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The number of microbiome-related studies has notably increased the availability of data

on human microbiome composition and function. These studies provide the essential

material to deeply explore host-microbiome associations and their relation to the

development and progression of various complex diseases. Improved data-analytical

tools are needed to exploit all information from these biological datasets, taking into

account the peculiarities of microbiome data, i.e., compositional, heterogeneous and

sparse nature of these datasets. The possibility of predicting host-phenotypes based on

taxonomy-informed feature selection to establish an association between microbiome
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and predict disease states is beneficial for personalized medicine. In this regard,

machine learning (ML) provides new insights into the development of models that can

be used to predict outputs, such as classification and prediction in microbiology, infer

host phenotypes to predict diseases and use microbial communities to stratify patients

by their characterization of state-specific microbial signatures. Here we review the state-

of-the-art ML methods and respective software applied in human microbiome studies,

performed as part of the COST Action ML4Microbiome activities. This scoping review

focuses on the application of ML in microbiome studies related to association and

clinical use for diagnostics, prognostics, and therapeutics. Although the data presented

here is more related to the bacterial community, many algorithms could be applied in

general, regardless of the feature type. This literature and software review covering this

broad topic is aligned with the scoping review methodology. The manual identification of

data sources has been complemented with: (1) automated publication search through

digital libraries of the three major publishers using natural language processing (NLP)

Toolkit, and (2) an automated identification of relevant software repositories on GitHub

and ranking of the related research papers relying on learning to rank approach.

Keywords: microbiome, machine learning, disease prediction, biomarker identification, feature selection

INTRODUCTION

The human microbiome represents a complex community of
trillions of microorganisms (bacteria, archaea, viruses, as well
as microbial eukaryotes such as fungi, protozoa and helminths),
well-known to affect general health and homeostasis, e.g., by
actively participating in human metabolism and regulating the
immune system. Several disease-related states have been linked
with a disruption of the steady relationship between the gut
microbiota and gut epithelial cells (dysbiosis) (Petersen and
Round, 2014). In the last decade, the number of microbiome-
related studies has increased notably, and big populational studies
such the Human Microbiome Project (Human Microbiome
Project Consortium, 2012), the metagenomics of the Human
Intestinal Tract (Qin et al., 2010), and the American Gut
Project (McDonald et al., 2018), among others, have considerably
increased the available data on human microbiome composition
and function. These studies provide the essential material to
deeply explore host-microbiome associations and their relation
to the development and progression of various complex diseases.

Most of the above-mentioned data were generated by
amplicon sequencing, primarily by profiling the V3-V4 region
of the 16S rRNA marker gene, which allows taxonomic
identification of bacteria and archaea. A smaller number of
studies have also used 18S rRNA marker gene sequencing to
study the microbial eukaryotes such as fungi and protozoa
(Elekwachi et al., 2017; Yarza et al., 2017). In both cases,
amplicon sequences exhibiting a predefined level of sequence
similarity (usually 97%) are commonly clustered into Operational
Taxonomic Units (OTUs) that represent the abundance of a
particular bacterial taxon (Blaxter et al., 2005). However, due
to recent advances in high-throughput sequencing technologies,
OTUs are increasingly being replaced by amplicon sequence
variants (ASVs), which are un-clustered error-corrected reads

(Callahan et al., 2017). After clustering (in case of OTUs)
or denoising (in case of ASVs) and feature classification
and annotation, the OTU/ASV table with the correspondent
abundances is generated. Despite the cost-effective nature
of this methodology, 16S rRNA gene sequencing has some
drawbacks, e.g., (i) reliable bacterial classification is mostly
possible down to the genus level (Winand et al., 2020);
and (ii) limited information of the bacterial genes and their
functions is obtained.

Another approach that is increasingly being used is the
shotgun sequencing of microbial DNA without selecting a
particular gene. This approach allows for more accurate
classification of the microbial communities (even down to the
strain level), and also permits the study of genes and their
functions, e.g., by the construction of Gene Ontology (GO)
(Ashburner et al., 2000) tables and Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa and Goto, 2000) pathways
(Scholz et al., 2016).

Improved data-analytical tools are needed to exploit all
the information from these biological datasets, considering
the peculiarities of microbiome data, i.e., compositional data,
heterogeneous and sparse nature of the datasets. The possibility
of predicting host-phenotypes based on taxonomy-informed
feature selection to establish an association between the
microbiome, predict various disease states or improve human
health is beneficial for personalized medicine. In fact, the
gut microbiome has become an integral part of personalized
medicine, as it not only significantly contributes to inter-
individual variability in health and disease, but also represents a
potentially modifiable factor that can be targeted by therapeutics
in a personalized manner (Kashyap et al., 2017). In this regard,
ML may provide new insights into biomedical analyses, by the
development of models that can be used to predict outputs such
as categorical labels, binary responses, or continuous values.
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Recently, a number of studies have applied ML techniques
to analyze human microbiome data, harvesting the hidden
knowledge to uncover and understand diversity in taxonomy
and function within microbial communities and their impacts on
human health. Firstly, to support the taxonomic representation
and differentiation in microbiology, models were developed to
support the classification of microbial features (Cai and Sun,
2011; Bonder et al., 2012;Werner et al., 2012; Vervier et al., 2016).
Secondly, ML was used for the inference of host phenotypes
in disease prediction (Pasolli et al., 2016; Flemer et al., 2017;
Asgari et al., 2019; LaPierre et al., 2019; Thomas et al., 2019),
and finally, to support the use of microbial communities to
stratify patients by the characterization of state-specific microbial
signatures (Koohi-Moghadam et al., 2019; Wirbel et al., 2019;
Yachida et al., 2019).

Here, we aim to review the application of the different ML
techniques to human microbiome data analysis and the available
ML-based software resources currently used in the analysis of
human microbiome data. The review is mainly focused on the
application of ML in microbiome studies related to causality and
clinical use for diagnostics, prognostics, and therapeutics.

METHODS

Scoping Review Methodology –
Identification, Selection, and
Organization of Relevant Publications
This study follows the scoping review methodology for
searching and assessment of the relevant studies (Arksey
and O’Malley, 2005). The breadth of the ML methodology
and data types in ML-based microbiome analysis hinder the
thorough qualitative analyses of the selected papers, thus giving
a scoping nature to this review which aims to search, select
and synthesize the findings related to the application of ML
in microbiome analysis and identify the available research
evidence. The scientific methodology of all emerging review
types is common as they rely on a formal and explicit
methods for search, selection and evaluation of published
studies (Moher et al., 2015). An example of such thorough
review guidelines is Preferred Reporting Items for Systematic
Review and Meta-Analysis (PRISMA) for systematic reviews in
healthcare (Moher et al., 2010). The methodological framework
for scoping reviews is established following the exact way how
systematic reviews are conducted, providing sufficient details
to reproduce the results (Moher et al., 2015). The workflow
for a scoping review and adopted in this study, includes 5
stages (Arksey and O’Malley, 2005): (1) identification of a
research question; (2) identification of relevant studies; (3) study
selection; (4) charting the data; (5) collating, summarizing, and
reporting the results.

As the motivation and relevance of the research question
has already been extensively elaborated, we focus here on the
methodology used to identify and select relevant studies.We have
used both manual and automated search of literature corpus in
the identification step, performing three independent processes:

• Manual search – crowdsourcing of the studies relevant
for the review topic by all members of the COST Action
CA18131 “Statistical and machine learning techniques in
human microbiome studies”. In this way, in total 54 papers
were collected, and 35 papers are included in the final list.

• An automated search of digital libraries of three major
publishers (PubMed, Springer and IEEE) using NLP
Toolkit (Zdravevski et al., 2019) to automate the literature
search, scanning, and eligibility assessment. This automated
search was additionally constrained to the period from
January 2008 to December 2019 (and including those). In
total 5,935 papers were identified using this method, after
removal of duplicates that appear as a result of multiple
searches using the similar subsets of keywords. From that,
67 papers were selected for a manual check, and 37 papers
are included in the final list.

• An automated search through the available GitHub
resources using NLP algorithms to identify relevant
software repositories and extract corresponding scientific
papers. The papers were automatically ranked by relevance
using the pointwise learning to rank approach (Fejzer et al.
unpublished) trained using the manually collected and
labeled papers. We found 357 repositories that matched
human microbiome research (within 1339 matching
microbiome research). In these locations, we found 410
papers, and based on model score, selected 29 papers. The
final list includes 17 papers.

The study selection procedure comprised scanning and
eligibility assessment steps. The scanning was used in NLP
Toolkit thread and served to remove the duplicates and exclude
the papers whose title and abstract could not be analyzed due to
unavailability, parsing errors, or any other reason. The eligibility
assessment step referred to all identified studies in order to select
only those relevant for this review. For the studies identified
by the NLP Toolkit, the relevance of the study was assessed
based on the NLP augmented evaluation of title and abstract
according to the prespecified criteria. The papers identified
through an automated search of GitHub resources were scored
for relevance using the trained model based on learning to
rank approach. The detailed description of the methodology
used in automated search and eligibility assessment for both
NLP Toolkit and learning to rank approach are provided in
Supplementary Material.

The scoping review workflow illustrating the number of
identified, scanned, and articles included in this scoping review
using all three data collection procedures is presented in
Figure 1. The listing of all articles included in this study labeled
with respect to different descriptors/keywords is available as
Multimedia Appendix.

Medical Subject Headings Annotations
Medical Subject Headings (MeSH) is the NLM controlled
vocabulary thesaurus used for the indexing of articles in PubMed.
We have used this resource to catalog the 89 papers included in
this review from a biomedical perspective to explore the areas that

Frontiers in Microbiology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 634511

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Marcos-Zambrano et al. Machine Learning for Human Microbiome

FIGURE 1 | The scheme summarizing the process of paper selection for this review.

are implementing ML techniques in human microbiome studies.
The Wordclouds tool was used to summarize the information1.

Data Acquisition From Different
Resources
The human microbiome has been described as a fingerprint,
unique and specific to each individual, set in early life and
modeled by diet, lifestyle and environmental factors (Gilbert
et al., 2018). Besides the high inter-variability of the microbiome,
there are some shared functions between the different microbial
strains, the so-called core human metagenome established
by the analysis of large population studies. Moreover, the
characterization of the microbial genes implied in human
metabolic functions, the creation of a “gene catalog” of the
human microbiome, and the description of differences between
specific human conditions have been pointed out by assessing
populational studies that have generated great amounts of
metagenomics data. The list of main population studies,
gene catalogs generated and database resources for analyzing
microbiome data, respectively, are shown in Table 1.

Data Selection and Pre-processing for
ML-Based Applications
Proper normalization of microbiome data is essential for
obtaining relevant outcomes from their further processing (Weiss
et al., 2017) including ML techniques, with the primary aim to
ensure comparability of data across samples. The issue is the
large variability in library sizes, constrained additionally by the
maximum number of sequence reads of the instrument. This
total count constraint induces strong dependencies among the
abundances of the different taxa; an increase in the abundance of
one taxon requires the decrease of the observed number of counts
for some of the other taxa so that the total number of counts
does not exceed the specified sequencing depth (Rivera-Pinto
et al., 2018). Moreover, observed raw abundances and the total
number of reads per sample are non-informative since extracted
DNA was normalized during library preparation and also, they
represent only a fraction or random sample of the original
DNA content in the environment. While Weiss et al. (2017)
proposed normalization strategies like cumulative sum scaling,
variance stabilization, and trimmed-mean by M-values, none
of them really captures the above property of scale invariance,

1https://www.wordclouds.com

known from the concept of compositional data as observations
carrying relative information (Aitchison, 1986; Pawlowsky-Glahn
et al., 2015; Filzmoser et al., 2018). A very simple approach of
normalization to the total amount of extractable microbial DNA
or the total number of targeted cells counted by either flow
cytometry or qPCR represented a step in the right direction.

The main idea is to represent the original microbiome
(compositional) data in new variables, formed by interpretable
log-ratios or their aggregates (log-contrasts), and then to
continue in standard statistical or ML processing. There is an
increasing number of publications motivating and using the log-
ratio methodology of compositional data for statistical processing
of microbiome (e.g., Gloor et al., 2017; Silverman et al., 2017;
Quinn et al., 2018; Randolph et al., 2018; Rivera-Pinto et al.,
2018; Jiang et al., 2019; Quinn and Erb, 2020). However, it still
cannot be considered as a mainstream concept in microbiome
analysis, mostly due to the high dimensionality of samples and
the necessity of dealing with (count) zeros. From the perspective
of ML techniques, the outcome is not necessarily a better
classification, this depends, as usual, on the capability of a specific
method to extract information from (transformed) data, but
the compositional approach should reveal relevant sources of
differences (microbiome markers) among microbiome samples
or groups of samples (e.g., diseased vs healthy).

Literature Review of ML Applications for
Microbiome Studies
We finally selected 89 papers for review (35 manually selected,
37 using the automated NLP Toolkit search through PubMed,
IEEE Xplore and Springer digital libraries, and 17 by searching
in GitHub repositories). ML implies training and evaluation
of models to identify, classify, and predict patterns from data.
Unsupervised methods aim to identify plausible patterns in the
data, without the use of ground truth/labels, while supervised
approaches rely on the given labels to train the model and learn
the mapping of input features to the labels at the output.

Here, we present the most frequently applied ML methods
in microbiome studies, taking into account that ML applied
on the large volumes of microbiome data can offer valuable
insight into human-microbiome interactions We focused on
those studies in which ML is used for: (i) the classification and
prediction of microbial taxa, i.e., microbial classification and
taxonomic assignment; (ii) the prediction of the host phenotype
by linking microbial populations to phenotypes and ecological
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TABLE 1 | Different resources and databases for microbiome data acquisition.

Study name Samples Description Data Availability/Ref.

Human Microbiome

Project phase 1 and 2

(HMP1, iHMP or HMP2).

HMP1: Healthy adult population of 242

individuals. Samples from 35 body sites,

retrieving 13,572 samples in total (i.e.,

feces = 2,151; buccal mucosa = 633;

vagina = 551; other body sites = 10,237).

HMP2: Data related to three main conditions:

preterm birth, diabetes, and inflammatory

bowel disease.

The project generated a huge number of nucleotide sequences of microorganisms, by simultaneously

creating protocols to promote reproducible sampling and data generation in microbiome studies,

essential for the establishment of computational methods for microbiome data analysis.

The iHMP aimed to study host-microbiome interactions by joining the analysis of the immunity,

metabolism, and molecular activity to untangle the complex interplay between the host and its

microbiomes.

https://hmpdacc.org/.

Metagenomics of the

Human Intestinal Tract

(MetaHIT)

Overweight and obese adults, and patients with

IBD from Spain and Denmark.

This project aimed to characterize the human gut metagenomes of healthy, overweight and obese

adults, and patients with IBD from Spain and Denmark. The project has generated 576.7 Gb of

sequence and predicted 3.3 million unique open reading frames (ORFs).

Li et al., 2014

American Gut (AGP). “Wild-type” population. This project currently

included microbial sequences from 15,096

samples of 11,336 human participants.

Initially, it was designed to study the North American population, but the initiative attracted also people

from the United Kingdom, Australia and other countries. People volunteered to collect feces and fill a

questionnaire of their general health status, disease history, and lifestyle to get their microbiome

sequenced. The diversity of the data, and the high number of microbial sequences allowed to classify

the microbiomes into four great categories, and differences according to country, sex, age, and race,

were observed, moreover it adds up to ∼467 million of 16S rRNA V4 gene fragments.

http://americangut.org

The Integrated Gene

Catalogs 1 and 2 (IGC,

and IGC2).

Comprises more than nine million genes

observed in gut microbes. Recently, an updated

version of the catalog, denoted added 517,488

supplementary genes.

A catalog of microbial genes including important functions for host-bacterial interaction, and the

determination of the so-called “minimal gut bacterial genome” that encompasses genes from bacteria

found in most human guts.

It has been applied successfully to study host-microbiome associations in the context of different

diseases such as type 2 diabetes, obesity, and other pathologies. Genes with co-varying abundance

levels can be clustered (Nielsen et al., 2014; Plaza Oñate et al., 2019) to allow taxonomic and functional

profiling, and reveal potential disease markers in metagenome-wide association studies.

Qin et al., 2010; Wen et al.,

2017

The Unified Human

Gastrointestinal Genome

(UHGG) and Protein

(UHGP) catalogs.

286,997 microbial genomes from the available

human gut microbiome datasets.

These catalogs were created by analyzing 286,997 microbial genomes and over 625 million protein

sequences, including more than four thousand species. Up to 71% of the taxons analyzed are viable

but non-culturable (VBNC), lacking viable culture indicating that most of the microbial diversity in the

catalog remains to be characterized.

Almeida et al., 2021

MGnify (formerly EBI

Metagenomics)

Diverse microbiome types, including ∼63.000

samples from human microbiome.

Free-access resource for browsing, analyzing, and archiving metagenomic and metatranscriptomic

data. The platform contains an automated pipeline for the analysis of microbiome data to determine the

taxonomic diversity along with functional and metabolic characteristics.

https://www.ebi.ac.uk/

metagenomics/\penalty-\@M

Mitchell et al., 2018, 2020

CuratedMetagenomeData Includes taxonomic and metabolic functional

profiles and curated metadata for the publicly

available human microbiome samples

generated by shotgun metagenomic

sequencing.

Bioconductor (Gentleman et al., 2004) package that provides uniformly processed and manually

annotated human microbiome data. All data is processed by using the same pipeline, i.e., MetaPhlAn2

(Truong et al., 2015) for taxonomic abundance, gene marker presence and absence, and HUMAnN2

(Franzosa et al., 2018) for coverage and abundance of metabolic pathways and gene families

abundance.

Pasolli et al., 2017

Qiita Sequencing, proteomics, taxonomic,

transcriptomics, and metabolomics data.

Open-source management platform for microbial studies. It integrates different omics data, providing a

database and compute resources for the analyses of microbiome data.

https:

//qiita.ucsd.edu/\penalty-\@M

Gonzalez et al., 2018

ML Repo 15 published human microbiome datasets. Public web-based repository of 33 curated classification and regression tasks from 15 published human

microbiome datasets. Therefore, it is not only the data repository but it can also be used for

benchmarking new machine learning approaches for microbiome data analyses.

https://knights-lab.github.io/

MLRepo/\penalty-\@M Vangay

et al., 2019
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environments, i.e., disease prediction, and (iii) the usage of
microbial communities for understanding disease mechanisms,
and the further application in personalizedmedicine (companion
test), i.e., biomarker-finding.

Finally, many of the reviewed ML methods have implemented
within the Bioconductor packages, initially developed for
the microchip/microarray-based data analyses (Gentleman
et al., 2004). Consequently, the lessons learned enabled their
integration into web portals, such as Microbiome Analyst2

(Chong et al., 2020) for a comprehensive statistical, visual and
meta-analysis of microbiome data.

Supervised Learning Methods

Supervised learning trains and evaluates the model based
on the input data complemented with ground truth/labels
indicating the outcomes for the given input samples. Common
supervised learning approaches include regression analysis and
statistical classification.

Logistic regression
Logistic regression (LR) is a statistical method that learns a
model that predicts an outcome for a binary variable, Y, from
one or more response variables categorical or continuous, X.
(Hoffman, 2019).

Logistic regression has been used for establishing microbial
signatures in bacterial vaginosis (Beck and Foster, 2015), a
disease associated with the vagina microbiome, however, no
single microbe has been found to cause it. The authors
found that both classifiers identify largely similar microbial
community features and that only a few features were necessary
to generate models with high classification accuracy. Moreover,
the authors investigated the importance of subsets of the
microbial community features for the classification process.
The taxa identified as more relevant were in line with those
identified by previous studies, and classification performance was
as well comparable.

In another study, a total of 300 biomarkers were selected
from 13,990 features including clinical information and the
matrix of relative gene abundance from 806 microbiomes of
Chinese individuals (383 controls, 170 with type 2 diabetes,
130 with rheumatoid arthritis, and 123 with liver cirrhosis).
Seven algorithms were used, and logistic regression achieved
the highest accuracy. This study showed that gut microbiome
biomarkers could distinguish abnormal cases from controls with
a high level of specificity. The microbiome biomarkers found,
present a promising predictive power for application in disease
diagnostics, especially disease screening within a large-scale
population (Wu et al., 2018).

Tap et al. (2017) set up a ML procedure to identify a microbial
signature to predict the severity of Irritable Bowel Syndrome
(IBS) using a LASSO-based logistic regression approach applied
to 195 subjects. The performance was assessed using the AUROC,
and a set of 90 robust OTUs was negatively associated with
microbial richness, exhaled methane, presence of methanogens,
and enterotypes enriched with the bacterial order Clostridiales
or genus Prevotella (Tap et al., 2017). Fukui et al. (2020) used

2https://www.microbiomeanalyst.ca/

a similar LASSO logistic regression-based approach to extract
a featured group of bacteria for identifying IBS patients. They
then applied Random Forest models on the selected features to
perform the classification between 85 IBS patients and from 26
healthy controls, obtaining a sensitivity of >80% and specificity
of >90% (Fukui et al., 2020).

Linear discriminant analysis (LDA)
Linear Discriminant Analysis (LDA) is a generalization of
Fisher’s linear discriminant, a method used in statistics, pattern
recognition and machine learning to find a linear combination
of features that provides good separation between the classes
of objects or events. When applied to microbiome data, this
approach finds a linear combination of microbial features in
the training data that models the multivariate mean differences
between classes (Zhou and Gallins, 2019).

The linear discriminant analysis (LDA) effect size (LEfSe)
method proposed by The Huttenhower Lab as part of bioBakery
workflows for executing microbial community analyses3 was
specifically designed for biomarker discovery in metagenomic
data (16S rRNA gene and whole-genome shotgun datasets). It
performs high-dimensional class comparisons that determine the
features: organisms, clades, operational taxonomic units, genes,
or functions; most likely explaining differences between classes.
It joins standard tests for statistical significance plus additional
tests encoding biological consistency and effect relevance. The
algorithm first uses the non-parametric factorial Kruskal-Wallis
(KW) sum-rank test to detect features with significant differential
abundance regarding the class of interest. Then, biological
consistency is investigated using a set of pairwise tests among
subclasses using the (unpaired) Wilcoxon rank-sum test, finally
uses LDA to estimate the effect size of each differentially abundant
feature and perform dimension reduction (Segata et al., 2011).

k-nearest neighbors (k-NN)
k-NN is based on simple classification rule, assigning the new
sample to a class which is in the majority among the k training
samples nearest to that point. The algorithm can be used both for
classification and regression problems, depending on a type of the
outcome variable (discrete or continuous). The neighborhood is
defined using a selected distance metric in a multidimensional
feature space. Euclidean distance or correlation coefficients
are the most regularly used distance metrics. For continuous
traits, a weighted average of the k nearest neighbor is used
(Zhou and Gallins, 2019).

k-NN has been used to effectively determine the postmortem
interval (PMI) using microbial samples from the skin microbiota
found in the nasal and ear canals of cadavers. When the
microbiota from both sites was considered jointly, the regression
was successful, yielding a model that accurately predicts the
postmortem interval to within 55 accumulated degree days
(ADD), which represents about two days of decomposition at an
average temperature of 27.5◦C (Johnson et al., 2016).

Hacılar et al. (2018) compared several ML-based techniques
to classify fecal samples as healthy or with disease [i.e.,
Inflammatory Bowel Disease (IBD)]. They used a dataset

3http://huttenhower.sph.harvard.edu/lefse/
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containing shotgun metagenomic data from 382 individuals
(234 healthy and 148 IBD patients). The training set was a
profile of gut microbial communities for each sample generated
by MetaPhlAn2 (Segata et al., 2012). Several models were
trained (RF, Adaboost, k-NN+ LogitBoost, Decision tree, Neural
network, LogitBoost and Furia) and 10-fold cross-validation
was performed to evaluate the performance for each model.
Finally, they added a feature selection (i.e., mRMR: minimum
redundancy and maximal relevance) step before the training
process. With and without feature selection k-NN + LogitBoost
performed best with 0.87 and 0.86 accuracy scores, respectively
(Hacılar et al., 2018).

Naïve Bayes classifiers
Naïve Bayes classifiers are a family of simple probabilistic
classifiers based on the application of Bayes’ theorem with
strong (naïve) assumptions of statistical independence between
the features. In one such study applying NB to microbiome
data, Werner et al. (2012) investigated the influence of the
training set on the results of the taxonomic classification of
16S rRNA gene sequences generated in microbiome studies.
The classification using a naïve Bayes classifier indicated that
taxonomic classification accuracy of 16S rRNA gene sequences
improves when a Naive Bayes classifier is trained only on a
selected region of the target sequences. This result was used for
some other classifiers (e.g., in QIIME2) (Werner et al., 2012).

Support vector machines (SVM)
SVMs is a machine learning algorithm that aims to learn a
decision boundary between the classes, so as to ensure the
maximum achievable distance (margin) between the samples
closest to the decision boundary. The samples relevant for
learning a decision boundary are only those closest to it, called
support vectors. When linear separation between classes is not
possible in original feature space, the SVM uses the kernel
trick to estimate the decision boundary in a higher-dimensional
space (Cortes and Vapnik, 1995). SVM can as well be used for
regression tasks.

A Sino-European team (Qin et al., 2010) led an early
study using WGS data in order to identify dissociative genetic
markers from fecal sample sequencing data for IBD and Type
II diabetes (T2D). They used a variety of tools to process the
raw reads: SOAPdenovo (Li et al., 2010) for assembly; MetaGene
(Noguchi et al., 2006) for gene prediction; KEGG (Kanehisa
et al., 2004) and eggNOG (Jensen et al., 2007) for functional
annotation. They selected 50 marker genes for T2D (using
mRMR: minimum redundancy and maximal relevance) out of
a gene catalog containing roughly 300,000 genes. They also
show that taxonomic abundance data segregates IBD and healthy
individuals when performing PCoA.

Cui and Zhang (2013) described an alignment-free supervised
classification procedure for the classification of metagenome
samples into predefined classes with sequence signatures from
shotgun metagenomics sequencing data by using recursive SVM,
this approach integrates feature selection and classification
steps in one method. They also applied the methodology
on a real metagenome dataset to classify IBD and non-IBD

samples. The accuracy obtained using the stringent leave-one-out
cross-validation (LOOCV) was 88%, additionally permutation
experiment were performed to evaluate statistical significance
(Cui and Zhang, 2013).

Liu Y. et al. (2011) presented “MetaGUN”4 a gene prediction
method for identifying genes inmetagenomic fragments based on
SVM. Initially, input sequences were classified into phylogenetic
groups, using a k-mer based sequence binning method.
Afterward, for each group, the identification of protein-coding
sequences was performed using SVM classifiers. MetaGUN
applies universal prediction modules and a novel prediction
module to identify protein-coding sequences. Entropy density
profiles (EDP) of codon usage, Translation Initiation Side
(TIS) scores and Open Reading Frame (ORF) length are
employed as discriminative features and used as inputs into
the classifiers to distinguish protein-coding sequences from
non-coding sequences. In the last stage, TISs are relocated by
employing a modified version of MetaTISA. The MetaGUN
prediction method was compared with six existing metagenomic
gene finders (Liu Y. et al., 2011). The results showed that the
performance of MetaGUN is better for 3′ end of genes on longer
fragments, and comparable results were obtained with Glimmer-
MG on shorter fragments. For 5′ end of genes, with fragments of
various lengths, MetaGUN outperformed other tested methods
on the overall TISs. When applied on two healthy human gut
microbiome samples, MetaGUN was able to find more novel
genes than other methods (Liu Y. et al., 2011).

Ning and Beiko (2015) explored a phylogenetic approach in
classification of oral microbiota using a ML approach focusing
on classification using SVMs. The authors used phylogenetic
information as the basis for the proposed custom kernels and as
classifier features. Other than using the phylogenetic information
(such as taxon and clade abundance), PICRUSt (Langille et al.,
2013) that predicts molecular functions from 16S rRNA sequence
data was used to generate additional input features. The proposed
kernels based on UniFrac measure of community dissimilarity
(Lozupone et al., 2011) did not result in improved performance.
Even though the combinations of the selected input features were
important predictors, they did not result in increased accuracy.
The classification was performed on nine oral sites and resulted in
a modest 81% prediction accuracy which indicates the challenges
of classification of oral microbiota.

Another study, performed by Larsen and Dai (2015),
demonstrated that the metabolome derived from the human gut
microbiome might be predictive of host dysbiosis. Metagenomic
enzyme profiles predicted from 16S rRNA microbiome
community structures were used to generate metabolic models.
The authors apply SVM to show that emergent property of
the microbiome and its aggregate community metabolome of
human gut are more predictive of dysbiosis than the microbiome
community composition or predicted enzyme function profiles.

Artificial neural networks
Artificial neural networks refer to an interconnected feed-
forward network of neural units each comprising multiple inputs

4http://bioinfo.ctb.pku.edu.cn/MetaGUN/
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and a single output, organized in several layers to map a feature
vector from the input layer, to the class label at the output
layer. The inputs to each neuron are weighted outputs from the
neurons from a previous layer, which are summed and non-
linearly transformed at its output. The total number of hidden
layers and the number of neurons within each hidden layer
are specified by the user. All neurons from the input layer are
connected to all neurons in the first hidden layer, with weights
representing each connection. This process continues until the
last hidden layer is connected. The backpropagation algorithm
is used to modify the weights in a neural network optimizing
for the classification accuracy. For microbiome data, OTUs/ASVs
are commonly used at the input layer, with separate neurons
for each OTU/ASV.

Lo and Marculescu (2019) describe a neural network platform
for the classification of host phenotypes from metagenomic data,
using a new data augmentation technique to mitigate the effects
of data over-fitting. They tested the proposed framework on
eight real datasets including data from HMP (Turnbaugh et al.,
2007), and two diseases, i.e., IBD (Gevers et al., 2014), and
esophagus diseases (esophagitis, Barrett’s esophagus, esophagal
adenocarcinoma; Yang et al., 2015), finding that the new proposed
methodology outperforms other models previously used in the
literature (Lo and Marculescu, 2019).

Deep Learning

Deep learning (DL) is a ML method that assumes using artificial
neural networks (ANNs) with deep architectures, i.e., multiple
hidden layers, yielding a higher level of abstraction and in
general a significant improvement in performance given very
large data sets. Another advantage to other ML methods is that
DL architectures learn the feature representation given the raw
data at its input, thus alleviating the feature engineering step.
Currently, DL is thought to be the most advanced ML technique
for a variety of applications (Chassagnon et al., 2020).

To classify human epithelial materials highly relevant for
forensic investigations, Díez López et al. (2019) applied
taxonomy-independent DL methods on skin, saliva, and vaginal
microbiome data obtained from the HumanMicrobiome Project.
A total of 1636 validated reference samples from these sites
were used to identify most informative sequence positions via
correspondence analysis. High-inertia positions were used as
input matrix to train 50 DL networks based on a 4-layer ANN.
Two sets of samples (110 test and 41 mock casework samples)
were deployed to validate the output from the deep learning
approach with most of the samples being classified correctly. This
approach offers a more accurate and efficient tissue-classification
approach compared to human biomarkers, as donor DNA-based
methods often lead to cross-identification and low specificity due
to overlaps in human cell composition. However, a successful
application of DL methods in such a context ideally requires
standardized biological and methodological conditions during
the generation of training and test data (Díez López et al., 2019).

Another example of using DL approach for analyses of
metagenomic data are DeepARG networks which are trained to
predict antibiotic resistance genes (ARGs) from metagenomic
data (Arango-Argoty et al., 2018). DeepARG consists of two

models: DeepARG-LS, which was developed to classify ARGs
based on full gene length sequences, and DeepARG-SS, which
was developed to identify and classify ARGs from short sequence
reads. The initial collection of ARGs was obtained from three
major databases: CARD, ARDB, and UNIPROT and 30 ARG
categories were used to train the models. To further evaluate and
validate performance, the DeepARG-LS model was applied to
all the ARG sequences in the MEGARes database (Lakin et al.,
2017). Also, the ability of the DeepARG-LS model to predict
novel ARGs was tested on a set of 76 metallo-beta-lactamase
genes obtained from the study of Berglund et al. (2017). Based
on the results the authors conclude that the DeepARG models
can be used to get an overview or inference of the kinds of
antibiotic resistance in a collection of sequences; however, still
the downstream experimental validation is required to confirm
whether the sequences truly confer resistance.

Asgari et al. (2019) used deep learning, Random Forest(RF)
and SVM, for distinguishing among human body-sites,
diagnosis of Crohn’s disease, and predicting the environments
from representative 16S gene sequences. Moreover, they
also proposed a reference- and alignment-free approach for
predicting environments and host phenotypes from 16S rRNA
gene sequencing data based on k-mer representations. They
described that for large datasets (10K samples per class)
using DL provides more accurate predictions. However, when
the number of samples is not large enough, RFs performed
better on both OTUs and k-mer features. However, for
classification over representative sequences as opposed to
samples (pool of sequences), the SVM outperformed the RF
classifier (Asgari et al., 2019).

Convolutional neural network CNNs are similar to traditional
deep neural networks (DNNs), they are made up of layers of
neurons that have learnable weights and biases. Each neuron
receives some inputs, calculates a dot product, and optionally
follows it with a non-linear function (Lopez Pinaya et al.,
2020). In 2017, this team (Fioravanti et al., 2018) introduced
a phylogenetic CNN that would enable the classification of gut
microbiome metagenomic data into healthy or IBD phenotypes,
summing up to a total of 6 classification tasks. Those phenotypes
included the different subtypes of the disease: Crohn’s disease
(CD) and Ulcerative Colitis (UC), as well as the state of the
pathology (flare or remission) and the part of the intestine
that is affected for CD (ileum or colon). The dataset used
for training (Sokol et al., 2017) contained bacterial and fungal
community (16S rDNA and ITS) from 38 controls and 222
IBD patients. Pre-processing of the raw data was carried
out using QIIME2 (Kuczynski et al., 2012), UCLUST (Edgar,
2010) and RAxML (Stamatakis, 2014), in order to get relative
abundance, cluster the taxa and build a phylogenetic tree that
will then be input to the CNN. A synthetic dataset was also
constructed as deep learning performs better when trained
on large datasets. To do so, they generated vectors in the
Aitchison simplex that is spanned by the “real” dataset. This
improved the performance of the CNN, which tends to overfit
when trained only on the initial dataset. They compared the
performance of their newly crafted CNN with more traditional
learning models (LSVM, RF, Multi Layer Perceptron NN)
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using the Matthews Correlation Coefficient (MCC) as a metric.
Overall, for each of the six tasks, the CNN outperformed
the other models.

Ensemble Methods

Ensemble methods combine multiple classifiers to obtain a better
performance than a single classifier.

Random forests (RF)
RFs are an example of ensemble learning, in which a complex
model is made by combining many simple models. In this case,
simple models are decision trees. RFs use a bootstrap resampling
on the given dataset to learn each decision tree using a single
boostrap set. The final output of a RF is obtained using a
majority voting of the individual decision trees. As these are
well-studied methods, they are used as baselines for comparison
in many studies (Breiman, 2001). The most widely used ML
algorithm, RF classifiers have been frequently used along with
Least Absolute Shrinkage and Selection Operator (LASSO) for
feature selection, for stratification of patients (Flemer et al., 2017;
Yachida et al., 2019) and biomarker finding (Koohi-Moghadam
et al., 2019; Thomas et al., 2019; Wirbel et al., 2019) and finding
of host-microbial signatures to detect fecal contamination in
environmental samples (Roguet et al., 2018).

RF has been used for classification of pediatric patients of
Crohn’s disease (CD) according to disease state and treatment
response by using the alpha diversity of the samples and the
genetic risk score (GRS) of each patient (Douglas et al., 2018).
They found higher classification accuracy with 16S rRNA datasets
than shotgun metagenomics due to the higher contamination of
human DNA in the shotgun metagenomes.

Ross et al. (2017) analyzed the impact of cohabitation on
the individual composition of the skin microbiome. For the
analysis, the authors used 16S rDNA amplicons of bacteria and
archaea from 330 skin samples from 17 skin regions of 10
heterosexual cohabiting couples. Analysis was performed using
both statistical and ML methods. Their results showed that the
two most important factors that affect the skin microbiome are
individuality and body region, which is in line with previous
studies. The authors also showed that cohabitation strongly
influences skinmicrobial community diversity.When RFmethod
was applied for skin microbiome classification, accuracy greater
than 86% was achieved (Ross et al., 2017).

Ai et al. (2019) took advantage of the continuously decreasing
price of whole genome sequencing technology to diagnose
colorectal cancer (CRC) based on fecal shotgun sequencing
data. They used a dataset consisting of French and Austrian
cohorts both containing 156 individuals (312 in total; 124 healthy
and 188 CRC and adenoma patients). To preprocess the raw
reads and produce the relative abundance of each taxon in the
gut, they used the GRAMMy tool (Xia et al., 2011). In order
to select taxa that best discriminate a healthy sample from a
sample displaying tumor-related dysbiosis, ML techniques were
implemented; feature (taxon) selection was carried out using
information theory (mutual information) and a RF classifier was
trained using a 6-fold cross-validation process. This resulted
in the selection of a set of taxa whose abundance was a good

indicator of the presence or not of CRC related dysbiosis in the
gut (Ai et al., 2019).

Rahman et al. (2017) used metagenomes to identify antibiotic
resistance genes in the infant gut microbiome. Their findings
were in line with previous work showing that there is an
increase of resistance gene levels after antibiotics intake, which
is followed by the recovery of the microbial community. The
authors also found that, over time, the formula feeding influences
the gut resistome. A RF model was used to classify resistomes
of formula-fed and breast-fed babies. Using feature importance,
the trained model was then used in the selection of resistance
genes. Furthermore, ML methods were used to select genes that
can predict the change in relative abundance of an organism
after the intake of vancomycin and cephalosporin antibiotics.
The best results were obtained using the boosted decision trees
(Rahman et al., 2017).

Yang et al. (2019) applied a RF classifier for forensic
identification based on an individual’s microbial sample using a
combination of single-nucleotide polymorphisms (SNPs) in the
16S rRNA gene of Cutibacterium acnes and skin microbiome
OTU table, achieving 93.3% accuracy. Their work also showed
that the genotype of C. acnes 16S rRNA gene was more stable
over time than that of the skin microbiome profile. The proposed
method showed promising results for microbiome-based forensic
identification (Yang et al., 2019).

Gupta et al. studied a cohort of patients with CRC from
India by using shotgun metagenomics. They identified 20
potential microbial taxonomic markers based on their significant
association with the health status, and 33 potential microbial gene
markers usingWeka and the Boruta R packages. They applied RF
with the selected biomarkers and combined with two different
cohorts from China and Austria successfully discriminated the
Indian CRC from healthy microbiomes with high accuracy
(Gupta et al., 2019).

Sze and Schloss (2016) conducted a meta-analysis to
detect if specific microbiome-based markers can be associated
with obesity. The authors selected ten previously published
studies, re-calculated OTU tables with the available 16S rRNA
sequencing data, applied RF models trained on each data
set and tested them on the remaining data sets to predict
the obesity status of the subjects. The authors found weak
relationships between richness, evenness, and diversity and
obesity status. Moreover, they also showed that most studies
lack the power to detect small differences in alpha diversity
metrics and phylum-level relative abundances. The analysis
demonstrated that the ability to reliably classify individuals
as obese only based on the composition of their microbiome
was limited. The authors concluded that the involvement of
the microbiome in obesity is not apparent based on the
taxonomic information provided by 16S rRNA gene sequence
data (Sze and Schloss, 2016).

Braun et al. (2019) studied patients with quiescent Celiac
Disease (CD) and compared their microbiota with both CD and
healthy patients. The RF model was used to prioritize taxa that
best distinguish relapses from non-relapses. Top three taxa were
used to construct the flare index that was significantly different
for flare and no-flare samples. Flare index also significantly
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correlated with microbial richness and microbial dysbiosis index
(Braun et al., 2019).

Fabijanić and Vlahoviček (2016) utilized the translational
optimization effect, a property of gene regulation, to distinguish
subjects with liver cirrhosis from healthy controls using the
RF classifier (Fabijanić and Vlahoviček, 2016). Another study
that utilized the RF algorithm on gut microbiome data is
described byHasic andMusic; the condition studied wasMultiple
Sclerosis (MS). The results demonstrate the best accuracy in
distinguishing control samples from MS samples when genus-
level taxa abundances were used as features. The model learned
on one dataset was evaluated on another set of the MS samples
coming from people living in another country. The classification
accuracy on this test set was comparable to the error on the
validation set (Telalovic and Azra, 2020).

Multiple decision tress
Travisany et al. (2015) proposed an ensemble method for
microbial taxa prediction present in a specific environment as
well as their abundances using multiple CARTs (classification
and regression tree). The authors first constructed a dataset of
genomic fragments by collecting genomes from publicly available
databases. They built two predictors, one using a dataset with
98 genera of the gastrointestinal tract available from the Human
Microbiome Project, and the other with 17 early studied genera
of the gastrointestinal tract. They computed the statistics of
k-mer frequencies, GC radio and GC skew for each read for a
specific environment-associated dataset. The prediction was then
performed by majority vote selection of multiple (n = 558) CART
trees. The proposed method was evaluated using simulated and
public human gut microbiome datasets. Using 17 representative
genera, the authors achieved an accuracy of 77% in read
assignments (Travisany et al., 2015).

Gradient boosting (GB)
A ML method that addresses regression and classification
problems by generating a prediction model as an ensemble
of weak predictors, mostly decision trees, and then averaging
predictions over decision trees of fixed sizes. As with other forms
of boosting, the process successively computes weights for the
poorly predicted samples.

For the gut microbiome, GB has been applied by Zeevi et al.
(2015). Their study included a cohort of 800 overweight or
obese non-diabetic individuals, in which the gut microbiome
was being profiled (relative abundances of 16S rRNA amplicon-
based phyla, metagenome-based species and KEGG modules)
along with their nutritional profiles, as well as several blood
parameters and anthropometrics to successfully predict the post-
meal glucose levels for each individual and each meal. Their ML
model was based on a stochastic gradient boosting regression
(Friedman, 2001). When using stochastic gradient boosting, at
each iteration, a randomly selected subsample is drawn from the
training data without replacement, which is then used to fit the
model. Zeevi et al. used 80% of their samples and 40% of the
features. They did not limit the depth of the three, however,
it was required that the leaves have at least 60 instances (i.e.,
meals, in their case). In total, 4000 iterations were used with a

learning rate of 0.002. The authors subsequently validated the
output from the trained ML model in an independent cohort of
100 participants. Further, they conducted a blinded randomized
controlled dietary intervention in another cohort based on the
ML-based predictions, observing similar improvements in the
post-meal glucose levels, accompanied by consistent alterations
to the gut microbiota (Zeevi et al., 2015).

Faust et al. (2012) employed GB to investigate co-occurrence
relationships in 16S rRNA data obtained from the Human
Microbiome Project. Generalized boosted linear models were
fitted using taxa abundance data from source sites to predict
abundances of target taxa within targets sites. The analysis
was augmented with the integration of a set of similarity and
dissimilarity measures (Pearson and Spearman coefficients for
correlation, Bray-Curtis and Kullback-Leibler as dissimilarity
measures) to finally create a network of co-occurrence and co-
exclusion relationships within the analyzed microbiomes. By
putting these tools together, the authors were able to reveal
that closer related taxa tend to co-occur in special vicinity
or environmentally similar habitats whereas phylogenetically
more distant microbes with similar functional aptitudes are
more likely to compete. A major difficulty in developing this
method was taking into account the compositional character
of relative abundance data which could lead to spurious
correlations. However, coupling permutations and repeated
renormalization contributed to maintaining true correlations.
While these observations were made on data from the Human
Microbiome Project, the computational methodology can be
transferred to other research questions involving marker gene
sequencing (Faust et al., 2012).

GB has been applied to analyze a combination of 16S
rRNA, host transcriptome, epigenome, genotype and dietary
data from colonic biopsies of inflammatory bowel disease
patients and healthy controls using XgBoost (Ryan et al., 2020).
When microbiota information was combined with diet and
host genotype, the disease classifications improved significantly,
and even more so when host epigenome and microbiota
data were combined.

Applications of Several Machine Learning Methods

Le Goallec et al. (2020) proposed a framework for building
microbiome-derived indicators of host phenotypes of infant age,
sex, breastfeeding status, historical antibiotic usage, country of
origin, and delivery type. By leveraging five different types of
data and their combinations (host demographics (“baseline”
data) and the four microbiome data type: BioCyc pathway
relative abundance, Co-Abundance Groups (CAGs) relative
abundance, MetaPhlAn2 taxa relative abundance, and gene
relative abundance, they compared the prediction performances
of 8 machine learning methods: 2 different elastic net (Elastic
Net Caret and Elastic Net 2) implementations, 2 random
forest (RF Caret and RF2) implementations, 2 gradient boosted
machine (GBM Caret and GBM2) implementations, support
vector machines (SVM, kernels: linear, polynomial of degree
2 and radial), K-nearest neighbors (KNN) and naive Bayes
(NB). In their investigation, they found that non-linear models
and particularly the Gradient Boosted Machines (Caret) were
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the most consistently effective at the classification of sex,
breastfeeding status, country of origin. For other phenotypes such
as age and prior antibiotic usage, the information encoded in the
microbiome seems to be linear, as no significant difference was
observed between the elastic nets and the tree-based methods.
In these cases, linear methods were a better choice, because of
the ease of interpretation. The authors concluded that significant
pairwise relationships could be detected between phenotypes and
biomarkers (Le Goallec et al., 2020).

A UK based team carried out a study aiming at building a
hybrid classifier that would perform several classification tasks
[IBD presence (1), subtype (2) and severity(3)] (Wingfield et al.,
2016). A publicly available dataset of 16S rRNA containing
fecal sequencing data from 37 healthy individuals and 122 IBD
patients) was used in order to train the three aforementioned
models. For each sample, the sequenced reads were pre-processed
into taxonomic and functional profiles using QIIME2 (Kuczynski
et al., 2012) and PICRUSt (Langille et al., 2013) respectively.
Then, a pipeline of three consecutive classifiers (SVM for stages
one and two, multilayer perceptron (MLP) for stage three)
was developed and the classifiers were cross-validated. The
outcomes of the different classification steps were disease-free,
IBD remission and IBD active for stage one. Ulcerative colitis
(UC), Crohn’s disease and control for stage two and finally
mild, moderate and severe for stage three. The average precision
scores for the k-fold cross-validations were rather low, 0.71, 0.65
and 0.61 for stages one, two and three respectively, however
the average area under the ROC curves were consistently better
(ranging from 0.7 to 0.9).

In another study, a framework entitled Phy-PMRFI
(Phylogeny-aware modeling for prediction of metagenomic
functions using RF Feature Importance), the authors use
ML for microbiome functional properties. They integrated
quantitative profiles of taxa (abundance counts of OTUs)
and biological information derived from the phylogeny of
microbial taxa. This approach helped to select taxa at different
taxonomic levels that reck in associating a metagenomic sample
with the host environmental phenotypes. It implemented a
phylogeny and abundance-aware matrix (PAAM) (Wassan
et al., 2018b) that combines phylogeny with the abundance
counts of microbial taxa. For Phy-PMRFI, the authors used RF
to recognize microbial features that are useful for classifying
phenotypic groups and improve metagenomic predictions.
Afterward, the informative microbial taxa obtained acted as
an input to three commonly used MLclassifiers: (1) SVM, (2)
Logistic Regression, and (3) Naive Bayes, intending to identify
if phylogenetic relatedness is a good predictor of functional
similarity. For this, the authors used three microbiome
datasets as cases to demonstrate the utility of the Phy-PMRFI
framework in predicting functions of metagenomic data.
They concluded that inclusion of the phylogenetic measure
potentially maximizes the opportunity of classifying microbiome
functions according to naturally inherent properties of taxa
(Wassan et al., 2019).

Beck and Foster (2014) applied genetic programming, RF
and logistic regression to classify microbial communities into
bacterial vaginosis (BV) positive and negative categories. Using

the mentioned classification models, most important features of
the microbial community used to predict BV were also identified.
The classification was applied to two different datasets. The
authors obtained an accuracy above 90% for Nugent score and
above 80% for the Amsel criteria. Even though different sets of
most important features were identified by the tested classifiers,
the shared features, in general, agree with the previous research
(Beck and Foster, 2014).

In the context of the human gut microbiome, Zhu et al. (2020)
proposed a DL ensemble feature selection model, Deep Forest,
which is based on the RF method to perform microbiome-wide
association studies (MWAS). When tested on three data sets
using several classifiers, the proposed method achieved better
classification performance than SVMs, k-NNs and convolutional
neural networks (CNNs). Performance evaluation of Deep Forest
was also evaluated in terms of feature selection. The method
achieved better results with the selected reduced feature subset.
When the selected features were compared to the existing
literature, identified microbial biomarkers have found to have a
relationship with the diseases (Zhu et al., 2020).

Statnikov et al. (2013) performed a comprehensive evaluation
of 18 ML methods and five feature selection methods to
perform body site and subject multicategory classification and
diagnosis using microbiome data. The evaluation was performed
on eight datasets using constructed OTU tables as input
features for the ML methods. Performance of evaluated methods
was measured using the proportion of correct classifications
and relative classifier information metrics. From the evaluated
methods, RF, SVM, kernel ridge regression, and Bayesian logistic
regression with Laplace priors were among the best-performing
methods with statistically similar levels of classification accuracy
(Statnikov et al., 2013).

In work published by Eck et al. (2017) two datasets were
analyzed. One distinguished skin from gut microbiome samples
and the other IBD patients from healthy individuals. Several
ML algorithms were applied: Linear SVM, RF, nearest shrunken
centroids, logistic regression with l2 regularization. The authors
measured the most important taxa on species level (applying
intergenic spacer profiling of 16S-23S rRNA) for the classification
when applying different algorithms. The identification of such
taxa facilitates biologically meaningful interpretation of the
microbiota-based predictions (Eck et al., 2017).

Hollister et al. (2019) evaluated the relationships of pediatric
IBS and abdominal pain with intestinal microbes and fecal
metabolites. By leveraging both metagenomic and metabolomic
information, and using LASSO feature selection, RF models, and
SVM, the authors selected ten features including abundances and
distributions of the metabolites, bacterial species, and functional
pathways. Features selected were capable of distinguishing
pediatric IBS cases from controls with an AUC of 0.93 and≥ 80%
accuracy. Moreover, the bacterial features and metabolites
described appeared to be closely linked with abdominal pain and
emphasized the importance of the microbiome-gut-brain axis to
human health (Hollister et al., 2019).

Pasolli et al. (2016) used the SVM, RF classifiers, LASSO
and elastic net regularized multiple logistic regression, Neural
Networks and Bayesian logistic regression, and assessed the
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prediction power of metagenomic data in linking the gut
microbiome with disease states (Pasolli et al., 2016).

Liu Z. et al. (2011) developed a method called MetaDistance
that integrates SVM and k-NN for multiclass classification and
additionally performs feature selection. The proposed method
showed good classification accuracy for classifying body sites
and skin sites according to 16S rRNA gene data. Besides, the
method was demonstrated to be robust for small sample sizes and
unbalanced classes (Liu Z. et al., 2011).

Mohammed and Guda (2015) used a consensus-based
ensemble of k-NN, SVM, RF, decision stump and Naive Bayes
classifier to hierarchically predict enzymes encoded by the human
gut microbiome. They further applied their method to analyze
the enzyme profiles of lean vs obese and IBD vs non-IBD subjects
(Mohammed and Guda, 2015).

Chen et al. (2016) explored the differences between the gut
microbiome from three different races (Asian, European and
American races), by analyzing the expression levels of their
gut microbiome genes. They applied minimum redundancy
maximum relevance incremental feature selection methods
and four ML methods to determine the most relevant gut
microbiome genes that are differentially expressed in individuals
from different races. The approaches used were: RF, k-NN,
sequential minimal optimization (a type of SVM method
where training is performed using the sequential minimal
optimization algorithm proposed by Platt (1998), and dagging
(a type of meta classifier, where multiple models are built and
integrated using majority voting). For performance evaluation,
the authors used the overall prediction accuracy and Matthews’s
correlation coefficient (MCC). MCC was used since it is a
suitable performance measure to evaluate model performance
even in the case of imbalanced classes (Chicco and Jurman,
2020). Sequential minimal optimization method achieved the
best performance results (overall prediction accuracy 99.6%,
MCC 99.3%) in identifying 454 most important differentially
expressed genes. The obtained results also show that the first
25 out of the 454 identified genes were observed to achieve
accuracy greater than 96% and were analyzed in more detail. The
identified genes reflected differences among analyzed races such
as eating habits, living environments/geographic localization and
metabolic levels, which are also known to influence the gut
microbiome (Chen et al., 2016).

In more recent work, Zhou and Gallins (2019) evaluated the
most commonly used supervised ML methods for microbiome
host trait prediction: regression methods, linear discriminant
analysis, SVM, similarity matrices and related kernel methods,
k-NN, RFs, gradient boosting for decision trees, and neural
networks. The authors first performed a comparative analysis
based on the literature review of published work, focusing on
17 reported datasets generated from OTU tables. Additionally,
the authors performed their own comparative analysis of the
mentioned ML methods using three datasets available from
MicrobiomeHD database5 (Duvallet et al., 2017). For feature
extraction, the authors applied a hierarchical feature engineering
(HFE) (Oudah and Henschel, 2018). Among the compared

5https://github.com/cduvallet/microbiomeHD

methods, decision tree-based methods, in general, performed
well, achieving similar results with the neural network models
in the analyzed published literature. Furthermore, by applying
HFE for OTU table feature reduction, better performance
results were achieved for almost all of the evaluated methods
(Zhou and Gallins, 2019).

Unsupervised Learning Methods

Unsupervised methods identify apparent patterns in the
data, without the use of predefined labels. These are
important exploratory tools to examine the data and to
determine important data structures and correlation patterns
(Zhou and Gallins, 2019).

Clustering
Hierarchical clustering is a classic unsupervised learning
technique, which builds a hierarchy of nested clusters using a
dendrogram, merging or splitting clusters based on different
metrics (Zhou and Gallins, 2019). Cai and Sun (2011) used
hierarchical clustering for classification of 16S rDNA sequences,
they developed ESPRIT-Tree, a hierarchical clustering-based
algorithm and demonstrated its utility by performing analysis
of millions of 16S rRNA sequences, simultaneously addressing
the space and computational issues. The novel algorithm exhibits
a quasilinear time and space complexity comparable to greedy
heuristic clustering algorithms while achieving a similar accuracy
to the standard hierarchical clustering algorithm using 16S rRNA
data (Cai and Sun, 2011). In another study, the authors applied
hierarchical clustering for establishing possible relations between
microbiota and disease-associated host changes, i.e., disease
prediction. Here, the authors used as feature transcriptome
(RNA-seq) signatures of the host cell (colonocytes), and the 16S
rRNA data from gut microbiota. The authors treated colonic
epithelial cells with live microbiota from five healthy individuals.
Their results show an important role of gut microbiota in
regulating host gene expression and suggest that manipulation
of microbiome composition could be useful in future therapies
(Richards et al., 2019).

Possible correlation between microbiota and disease-
associated host changes is done through another microbiome
communities clustering algorithm - a novel multivariate testing
method called an adaptive Microbiome-based Sum of Powered
score (aMiSPU) (Wu et al., 2016). The aMiSPU method is
proposed to assess how the compositions of microbiotas
are associated with human overall health. Since it is a data-
driven approach based on a sum of powered score (SPU)
tests and adaptive variable weighting, using a generalized
taxon proportion combining microbial abundance information
with phylogenetic tree information, it reduces the criticality
of the choice of a phylogenetic distance which was a weak
point in most previous methods. Most univariate tests depend
on strong parametric assumptions on the distributions or
mean-variance functional forms for microbiome data which
results in a false positive (type I errors). So, some findings are
considered significant when they have occurred by chance. As
no assumption is imposed, the proposed method - a multivariate
semi-parametric test - eliminates the chance of incorrectly
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rejecting a true null hypothesis that there is no association
between any taxa and the outcome of interest. The evaluation
of aMiSPU test on simulated and real data indicates that the
aMiSPU test is better performing than several competing with
well-controlled type I error rates. A by-product of the method
is a ranking of the importance of the taxa and be used as a
selection tool for the taxa which are likely to be associated with
the outcome of interest. The MiSPU R package is public and
accessible at https://github.com/ChongWu-Biostat/MiSPU. Its
application for understanding the association between microbial
communities (i.e., microbiotas) throughout the human body and
disease can help in developing personalized medicine.

Biclustering is a powerful data mining technique that allows
simultaneously clustering rows and columns of a data matrix to
find submatrices that can overlap (Xie et al., 2019). In principle,
there exist four categories of biclustering methods: (1) variance
minimization methods, (2) two-way clustering methods, (3)
motif and pattern recognition methods and (4) probabilistic
and generative approaches (Madeira and Oliveira, 2004). For
many years, biclustering algorithms have been widely used
for the analysis of gene expression data, but new biclustering
applications are emerging, such as detecting disease marker
genera from gut microbiome as those methods are suitable
to detect overlapping clusters on both microbes and hosts.
Falony et al. (2016) used biclustering to identify sample subsets
with specific taxonomic signatures detecting two stable clusters
showing that partially overlapped with previously described
enterotypes (Falony et al., 2016). Zhou et al. (2020) proposed
an identifiable Bayesian multinomial matrix factorization model
to infer overlapping clusters on both microbes and hosts. The
authors demonstrate the utility of the proposed approach by
comparing four alternative methods in simulations and then by
applying it into Qin’s IBD microbiome dataset revealing clusters
which contain bacteria families that are known to be related to
the inflammatory bowel disease and its subtypes according to
biological literature (Zhou et al., 2020).

To cluster groups of communities with similar compositions
into envirotypes or enterotypes and thus into “metacommunities”
the Dirichlet multinomial mixture (DMM) generative modeling
framework has been developed (Holmes et al., 2012). It assesses
the community structure, including the sample density and size.
Multinomial sampling coupled with Dirichlet prior was used
before, but the extension of the prior to a mixture of Dirichlet
components is a novelty in this work. The method describes
each community by a vector, generated by one of finite possible
Dirichlet mixture components with different hyperparameters,
where each entry is the probability that a read is from given
taxa. These vectors of the frequency of taxa occurrences in
each sample are placed in a matrix, which is sparse as most
species are observed with low abundance. This multinomial
sampling is a discrete model that can be used for assessing
the size and sparsity of a community. Moreover, it becomes
a starting point for a generative modeling framework which
explicitly describes a model for generating the studied data, and
provides a means to cluster groups of communities with similar
compositions. The product of the research is a software package
for fitting DMM models which uses a Laplace approximation

to integrate out the hyperparameters and estimate the evidence
of the complete model. The authors leveraged the methodology
to estimate the association of obesity with distinct microbiota
by applying the DMM model to human gut microbe genera
frequencies from Obese and Lean twins. They did not find
a significant impact of body mass on community structure,
but rather a possible relation to a disturbed enterotype. They
conclude that disturbed states are associated with a more variable
community, as this was observed apart from the obese twins, also
in people suffering from inflammatory bowel disease (IBD) and
ileal Crohn’s disease (ICD).

Non-negative matrix factorization (NMF)
This method aims to extract hidden patterns from a series
of high-dimensional vectors automatically and has been
widely applied in many areas, such as image and natural
language processing, and computational biology for dimensional
reduction, unsupervised learning (clustering, semi-supervised
clustering and co-clustering, etc.) and prediction (Zhang,
2012). The NMF analysis can provide a range of interpretable
conclusions about the data sets. For metagenomic data, the
features extracted can be mapped to metabolic pathways.

In the work by Cai et al. (2017), the authors use non-
negative matrix factorization to identify key features of microbial
communities, by analyzing 16S rDNA amplicon and functional
data. Using three data sets: the difference in macrolide synthesis
pathways for the non-ruminant herbivores; the change in gut
and tongue microbial composition for person two in the moving
picture data (Caporaso et al., 2011); and the differences in various
pathways for the IBD microbiome dataset (Qin et al., 2010) the
authors demonstrate how to interpret the features identified by
NMF to draw meaningful biological conclusions and discover
hitherto unidentified patterns in the data (Cai et al., 2017).

Other ML Methods

Causal inference methods
Causal inference methods provide exploratory data analysis of
causal relationships between variables, e.g., relationship between
microbial species and disease outcome.

Bayesian networks (BN). BN are probabilistic graphical models
consisting of a directed acyclic graph (DAG). In this model,
nodes correspond to random variables, and the directed edges
correspond to potential conditional dependencies between them.
In a recent study, authors constructed a BN model via
Augmented Markov Blanket algorithm to identify microbial
networks and species-related with the complete response after
concurrent chemoradiation in rectal cancer. The BN analysis
revealed a link between a specific taxon and an improved
therapeutic response (Jang et al., 2020). BN has also been used in
combination with other methods, in particular, the Intervention
calculus when the DAG is absent (IDA) method (Kharrat et al.,
2019), to identify microbial species that are likely to have a causal
role in colorectal cancer (CRC) risk and onset.

Dynamic Bayesian networks (DBNs). Dynamic Bayesian
Networks (DBNs) are BNs attested for modeling relationships
over temporal data. In this regard, a DBN is a directed acyclic
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graph where, at each time slice or instance, nodes correspond
to random variables of interest and directed edges correspond
to their conditional dependencies in the graph (Russell and
Norvig, 2016). DNB has been used for analyzing longitudinal
microbiome data sets to establish temporal relationships between
different taxonomic ranks and other clinical factors that affect
the microbiome (Lugo-Martinez et al., 2019). They studied
longitudinal data sets from three human microbiome body sites:
infant gut, vagina, and oral cavity, and use temporal alignments to
normalize the differences in the progress of biological processes
of each subject, they found that microbiome alignments improve
the predictive performance of the methodology over previous
studies of longitudinal datasets, and increase the ability to infer
new and previously reported biological and environmental
relationships between the components of the microbiome and
other factors that influence it, this methodology allows to predict
microbiome states and relationships based on longitudinal data
applying DBN. Moreover, authors build up the CGBayesNets
package that is freely available under the MIT Open Source
license agreement.

In general, time series analyses represent a valuable approach
to determine the resilience and variability of microbial
communities. Perturbations and changing environmental
conditions can drive communities into alternative stable states,

while bi- and multi-stable states are mostly induced by member
interactions within a microbial community. However, a detailed
exploration of these temporal shifts is often restricted by either
intensively sampled but small treatment groups or large studies,
including only few sampling time points. Faust et al. (2015)
compared twelve-time series analysis techniques used for high-
throughput sequencing studies. These techniques mostly operate
on cross-correlation, autocorrelation or network inference.
Although the sampling scheme is highly dependent on the
environment of interest, appropriate sampling frequency and
regularity are crucial. These parameters define the resolution,
completeness, sparsity, and noisiness of the data and potentially
limit the explanatory power of the analysis output. By applying
DBN techniques, incomplete data may be amended and used
to model dependencies in time series. Apart from that, the
identification of early warning signs indicating an upcoming
change in microbiome-inherent networks could help to predict
responses to environmental factors (Faust et al., 2015).

Mendelian randomization (MR). Mendelian randomization
(MR) has been used to understand the causal role of gut
microbiome in disease. MR uses human genetic variants, such
as single nucleotide polymorphisms (SNP), as proxy measures
for clinically relevant traits of interest (e.g., gut microbiome) to

FIGURE 2 | Plot summarizing reviewed articles that apply machine learning in human microbiome data analysis. Articles are summarized based on microbiome input

data type and broadly defined ML categories and constrained by year. Please note that in the case of the year 2020 the input does not cover all publications from

this year.

Frontiers in Microbiology | www.frontiersin.org 14 February 2021 | Volume 12 | Article 634511

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Marcos-Zambrano et al. Machine Learning for Human Microbiome

estimate the causal relationship between a trait and a disease or
health outcome, therefore eliminating confounding and reverse
causation effects between the exposure of interest and outcome.
In a bidirectional MR analysis on over 3800 individuals from
the Flemish Gut Flora Project and two German cohorts, Hughes
and co-workers (Hughes et al., 2020) were able to estimate
relationships among five microbial traits and seven outcomes,
namely waist circumference and body mass index.

Also, Sanna et al. (2019) used bidirectional MR to assess the
causal role of the gut microbiome on metabolic traits, based
on genome-wide genetic information, gut metagenomic
sequence and fecal short-chain fatty acid (SCFA) levels
from 952 normoglycemic individuals, combined with
genome-wide-association summary statistics for 17 metabolic

and anthropometric traits. The authors found a causal role of
gut-produced fecal SCFA with respect to energy balance and
glucose homeostasis. In particular, a genetically influenced shift
in the gut microbiome toward increased production of butyrate
with beneficial effects on beta-cell function, and host genetic
variation resulting in increased fecal propionate levels affecting
type 2 diabetes risk (Sanna et al., 2019).

Correlation-based network analysis. Seo et al. (2017) studied
which of the gut microbes responded to probiotic intervention,
and their association with gastrointestinal symptoms in healthy
adult humans. The study consisted of 21 individuals after
probiotics consumption for 60 days and evaluated the changes
in microbiome composition through 16S rRNA amplicon

FIGURE 3 | Plot based on Wordcloud with MESH (Medical Subject Headings) terms annotated from the 89 articles.
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TABLE 2 | Clinical Applications of Machine Learning for human microbiome studies.

Disease Datasets Features Aim Method Citation

Crohn’s Disease (CD) BISCUIT cohort (Hansen et al., 2012; Pascal

et al., 2017), CD n = 20, Controls n = 20,

Validation Cohort RISK cohort (Gevers et al.,

2014).

Shotgun metagenomics data

and 16S rRNA gene data.

Classify pediatric CD patients by disease state

and treatment response.

Random forest. Douglas et al., 2018

Colorectal Cancer

(CRC)

Patients with CRC S0 n = 27, Patients with

CRC SIII/IV n = 54. Healthycontrols n = 127.

Shotgun metagenomics data

(Species, KO genes, Metabolite

profiles).

Classification of CRC patients according to

cancer stage.

Feature selection by LASSO.

Random forest.

Yachida et al., 2019

Colorectal Cancer

(CRC)

Fecal CRC metagenomes: n = 38 previously

published, n = 22 new. Control n = 60.

Feature selection by LASSO.

Features: IGC gene

abundances.

Predict taxonomic and functional microbiome

CRC signatures.

Feature selection by LASSO.:

Random forest.

Wirbel et al., 2019

Colorectal cancer

(CRC)

Stool: Controls n = 62, CRC n = 69, Polyps

n = 23. Swabs: Controls n = 25, CRC n = 45,

Polyps n = 21.

Log-ratio transformed values of

OTUs present in at least 5% of

individuals.

Development of an oral and fecal microbiota

classifier that distinguish individuals with CRC

and adenomas from controls.

Feature selection by LASSO.

Random forest.

Flemer et al., 2017

Colorectal cancer

(CRC)

Cohort 1: CRC n = 29, adenomas n = 27,

controls = 24. Cohort 2: CRC n = 32,

Control = 28. Validation Datasets: CRC

n = 313, Adenomas n = 143, Controls = 308.

Taxonomic species-level

abundances, gene-family and

pathways related abundances.

Finding of reproducible microbiome markers

and disease-predictive models for CRC.

Supervised Learning Methods:

Random forest.

Thomas et al., 2019

Colorectal cancer

(CRC)

Previously published data from France,

Hong Kong and Austria. France (Zeller et al.,

2014).

Shotgun metagenomics,

FASTA.

Discovery of biomarkers from WGS that could

be used to build a machine learning classifier

for CRC prediction.

Supervised Learning Methods:

Random forest. Neural network.

Support vector machine.

Koohi-Moghadam

et al., 2019

Abnormal cases vs.

Controls

Controls n = 383. Abnormal Cases: Type 2

diabetes n = 170, Rheumatoid arthritis n = 130,

Liver cirrhosis n = 123.

Shotgun metagenomics. Develop a pipeline to address the challenging

characterization of multilabel samples from type

2 diabetes, rheumatoid arthritis, and liver

cirrhosis.

Logistic Regression. Wu et al., 2018)

Bacterial Vaginosis (BV) Dataset 1: Asymptomatic BV-:299.

Asymptomatic BV + :97

Dataset 2: Asymptomatic BV-:6. Asymptomatic

BV + :214.

OTU tables from 16S rRNA

gene data.

Establishing microbial signatures in bacterial

vaginosis (BV).

Logistic Regression, Genetic

Programming, and Random

Forest.

Beck and Foster, 2015

Colorectal cancer

(CRC)

n = 30 Controls

n = 30 CRC patients from Previously published

datasets from Austria (n = 57 health ycontrols,

n = 46 CRC patients) and China (n = 53 healthy

controls and 75 CRC patients) (Feng et al.,

2015; Purcell et al., 2017).

Shotgun Metagenomics data

(mOTU, MGS, Methaphlan

species)

Gene counts.

Identify cohort-specific non-invasive biomarkers

to be used in diagnosis of CRC.

Weka

“CfsSubsetEval” + Boruta

algorithm for feature selection.

RF with 33 genes and 20

taxonomic markers.

Gupta et al., 2019

Obesity Data from 10 previously published studies

(n = 2.786 subjects) (Turnbaugh et al., 2006;

Wu et al., 2011; Human Microbiome Project

Consortium, 2012; Zupancic et al., 2012;

Escobar et al., 2014; Goodrich et al., 2014;

Schubert et al., 2014; Ross et al., 2015; Zeevi

et al., 2015; Baxter et al., 2016).

OTU tables from 16S rRNA

gene data.

Predict obesity status on the basis of the

microbial composition of the microbiome.

Random Forest. Sze and Schloss, 2016

Pediatric irritable bowel

syndrome (IBS)

n = 23 IBS patients

n = 22 Healthy Controls.

Shotgun metagenomics, Gene

Counts and pathways,

Metabolomics.

Evaluate the relationship between pediatric IBS

and abdominal pain with intestinal microbes

and fecal metabolites.

RF

LASSO feature selection

SVM

naïve Bayes.

Hollister et al., 2019
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TABLE 2 | Continued

Disease Datasets Features Aim Method Citation

Gastrointestinal

symptoms in healthy

humans

n = 21 volunteers after probiotics consumption

for 60 days.

16S rRNA gene data. Establish which of the gut microbes respond to

probiotics interventions.

Correlation-based network

analysis. Dimensionality

reduction.

Seo et al., 2017

Chron’s Disease Chron’s Disease dataset:

n = 731 Pediatric patients with CD

n = 628 Non-CD.

n = 300 healthy controls from HMP (Turnbaugh

et al., 2007).

16S rRNA gene data. Use of deep learning methods and classic

machine learning approaches for distinguishing

among human body sites, diagnosis of Crohn’s

disease, and predicting the environments from

representative 16S gene sequences.

RF, SVM, Deep Learning. Asgari et al., 2019

Inflammatory Bowel

Disease (IBD) and

esophagus diseases

n = 3501 samples from different datasets

(Costello et al., 2009; Knights et al., 2011).

16S rRNA gene data. Classification of metagenomic data using

Neural Networks approaches.

Neural Networks.

Comparison with supervised

ML methods (Linear regression,

Boosting gradients, SVM, RF).

Lo and Marculescu,

2019

Islet autoimmunity (IA)

and Type 1 Diabetes

(T1D).

n = 10,913 metagenomes in stool samples

from persistent confirmed IA or T1D vs controls.

(TEDDY cohort) (Hagopian et al., 2011).

Shotgun metagenomics. Gene

count.

Describe the functional profile of the developing

gut microbiome in relation to islet autoimmunity,

T1D and other early childhood events.

RF to separate between

case-controls.

Vatanen et al., 2018

Irritable Bowel

Syndrome

71 samples from 22 children with IBS (pediatric

Rome III criteria) and 22 healthy children.

16S rRNA gene data. Finding microbial signatures for Irritable Bowel

Syndrome.

Random Forest. Saulnier et al., 2011

Sclerosing cholangitis 46 controls and 80 patients with PSC during

ERC (37 with early disease, 32 with advanced

disease, and 11 with biliary dysplasia).

16S rRNA gene data. Explore the microbial involvement in the

etiopathogenesis and risk for development of

biliary neoplasia in primary sclerosing

cholangitis.

Generalized linear models. Pereira et al., 2017

Allergy Skin microbiota samples from 118 individuals. 16S rRNA gene data. Analyzing atopic sensitization (i.e., allergic

disposition) in a random sample of adolescents.

Linear and logistic regression,

and PCA.

Hanski et al., 2012

Liver disease FINRISK population cohort (Borodulin et al.,

2018).

Shallow shotgun metagenome

sequencing.

Study the link between the Fatty Liver Index

(FLI) and gut microbiome composition in a

population sample in Finland.

Gradient boosting. Ruuskanen et al., 2020

Liver disease A large population-based cohort (N ≥ 7,115)

and ∼15 years of electronic health register

follow-up of the FINRISK population cohort

(Borodulin et al., 2018).

Shallow shotgun metagenome

sequencing.

Investigate the predictive ability of gut microbial

markers in conjunction with conventional risk

factors, for incident liver disease and alcoholic

liver disease.

Gradient boosting. Liu et al., 2020

Serum lipids Healthy Finnish adults (n = 25, 18 females, 7

males).

16S rRNA gene data. Evaluate the association between the gut

microbiome and lipid profile.

Linear models, unsupervised

hierarchical clustering.

Lahti et al., 2013

IBD (Crohn’s disease,

Ulcerative Colitis,

collagenous colitis) vs

healthy

Three publicly available human metagenomics

data sets as Use Cases (Turnbaugh et al.,

2009; Koren et al., 2013; Halfvarson et al.,

2017).

OTU tables. Predicting gut microbiome functional role. Supervised Learning method

comparison.

Wassan et al., 2018a

Obesity 267 children aged 7–18 years from the

American Gut Project (McDonald et al.).

16S rRNA gene data. Composition of gut microbiota and its

associations with BMI level, weight change and

lifestyle.

Linear decomposition model. Bai et al., 2019

Postmortem Changes 144 sample swabs were from 21 cadavers. 16S rRNA gene data. Use of necrobiome data in the prediction of the

Postmortem interval.

Regression. Johnson et al., 2016
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sequencing. They used correlation-based network analysis and
dimensionality reduction to assess the effect of probiotics
consumption and found that probiotic intervention reduced the
abundance of potential bacteria such as Citrobacter and Klebsiella
spp. in the human gut microbial community. Moreover, they
found that probiotic intervention may reduce the flatulence
through downregulation of Methanobrevibacter spp. abundance
(Seo et al., 2017).

Biomedical Applications of ML
Techniques in Human Microbiome
Analyses
Figure 2 summarizes reviewed papers based on the input data
type and ML method type. The most dominant input data type
in the case application of ML methods for human microbiome
analysis has been 16S rRNA amplicon-based sequencing data
either in the form of OTU or ASV tables while usage of
shotgun metagenomes has increased during recent years. There
are a small number of studies that have tested ML methods on
both amplicon-based and shotgun datasets. Most often applied
ML methods have been feature classification, selection and
regression. Most often different ensemble learning methods have

been applied while deep learning has been used in few cases. The
number of yearly published papers using ML for microbiome
data analysis has been slightly growing during years 2011–2018
and increased more than twice in 2019 compared to the previous
year (Supplementary Figure 2).

The application of DP to human microbiome analysis is
not well captured by our dataset as its application for human
microbiome analysis is an emerging field. Recent example
includes disease state prediction (inflammatory bowel disease,
type 2 diabetes, liver cirrhosis, obesity) using deep representation
learning framework that deploys various autoencoders to learn
robust low-dimensional representations from high-dimensional
microbiome profiles and trains classification models based on
the learned representation (Oh and Zhang, 2020) or that relate
key microbial biomarkers with metabolite biomarkers in gut
microbiome (Le et al., 2020).

Our results indicate that the biomedical application of ML
for analyses of human microbiome datasets has been mainly
focused on the characterization of differently abundant microbial
groups between different body sites and the effect of diet on
microbiome composition and dynamics. The gut microbiome
datasets have been extensively used to stratify and classify patients
according to symptoms or characteristics to assist in the diagnosis

TABLE 3 | Available Resources for applying ML to human microbiome studies.

Tool Name Description References

Feature Selection with the

R Package MXM

Includes several feature selection algorithms. In particular, the Statistically Equivalent Signatures (SES)

algorithm that is very suitable for microbiome data because it scales up to high dimensions and requires

few samples. It also reports “multiple biosignatures” meaning multiple, minimal-size subsets of features

that lead to an equally predictive model. A more recent feature selection algorithm that scales up well to

high dimensional data called Forward-Backward Selection with Early Dropping (FBED) also

implemented in the MXM R package; It is preferable to SES when the sample size is higher.

Lagani et al., 2017;

Borboudakis and

Tsamardinos, 2019

Automated Machine

Learning (AutoML) with

JADBio.

End-to-end AutoML tool designed to deliver predictive and diagnostic models to non-experts while

drastically increasing the productivity of expert analysts. Several qualifications make JADbio

(www.jadbio.com) very suitable for microbiome data analysis. First, it accepts numerical measurements

(e.g., abundance tables), as well as discrete predictors (e.g. experimental factors and curated

metadata), and incomplete datasets with missing values. Second, it facilitates a novel out-of-sample

bootstrapping protocol able to provide accurate, non-optimistic estimates of predictive performance

even in cases of low sample sizes (e.g., 40) and hundreds of thousands of features Finally. It uses SES

and FBED to return the corresponding biosignatures. This allows the creation of predictive models that

are equally good up to statistical equivalence, thus, providing the researcher with choices when

designing new cost-benefit diagnostic assays.

Tsamardinos et al., 2018,

2020

Microbiome network

inference with SCENERY.

SCENERY is a free online application that allows users to perform several network learning tasks

(scenery.csd.uoc.gr). It is the first of its kind to facilitate advanced algorithms for the inference of

association networks, probabilistic causal networks and Bayesian networks. The qualifications of

SCENERY have been successfully shown on the single-cell cytometry domain. At the moment,

SCENERY does not treat missing values or compositionality, yet, it is readily applicable to the

microbiome data domain for inferring causal or non-causal networks of microbiome molecules and

species.

Papoutsoglou et al., 2017

The Microbiome Modeling

Toolbox

Comprehensive toolbox to model (i) microbe-microbe and host-microbe metabolic interactions, and (ii)

microbial communities using microbial genome-scale metabolic reconstructions and metagenomic data.

Baldini et al., 2019

Constraint-based

reconstruction and analysis

(COBRA) Toolbox v.3.0.

Software suite for quantitative prediction of cellular and multicellular biochemical networks with

constraint-based modeling.

Heirendt et al., 2019

Reconstruction, Analysis

and Visualization of

Metabolic Networks

(RAVEN).

RAVEN is a commonly used MATLAB toolbox for genome-scale metabolic model reconstruction,

curation and constraint-based modeling and simulation.

Wang et al., 2018

Fizzy: feature subset

selection for metagenomics

Python command line tool compatible with BIOM format, for microbial ecologists that implements

information-theoretic subset selection methods for biological data formats.

Ditzler et al., 2015; http:

//github.com/EESI/Fizzy.
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TABLE 4 | Common problems in machine-learning analyses.

Problem type Problem description

Not cross-validating

the feature

selection step

Perhaps the most common pitfall of performance estimation is that of performing feature selection on the complete, labeled dataset (e.g. by

differential expression) and subsequently cross-validating only the modeling algorithm on the same data (Hastie et al., 2009). The same account

for any other step on the pipeline that peeks at the labels or the outcome to predict. In the case of large sample and balanced datasets the

overestimation should be unnoticeable. On small sample or imbalanced datasets, however, overestimation can become quite significant

(Tsamardinos et al., 2020). An analyst should cross-validate all steps of the analysis as atoms, including the preprocessing, imputation, feature

selection, and modeling to obtain accurate estimates of performance.

Not correcting for

winner’s curse

A second common error is reporting the cross-validation predictive performance of the winning algorithm or ML pipeline as the final performance

estimate. For example, an analyst may try 1000 combinations of different algorithms for each step of the analysis with various values for their

hyper-parameters and find that the winning combination has a cross-validated accuracy of 80%. This estimate is on average, overestimated

because of the “winner’s curse” (Ioannidis, 2008). The overestimation due to the winner’s curse is again large in small or imbalanced datasets. It

is not uncommon to find 0.7 AUC when the true one equals random guessing (0.5 AUC) due to the winner’s curse. Other estimation protocols

need to be applied in these cases. The simplest solution is to withhold a separate test set to estimate the performance of the winning model;

unfortunately, this technique loses samples to estimation and cannot be applied when samples are scarce. Techniques that remove the winner’s

curse in small samples are the nested cross-validation and the bootstrap bias-corrected CV (Tsamardinos et al., 2018).

Not stratifying the

split to folds

Another typical error occurs when randomly splitting the available samples, either for creating an external validation dataset, or to perform

cross-validation, without accounting the class imbalance and sample dependency. The partitioning should be stratified, i.e., the class

distribution should be maintained in the folds. When the classes are imbalanced, sample stratification leads to improved performance

estimations (Tsamardinos et al., 2015).

Not handling

repeated

measurements

When sampling is correlated, e.g., the same subject is measured repeatedly, care needs to be exercised. Treating samples as identically and

independently distributed (i.i.d.) as cross-validation assumes, provides overestimated performance estimations. When samples are grouped in

repeated measurements, one should take care to assign all samples in the group in the same fold. This way, they all belong in the train set or

the test set during cross-validation and never in both.

Splitting data

inappropriately

When building ML models, typically data is broken into training and test sets. The training set is used to teach the model, and the model’s

performance is evaluated by how well it describes the test set. Researchers typically split the data at random that may not be the correct

approach always. The “right” way to split data might not be obvious, but careful consideration and trying several approaches may give more

insight (Riley, 2019).

and management of diseases with a preference on those related
with gut microbiome, due to easy accessibility for obtaining
fecal samples, such as inflammatory bowel diseases, obesity and
colorectal neoplasms (see Figure 3). A list of selected studies on
the application of machine learning to human microbiome data
in biomedical research is presented in Table 2.

However, it should be noted that many of the reviewed
papers are focused on the comparison of the performance of
different MLmethods, developing workflows or creating newML
approaches considering the technical aspects of ML related to the
nature and complexity of the microbiome data, but without a
clear biological or clinical question behind to solve. A detailed
analysis of the dataset obtained showed that 20 of 89 papers
used their own unique datasets, while the rest of publications
made repetitive and intensive use of a limited number of datasets
to develop ML solutions, like the Human Microbiome Project
widely used for microbiome body composition studies. Besides,
we identified 9 papers related to the development of ML methods
for microbiome longitudinal analysis that are mainly based on
the reuse of five datasets (Caporaso et al., 2011; Gajer et al., 2012;
David et al., 2014; La Rosa et al., 2014; DiGiulio et al., 2015)
with Gajer et al. being reused in four of them. In addition, we
need to highlight the limited sample size in many of the studies
what compromises the applicability and the conclusions of the
ML methods reviewed.

Table 3 summarizes the main available resources for
applying different ML methods to human microbiome studies.
Most of the reviewed studies have applied ML methods
incorporated in general data analysis packages. As stated
by Moreno-Indias et al. (2021). it is important to foster the

development of user-friendly ML-based tools for translational
and clinical personnel. This process is strongly dependent
on open-source software ecosystems as application of ML in
microbiome data analysis is rapidly evolving field and involves
high degree of multidisciplinary.

Building prediction models for the analysis of microbiome
or similar biological data often requires the design of an ML
pipeline in which different algorithms for data preprocessing,
imputation, feature selection, and modeling are combined along
with their hyper-parameter values. The implementation of such
a complex modeling strategy could be tedious and requires
substantial human resources to optimize. Most importantly,
however, this process is prone to serious methodological errors
that lead to models whose training performance estimates are
inflated (overestimated) and, thus, fail to generalize on external
validation datasets. Some common pitfalls of ML application are
listed in Table 4.

CONCLUSION

Human microbiome research has received increasing interest
during recent years, mainly due to the large potential applicability
of metagenomics data from human microbiome studies in
personalized medicine. International and interdisciplinary efforts
have made possible to collect large volumes of microbiome data,
facilitating the development and implementation of different
ML methods. Here we reviewed the different ML methods
developed and applied to human microbiome data analysis
for an insight of the development in the field with their

Frontiers in Microbiology | www.frontiersin.org 19 February 2021 | Volume 12 | Article 634511

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Marcos-Zambrano et al. Machine Learning for Human Microbiome

achievements and pitfalls. Although the data presented here is
mostly centered on the analysis of bacterial community, many
principles reviewed could be applied in general, regardless of
the microbiome feature type. The advantages of ML techniques
over classical statistical models are to infer relationships between
variables for automatic pattern discovery and handling with
multi-dimensional data. Therefore, these methods have been
widely used for classification, biomarker identification, gene
prediction or association studies in human microbiome research.
Based on the performed review, most common machine
learning algorithms that were used for microbiome analysis were
Random Forest, Support Vector Machines, Logistic Regression
and k-NN. Since there are several factors that need to be
considered during the selection of the ML algorithm (i.e.,
number of features, number of observations, data quality, data
type etc.), it is recommended to apply and evaluate more than
one method and select the one with the best performance.
However, other ML applications that will be of high interest
in the near future are underrepresented like deep learning,
spatiotemporal and dynamic modeling, methods for longitudinal
and mechanistic analyses or integrative methods for data from
different sources to understand microbiome-host interaction and
diseases. Nevertheless, the full deployment of ML techniques
in human microbiome studies for a complete application and
integration in the personalized medicine field requires further
efforts. Personalized medicine requires a deep understanding of
features characterizing individual particularities and responses a
frequent lack of ML methods. ML models with high complexity
often come with a loss of interpretability running as black boxes.
In many cases, MLmethods fail to provide easily, understandable
and interpretable predictions essential to identify mistakes or
biases in the input data when the model is trained. Moreover,
ML methods introduced in this review require fine-tuning
of many hyper-parameters to achieve optimal results being
a time-consuming task given the high number of possible
alternatives. In addition, for training powerful ML methods
with reliable results a large amount of data and a lot of
computing resources are required. In general, ML methods
introduced in this review are based on datasets with a limited
number of cases and without other independent datasets what
conditions their results and applicability. Therefore, from
our review perspective future efforts in the field should be
focused in (1) create standards (incl data pre-processing)
for the development and deployment of ML techniques with
an easy, transparent, and trustable interpretability for non-
experts taking in account the peculiarities of microbiome data;
(2) increase the number and quality of human microbiome
studies; (3) create efficient data structures and ML repositories
following Findable, Accessible, Interoperable and Reusable
(FAIR) principles and (4) build bridges between different

disciplines, microbiology, biology, statistics, bioinformatics,
engineering and others to increase interdisciplinary for
innovative solutions. COST Action CA18131 on Statistical
and Machine Learning Techniques in Human Microbiome
Studies (ML4Microbiome) is highly committed to pursuit these
objectives in collaboration with the international community and
extended discussions on contemporary challenges and proposed
solutions are addressed by the ML4Microbiome consortium in
Moreno-Indias et al. (2021).
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