
Applications of line geometry, III: 

The quadric Veronesean and 

the chords of a twisted cubic 

A. Cossidente 

Dipartimento di Matematica, Universita della Basilicata, 

via N. Sauro 85, 85100 Potenza, Italy 

cossidente@unibas.it 

J.W.P. Hirschfeld 

School of Mathematical Sciences, University of Sussex, 

Brighton BN1 9QH, United Kingdom 

jwph@sussex.ac.uk 

L. Storme 

Department of Pure Mathematics and Computer Algebra, 

University of Gent, Galglaan 2, 9000 Gent, Belgium 

ls@cage.rug.ac.be 

Abstract 

The chords of a twisted cubic in PG(3, q) are mapped via their Plucker 

coordinates to the points of a Veronese surface lying on the Klein quadric 

in PG(5, q). This correspondence over a finite field gives a cap in 

PG(5, q), that is, a set of points no three of which are collinear. The 

dual structure, namely the axes of the osculating developable, is also 

mapped to a Veronese surface. The two surfaces can be combined to 

give a larger cap. 

The constructions can be extended to the chords and axes of an arbi

trary (q+ I)-arc in PG(3, q) when q is even. An alternative construction 

for the cap associated to a twisted cubic is given for q odd. 
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1. INTRODUCTION AND NOTATION 

The chords of a twisted cubic in PG(3, q) are mapped via their Plucker coordi

nates to the points of a Veronese surface lying on the Klein quadric in PG(5,q). 

This correspondence over a finite field gives a cap in PG(5, q), that is, a set of 

points no three of which are collinear. The dual structure, namely the axes of the 

osculating developable, is also mapped to a Veronese surface. The two surfaces can 

be combined to give a larger cap. 

The constructions can be extended to the chords and axes of an arbitrary (q + 1)

arc in PG(3, q) when q is even. An alternative construction for the cap associated 

to a twisted cubic is given for q odd. 

The following notation is used: 

"( is the Galois field GF(q) of order q = ph, h ~ 1; 

"(+ is "(U{oo}; 

"(' is a quadratic extension of "(; 

;Y is the algebraic closure of "(; 

PG(n, q) is the projective space of n dimensions over "(; 

P(X) is the point of PG(3, q) with coordinate vector X (xo, Xl, X2, X3); 

7T'(U) is the plane of PG(3, q) with equation UX t = 0, where U = (uo, Ul, U2, U3); 

1 = J(L) P(X)P(Y) is the line of PG(3, q) with coordinate vector 

L = (lOl' l02, l03, h2' l3l' 123 ), where Iij = XiYj - XjYi; 
U 0, U 1, U 2, U 3 are the vertices of the tetrahedron of reference in PG (3, q); 

U is the unit point; 

1{5 is the Klein quadric of PG(5, q) with equation XOX5 + X l X 4 + X 2X 3 = 0; 

vi is the Veronese surface of PG(5, q). 

2. PRELIMINARIES 

Consider a twisted cubic of PG(3, q) in its canonical form: 

where t 00 gives the point Uo. A chord of C is a line of PG(3, q) joining either a 

pair of real points of C, possibly coincident, or a pair of complex conjugate points 

of C. By a real point of C we mean a point of C defined over ,,(, and by complex 

conjugate points of C, we mean points P(h) and P(t2), such that tl and t2 are in 

"(' conjugate over "(. Let l(tl' t2) = P(h)P(t2). Then 

l(tl' t2) I(t12t22, tlt2(t l + t2), tI2 + tIt2 + t2 2, tlt2, -(tl + t2), 1) 

= I(CX22,CXICX2,CXI2 - CX2,CX2, -CXl, 1) 

where CXl tl + t2 and CX2 = tIt2' 
The criteria for the three types of chords are that the polynomial X2 - CXIX + CX2 

has 2, 1 or 0 roots in "(. If X2 - CXIX + CX2 has 2 roots in ,,(, that is, P(tl) and 
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P(t2) are distinct real points of C, then we will say that l(tl' t2) is a real chord of 

C; if x2 - (};IX + (};2 has one root in ,,(, that is, P(h) and P(t2) are coincident, then 

l(h, t2) is a tangent to C; if X2 - (};IX + (};2 has no roots in ,,(, namely P(tl ) and 

P(t2) are complex conjugate points of C, then l(tI, t2) is an imaginary chord of C. 

Note that imaginary chords are defined over "(. If tl = t2 = t, then 

is the tangent to C at the point P(t). 

At each point P(t) of C, there is an osculating plane 

which meets C only in P(t). Such osculating planes form the osculating developable 

r to C. In particular r is the dual of C. For p =I- 3, dual to the chords of C are the 

axes of r. An axis of r is a line of PG(3, q), which is the intersection of a pair of 

real planes of r, possibly coincident, or of a pair of complex conjugate planes of r 
(also called (2-) complex conjugate planes). 

Let l'(vI, V2) = 7r(VI) n 7r(V2)' Then 

l' (VI, V2) = J( V1
2

V2
2
, VI V2 (VI + V2), 3VIV2, (V12 + VI V2 + V22) /3, -(VI + V2), 1) 

= J({32
2 

, {3d32 , 3{32, ({312 {32)/3, -i3I, 1), 

where i31 = VI +V2 and i32 = VIV2. We will call1'(vl,V2) a real axis, a generator or 

an imaginary axis of r, according as X2 - i3lx + i32 has two, one or zero roots in "(. 

Note that the generator of r in 7r(t) is 

that is, a generator of r is self-dual with respect to the null polarity defined by 

the linear complex A to which the tangents to C belong (see [5, Theorem 21.1.2]). 

If p =I- 3, from [5, Lemma 21.1.4] we have that 

IJCII = q(q + 1)/2, where JCI is the set of all real chords of C; 

IJC2 1 = q + 1, where JC2 is the set of all tangents to C; 

IJC3 1 = q(q - 1)/2, where JC3 is the set of all imaginary chords of C. 

So the total number of chords of C is q2 + q + 1. Dually, the total number of axes 

of r is q2 + q + 1. 

101 



3. THE CONSTRUCTION OF THE VERONESE 

SURFACE OF PG(5, q) FROM THE CHORDS OF C 

3.1. CONSTRUCTION I 

Suppose that p ::/= 3 and consider the generic chord of C: 

(1) 

where, as above, al = tl + t2 and a2 = tlt2. We set al v /w and a2 = u/w. By 

substituting in (1), we obtain 

or equivalently, 

(2) 

for u, v, w E "y. Now, the Veronese surface of PG(5, q) has parametric equations 

(see [6, Ch. 25]) 

for all u, v, w E "y. Also the Veronese surface is embedded in 1{5 by the linear map 

<p_ :(Xo, .. . ,X5 ) H (Xo, Xl, X 2 X 3 , X 3 , X 5 ) 

( 2 2 2) (2 2 2) U ,UV,v ,uw,vw,w H u ,UV,v -uw,uw,-vw,w . 

Hence, the Plucker coordinates of a chord of C, considered as homogeneous projec

tive coordinates of PG(5, q), represent a point of a Veronese surface Vi, embedded 

in 1{5. 

Dually, the generic axis of f is 

(3) 

Set /32 = u/w and (31 = v/w. By substituting in (3), we obtain that 

l'(u,v,w) = I(u2 ,uv,3uw, (v 2 
- uw)/3, -vw,w2

). (4) 

The Plucker coordinates of an axis of f, considered as projective coordinates of 

PG(5, q), represent a point of a Veronese surface Vi embedded in 1{5. This surface 

Vi, when embedded in 1{5, is the image of vi under the linear transformation 

Since p ::/= 3, the two surfaces vi and vi are distinct. 
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3.2. CONSTRUCTION II 

Now, we present another construction involving the Veronese surface of PG(5, q), 
q odd, and the chords of C. Consider the embedding 

ffi • ( 2 2 2) (2 2 2) '±'+. U ,UV,V ,UW,VW,W H U ,UV,V -UW,UW,VW,W . 

Then Z = (u 2
, UV, v 2 

- UW, UW, VW, w 2
), for u, v, wE" is a point of a Veronese 

surface vi embedded in 1-[5 : XOX5 - X 1X 4 + X 2 X 3 = O. In the open set U = 1 of 

PG(5, 1'), the tangent plane to vi at Z is 

4 (8Z 8Z) 
Tz(V2 ) = span Z, 8v '8w ' 

where Z = (1, V, v 2 
- W, W, VW, w 2

). It follows that 

8Z 
8v = (0,1, 2v, 0, w, 0), 

8Z 
8w = (0,0, -1, 1, v, 2w). 

The generic tangent line to vi at Z is ofthe form P(Z)P(V), where V = A ~~ +/l ~~, 

with A, /l E" (A, /l) -=J (0,0) and VQV t = 0, where 

0 0 0 0 0 1 

0 0 0 0 -1 0 

Q= 
0 0 0 1 0 0 

0 0 1 0 0 0 

0 -1 0 0 0 0 

1 0 0 0 0 0 

is the symmetric matrix associated to 1£5. It follows that 

V = (0, A, 2VA - /l, /l, AW + /lV, 2/lw) 

with A(AW + /-Lv) = /l(2AV - /l); that is, 

A2W A/lV + /l2 = O. (5) 

Since the discriminant of this quadratic form is not zero, there are two tangent 

lines (real or complex conjugate) at the generic point of vi. To these tangent 

lines through Z correspond two pencils in PG(3, q) each containing the line z 

corresponding to Z and another line in the neighbourhood of z. By putting A = 1 

in (5) and by using the PlUcker embedding, we find that the points P(Z) and P(V) 

are spanned by the rows of 

-W 

V 

-VW ) 

v 2 -w 
and 
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These two lines of PG(3, q) intersect in a point 

R = P ( 1, J-l, J-lv - W, (v2 - w) J-l - vw ) . 

Using the relation (5), we find that 

R = P (1, J-l, J-l2, J-l3) 

with J-l E 'Y. This means that vi represents the congruence of the chords of a 

twisted cubic C, where C is the set of the focal points of such a congruence; see [7]. 

4. A NEW FAMILY OF CAPS 

In [3], it has been shown that by starting from the set of all conics of PG(2, q), q 
odd, which are inscribed in a triangle, it is possible to construct a cap of PG(5, q) 
of size 2q2 - q + 2. Such a cap turns out to be the union of two Veronese surfaces of 

PG(5, q) which meet in the union of three conics pairwise intersecting in one point. 

Now, we have seen that by starting from the chords and axes of a twisted cubic C, 

it is possible to construct two Veronese surfaces of PG(5, q), which we have called 

vi and Vi· 
Our aim in this section is to construct a new family of caps of PG(5, q), q = ph, 

P ::/= 3, embedded in the Klein quadric 1-l5
, by glueing vi and vi together along 

their intersection. 

Lemma 4.1. The Veronese surfaces vi and Vi meet in q + 1 points, belonging to 

a parabolic quadric P4, namely, the intersection of1-l5 by a non-tangent prime. 

Proof. The surfaces vi and Vi meet in q + 1 points, since the tangents to Care 

self-dual with respect to the null polarity defined by A. Since, for p f 3, the 

tangents to C lie in a general linear complex (see [5, Th. 21.1.2 (ii))) , their images 

under the Plucker embedding are q + 1 points on a parabolic quadric P4 , obtained 

by cutting 1-l5 by a non-tangent prime. 0 

Proposition 4.2. The set K = vi u vi is a (2q2 + q + I)-cap embedded in ?i5. 

Proof. From Lemma 4.1, IKI = 2q2 + q + 1. By way of contradiction, suppose that 

there exist three collinear points PI ,P2 ,P3 on K and let l be the line containing 

them. By Bezout's theorem, l is contained in 1-l5
. The three points above cannot 

belong to vi or Vi, since both vi and vi are caps [6, Lemma 25.2.5]. By virtue of 

the Plucker embedding, the collinearity of the points PI, P2 , P3 on ?i5 means that 

the corresponding lines in PG(3, q) belong to the same pencil. So, in our setting, 

there would be two chords of C and one axis of r or two axes of r and one chord 

of C belonging to the same pencil. 

Suppose that we have two concurrent real chords of C, necessarily meeting in 

one point P of C since no plane contains four points of a twisted cubic. Since C 
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is fixed by a 3-transitive group [5, Lemma 21.1.3], let P U 3 . Denote by 1r the 

real plane containing these two chords. If there was an axis 1 of r through P, this 

would be a generator of f, which is excluded by the first part of the proof. This 

means that 1 is a chord; this contradiction completes the proof. 0 

Remarks 

(a) The chords of C form a (1, 3)-congruence, namely a line congruence of order 1 

(the number of chords through a general point of PG(3, q)) and class 3 (the number 

of chords of C in a general plane). Dually, the axes of f form a (3, I)-congruence. 

For more details, see [1, p. 49]. 

From Proposition 4.2, it follows that the chords and axes through a point are 

contained in at least one quadratic cone and the chords and axes in a plane are 

contained in at least one dual conic. 

(b) Some tests performed for low values of q show that the caps constructed above 

are far from being complete. 

Corollary 4.3. The (2q2 + q + I)-cap K has a collineation group isomorphic to 

PGL(2, q) ~ C 2 , namely, the semidirect product of PGL(2, q) by a cyclic group of 

order two. 

Proof. The collineation group of Cis PGL(2, q); it acts 3-transitively on the points 

of C [5, p. 234], and partitions the chords of C into three orbits [5, Lemma 21.1.4], 

namely the real chords, the tangents and the imaginary chords. So PGL(2, q) leaves 

vi invariant. The null polarity defined by the general linear complex containing 

the tangents to C induces an involutory collineation, which interchanges chords and 

axes [5, Th. 21.1.2]. It follows that PGL(2, q) also leaves Vi invariant. 0 

5. A PLANE REPRESENTATION OF THE CHORDS OF C FOR q ODD 

Again, consider a twisted cubic C of PG(3, q) in its canonical form: 

XO=t3, XI=t
2

, X2=t, x3=I, 

t E ')'+. We recall that C is the complete intersection of three quadrics YI = 0, 

Y2 = 0, Y3 = 0 of PG(3, q), q 2:: 7 [5, Lemma 21.1.6 (i)], where 

Associate to a point P(X) of PG(3, q), X (xo, Xl, X2, X3), the point with ho

mogeneous coordinates (YI, Y2 , Y3 ) of a projective plane 1r isomorphic to PG(2, q). 
Hence a point (AI, A 2 , A 3 ) E 1r corresponds to those points of PG(3, q) such that 

(6) 

But, we observe that the quadrics Ii = 0 are linearly independent and contain 

C. This means that the points (6) are on the intersection of two quadrics through 
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C, say Y1 0 and Y3 = O. This intersection consists of the twisted cubic C and 

residually of one chord of C, say 1. In particular, if l is the chord of C joining the 

points P(t1) and P(t2), associate to 1 the point of'!f given by 

In this way, we obtain a one-to-one correspondence between the chords of C and 

the points of '!f; call this correspondence W. In particular, for the tangents to C, we 

have t1 t2 and so their images under Ware the points of the conic w of'!f given 

parametrically as 

and with equation 

It follows that 

(i) the images in '!f of the real and imaginary chords of C are respectively the 

external and internal points of w; 

(ii) the image of a regulus of chords is a line in '!f; 

(iii) w- 1 (w) is the quartic surface n containing the points on the tangents of C 

[5, Lemma 21.1.10], where 

(iv) the chords of C can be partitioned into q + 1 reguli sharing one chord; 

(v) if the axes of r are represented as the lines of '!f, then the null polarity defined 

by the linear complex containing the tangents to C corresponds to the polarity 

induced by the conic w in '!f. 

A collection of q2 +q+ 1 nondegenerate conics in a projective plane PG(2, q) that 

mutually intersect in exactly one point is called a projective bundle [2]. So these 

conics can be considered as the lines of another projective plane. In particular, a 

circumscribed bundle is a set B of q2 + q + 1 nondegenerate conics containing the 

three vertices of a triangle defined over a cubic extension of 'Y. There is a connection 

between the set of chords of a twisted cubic and a projective circumscribed bundle 

of a projective plane as is shown as follows. 

Let Q={F'\,I-£,vl,X, IL, 1/ E ')'} be the net of quadrics through the twisted cubic C 

and let '!fa be a plane meeting C in three conjugate points Q1,Q2,Q3; that is, the 

parameters of the three points are conjugate over ')' in a cubic extension. Let T 
be the set of chords of C. The plane '!fa meets a quadric F,\I-£v in a nondegenerate 

conic through Q1,Q2,Q3. Let N be the net of conics '!fa n F,\I-£v, Then any two 

conics in N meet residually in a real point P. This gives a mapping from N to '!fa. 

A chord of C maps to a point of '!fa simply as the intersection of the line with the 

plane. Hence we have a map 

¢ : T -+N. 
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In fact, there is a natural bijection between any two of the four sets Q, N, T, 7ro, 

all of which have size q2 + q + 1 as is shown in the following diagram: 

Q B N 

t :xl t 
T B 7ro 

6. THE CHORDS OF (q + I)-ARCS IN PG(3, q), q EVEN 

We now consider the analogous properties for the chords of an arbitrary (q + 1)
arc in PG(3, q), q even. 

In PG (3, q), q = 2h, a (q + 1 )-arc is projectively equivalent to a set 

C(m) = {pet) = P(tm+\ tm, t, 1) : t E ')'+}, 

where m = 2n
, (n, h) = 1 [5, Th. 21.3.15]. 

The osculating developable of C(m) is f(rn) = {7r(t) 
')'+}. 

The chord P(r)P(s) has Plucker coordinates 

m m rs(rm + sm) rm+l + sm+l 
l(r,s) = l(r s , ,-----

r+s r+s r+s 

The axis 7r ( u) n 7r ( v) is 

rm+sm 
---,1). 

r+s 

The tangent at pet) is let) = let, t) = l(t2m , 0, tm, tm, 0, 1), and this coincides 

with the generator of f(m) in 7r(t). 

The tangents form a regulus lying on 1-l3 
: XOX3 +XI X2 = 0 whose correspond

ing null polarity U is P(ao, aI, a2, a3) +---+ 7r(a3, a2, aI, ao). So U interchanges C(m) 
and f(m). 

Theorem 6.1. The chords and axes of the (q + I)-arc C(rn) and its osculating 

developable rem) form a (2q2 + q + I)-cap on 1-l5. 

Proof. The arguments of Proposition 4.2 can be copied if (n, 2h) = 1 since then 

C(rn), m 2n
, defines a (q + I)-arc in PG(3, q) and a (q2 + I)-arc in PG(3, q2). 

Hence, we only consider the case (n, 2h) = 2; that is, h is odd and n is even. 

When (n,2h) = 2, then C(m) does not define an arc in PG(3, q2). We first 

determine the maximum number of points of C ( m), extended to ')", in a plane of 

PG(3, q). 

Let 7r 7r(ao, aI, a2, a3). This intersects C(m) where aotm+l + altm + a2t + a3 = 

O. 
By letting t = tf + a, with a a solution of this equation in ')", we can reduce this 

equation to one with a3 = O. So it suffices to study an equation aotm+l + altm + 

a2t = O. 
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If ao 0, then altm + a2t = 0 if and only if t = 0 or altm- l + a2 = O. The 

latter equation has at most three solutions in "(' since (m - 1, 22h - 1) = 3. 

So there are at most 4 distinct solutions; together with the solution t = 00, this 

gives at most 5 solutions in "('. 

When ao -# 0, by introducing homogeneous coordinates (t, l) such that (t, 1) == t, 

by making the equation homogeneous to aotm+l + altm[ + a2tlm = 0 and by 

interchanging t and l, an equation aoZm+1 + altlm + a2tml 0 is obtained. Letting 

l = 1, the equation ao + alt + a2tm = 0 is obtained. So, again, in "(', there are at 

most 5 solutions. 

We now check that no three chords lie in a pencil. 

If a plane of PG(3, q) contains exactly 5 points in PG(3, q2), at least one of 

them is defined over "(. If three of them are defined over ,,(, by the 3-transitivity 

of the group of C(m) [5, p. 249], we can assume that this plane is Xl = X2 • This 

does contain the two points P(w2,w,w, 1),P(w,w2,w2, 1), where w2+w+l = 0, in 

PG(3, q2) but no three of the real chords and the imaginary chord are concurrent. 

If the plane contains one point of PG(3, q), and the tangent to C(m) at that 

point, then the plane contains at most one extra point of C(m). For, we can assume 

that this point is U 3 , and the planes through the tangent line Xo = Xl = 0 to this 

point contain at most one other point of C (m). If the plane contains one point of 

PG(3, q), and two pairs of complex conjugate points in PG(3, q2), then the plane 

only contains two imaginary chords. 

If the plane contains exactly four points of C(m) in PG(3, q2), then if these 

four points consist of two pairs of complex conjugate points, there are only two 

imaginary chords in the plane, and similarly, if the plane contains two real points, 

and two conjugate imaginary points, there are again only two chords in the plane. 

If a plane contains exactly three points, one of them is real. If all three are 

real, they form a 3-cap, and if only one is real, then this plane only contains an 

imaginary chord. 

This shows that no plane contains three concurrent chords. So the chords form 

a (q2 + q + I)-cap. 

From the null polarity U, also the axes define a (q2 + q + I)-cap on 1-{5. 

Consider now the chords and the axes. Suppose they do not define a (2q2+q+l)

cap. Assume that three points are collinear where two correspond to chords of 

C(m). 

If the two chords are real chords, suppose they are U 0 U 3 and U 3 U. The third 

point then must correspond to an axis passing through U 3. The only axis passing 

through this point is its tangent to C (m), but this does not lie in a pencil with two 

real chords. 

If the two chords are one real chord and a tangent, let the tangent be Xo = 
X I = 0 and the chord be U 0 U 3. Again, there is no other chord or axis passing 

through U 3 and lying in the plane of the real chord and tangent. 

Assume the two chords are one real chord and an imaginary chord. By [4, Th. 

5], an imaginary chord and an imaginary axis never intersect. So the third line is 

a real axis. 

Since an imaginary bisecant cannot pass through a real point of C (m), assume 
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that the real chord is V 0 V 3 and that the real axis lies in the plane X 0 + X I + 
X 2 + X3 = 0. Then the vertex of the pencil is P(I, 0, 0,1). The planes of the 

osculating developable through P(I, 0, 0,1) satisfy tm + l = 1, and there must be at 

least a second solution since there is a real axis passing through P(I, 0, 0,1). So 

(m + 1, 2h - 1) > 1; hence (m + 1, 2h - 1) 2: 5, since h is odd. This would imply 

that there are at least 5 planes through P(I, 0, 0,1). This is false. 

When the two chords are imaginary chords, by [4, Th. 5], the third line must 

be a real axis. Suppose it is the intersection of Xo = ° and X3 = 0. Then the two 

imaginary chords intersect in the same point of Xo = X3 = 0; assume that this 

point is P(O, 1, 1,0). 

Then, three points P(O, 1, 1,0), P(h), P(t2), with t2 = tf and h E ry'\ry, are 

collinear if and only if (tl + t2)m-1 = 1 and t;.n+l = t~+l. Since (n,2h) = 2, 

necessarily h + t2 E {I, w, w2}. Hence h + t2 = 1, since w ¢ ry, which shows that 

tf +h + 1 = 0. 

Then t;.n+l = t~+l implies f'1 + h + 1 = 0; so f'1 = tf which implies tl = 1 

since m = 2n
, (n, h) = l. 

This shows that the chords and axes of C (m) and r (m) define a (2q2 + q + 1 )-cap 
on 1{5. 0 

Theorem 6.2. The (2q2+q+ I)-cap constructed in Theorem 6.1 is the intersection 

of the hypersurfaces 

(X2 + x 3)m-1 X5 + X,r = 0, 

(X2 + x3)m-1 Xo + X;n = 0, 

XOX5 + X I X 4 + X 2X 3 = 0. 

Proof. By [4], the coordinates of the chords and axes can be rewritten as 

J(R2m pm, R m+l p, Rm(1 + p+ p2 + p4+ . .. + pm/2), Rm(p+ p2 + ... + pm/2), R m- l , 1) 

and 

J(U 2m J-tm, Um+IJ-t, Um(J-t+ J-t2 + ... + J-tm/2) , Um(1 + J-t+ J-t2 + ... + J-tm/2) , um-I, 1). 

For a point lying in the intersection of the hypersurfaces, if X5 = 0, then the 

points are (1, tm-\ 0, tm, 0, 0), (0,0,0,1,0,0), (1, tm-\ tm, 0, 0, 0), (0,0,1,0,0,0) 

which correspond to the axes in X3 = ° and the chords through Vo. 

H X5 = 1 and X 4 = 0, then (Xo, ... ,X5 ) = (t2m , 0, tm, tm, 0,1). If X5 = 
1 and X 4 =f=. 0, letting X 4 = Um- l implies X 2 + X3 = Um and u

m2
- m Xo = 

Xl' Substituting Xl = Um+lJ-t implies X 2 + X3 = um, Xo = u 2m J-tm, X 2X 3 = 
U2m (J-tm + J-t). 

So X 2, X3 are solutions to X 2 + Um X + (J-tm + J-t)U2m = 0. Hence the caps form 

the intersection of the hypersurfaces. 0 

Remark. The last result is not valid for odd characteristic. In PG(5, q), q odd, 

the Klein quadric is the only quadric containing the (2q2 + q + 1 )-cap constructed. 
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7. AN ALTERNATIVE CONSTRUCTION IN PG(5, q), q ODD 

To obtain a result similar for q odd to Theorem 6.2, consider the chords 

1(S2, rs, r2 - s, s, -r, 1) 

of the cubic C and the axes 

1(v2
, uv, V, u2 

- V, -u, 1) 

of the developable r, which correspond to each other under the null polarity 

defined by the linear complex l03 = h2 of PG(3, q) or equivalently by the section 

X 2 = X3 of 1{5 in PG(5, q). 

LeIllma 7.1. The set of points 

{(S2, rs, r2 - s, s, -r, 1) : r, s E ')'}U 

{(v 2
, uv, V, u2 

- V, -u, 1) : u, v E ')'}U 

{(s2,s,I,0,0,0),(s2,s,0,1,0,0): s E ')'}U {(1,0,0,0,0,0)} 

is the intersection of the quadrics 

XOX5 + X I X 4 + X 2X 3 = 0, 

(X2 + X 3)X5 - xl 0, 

(X2 + X3)XO - xi 0. 

Proof. To prove this, the arguments of Theorem 6.2 can be used. 0 

Theorem 7.2. The set considered in Lemma 7.1 is a (2q2 + 2)-cap of PG(5, q), q 

odd. 

Proof. Suppose three of the points are collinear on a line l; then this line is con

tained in the intersection of the three quadrics. So it consists only of points defined 

above. 

Since the set consists of two (q2 + q + I)-caps; necessarily III :s; 4. So q = 3. 

When q = 3, it was checked by computer that the set is a cap. 

The size of the cap is 2q2 + 2 since the points (1,0,0,0,0,0), (S2, 0, -s, s, 0,1), 

s E ')', and (r 4 /4, r3/2, r2/2, r2/2, -r, 1), r E ,)" define both chords and axes. 0 

ReIllark. The two parts of the (2q2 + 2)-cap intersect in the conic xi = XOX5 

in the plane Xl = X 4 = 0, X 2 + X3 = 0, and in the normal rational curve 

{( t4 
/ 4, t3 /2, t 2 /2, t 2 /2, -t, 1) : t E ')'+} of the hyperplane X 2 = X 3 . 

The conic defines the regulus in PG (3, q) consisting of the lines U 0 U I, U 2 U 3, 

P(t)P( -t) for t E ')'\ {O} or t E ')"\')' with tq = -to 
The normal rational curve in X 2 = X3 defines the lines 1(S2, rs, r2 - s, s, -r, 1), 

where s = r 2 /2 = t l t 2, r = h + t2 with ti = -t~. 
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