, the protein structure will have been

tuned to optimise the function of this site. One of the ways a protein achieves this is by

tuning the site’s immediate electrostatic environment, through the charges and dipole

moments associated with each residue in the structure. It is therefore of the utmost

importance in the simulation of biological molecules to include accurate treatment of

long- and short-ranged electrostatics.

In a traditional DFT calculation performed in vacuum, the classical electrostatic

part of the local effective potential is given by the sum of the Hartree and nuclear

potentials (or the local part of the pseudopotentials). Each of these may be calculated

in real or reciprocal space as appropriate to the boundary conditions in use. Most

biomolecular calculations are for isolated, non-periodic systems: for charge-neutral

systems with no significant dipole moment, it is sometimes adequate to use a supercell

approximation as there will be no significant interactions between periodic images. In

such cases, the problem of solving the Poisson equation is relatively trivial. However,
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Figure 1. Timings for total energy calculations using ONETEP, with in situ

optimisation of the NGWF representation, on amyloid fibril structures. Two sets of

timings are shown: standard-accuracy total energy calculations (squares) with typical

ONETEP parameters (see text for convergence parameters) which have been shown to

be of accuracy comparable to a 6-311+G* GTO basis, and for high-accuracy settings

(filled circles) equivalent to fully-converged plane-wave accuracy or cc-pVQZ with

counterpoise corrections. Trendlines are shown of the form T (N) = AN + B for each

case, with the majority of the increase in B for the high-accuracy settings being the

result of the time required for applying the multigrid solver for Poisson’s equation in a

large simulation cell. The structures were obtained with permission from the authors

of Ref. [119] and were previously used for similar benchmarks in Ref. [14].

in most real cases it is necessary either to use explicit open boundary conditions or to

truncate the Coulomb interaction if periodic boundary conditions are in use. Various

“cutoff Coulomb” approaches have been studied and may be efficiently implemented for

a range of geometries [120, 121, 122, 123, 124, 125, 126]. Open boundary conditions

generally necessitate the use of a multigrid approach to the solution of the Poisson

equation. It is important to note that in some cases the solution of the Poisson equation

can become the computational bottleneck dominating the overall computational effort,

particularly if its solution exhibits poor parallel scaling. Consequently, significant effort

has been invested in optimising the solution of this problem [127].

Multigrid approaches also have the significant advantage that they can be combined

with the use of a non-uniform dielectric permittivity. This is of great value for the

simulation of biological molecules as it allows for an implicit solvent description of

the regions beyond the explicitly-simulated QM region. The edges of the molecule are

typically exposed to a very different electrostatic environment to that further inside, and

without appropriate dielectric screening, incorrect charge distributions will be obtained,

leading to problems discussed in more detail in Section 3, which can be significantly

alleviated via the use of an implicit solvent model. A very wide range of such approaches

has been developed [5], with widely-used implementations including the Polarisable
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Continuum Model (PCM) [128], the COSMO model [129], the SMD model [130], and

the unified electrostatic and cavitation model of Scherlis et al. [131]. An adaptation

of the latter by Dziedzic et al [132] has recently been demonstrated for application to

entire proteins [133, 134].

2.3. Dispersion

Van der Waals interactions are generally understood to cover all attractive and repulsive

forces between molecules or atoms that do not arise from a covalent bond or directly from

electrostatic interactions [135]. While they are relatively weak compared to covalent

bonds, they nevertheless account for a significant fraction of the total interaction energy

between groups of atoms, particularly, for example, at protein-protein interfaces, or in

lipid bilayers, or in non-bonded stacking interactions in DNA [136]. The most significant

component in most cases is the so-called London dispersion force, a weak intermolecular

force arising from the formation and interaction of instantaneous polarisation multipoles

in molecules. Despite their widespread use, traditional semi-local functionals, including

the local density approximation and popular generalised gradient approximations, such

as PBE, are unable to capture the correct long-ranged tail of the dispersion interaction.

A great deal of methodological research in recent years has therefore focused on

developing appropriate approaches to correctly model dispersive interactions, and many

of these are now approaching extremely high accuracy even for the intermolecular

binding of large complexes [137]. These approaches can be categorised into a few

main groups [138]: semi-empirical parameterised approaches based on interatomic C6

coefficients fit to reproduce the results of high-accuracy quantum chemistry calculations

[139, 140], schemes that use ab initio methods based on the wavefunction or density

around each atom to parameterise interaction terms [141, 142, 143], and fully-nonlocal

functionals of the density, most notably those based on the van der Waals density

functional (vdW-DF) approach [144, 145, 146].

Berland et al. recently reviewed the vdW-DF method [147], covering its applications

to biology, notably to DNA [148, 149]. A crucial advance in making applications to large

systems feasible was the discovery by Román-Pérez and Soler that the fully-nonlocal

(and hence O(N2)-scaling) expressions of the original formulation of vdW-DF could be

re-expressed via interpolation of the integration kernel and fast Fourier transforms [146],

reducing the scaling to O(N logN).

There is widespread indication to be found in the works cited in this section that

inclusion of vdW effects at some level is crucial for accurate description of both energetics

and dynamics in ab initiomodelling of biological systems. However, there is a shortage of

comparative work assessing the relative strengths and weaknesses of these approaches

in real-world applications, particularly for large biological systems. It may well be

that it is much less important for static calculations based on MM molecular dynamics

snapshots or experimental structures, which already implicitly include their effect, since

vdW rarely has a significant direct effect on the electronic ground state except via its
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effect on geometries. We can therefore expect, for example, theoretical spectroscopy to

be quite accurate even if the direct effect of vdW interactions are neglected in the DFT

calculation.

2.4. Strongly-Correlated Methods and Self-Interaction

Almost half of all enzymes associate with a metal in order to function [150]. Wherever

this is the case, it must be assumed that there are specific electronic properties of the

metal ion that are required for its function, otherwise organisms would not incorporate

elements which are scarce and/or toxic. Often, in the case of partially-occupied d-

subshells, this is their ability to exist in multiple oxidation and/or spin states.

For any quantitative computational studies of ligand binding or chemical reactions

at metal sites, a quantum mechanical description of the metal centre is clearly required.

However, standard DFT treatments of transition metal chemistry is often inadequate

due to the strong electron correlation effects associated with the d orbitals. It is well-

known that DFT suffers from self-interaction errors [151], which particularly affect the

description of transition metal chemistry. There is an extensive literature on attempts

to correct these closely-related issues, and many of the resulting approaches have been

successfully carried over to large-scale biomolecular simulations.

The class of methods known as DFT+U attempts to use a corrective functional

inspired by the Hubbard model to improve deficiencies of the standard DFT

description [152, 153, 154]. In practice, DFT+U methods have the effect of penalising

non-integer occupations of orbitals of a partially-filled correlated subspace such as the

3d electrons of a first-row transition metal. As such they improve upon the DFT

description of both self-interaction and strong-correlation effects [155], at the expense of

the introduction of an unknown parameter, though more recently methods to calculate

this parameter from first principles have been developed [156]. The DFT+U method

has been implemented in several of the codes discussed above, notably in ONETEP

[157, 158] (applications of this combination of approaches will be discussed in Section

4.3), as well as in SIESTA, CP2K and other codes. An alternative, which in many

cases has been shown to have a qualitatively similar effect to DFT+U is to use a hybrid

functional incorporating a certain fraction of exact exchange, as this is known to improve

the description of self-interaction effects. Popular examples include the B3LYP [159],

HSE [160] and PBE0 functionals [161].

However, in cases where strong correlation behaviour is more complex, neither

DFT+U nor the use of hybrid functional approaches are able to correct the underlying

issues and provide an appropriate description of transition metal chemistry. In such

cases, there have been attempts to improve the description of the d orbitals by means

of dynamical mean field theory (DMFT), which takes into account both quantum

dynamical effects and valence and spin fluctuations, and also explicitly includes the

Hund’s exchange coupling J [162]. DMFT has recently been coupled with ONETEP

to produce a novel linear-scaling DFT+DMFT approach [163, 164], thus enabling the
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study of the role of quantum many-body effects in large systems [165].

2.5. Spectroscopy via Time-Dependent DFT

Absorption or emission of light, or more generally the properties of electronic excited

states, play a vital role in many biomolecular processes. Most notable of these is of

course photosynthesis, as well as vision, luminescence, and photo-induced damage to

DNA and other biological molecules. As we have discussed in the context of ground

state calculations, there are a wide range of possible methodologies that can be used for

excited states, but the need to describe large system sizes imposes strong restrictions

on what is feasible, in practice leaving only time-dependent forms of DFT (TDDFT)

as viable options. Nevertheless, these come in several relevant forms: TDDFT can be

performed in a real-time formalism [166], which explicitly propagates time to study

dynamical processes, or it can be performed in the linear-response framework [167],

whereby the dynamical response of a system to an excitation at a specific frequency

is considered, so as to find the energies of specific excitations. Both approaches have

found application within the field of modelling small-scale biological molecules such as

individual DNA bases and base-pairs [168], structures such as porphyrin rings [169],

and chromophores embedded in protein environments such as those found in pigment-

protein complexes and fluorescent proteins [170]. Castro et al. have provided a review

of theory and applications of TDDFT to biomolecules up to 2009 [169].

As discussed above in the context of ground-state energies, the majority of the

field of TDDFT applied to larger biomolecules still utilises fragment-based or QM/MM

descriptions of a small chromophore inside a host medium (such as the rest of the

protein) described with approximate methods: as before, we will not cover such

approaches within this review as they have been widely discussed elsewhere. Recently,

however, there has been increasing availability of methodology for large-scale TDDFT

calculations. Real space methods including Octopus [53] can be used for calculations

of very large systems such as chlorophyll networks in pigment-protein complexes [171],

as will be discussed in more detail in Section 4.4. Zuehlsdorff et al. developed an

approach to enable linear-response TDDFT within the ONETEP large-scale DFT

code [172, 173, 174], and demonstrated application to solvated chromophores and dye

molecules embedded in explicit solvent [21]. Tretiak et al. and Challacombe have also

developed linear-scaling approaches within the linear-response formalism [175, 176].

O’Rourke and Bowler, meanwhile, have demonstrated a real time, density matrix based

approach to TDDFT within the CONQUEST approach [177]. This bears similarity to

earlier work by Yam et al. [178].

It should be noted that the use of TDDFT for the prediction of the energies of

excited states is not yet as accurate or robust as standard DFT is for ground states:

notably, the choice of exchange-correlation functional in TDDFT is generally more

complicated than in DFT. The optimal choice often can depend on the character of the

excitation of interest, such as whether it is primarily a local excitation or has charge-
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Figure 2. Difference in energy between the highest occupied molecular orbital

(HOMO) and lowest unoccupied molecular orbital (LUMO) for a series of spherical

water clusters of increasing radius [184]. In the standard simulation, the cluster is

cut out of the bulk liquid. In the minimised simulation, the cluster first undergoes

structural optimisation. Finally, in the implicit solvent calculation, the QM calculation

is performed in a dielectric medium (ǫ = 80). Reproduced with permission from

the Institute of Physics.

transfer character. This issue carries over to modelling large-scale biomolecules, where

charge-transfer states are often expected to play an important role and are generally

not well-described by semi-local functionals, requiring a portion of exact exchange, with

an associated increase in computational effort.

3. Mind the Gap

Before we begin our review of the applications of DFT in biology, we first address

a widely held misconception that pure exchange-correlation functionals (that is, those

containing no Hartree-Fock exchange) cannot be applied to large system sizes. If correct,

this would significantly hinder the study of biological molecules since computation of

the Hartree-Fock energy is expensive due to its inherent non-locality and poor scaling

with system and basis set size. The root of these beliefs was a series of observations

reporting unphysical vanishing HOMO-LUMO gaps and poor self-consistent field (SCF)

convergence in proteins [179, 180, 181, 182] and even water clusters [183]. SCF

convergence issues were often attributed to the well-known under-estimation of the

HOMO-LUMO gap by pure functionals.

To investigate this issue, we performed a series of large-scale DFT calculations

on water clusters and proteins using the ONETEP software [184]. In agreement with

previous observations, Figure 2 shows that the HOMO-LUMO gap of a spherical cluster

of water molecules extracted from a bulk liquid rapidly falls to zero for system sizes in

excess of 200 atoms. However, while the under-estimation of the gap by pure exchange-

correlation functionals is undisputed, it seemed unlikely that it should become worse

for larger system sizes. Indeed, we were able to show that a 2010-atom bulk periodic
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supercell of water has a clearly defined band gap of 4.2 eV (Figure 2, dashed line).

The observed insulating behaviour of the bulk system thus indicates that there are no

difficulties in applying pure functionals to large system sizes, but instead the vanishing

HOMO-LUMO gap is caused by the creation of an artificial vacuum-water interface in

cluster simulations.

Analysis of the electrostatic properties of a cluster of water molecules reveals a

significant dipole moment that increases with system size up to around 75 D in the

largest cluster studied [184]. This effect is due to unterminated hydrogen bonds at

the surface-water interface and is entirely unphysical as, in reality, the surface water

molecules would reorient to counteract the net dipole moment. In the simulation,

however, the artificially imposed dipole moment has a significant effect on the electronic

properties of the system. The local density of states (LDoS) computed as a function

of the distance along the dipole moment vector shows a clear shift in electronic energy

levels, with the electric field pushing some states higher in energy and some lower. The

HOMO-LUMO gap vanishes when electronic states on opposite surfaces of the cluster

coincide.

We therefore hypothesised that there is no inherent problem with the use of pure

functionals in studying biological systems, but rather that SCF convergence problems

are manifested in smaller system sizes than for hybrid functionals due to the formers’

inherently smaller HOMO-LUMO gap. Furthermore, we were able to make a number

of practical suggestions for simulating cluster models of biological systems. Figure 2

shows that if the water cluster undergoes structural optimisation prior to electronic

structure analysis, or if the analysis is run using an implicit solvent model, the expected

HOMO-LUMO gap of around 4 eV is recovered. It has also been shown previously

that embedding classical point charges outside the electron distribution has a similar

effect [182]. In all three cases, the preparation method results in a more physical

environment for the water cluster and screens the unrealistic dipole moment observed

in vacuum simulations.

We have gone on to show that simulation of the electronic structure of proteins is

also possible using the methods described here. In vacuum, all proteins studied, ranging

in size from 75 to 1231 atoms, displayed vanishing HOMO-LUMO gaps. However, all of

the gaps were recovered when the environment of the protein was modelled using either

implicit or explicit solvent [184]. Thus, simulations of very large system sizes are fully

feasible with Kohn-Sham DFT as long as the environment is modelled in a physical

manner. Furthermore, similar concepts are extremely useful in spectroscopic analysis

of cluster models. Time-dependent DFT simulations of chromophores in vacuum-

terminated water clusters are problematic due to charge transfer to low-lying excited

states at the vacuum-water interface [185, 186]. Zuehlsdorff et al. have shown that the

use of an implicit solvent model greatly reduces spurious charge transfer states between

the surface waters and the pigment which otherwise arise from the mechanism described

above [21].

Summary: We have shown that the commonly observed closure of the HOMO-
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LUMO gap in DFT simulations of large-scale biological molecules is a simple

electrostatic artefact of the system preparation method, and may be trivially remedied

by using an implicit solvent model [184]. We hope that this knowledge, in conjunction

with the ever-expanding set of tools that is available for tackling such systems,

encourages the community to further explore the wide biochemistry of living organisms.

4. Applications

In this section, we summarise applications in biology where large-scale DFT has made

the greatest impact, due to the need for both large system sizes and quantum-mechanical

detail in the description of bond-breaking, transition metals, electronic excitations, or

intermolecular interactions.

4.1. Biomolecular Structure and Electronic Properties

One of the most fundamental biomolecular properties is that of structure, and how it

relates to biological function. The first principles determination of protein structure

directly from its amino acid sequence is far beyond the realms of current feasibility,

although promising progress is being made in the prediction of secondary structures

of increasingly long peptides using ab initio molecular dynamics simulations [187].

However, if large-scale DFT can be shown to be able to rapidly and accurately optimise

structures, there is significant potential to use these methods to refine experimental

structure predictions [188, 189]. Furthermore, significant insight into biomolecular

function may be obtained by studying the electronic structure of carefully chosen

models. As an example, calculations of the electrostatic potential at the surface of

the aldose reductase enzyme using the SIESTA code [55] have been shown to be in

good agreement with high-resolution x-ray diffraction data and revealed an interesting

electrostatic complementarity between the enzyme’s active site and its binding cofactor

(a molecule required to activate its function) [190]. In this section, we review the

state-of-the-art in large-scale DFT modelling of biomolecular structure and give further

examples of functions that have been shown to arise directly from electronic properties.

One of the most studied protein structures is the crambin crystal. The crystal

structure is available at extremely high resolution (0.48 Å) [191], and while the protein

is quite small (46 amino acids, 642 atoms), it is large enough to exhibit both α-helix and

β-sheet secondary structure elements. The structure was first optimised at the HF/4-

21G level in a pioneering study in 1998 [192]. Subsequently, its deformation density –

defined by subtracting the electron densities of isolated atoms from the total electron

density – was computed using the SIESTA large-scale DFT software [55] within the

generalised gradient approximation and compared with x-ray diffraction data [193]. The

authors found a correlation coefficient of 86% between the theoretical and experimental

densities in the peptide bonds of the protein, indicating that DFT gives a reasonable

picture of chemical bonding in the protein backbone.
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A more complete picture of crambin and its interactions with its environment was

recently obtained by modelling the periodic protein crystal structure, which contains two

proteins in the repeating unit, along with different levels of lattice water solvation [194].

The crystal was modelled using the B3LYP hybrid functional and a 6-31G(d,p) basis set

with Grimme’s empirical dispersion correction [139]. Both cell parameters and atomic

coordinates were optimised for systems ranging in size from 1284 atoms (no added

water molecules) to 1800 atoms (172 solvating water molecules). As expected, the fully

hydrated system gives structural parameters in the best agreement with experiment. In

this case, computed lattice parameters are around 3% smaller in every direction than

experimental values, though this may be mostly attributed to the thermal expansion

in the crystal structure which was collected at 290 K. Additional factors which should

be noted are the neglect of zero point energy contributions in the simulations and over-

binding due to basis set superposition error (BSSE), which may become significant for

small basis sets. The root-mean-square deviations of the atomic positions relative to

experiment were around 0.4 Å. As expected, α-helix and β-sheet secondary structures

were better modelled than the random coil regions of the protein. The authors also

computed crystal formation energies of the optimised structures. Of particular note here

is that i) even in the fully solvated system, dispersion interactions play a significant role

in protein-protein binding (37% of the formation energy); ii) before corrections, around

50% of the cohesive energy is due to spurious BSSE-driven attraction, which indicates

that the model is still far from basis set convergence; iii) clathrate-like pentagonal

rings were observed around hydrophobic residues indicating the possible importance of

ordered water structures at the protein surface.

In order to ascertain the accuracy of ab initio methods for protein structure

refinement, Kulik et al. studied a much larger benchmark set comprising 58 proteins

ranging in size from 70 to 590 atoms [180]. The proteins were optimised using the

TeraChem package [64] using both restricted Hartree-Fock (RHF) and the range-

corrected ωPBEh density functional with basis sets up to a maximum size of 6-

31G. Comparing the root-mean-square deviations between computed Cα positions and

experiment, it is perhaps surprising to note that even the most accurate QM methods

(around 0.7 Å RMSD) appear to be less accurate than MM force fields (0.6 Å RMSD).

However, this may be rationalised by considering that MM force fields are extensively

parameterised to produce “healthy” solution phase protein structures. The authors

provide convincing evidence that the force field often predicts healthy structures even

when the experiment suggests an unusual or disordered structure. In these cases, QM

methods are likely to be more reliable. However, there is also room for improvement

in the QM methods. Firstly, as discussed above in the case of the crambin crystal, the

obtained geometries likely suffer from BSSE anomalies. Indeed, the smallest basis set

studied suffers from an unusual deprotonation of amide nitrogen atoms. Secondly, the

structural optimisations were performed in the gas phase, and so the obtained structures

are likely to differ from the crystalline or solution phase structures.‡ To correct this

‡ The authors also comment on convergence difficulties for DFT methods in these vacuum calculations,
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second issue, the authors also performed QM/MM simulations for a subset of 20 proteins

embedded in a bath of classical point charges to represent the water medium. Protein

solvation now eliminates the spurious amide backbone deprotonation and reduces the

Cα RMSD to below 0.4 Å, which is a more encouraging result.

The first ab initio molecular dynamics simulation of an entire protein – bovine

pancreatic trypsin inhibitor (BPTI) – was also performed using the TeraChem

software [64]. Optimisation of the protein and crystal waters at the RHF/6-31G level

resulted in a RMSD of 0.3 Å in the positions of the backbone atoms [195]. A molecular

dynamics simulation of 8.8 ps was run treating the protein and six water molecules (900

atoms in total) at the RHF/STO-3G level and the rest of the solvent using a classical

force field (i.e. a QM/MM simulation). Even with this relatively short equilibration

time, the RMSD of the protein backbone showed signs of stabilising to a value of around

1.5 Å relative to the experimental structure. In order to investigate charge transfer at

the protein-water interface, 88 geometries were extracted from the dynamics for further

analysis at the RHF/6-31G and B3LYP/6-31G levels, now with every atom treated

quantum mechanically (2634 atoms). On average, around 2.6 electrons were transferred

to the protein from water, thus the net charge of the protein differs significantly from its

putative charge of +6 e assigned using standard pH rules. The charge transfer is even

larger for B3LYP which may be due to the tendency of DFT to delocalise electrons. In

the gas phase, there is a strong intra-protein charge transfer, whereby neutral residues

donate around 1 e in total to charged residues. Adding water neutralises the excess of

positive charge on the neutral residues and releases polarisation stress in the protein.

Thus, as well as demonstrating the feasibility of ab initio MD of entire proteins, these

simulations also highlight a potentially important role for biological water [195].

It is particularly interesting to study the properties of proteins whose electronic

structure is expected to play a specific role in their function. Feliciano et al. study

the electronic structure of a small α-helical peptide (known as a pilin) belonging to

the bacterium Geobacter sulfurreducens [196]. Filaments formed by these peptides

are conductive and seem to play a role as the electronic conduits between the cell

and extracellular electron acceptors. QM single point calculations were performed on

solvated pilin structures (comprising 4580 atoms) using the SIESTA code [55] with the

PBE exchange-correlation functional and a DZP basis set. The authors observed a

biphasic charge distribution along the length of the helix (positive potential in the mid-

region, and negative at the two termini). This in contrast to a polyalanine helix, which

displayed a relatively flat charge distribution due to solvent screening of the permanent

dipole of the helical backbone. This different electrostatic behaviour is also reflected

in the computed HOMO-LUMO gaps which are around 1 eV and 3 eV for the pilin

and polyalanine respectively, which is consistent with the filament’s role in electron

transport. The QM calculations indicate that the closing of the gap is due to specific

amino acid motifs, in particular positively charged residues, that localise the HOMO

which we later diagnosed as being due to electrostatic artefacts (Section 3) [184].



26

in the mid-region of the helix. Interestingly, both the HOMO and LUMO have weight

in regions containing aromatic tyrosine residues, which have particularly low oxidation

potentials and which may aid hopping of electrons under thermal fluctuations [196].

Similar α-helical structural motifs are found in ion channels, whose function it is to

regulate the flow of ions across the cell membrane. Large-scale DFT calculations may be

particularly important here, since ion permeation is expected to be strongly dependent

on the electrostatic potential, which is difficult to model for confined ions with MM force

fields in the absence of electronic polarisation. Todorović et al. use the CONQUEST

software [59, 2] to investigate the structural and electronic properties of the gramicidin A

ion channel [106]. It is one of the simplest ion channels (552 atoms) and has an unusual

structure in which all peptide side chains face outwards towards the membrane. Despite

this simple structure, it is selective for monovalent cations and shows no measurable

permeability for anions or polyvalent cations [197]. Optimised structures of the channel

in vacuum, using the PBE exchange-correlation functional, are in good agreement with

experiment (RMSD of 0.20 Å in the positions of the backbone atoms). Interestingly,

the substitution of tryptophan (Trp) residues with non-polar phenylalanine has been

shown experimentally to reduce the ion permeation rate [198], even though the Trp

sidechain is not located along the channel axis. However, large-scale DFT calculations

reveal that the electrostatic potential inside the gramicidin A ion channel is identical (to

within 1 meV) to that of a hypothetical polyalanine tube [106]. Thus, it seems that the

effect of the Trp side chains is a more subtle one that may only be revealed by studying

dynamical interactions with the lipid membrane and solvent.

Some of the earliest applications of large-scale DFT in biology studied the question

of whether dry DNA could be used as a molecular wire. The fundamental question of

whether DNA is an electric conductor or not is difficult to ascertain experimentally

as it is difficult to control the molecular environment, for example, the amount of

water and counter-ions that are present. To answer this question, a series of large-scale

DFT calculations were performed using the SIESTA code [55] on a periodic, dry DNA

chain comprising eleven guanine (G) – cytosine (C) base pairs (715 atoms) [199, 200].

Following structural optimisation with the GGA exchange-correlation functional, the

authors found a clear band gap of 2.0 eV, though this does not in itself rule out

conduction if there is hole donation by defects or counter-ions. The topmost valence

band of this pristine DNA model has a very low bandwidth of 40 meV and lies on the

guanine nucleobases, while the LUMO lies on the cytosines. To model random sequence

(or λ-) DNA, one G–C pair was swapped to C–G. The HOMO of the swapped guanine

falls into the lower valence bands, while the LUMO of the cytosine rises in energy. The

sequence disorder localises states close to the Fermi level on just a few base pairs and

hence acts to decrease DC conduction. The prediction of low conduction in λ-DNA is in

good qualitative agreement with experimental measurements of the resistivity of 15 µm

DNA chains absorbed on mica (lower limit of 106 Ωcm) [199]. These early computational

investigations did not rule out conduction via hopping mechanisms. Indeed a later

study [201] (albeit on smaller model systems) computed an activation energy for polaron
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(an electron/hole in an empty/filled band coupled to a lattice distortion) hopping in

DNA of 0.15 eV in good agreement with experiment (0.12 eV [202]). Meanwhile,

subsequent studies of wet DNA tetramers found that water is able to dope DNA if

it is able to enter the structure at structural defect sites [203].

Summary: The studies reviewed in this section have played an important role

in demonstrating the feasibility of determining not only the electronic, but also

the structural, properties of biological macromolecules. In this respect, an average

optimisation step for the largest studied system in the aforementioned crambin study

(1800 atoms) required around 23 minutes on 1920 cores of a Cray Cascade XC40

supercomputer [194]. The same authors also report timings of 3 hours for a 4575 atom

model of γ-chymotrypsin on the same machine [194]. Meanwhile the authors of the BPTI

study showed that single point calculations for a 2634 atom system may be performed

in under 3 hours on a single desktop machine with eight GPUs [195]. We caution,

however, that care must be taken to accurately represent the surrounding environment

(Section 3) and further investigation of the convergence of structural properties with

basis set size are needed to avoid spurious artefacts and establish large-scale DFT as

the benchmark of choice for these systems.

4.2. Enzymes

Due to their extraordinary ability to catalyse biochemical reactions with high specificity

and under mild, physiological conditions, enzymes have been the subject of intense

computational scrutiny since the pioneering works of Warshel and Levitt in the

1970s [204]. Computational studies have a particularly important role to play in this

field, because the transition state of the chemical reaction has a very short lifetime and,

hence, is difficult to characterise experimentally. As well as providing information on the

structure of the transition state, computation also has the potential to validate proposed

reaction mechanisms, balance various contributions to the catalytic effect and discern

the roles of active site residues [205, 206]. Armed with this knowledge, researchers have

been able to interpret and predict the effects of mutagenesis [206], design transition

state analogues as potent enzyme inhibitors [207], predict the factors that control drug

metabolism in vivo [208], and even design new enzymes [209].

Computational enzymology is a natural fit with QM/MM methods. In general,

bond-breaking is confined to a well-defined active site and is described by semi-empirical

methods or DFT or, in recent years, high-level electronic structure methods such as

coupled-cluster [210]. Nevertheless, as we described in Section 1.1, there is a growing

consensus that QM regions comprising many hundreds of atoms are required to converge

enzymatic properties such as activation energy barrier heights. This view is reflected

in the growing number of applications that employ large-scale DFT in the elucidation

of enzymatic mechanisms [18, 17, 16, 211], and these methods may further contribute

towards the important future goal of making simulation methods accessible to non-

specialists by removing the complexity of the QM/MM interface. In what follows, we
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Figure 3. Optimised structures of (a) chorismate, (b) the transition state and (c)

prephenate in the chorismate mutase enzyme using large-scale DFT calculations [212].

Reproduced with permission from the American Chemical Society.

focus on two recent examples of the application of large-scale DFT to computational

enzymology.

4.2.1. Chorismate Mutase. Over the past few decades, a number of enzymes,

such as lysozyme and citrate synthase, have become benchmarks against which new

functionalities or more accurate methodologies have been assessed [205]. Chorismate

mutase is another such example. The enzyme catalyses the Claisen rearrangement of

chorismate to prephenate, which maintains the balance of aromatic amino acids in the

cells of fungi, bacteria and higher plants [213, 214]. Chorismate mutase is of theoretical

interest due to a number of appealing factors. Firstly, the substrate does not covalently

bind to the active site [215, 216, 217], hence the system may be readily separated

into the QM region (the substrate) and the MM region (the enzyme). Secondly, the

reaction proceeds with a similar mechanism in aqueous solution, hence the factors

controlling the enzymatic rate enhancement may be readily inferred by contrasting the

energetic contributors to the activation energy barrier with those in water. And finally,

experimental measurements of both the free energy and enthalpy of activation in both

enzyme and water are available for comparison. The activation free energy is much lower

in chorismate mutase (∆‡G = 15.4 kcal/mol, ∆‡H = 12.7 kcal/mol) [216] than for the

uncatalysed reaction in water (∆‡G = 24.5 kcal/mol, ∆‡H = 20.7 kcal/mol) [218],

which corresponds to a catalytic rate enhancement of 106. In addition, calorimetric

investigations have measured an enthalpy of reaction of −13.2 kcal/mol in water [217].

We therefore chose the chorismate to prephenate reaction in chorismate mutase as

the ideal system on which to benchmark the use of large-scale DFT for computational

enzymology applications [212]. Initial reactant state (RS) and product state (PS)

geometries in the enzyme and in water were generated using semi-empirical QM/MM

molecular dynamics, followed by structural optimisation at the B3LYP/MM level [219].

Spherical clusters centred on the substrate molecule were extracted and re-optimised

using the ONETEP large-scale DFT code [101] with the PBE exchange-correlation
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functional augmented by empirical dispersion corrections [140]. Transition state (TS)

optimisation was performed using a linear and quadratic synchronous transit pathway

algorithm (LST/QST) with conjugate gradient optimisation [220].

An important consideration when planning large-scale DFT calculations with

structural optimisation is not only the scaling of the QM calculation with system size,

but also the rapid increase in the number of evaluations of the potential energy surface

that are required to find the minimum energy structure [221]. We have found that for

enzymology applications optimising an inner ‘mobile’ region within a fixed outer region

improves the tractability of the problem whilst retaining the scaffold and electrostatic

environment of the surrounding protein. However, it is important to show that the

computed properties of the system are converged with respect to the size of these

optimisation regions. For the chorismate to prephenate reaction in the enzyme, we

investigated system sizes ranging from 900 to 1900 atoms and mobile regions from 100

to 200 atoms. The maximum change in the computed activation energy barrier and

reaction energy was just 0.3 kcal/mol, indicating convergence of the energetics of the

system with respect to the size of the computational model.

Figure 3 shows the optimised RS, TS and PS geometries in chorismate mutase. It

is important to note that no information regarding the structure of the transition state

or any reaction coordinate was fed into the calculations; the transition-state searching

algorithm used only the RS and PS structures as input. After averaging over five

reaction pathways to account in an approximate manner for temperature effects, we

found that the chorismate mutase enzyme reduces the barrier height by 10.5 kcal/mol

relative to water, which is in good agreement with experiment (8.0 kcal/mol [218, 216]).

The small discrepancy is likely dominated by the use of the PBE functional to describe

bond-breaking. Future studies will examine the stability of the results with respect to

changes to the exchange-correlation functional.

Finally, as well as reproducing experimental data, it is important to also use large-

scale DFT calculations to extract insight into the catalytic mechanism. To this end, we

have performed natural bond orbital analysis [222, 223, 224] to estimate the contribution

of each active site residue to enzymatic rate enhancement [212]. It was found that

significant orbital overlap between the substrate and a number of charged active site

residues act to stabilise the transition state (relative to the reactant and product states).

This picture is supported by a previous study, which demonstrated the importance of

electrostatic interactions in the active site to TS stabilisation in chorismate mutase [225].

4.2.2. Acetylcholinesterase. In most enzymatic applications employing large QM

regions, the focus is inevitably on computing enthalpies of reaction. The reason for this

is, of course, that computing free energies of reaction involve orders of magnitude longer

computational times to sample configurational space. Encouragingly, Fattebert et al.

have made some progress in the computation of free energies from first principles by using

molecular dynamics simulations in their study of the acylation reaction of acetylcholine

(Ach) catalysed by acetylcholinesterase [226]. The active site of the enzyme is modelled
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as a 612 atom QM subsystem (of which 212 atoms are mobile) in a precomputed external

potential field to represent the protein environment [227].

The first stage of the chemical reaction involves the approach of a serine residue on

the protein towards the Ach substrate, and the transfer of a hydrogen from serine to a

nearby histidine residue. The loss of the hydrogen atom increases the nucleophilicity of

serine, and results in the formation of a bond with the substrate. A reaction coordinate

was defined as the distance between atoms on the serine and substrate, and first

principles molecular dynamics simulations were run at 300 K for at least 4 ps using

a constrained reaction coordinate. The forces required to enforce these constraints were

recorded and integrated over the reaction coordinate to obtain the free energy pathway.

The free energy barrier for the first stage was computed to be 6.0 kcal/mol, and a

charged stable intermediate was identified [226].

The second stage of the reaction involves the subsequent transfer of the hydrogen

atom from the first stage onto the Ach substrate. The free energy barrier was computed

as before, using the hydrogen position as the new reaction coordinate. The authors

found that the second stage is the rate-limiting step in the reaction and computed

an overall barrier of 8.5 kcal/mol, in good agreement with the experimental value of

11.8 kcal/mol [228]. The remaining discrepancy between theory and experiment is

attributed to errors in the use of the PBE exchange-correlation functional and possible

incomplete sampling. Nevertheless, the reported run times (100 s per MD step on 363

CPUs [226]) indicate that large-scale DFT calculations are becoming fast enough that

accurate and converged free energy calculations are on the horizon.

Summary: The discussed applications are important in demonstrating the

feasibility of performing calculations that are converged with respect to system size

and largely independent of the choice of computational parameters. This will allow us,

in future, to more extensively study the effects on the reaction mechanism of factors

such as protein conformational changes and fluctuations, nuclear tunnelling, and the

exchange-correlation functional.

4.3. Metalloproteins

Computational modelling of metalloproteins is a challenging endeavour, often requiring

both a sophisticated treatment of strong electron correlation effects at the metal centre

and accurate treatment of long-ranged interactions between charged species and the

surrounding protein. A common moiety in protein biochemistry and the centre of our

initial investigations is the haem molecule, which reversibly binds small molecule ligands

and plays a crucial role in storing and transporting oxygen (O2) in vertebrates (Figure 4).

The myoglobin protein contains a single haem molecule, bound via its central iron ion

(Fe(II)) to a histidine residue on the protein (H93). The protein environment has the

effect of reducing haem’s natural preference for binding carbon monoxide (CO) over

O2 – the binding free energy of CO, relative to O2, is reduced from 5.9 kcal/mol in

non-polar solvent to 1.9 kcal/mol in the protein [230]. The influence of the protein
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Figure 4. Computational models of haem [229]. Iron and O2 are shown as orange

and red spheres. (right) The myoglobin protein, with the 53 residues modelled in our

large-scale DFT simulations shown in green. Reproduced with permission from

the American Chemical Society.

is traditionally understood to be mediated by i) favourable electrostatic interactions

between the residue H64 and the negatively charged O2 molecule (charge transfer from

Fe to CO is negligible) and ii) unfavourable steric interactions between the protein

binding site and the linear bound conformation of the CO molecule (the Fe–C–O bond

angle is close to 180◦, whereas the Fe–O–O angle is closer to 120◦ and is a better fit to

the protein’s binding cavity) [231]. Point i) requires an accurate description of both the

electronic structure of the Fe–O2 bond and long-ranged electrostatic interactions, while

for point ii), the amount of strain energy stored in the protein depends critically on the

accuracy of the description of intramolecular interactions in the protein.

To begin to study the roles of different ligand discrimination effects in myoglobin,

we built realistic 1007 atom models of the myoglobin protein in complex with CO and

O2 (Figure 4) and structurally optimised them at the QM level using the PBE exchange-

correlation functional [229]. The structures of the models following optimisation were

in excellent agreement with experiment [232], with RMS deviations of around 0.1 Å

between computed and experimental heavy atom positions in the haem and ligand

molecules. Natural population analysis revealed that approximately 0.5 e are transferred

from Fe to the O2 molecule within the DFT approach [224]. By comparing the relative

binding energy of the two molecules to haem in vacuum and protein environments,

we computed that the protein discriminates in favour of O2 by 3.7 kcal/mol, in

good agreement with the experimental result (4.0 kcal/mol [230]). Furthermore,

by decomposing the total protein contribution to binding into intermolecular and

intramolecular contributions, we demonstrated that ligand discrimination is dominated

by interactions between the charged O2 molecule and the protein and that steric effects

are negligible. Similar methods were used in a study of the CO2 fixation energy in the

ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) magnesium-based enzyme

where it was shown that long-ranged interactions between CO2 and the protein are

important determinants of binding [233].
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A major problem with the DFT results is a strong energetic imbalance in myoglobin

that favours CO binding over O2 to too large an extent. This imbalance results

from the self-interaction errors in DFT, which particularly affect the description of

transition metal chemistry. To correct for this in an efficient manner, we used the

DFT+U approach as implemented in the ONETEP software [158] to recompute the

relative binding energies of the two small molecules to myoglobin [229]. Although the

over-estimation of CO binding was reduced, we could not find a reasonable value of

the Hubbard U parameter that gave satisfactory results for all experimental energetic

observables.

In order to address this issue, we set out to improve the description of the Fe 3d

orbitals by incorporating quantum many-body effects into our 1007 atom models of

myoglobin by means of the novel linear-scaling DFT+DMFT methodology described in

Section 2.4. We first validated the model by comparing the optical absorption spectra

of ligated myoglobin with experiment [165]. The characteristic infrared absorption band

of oxygenated myoglobin and the double-peaked porphyrin Q band are both recovered

using the DFT+DMFT approach with a reasonable value of the Hund’s exchange

coupling (J = 0.7 eV). Interestingly, the net charge on the O2 molecule is increased

from half an electron in the DFT picture to close to one electron in DFT+DMFT

(−1.1 e using natural population analysis [165] and later confirmed to be −1.0 e using

density derived electrostatic and chemical population analysis [234]). Metal-to-ligand

charge transfer occurs via π-bonding between Fe 3d and O2 π
∗ orbitals. Our calculations

predict a much stronger π-bonding interaction than has previously been observed, which

is supported by the agreement between the computed dπ hole character in our large-

scale models (19 %) [165] and Fe L-edge X-ray absorption spectroscopy measurements

(15±5 %) [235]. Furthermore, the classical picture of the ground-state wave function

existing in a single spin configuration appears to be a poor approximation in haem.

When bound to CO, myoglobin has a dominant singlet character, whilst oxygenated

myoglobin displays significant ground state entanglement with higher spin contributions.

Finally, we investigated to what extent the metal-to-ligand charge transfer and the

multireference high spin character of the ground state influence ligand discrimination

in myoglobin [165]. Remarkably, when all of these effects are taken into account, we

obtain an excellent agreement with the experimental relative binding (free) energy

(1.9 kcal/mol [230]) for J = 0.7 eV.

Summary: Both a sophisticated treatment of strong correlation effects and large

systems sizes are essential for quantitative measures of ligand binding energetics in

transition metal complexes.

4.4. Photosynthesis

The initial stages of photosynthesis employ optically active molecules (pigments) in light-

harvesting protein complexes to capture photons through the formation of molecular

electronic excited states (excitons) [236]. These excitons are transported through
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Figure 5. Cartoon of the early stages of photosynthesis. Electron excitations

(excitons) are created in optically active pigments via photon absorption. Excitons

are moved through light-harvesting protein complexes, via Coulombic coupling between

pigments, and are ultimately transported to the reaction centre where they are used to

release electrons. (Inset) One monomer of the Fenna-Matthews-Olson pigment-protein

complex. Seven chlorophyll pigments are shown in stick representation.

the pigment-protein complexes to the photosynthetic reaction centre, where they are

ultimately converted into stored chemical energy (Figure 5). Much of our theoretical

understanding of how these processes occur in nature is derived from the Fenna-

Matthews-Olson (FMO) light-harvesting complex of green sulphur bacteria. Since these

bacteria are often found in low-light environments, their photon-to-electron conversion

efficiency is extremely high, and their underlying design principles are therefore of great

interest in the field of artificial solar energy transduction [237].

A recent x-ray crystal structure of the FMO complex reveals a trimeric quaternary

protein structure, which sequesters seven optically-active pigments within a clam-like

architecture (Figure 5) [238]. Interest in this relatively simple pigment-protein complex

has been driven by observations of room temperature quantum dynamics in an ensemble

of FMO proteins [239]. Understanding how efficient energy transport may occur in

the presence of significant external noise from a computational viewpoint requires a

multiscale approach incorporating electronic, optical and dissipative interactions. The

key parameters in these models are i) the optical transition energies of the pigments in

their local environment (site energies), ii) inter-pigment couplings of optical transitions

(excitonic couplings) and iii) the spectral density modelling dynamic interactions
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between the pigments and their environment [240, 241]. Efforts have been made to

extract these parameters directly from the crystal structure using a wide variety of

computational methods [242, 243, 244, 245, 246]. However, the results appear to be

very sensitive to approximations made in the construction of the computational models.

For example, in the majority of these approaches it was necessary to treat all, or most, of

the system with approximate MM point charges. Given the importance of long-ranged

electrostatics and electronic polarisation to the excited state properties of the pigments,

the computation of parameters describing exciton transport in the FMO complex is

seemingly an excellent candidate for large-scale DFT simulation.

In 2013, we performed large-scale DFT simulations of the FMO pigment-protein

complex with the aim of deriving all of the site energies and excitonic couplings directly

from first principles [19]. Using the ONETEP software [101], we performed seven DFT

calculations, each centred on one of the pigment sites and containing all protein, water

and pigment atoms lying within a 15 Å sphere (1600–2200 atoms). The method of

Ratcliff et al. was used to optimise both occupied valence and low-energy unoccupied

conduction states [247, 248] and Fermi’s golden rule was employed to obtain the local

optical transition energies and densities. The resulting ab initio site energies were in

good agreement with those that have been fit to reproduce experimental optical spectra

of the FMO complex (the RMSD between the theoretical and fit data is 47 cm−1) [244].

The identification of pigment 3 (Figure 5) as the lowest energy pigment is consistent with

its likely role as the exit through which excitons leave the FMO complex [249]. Further

calculations identified the permanent dipoles of two α-helices as playing important roles

in red shifting the site energies of pigments 3 and 4. Hence, accurate descriptions of

the long-ranged electrostatic interactions between the pigments and their environment

is vital for accurate spectral determination.

We have also computed the excitonic coupling strengths as the Coulombic

interaction between the optical transition densities of the pigments [19]. The correlation

between the coupling parameters and those obtained using a point charge model is

extremely good [250]. The first principles site energies and excitonic couplings were

used to compute linear optical absorption, circular dichroism and linear dichroism

spectra. Comparison with experiment [251, 252] revealed good agreement for the low

frequency regime but significant disagreement for the higher frequency components of

the spectrum. Nevertheless, this is an extremely encouraging first test of the use of

large-scale DFT in an extremely complex pigment-protein environment.

One of the limitations in the above study was the use of Fermi’s golden rule to

compute optical transition energies. Improvements in accuracy are expected when

employing a time-dependent Hamiltonian, and towards this goal, researchers have

started to apply TDDFT calculations to study natural photosynthesis. Indeed, a recent

study performed real-space time-propagation TDDFT calculations of the electronic

absorption spectrum of the chlorophyll network of the light-harvesting antenna complex

from green plants (LHC-II) [171]. The trimeric pigment-protein complex comprises

over 17000 atoms and contains 14 chlorophyll molecules per monomer. Arguing that
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the overall effect of the protein environment is to introduce a constant red shift in the

site energies of the pigments, the authors reduce the scale of the electronic structure

calculation by removing the majority of the protein. This still leaves a chlorophyll

network comprising more than 6000 atoms. TDDFT calculations were performed using

the Octopus code [53] with an electron density propagation time of 40 fs, which allowed

a spectral peak resolution of around 0.1 eV. The computed optical absorption spectrum

was in good agreement with experiment, particularly in the lower energy chlorophyll Q-

band. Furthermore, by decomposing the spectrum into the contributions of individual

pigments, it was shown that the stromal (towards the outside of the cell membrane)

and lumenal (inner membrane) sides of LHC-II absorb at different frequencies, thus

suggesting a mechanism for energy flow across the antenna complex.

Summary: In recent years, some steps towards a fully first principles determination

of the optical spectra of complex biological molecules have been made. It will be

interesting to investigate the use of time-dependent DFT in the computation of FMO

optical properties [173] and we are extending our study to include dynamical effects

on the site energies and excitonic couplings [253]. It is exciting to contemplate the

role that large-scale DFT calculations may play in the future study of much larger

pigment-protein complexes [254] and more generally in the emerging field of quantum

biology [255].

4.5. Medicinal Chemistry

Medicinal chemistry is the highly inter-disciplinary study of the design and synthesis of

pharmaceutical agents, or drugs, that bind to a biomolecular target and modulate its

activity with therapeutic benefit. Quantum mechanical calculations have the potential

to contribute throughout the drug discovery process, from the design of catalysts

to aid molecular synthesis [256], to predicting sites on new drug candidates that

might be susceptible to metabolism [257], to determining the crystal packing of solid

pharmaceuticals [258, 259]. Here, we focus our discussion on the problem of determining

the strength of the binding between the therapeutic target (usually a protein or DNA)

and small molecules or peptides. The binding affinity is at the core of drug discovery

– drugs that bind strongly to their target may be taken in smaller doses and are less

likely to cause harmful side effects by promiscuously binding at other sites. Moreover,

computational determination of intermolecular interactions must be extremely accurate

to make an impact in the drug discovery process. A 1 kcal/mol error in binding free

energy corresponds to an order of magnitude change in the drug activity.

Despite the tight restrictions on the level of accuracy required, classical MM

force field based approaches to computer-aided drug design are widespread and

remarkably successful [260, 261, 262, 263]. Nevertheless, there is always room for

improvement, and fixed atom-centred point charge models, of course, fail to correctly

model effects such as explicit polarisation and anisotropic electron density [264]. In

theory, quantummechanical modelling provides a natural means to improve the accuracy
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Figure 6. (a) Free energy cycle employed in Refs. [267, 268, 269, 270]. The total

binding free energy (∆G) is given by the sum of the gas phase binding free energy

(∆Gg) and the relative solvation free energies of the receptor (red), ligand (yellow)

and complex (∆Gaq = ∆G2 − ∆G1). (b) Free energy cycle for the computation of

relative binding free energies. Molecule A (yellow) is alchemically transformed into

molecule B (grey), both in the receptor and in water, and the relative binding free

energy is given by ∆GX − ∆GY .

of the computation of intermolecular interactions. While the large-scale techniques

discussed in this review certainly allow realistic models of protein–ligand complexes

to be simulated, an obstacle to the widespread use of QM modelling is the sampling

requirements. Drug molecules, and their targets, are relatively flexible and, at room

temperature, a number of different binding modes can contribute to the binding free

energy. We will show, in what follows, some examples of intermittent hydrogen bonds in

protein–ligand and protein–protein interactions and the errors that can be introduced

if this flexibility is neglected (for example, by determining binding from the crystal

structure alone). Furthermore, it has previously been shown that in a range of host–

guest systems the free energy of binding is very poorly correlated with the enthalpy of

binding [265]. Hence, methods are required that accurately compute the free energy

of binding at room temperature. A further important consideration, is the time to

solution as pre-clinical drug discovery programmes can progress at a high pace. While

computational approaches can certainly compete with experimental approaches on cost

(estimates place laboratory costs in excess of $500 000 [266]), a run time on the order

of 24 hours is probably required to be competitive.

4.5.1. Quantum mechanical / Poisson Boltzmann Approaches. One of the earliest

applications in a biological context of the local orbital methods described in Section 1.2.3

was performed by Heady et al. to compute the free energy of binding of five inhibitors to

the cyclin-dependent kinase CDK2 [267]. The motivation for studying the target CDK2

is that it is over-expressed in cancer cells and may contribute to their unregulated

growth [271]. However, there are around 500 protein kinases encoded in the human
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genome each with similar catalytic domains [272], hence the design of cancer therapeutics

is hindered by the difficulty of designing inhibitors that bind specifically to CDK2

without unwanted side effects. To determine the relative free energy of binding of

the five inhibitors, the authors make use of the free energy cycle shown in Figure 6(a).

The total free energy of binding is written in terms of the gas (g) and solution (aq)

phase contributions, and the former is further decomposed into enthalpic and entropic

terms:

∆G = ∆Gg +∆Gaq = ∆Eg − T∆Sg +∆Gaq (11)

The gas phase binding energy was accurately computed using large-scale DFT

calculations. At the time, no model was available to compute the QM solvation free

energies for these system sizes, and so they used the classical Generalised Born/Surface

Area (GBSA) model with classical point charges. Since only relative free energies of

binding were required:

∆∆G = ∆∆Eg − T∆∆Sg +∆∆Gaq, (12)

relative differences in the dispersion and entropic contributions to binding were

neglected:

∆∆G = ∆∆EDFT +∆∆Gaq (13)

The convergence of the DFT binding energies of the inhibitors to the complex

with respect to system size was first ascertained. In agreement with subsequent

publications, which are reviewed in Section 1.1, all residues within 7 Å of the inhibitor

must be included before convergence is reached. Importantly, it was confirmed that

binding energies are insensitive to the choice of O(N) DFT code (ONETEP [101] and

SIESTA [55] were used), and that these codes also agreed with the plane-wave DFT

code CASTEP [39] for smaller system sizes.

The first point to emphasise is that the application of eq 13 to optimised geometries

from the x-ray crystal structures resulted in very poor agreement with experiment, with

some errors in relative free energies in excess of 6 kcal/mol. This reinforces the need to

explicitly consider finite temperature dynamics when computing free energies of binding.

Dynamical simulations using a MM force field revealed two important features of the

binding: i) in many cases, binding involves intermittent hydrogen bonds between the

inhibitors and CDK2, and ii) water molecules are able to diffuse into the binding pocket

and mediate protein-ligand interactions. In light of these findings, the gas phase binding

energies were recomputed for a selection of snapshots that best captured the hydrogen

bonding networks in the presence of explicit water molecules. The interaction strength

was re-weighted by the fraction of time that a particular network was present in the

MM simulations. With these corrections to account for finite temperature dynamics

and solvation effects, the computed relative free energies of binding are in excellent

agreement with experiment – the maximum error is just 1.2 kcal/mol. Considering that

the considered inhibitors represent five very different structures, the agreement with

experiment is extremely encouraging. The computational methods used are generally
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Figure 7. The protein–protein interface between RAD51 (grey) and the BRC4

repeat [276].

applicable to any biomolecular complex – indeed, similar applications have studied the

binding of a peptide linked with protein misfolding diseases to a cyclic peptide [273]

and a series of carbon nanostructures [274], and also the binding energies of a series

of ligands to the FK506 binding protein (FKBP) [275]. However, in order to be used

more widely, the methods would need to become less reliant on manual selection of

representative structures and this was the focus of subsequent investigations.

Building on the work by Heady et al. [267], large-scale DFT calculations were

employed to estimate binding free energies at a protein–protein interaction hotspot [268,

269]. Due to the large contact surface area between the proteins, complexes comprising

around 2800 atoms were necessary to converge the energetic results [268]. The system

chosen was the interface between the eukaryotic recombinase RAD51 and peptides

derived from the protein BRCA2 (known as BRC repeats). BRCA2 is responsible for

binding to and delivering RAD51 to sites of DNA damage, where RAD51 mediates

the error-free repair of double-stranded DNA breaks [277, 278]. Mutations in BRCA2

have been linked to a predisposition to breast cancer and hence an accurate picture

of the interactions at this protein–protein interface is therapeutically important. The

interaction between RAD51 and BRCA2 is known to be mediated by eight BRC repeats,

each containing subtle sequence variations, however only one crystal structure (between

RAD51 and BRC4) has been solved (Figure 7) [276]. A palette of computational tools

was therefore used to explore the interface between RAD51 and the BRC repeats (and

their cancer-associated mutations) to provide insight into control of RAD51 by human

BRCA2.

Molecular dynamics simulations of each of the BRC repeats in complex with RAD51

were run in solution. In close analogy with the classical molecular mechanics Poisson-

Boltzmann/Surface Area (MM-PBSA) method [279], the free energy of binding is now

computed by averaging the various components of the energy over the snapshots that



39

are extracted from the MD simulation:

∆∆G = ∆〈∆Eg〉+∆〈∆Gaq〉 − T∆〈∆Sg〉, (14)

where 〈· · ·〉 represents an ensemble average. Hence, dynamical effects such as

intermittent hydrogen bonds are naturally accounted for. In addition, the gas phase

DFT binding energy is augmented by empirical dispersion interactions (∆Eg =

∆EDFT + ∆Edisp) [140], and entropic contributions to binding were estimated using

a classical normal modes analysis. In agreement with a fluorescence polarisation assay,

which measures the ability of the BRC peptides to act as soluble inhibitors of the

RAD51-BRC4 interaction, classical MM-PBSA predicted that BRC repeats 1, 2 and

4 bind with relatively high affinity while BRC repeats 3, 5, 6, 7 and 8 are more

weakly bound. The calculations were repeated for repeats 1, 4 and 6 using large-scale

DFT and eq 14, and the results were in accord with the classical force field approach.

Subsequent natural bond orbital analysis of the binding interface between RAD51 and

BRC4 identified a possible stabilisation mechanism arising from the delocalisation of

electrons along the protein backbone from lone pairs to antibonding orbitals [224] (the

so-called n → π∗ interaction [280]). This is a good example of a case where relatively

little structural information is available and a range of computational techniques is

needed to understand both the dynamic and electronic structure effects that determine

binding.

Finally, eq 14 was used to analyse the binding of eight small aromatic ligands to the

engineered L99A/M102Q double mutant of T4 lysozyme [270]. The relative simplicity

of this system makes it attractive for testing new computational methods [281, 282].

Following the methods described above, QM calculations were performed using the

entire protein (more than 2600 atoms). Importantly, by using the implicit solvent model

implemented in the ONETEP software [132, 133], the authors were able to compute

both the gas phase and solvation contributions to the binding free energy using DFT.

It was shown that the quantum mechanical estimates of the binding free energy were in

markedly better agreement with experiment than the classical counterparts – the RMS

error falls from 4.0 kcal/mol (MM) to 2.7 kcal/mol (QM), and 1-phenylsemicarbazide

was correctly identified as a non-binder.

Overall, the studies discussed in this section were important in establishing

the feasibility of performing routine large-scale DFT calculations on biomolecular

assemblies. However, it is safe to conclude that inherent errors in eq 14 will

prevent the determination of binding free energies at the 1 kcal/mol accuracy that

is required to impact drug discovery programmes. Limitations include the approximate

calculation of entropic contributions to binding, the use of implicit solvent (rather

than explicitly modelling water molecules), the use of an approximate force field for

sampling conformational space, and the assumption that the ligand samples the same

conformational space in solution as it does in the bound complex. Hence, in the last

three years, the focus has shifted to the use of large-scale DFT in formally exact free

energy methods and this is discussed in the following two sections.
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4.5.2. Towards Rigorous Quantum Free Energies of Binding. The use of formally

rigorous free energy perturbation theory or thermodynamic integration methods for the

computation of relative free energies of binding of small molecules to proteins according

to Figure 6(b) is well-established [260]. In these schemes, molecule A is alchemically

transformed into molecule B both in the protein and in water using a classical MM force

field, yielding the free energies changes ∆GX and ∆GY . The desired relative free energy

of binding is then computed as:

∆∆GMM = ∆GB −∆GA = ∆GX −∆GY . (15)

More recently, a number of schemes have been suggested that use an approximate, cheap

potential to estimate the relative binding free energy (∆∆GMM), and then compute

a correction by evaluating the energies of selected snapshots with a more accurate,

expensive Hamiltonian [283, 284]. This procedure computes the free energy correction

via the evaluation of the Zwanzig equation [285]:

∆GMM→QM = −kBT ln〈e−(EQM−EMM )/kBT 〉MM (16)

where 〈· · ·〉MM represents an ensemble average over structures obtained from the MM

simulations, and EQM and EMM are the total energies of the system using the QM

and MM Hamiltonians respectively. In the limit of infinite sampling, evaluation of

eq 16 would recover the precise QM free energy change. However, in practice, the

procedure is severely hampered by limitations in the phase space overlap of the QM

and MM ensembles. To get around this, the QM and MM total energies in eq 16 are

often replaced by the corresponding interaction energies (∆EQM and ∆EMM) between

the molecule under study and its environment [286, 134]. In effect, this makes the

reasonable assumption that the MM description of intramolecular free energy changes

are adequate.

As a surrogate for the full description of protein-ligand binding, Fox et al. used

the methods described above to compute the QM hydration free energies of seven small

organic molecules [134]. Hydration free energies are an important component of free

energy cycles used in drug design and are often used for testing MM force field accuracy

due to the relatively low sampling requirements [287]. The MM system comprised

the small molecule, described by the generalised Amber force field (GAFF) [288]

in a bath of 1545 water molecules, described by the TIP3P force field [289]. QM

binding energies were computed using the ONETEP software [101] with the PBE

exchange-correlation functional augmented by empirical dispersion corrections [140].

The QM system comprised the small molecule plus 200 water molecules (corresponding

to a 9 Å solvation shell). The remaining water molecules were treated as classical

embedding charges [14]. Using thermodynamic integration with the MM force field, the

experimental hydration free energies were reproduced with a RMS error of 0.9 kcal/mol.

Using the QM free energy correction tended to make no difference when the MM result

was good, whilst improving outliers that deviate by more than ∼ kBT from experiment.

An exception to this trend is thiophenol, though there is evidence for poor convergence

of the Zwanzig equation for this case, even for 180 sampled conformations. Thus, to
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Figure 8. Electrostatic potentials on the solvent-accessible surface of the p38 kinase

protein computed using large-scale DFT (left) and DDEC atom-centred point charges

(right). The point charge electrostatic potential is virtually indistinguishable from the

QM result.

improve the reliability of this method, a key goal is to improve the phase space overlap

between the MM and QM ensembles and, hence, the convergence of eq 16.

In order to address these convergence issues in the computation of MM to QM

correction free energies, Sampson et al. propose a “stepping stone” approach for the

computation of quantum hydration free energies [290]. First, a hybrid Monte Carlo

simulation generates a statistically-rigorous QM/MM ensemble of structures from the

underlying MM ensemble [291]. Once this ensemble has been generated, a single-step

free energy correction may be computed using the approach of Fox et al. to transform

the QM/MM hydration free energies to the full QM result [134]. The idea behind the

stepping stone approach is that, in the QM/MM ensemble, the polarisation of the ligand

by the surrounding solvent is accounted for and, hence, it should provide a much closer

representation of the target QM ensemble. In this way, the Zwanzig equation should

converge more quickly than for a direct MM to QM correction. Using this method,

the quantum free energies of hydration of five organic molecules were computed. Using

a classical force field, the RMS error in the hydration free energies is 0.9 kcal/mol.

Computing the QM/MM correction from the hybrid Monte Carlo simulation and adding

it to the MM energies reduces the error to 0.7 kcal/mol. Finally, performing the

QM/MM to full QM perturbation, the authors observe very good convergence of the

free energy correction and the RMS error reduces still further to 0.5 kcal/mol. The

low error in the full QM hydration free energies is extremely encouraging and it will be

interesting to see if the same accuracy is obtained for larger benchmark sets and in the

computation of protein–ligand binding free energies.

4.5.3. Classical Force Field Parameterisation. A possible disadvantage of the methods

that have been discussed up to now is the computational cost associated with

the multiple large-scale electronic structure evaluations that are required to obtain

converged free energies. Classical molecular mechanics force fields are, of course, orders

of magnitude less expensive and are much more widely used in the field of computer-

aided drug design. However, MM force fields typically treat intermolecular interactions

using a limited library of empirical parameters. Fitting of these parameters is extremely
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time-consuming and, because the parameters are developed for small molecules, they

do not account for polarisation in larger molecules. That is, they are developed to be

transferable rather than to be specific to the system under study.

For small molecule force field design, it is commonplace to fit atomic charges to the

QM electrostatic potential (ESP) of the molecule of interest, thus naturally accounting

for polarisation effects. However, ESP analysis cannot be applied to large systems with

buried atoms, such as proteins. To address this problem in recent years, we have started

to investigate the use of atoms-in-molecule (AIM) electron density partitioning in the

design of a new class of environment-specific biological force fields [292, 234, 293]. AIM

methods partition the total QM electron density into atomic basins. There is no unique

method to perform this analysis, but we favour the density derived electrostatic and

chemical (DDEC) partitioning method developed by Manz and Sholl [294, 295, 296, 297].

Amongst its many advantages, the method has been shown to yield atomic charges

that are chemically reasonable and, vitally for force field design, it yields a rapidly

convergent multipole expansion of the underlying QM electrostatic potential. We have

implemented the DDEC methodology in the ONETEP linear-scaling DFT code [101],

which allows us to perform AIM analysis of systems comprising many thousands of

atoms [292, 234]. We have derived environment-specific atomic charges for a number

of small proteins, including ubiquitin and lysozyme, and shown that there is a good

correlation between the DDEC charges and standard transferable force field charges.

However, the protein-specific charges show a greater spread, since they are able to

respond to their environment and, as demonstrated in Figure 8, reproduce extremely

well the QM electrostatic potential at the surfaces of the proteins (RMS errors of 1.3–

1.5 kcal/mol compared to errors of 5–7 kcal/mol for standard force fields) [292, 293].

We have also computed DDEC charges for nine NMR conformers of bovine pancreatic

trypsin inhibitor (BPTI). The charges show very good stability with respect to small

positional fluctuations but vary more in flexible regions of the protein. Thus, they are

suitable for flexible force field design whilst retaining the attractive feature of being able

to respond to large conformational or environmental changes [292].

Importantly, it has been shown that environmental polarisation affects not

only atomic charges, but also the strength of intermolecular van der Waals (vdW)

interactions [141, 142, 298]. Thus, in theory both charge and vdW parameters used

in MM force fields should be able to adapt to their environment. It has recently been

shown that all components of the nonbonded force field may be derived directly from

AIM electron density partitioning [293]. This scheme ensures compatibility between the

derived charges and vdW parameters and has a very small number of fitting parameters

(only five for a protein, compared to many tens or hundreds in standard force fields),

thus substantially simplifying the force field parameterisation process. Furthermore, the

method is applicable to arbitrarily large system sizes and, thus, a full protein-specific

nonbonded force field was derived for a substantial portion of the L99A mutant of T4

lysozyme (1646 atoms) [293]. It was shown that the approximate treatment of vdW

interactions by standard force fields using a limited parameter library is a rather crude



43

representation of reality. Furthermore, the relative free energy of binding of two small

molecules (benzofuran and indole) was computed using the cycle in Figure 6(b) and the

new protein-specific force field (−0.37 kcal/mol), and found to be in excellent agreement

with experiment (−0.57 kcal/mol) [299].

Summary: If the full accuracy of large-scale DFT is to be utilised in the calculation

of binding affinities of biomolecular complexes then it should be used as part of a rigorous

free energy protocol. The most promising schemes are i) the computation of corrections

to cheaper Hamiltonians to evaluate rigorous quantum binding free energies [290] and ii)

the use of large-scale DFT to compute environment-specific parameters for less expensive

model Hamiltonians [293]. Whilst extremely encouraging, many more validation studies

will be required before we are able to assess the accuracy and speed of these methods

for truely predictive computer-aided drug design applications.

5. Outlook and Conclusions

We have identified four requirements for general-purpose biomolecular modelling with

DFT: i) the ability to treat very large system sizes; ii) high-accuracy methods; iii)

the prediction of properties going beyond the ground state electron density, such as

excited states and reaction pathways; and iv) conformational sampling. One of our

main motivations for writing this review is a growing consensus that very large quantum

mechanical regions are required to converge many observables in biological simulations.

This is best exemplified by detailed studies examining the convergence of activation

energy barriers in enzymes [16] and optical absorption spectra of pigment-protein

complexes [20]. Interestingly, the size regime at which these properties start to converge

(around 500+ atoms) is similar to the crossover point at which linear-scaling DFT

methods start to become more computationally efficient than traditional approaches.

We have highlighted several strategies by which DFT calculations are able to access

this size regime with a feasible computational effort, including the use of a localised

orbital basis set and a density matrix representation. State-of-the-art DFT codes also

show excellent parallel scaling, and wall times for the simulation of large-scale biological

systems on the order of one hour or even less are commonplace.

As for any computational methodology, the balance between accuracy and expense

is a crucial one. If large-scale DFT calculations are to become the benchmark of choice

for biomolecular simulations (in preference to, for example, MM force field approaches)

then it is important to make judicious choices of both the basis set size and the

exchange-correlation functional. For computational feasibility, many of the structural

optimisations reported in this review use numerical or Gaussian type atomic orbitals

and functionals based on the generalised gradient approximation. It is not clear at this

stage how much effect basis set superposition errors have on such calculations and it

will be interesting, in future, to compare with larger basis sets and in situ optimised

local orbitals, which alleviate this effect. Similarly, exploration of different exchange-

correlation functionals are often beyond the scope of these initial exploratory studies,
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and it will be interesting to further examine the effects of, for example, hybrid functionals

in the description of bond-breaking/forming reactions and range-separated functionals

in spectroscopic calculations. However, accuracy considerations extend beyond just the

computational parameters, to the details of the system preparation. Just as important

in determining the electronic structure in large-scale cluster calculations is a physically-

reasonable treatment of the system’s environment. We have shown that the use of

an implicit solvent model is vitally important in ensuring the presence of a HOMO-

LUMO gap (and convergence of the self-consistent field equations) in cluster models

of biological molecules [184]. In this respect, an often overlooked factor in large-scale

DFT software development is the requirement to code advanced functionalities that

go beyond total energy calculations and enable advanced treatments of electrostatics,

spectroscopy, dispersion, strongly correlated electronic effects, chemical analysis and so

forth. Alongside these developments, it is important to consider the accessibility of the

designed software, so that calculations of the type described in this review can be put

in the hands of the biologist, rather than being limited to trained electronic structure

experts.

Within the limits defined by our criteria (namely that the QM region comprises

more than around 500 atoms and is treated concurrently in a single calculation), we

have given an overview of the state-of-the-art in large-scale biological DFT calculations.

It is extremely encouraging that the computation of the electronic properties, structural

optimisation, and even molecular dynamics, of entire proteins is fully feasible with

today’s software and computing resources [194, 195, 196]. Possible future lines of

enquiry are numerous and include, for example, the study of unusual non-covalent

bonding interactions in biological molecules that are not accounted for by MM

force fields [280], further investigation of the exploitation of entangled spin states

in metalloproteins [164, 165], study of long-range electronic transport in microbial

nanowires [300], investigations into the effects of mutagenesis on enzymatic reaction

pathways [206] and the high-accuracy refinement of experimental structural data [189].

It is worth noting that many of the applications in this review were chosen so as to

minimise conformational sampling requirements, and this is still a major obstacle in

many systems. In this respect, it is encouraging that rigorous converged free energy

calculations are being demonstrated in the fields of computational enzymology [226]

and protein–ligand binding [290, 293]. Many of these methods are reaching advanced

stages and often all that remains is to bring down the cost of the simulations and

demonstrate accuracy on larger data sets.

Given the successes of some of the paradigmatic examples described here, it

is interesting to consider whether large-scale DFT is ready for truly first principles

predictive modelling. Many of the challenges that lie ahead will require combined use

of many (or all) of the described functionalities. For example, cytochrome P450s are

of significant pharmaceutical interest, because of their role in drug metabolism [208].

A full investigation of their mode of action would incorporate large-scale modelling of

the protein, alongside strongly correlated effects to describe their haem centres and
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transition state searching to elucidate their mode of action on chemical substrates.

Meanwhile, the manganese-based water-oxidising cluster of photosystem II is a

remarkable photocatalyst that harnesses light energy to split water [301] – potentially

key to the elucidation of its mechanism of action are accurate computational studies

of its spectroscopic and catalytic properties. We find that to date it has been rare for

all of these functionalities to have been combined in a given study, but that ongoing

developments hold the promise to make this a reality.
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Applied Parallel and Scientific Computing, number 7782 in Lecture Notes in Computer Science,

pages 63–76. Springer Berlin Heidelberg, 2012. DOI: 10.1007/978-3-642-36803-5 4.

[70] L. Wang, Y. Wu, W. Jia, W. Gao, X. Chi, and L. W. Wang. Large scale plane wave

pseudopotential density functional theory calculations on GPU clusters. In 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages

1–10, November 2011.

[71] F. Spiga and I. Girotto. phiGEMM: A CPU-GPU Library for Porting Quantum ESPRESSO on

Hybrid Systems. In 2012 20th Euromicro International Conference on Parallel, Distributed

and Network-based Processing, pages 368–375, February 2012.

[72] N. Luehr, A. G. B. Jin, and T. J. Mart́ınez. Ab Initio Interactive Molecular Dynamics on

Graphical Processing Units (GPUs). J. Chem. Theory Comput., 11:4536–4544, 2015.

[73] C. M. Isborn, N. Luehr, I. S. Ufimtsev, and T. J. Mart́ınez. Excited-State Electronic Structure

with Configuration Interaction Singles and Tamm–Dancoff Time-Dependent Density Functional

Theory on Graphical Processing Units. J. Chem. Theory Comput., 7:1814–1823, 2011.

[74] F. Liu, N. Luehr, H. J. Kulik, and T. J. Mart́ınez. Quantum Chemistry for Solvated Molecules on

Graphical Processing Units Using Polarizable Continuum Models. J. Chem. Theory Comput.,

11:3131–3144, 2015.

[75] F. Corsetti. Performance Analysis of Electronic Structure Codes on HPC Systems: A Case Study

of SIESTA. PLOS ONE, 9:e95390, 2014.
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[232] J. Vojtěchovský, K. Chu, J. Berendzen, R. M. Sweet, and I. Schlichting. Crystal structures of

myoglobin-ligand complexes at near-atomic resolution. Biophys. J., 77:2153, 1999.

[233] M. M. El-Hendawy, N. J. English, and D. A. Mooney. Comparative studies for evaluation of

CO2 fixation in the cavity of the rubisco enzyme using QM, QM/MM and linear-scaling DFT

methods. J. Mol. Model., 19:2329–2334, 2013.

[234] L. P. Lee, N. Gabaldon Limas, D. J. Cole, M. C. Payne, C.-K. Skylaris, and T. A. Manz.

Expanding the scope of density derived electrostatic and chemical charge partitioning to

thousands of atoms. J. Chem. Theory Comput., 10:5377–5390, 2014.

[235] S. A. Wilson, T. Kroll, R. A. Decreau, R. K. Hocking, M. Lundberg, B. Hedman, K. O. Hodgson,

and E. I. Solomon. Iron L-edge X-ray absorption spectroscopy of oxy-picket fence porphyrin:

Experimental insight into FeO2 bonding. J. Am. Chem. Soc., 135:1124–1136, 2013.

[236] A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. F. Huelga, and M. B. Plenio. The role

of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-

protein complexes. Nature Phys., 9(2):113–118, 2013.

[237] G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle. Lessons from nature about

solar light harvesting. Nature Chem., 3:763–774, 2011.

[238] D. E. Tronrud, J. Wen, L. Gay, and R. E. Blankenship. The structural basis for the difference in

absorbance spectra for the fmo antenna protein from various green sulfur bacteria. Photosynth.

Res., 100:79, 2009.

[239] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship,
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