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Abstract
Background: For thousands of years, disabilities due to nu-
trient deficiencies have plagued humanity. Rickets, scurvy, 
anemia, stunted growth, blindness, and mental handicaps 
due to nutrient deficiencies affected up to 1/10 of the world’s 
population prior to 1900. The discovery of essential amino 
acids, vitamins, and minerals, in the early 1900s, led to a fun-
damental change in our understanding of food and a revolu-
tion in human health. Widespread vitamin and mineral sup-
plementation, the development of recommended dietary 
allowances, and the implementation of food labeling and 
testing along with significant improvements in food produc-
tion and food quality have meant that nutrient-related dis-
orders have almost vanished in the developed world. The 
success of nutritional science in preventing disease at a pop-
ulation-wide level is one of the great scientific triumphs of 
the 20th century. The challenge for nutritional science in the 
21st century is to understand how to use nutrients and other 
food constituents to enhance human health or prevent dis-

ease at a more personal level. This is the primary goal of pre-
cision nutrition. Summary: Precision nutrition is an emerg-
ing branch of nutrition science that aims to use modern 
omics technologies (genomics, proteomics, and metabolo-
mics) to assess an individual’s response to specific foods or 
dietary patterns and thereby determine the most effective 
diet or lifestyle interventions to prevent or treat specific dis-
eases in that individual. Metabolomics is vital to nearly every 
aspect of precision nutrition. It can be used to comprehen-
sively characterize the thousands of chemicals in foods, to 
identify food byproducts in human biofluids or tissues, to 
characterize nutrient deficiencies or excesses, to monitor 
biochemical responses to dietary interventions, to track 
long-term or short-term dietary habits, and to guide the de-
velopment of nutritional therapies. In this review, we will de-
scribe how metabolomics has been used to advance the field 
of precision nutrition by providing some notable examples 
or use cases. First, we will describe how metabolomics 
helped launch the field of precision nutrition through the 
diagnosis and dietary therapy of individuals with inborn er-
rors of metabolism. Next, we will describe how metabolo-
mics is being used to comprehensively characterize the full 
chemical complexity of many key foods, and how this is re-
vealing much more about nutrients than ever imagined. 

This is an Open Access article licensed under the Creative Commons 
Attribution-NonCommercial-4.0 International License (CC BY-NC) 
(http://www.karger.com/Services/OpenAccessLicense), applicable to 
the online version of the article only. Usage and distribution for com-
mercial purposes requires written permission.



LeVatte/Keshteli/Zarei/WishartLifestyle Genomics 2022;15:1–92
DOI: 10.1159/000518489

Third, we will describe how metabolomics is being used to 
identify food consumption biomarkers and how this opens 
the door to a more objective and quantitative assessments 
of an individual’s diet and their response to certain foods. 
Finally, we will describe how metabolomics is being coupled 
with other omics technologies to develop custom diets and 
lifestyle interventions that are leading to positive health 
benefits. Key Message: Metabolomics is vital to the advance-
ment of nutritional science and in making the dream of pre-
cision nutrition a reality. © 2021 The Author(s).

Published by S. Karger AG, Basel

Introduction

Optimal nutrition promotes prolonged good health, 
while poor nutrition contributes to chronic diseases such 
as cardiovascular disease, diabetes, obesity, or diseases of 
undernutrition such as maramus and kwashiorkor. Many 
developed countries have implemented nationwide man-
datory mineral or vitamin supplementation along with 
population-wide recommended dietary allowances 
(RDAs) of certain foods (fruits and vegetables, dairy, and 
meat). These RDAs are set at a level that meets the needs 
for essential vitamins, minerals, amino acids, and fatty 
acids for maintaining good health in 97.5% of a specific 
population. Mandated micronutrient supplementation 
and nationwide RDAs have helped to significantly im-
prove population-wide health in many countries. While 
RDAs are set as a goal for usual intake at the individual 
level, not everyone benefits from these RDAs in the same 
way. Indeed, there can be significantly different interin-
dividual (cross-sectional differences between individu-
als) or intraindividual (longitudinal differences within a 
single individual) variations or responses to the same 
foods or the same nutrients [1]. These dietary responses 
are affected by age, genetics, gut microbiota, metabolism, 
physiology, physical activity, and lifestyle [2]. It is this re-
alization of nutritional “individualism” that has led to the 
push toward precision nutrition.

Precision nutrition is a branch of nutrition science that 
aims to use genomics, proteomics, and/or metabolomics 
to assess an individual’s response to specific foods or di-
etary patterns. By assessing these responses at a compre-
hensive, molecular level, it is possible to determine the 
most effective diet or lifestyle interventions to improve 
health or prevent and even treat specific diseases [3]. A 
key focus of both precision nutrition and precision med-
icine is on proactive intervention and prevention rather 
than reactive salvaging or saving. Catching a problem ear-

ly and working to fix it usually prevents long-term or ir-
reparable damage. Given its potential impact, the Nation-
al Institutes of Health has promoted precision nutrition 
as the best strategy to develop clinically relevant and 
meaningful diet solutions for individuals and populations 
that share common physiological, behavioral, or socio-
cultural characteristics [4].

The emergence of precision nutrition has largely been 
tied to the emergence of sufficiently fast, cheap, and com-
prehensive genomics, proteomics, and metabolomics 
technologies. It is through these technologies that the 
necessary molecular measurements to precisely assess 
food composition, identify individual genetic propensi-
ties, or evaluate individual responses to diet and lifestyle 
interventions have become available. While most reviews 
on precision nutrition have focused on the use of genom-
ics or transcriptomics technologies to advance the field 
[5, 6], in this review we shall focus on the role of metabo-
lomics in precision nutrition. As we will show, metabolo-
mics is vital to nearly every aspect of precision nutrition. 
Metabolomics is a field of omics science that uses cutting-
edge analytical chemistry techniques and advanced com-
putational methods to characterize complex biochemical 
mixtures [7]. It can be used to comprehensively charac-
terize the thousands of chemicals in foods [8], to identify 
food byproducts in human biofluids or tissues [9], to 
characterize nutrient deficiencies or excesses [10, 11], to 
monitor biochemical responses to dietary interventions 
[12], to track long-term or short-term dietary habits [13], 
and to guide the development of nutritional therapies 
[14].

In this review, we will briefly introduce metabolomics 
and describe how it has become a key technology for nu-
tritional science. We will then show how metabolomics 
has been used to advance the field of precision nutrition 
by providing some notable examples or case studies. First, 
we will describe how metabolomics played a key role in 
launching the field of precision nutrition through the di-
agnosis and dietary therapy of individuals with inborn 
errors of metabolism (IEMs). Next, we will describe how 
metabolomics can be used to comprehensively character-
ize the full chemical complexity of many key foods and 
how this is adding new meaning to the concept of mo-
lecular nutrition. Third, we will describe how metabolo-
mics is being used to identify biomarkers of food intake 
(BFIs), and how this could open the door to a more objec-
tive and quantitative assessments of an individual’s diet 
and their response to dietary changes. Finally, we will de-
scribe how metabolomics is being coupled with other 
omics technologies to develop custom diets and lifestyle 
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interventions that are leading to positive health benefits 
for several chronic diseases. This review will conclude 
with a brief discussion regarding the future of metabolo-
mics in precision nutrition.

Metabolomics and Nutritional Science

Metabolomics is the science of studying the metabo-
lome. It is a branch of analytical chemistry that focuses 
on characterizing small molecules (molecular weights of 
<1,500 Da) found in tissues, cells, or biofluids. Unlike 
genomics, transcriptomics, or proteomics, in which a 
single instrument is often sufficient to perform the nec-
essary measurements, metabolomics requires a broad ar-
ray of instrumentation. Over the past 15 years, 3 main 
technologies have emerged as the primary workhorses in 
metabolomics: nuclear magnetic resonance (NMR) spec-
troscopy [15], gas chromatography-mass spectrometry 
(GC-MS) [16], and liquid chromatography MS (LC-MS) 
[17, 18]. Each technique provides broad coverage of 
many classes of organic compounds, including lipids, 
amino acids, sugars, biogenic amines, and organic acids. 
As a general rule, NMR is best at identifying and quanti-
fying high abundance metabolites, while GC-MS and 
LC-MS are best at detecting lower abundance metabo-
lites (shown in Fig. 1). Although these technologies each 
have their own advantages and disadvantages, numerous 
studies have shown how they may be used to comple-
ment each other [17, 19]. Indeed, the use of multiple 
technologies greatly broadens the level of metabolite 
coverage that can be achieved and the types of samples 
that can be studied.

Metabolomic approaches can either be targeted or un-
targeted. With targeted metabolomics, selected metabo-
lites are identified and quantified by comparison to 
known chemical standards to help develop biomarkers or 
test hypotheses. With untargeted metabolomics, there is 
less focus on compound identification and quantification 
but more emphasis on novel compound discovery and 
discovery-based research [19]. Both untargeted and tar-
geted metabolomics have their advantages and disadvan-
tages, but given the importance attached to bioactive 
compound identification and quantification, there is a 
growing preference for quantitative metabolomics in 
many areas of food science and nutrition research. In-
deed, targeted, quantitative metabolomics is now widely 
used in food composition analysis [8, 20, 21], the identi-
fication of BFIs [13, 22], the detection and monitoring of 
nutritional deficiencies or metabolic/nutrient disorders 

[10, 11, 23], the estimation of dietary intake [24–26], and 
the development of dietary recommendations for well-
ness and chronic disease prevention [14].

Precision Nutrition and IEMs

Perhaps, the most successful example of precision nu-
trition, to date, has been the application of targeted me-
tabolomic methods toward newborn screening. Nearly 
every newborn child in the developed world is subject to 
a dried blood spot test that uses MS. These MS-based me-
tabolomic tests can measure up to 40 different metabo-
lites, including amino acids, organic acids, and acylcarni-
tines [27]. These metabolomic assays permit the diagno-
sis of up to 30 different metabolic disorders or IEMs [28]. 
Newborn screening is far and away the most successful 
example of any omics technology making its way to the 
clinic. Based on national testing data reported by many 
countries, we estimate that over the past 25 years >400 
million children have been subject to newborn screening 
and up to 1 million have had their lives improved through 
early detection and intervention. In many cases, IEMs de-
tected by MS-based newborn screening can be treated 
through customized dietary interventions that either sup-
plement or eliminate a certain nutrient that causes the 
health effects arising from the IEM. Not only does MS-
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Fig. 1. Comparison of relative sensitivity or LDLs of the common-
ly used metabolomic platforms including NMR, GC-MS, and liq-
uid chromatography LC-MS. LDLs, lower detection limits; NMR, 
nuclear magnetic resonance; GC-MS, gas chromatography-mass 
spectrometry; LC-MS, liquid chromatography-mass spectrome-
try.
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based newborn screening help in diagnosing or even pre-
dicting disease but the same metabolomic techniques can 
also be used to determine the optimal nutritional therapy, 
to monitor each individual’s response, and to customize 
the composition of the medical food to suit the patient.

There are a number of examples with metabolomics 
and metabolite-guided dietary therapy succeeding in im-
proving the lives of IEM patients. For instance, precision 
nutrition has long been used to treat patients with maple 
syrup urine disease (MSUD). MSUD is an autosomal re-
cessive IEM that is usually first detected via MS-based 
newborn screening for high blood levels of branched-
chain amino acids (BCAAs). MSUD affects an individu-
al’s ability to break down BCAAs such as leucine, isoleu-
cine, and valine [29]. As a result, these BCAAs and their 
toxic byproducts (α-keto acids) buildup in the body. If 
untreated, MSUD can cause convulsions and permanent 
brain damage [30]. To prevent these BCAAs and keto ac-
ids from accumulating, MSUD patients are given special-
ly developed medical foods that have been formulated to 
be free of leucine, isoleucine, and valine. These custom 
foods or beverage mixes contain all the amino acids (ex-
cept the BCAAs) and appropriate protein content, vita-
mins, minerals, omega 3-polyunsaturated fatty acids, car-
bohydrates, and other fats needed for proper growth and 
development of affected individuals. Metabolomics is not 
only used to diagnose MSUD and guide the nutrient in-
tervention but it is also used throughout an MSUD pa-
tient’s life as each patient must test their urine daily for 
the buildup of keto acids using an at-home metabolomic 
colorimetric test, such as the dinitrophenyhydrazine as-
say, a nonquantitative screening test for keto acids [29].

Precision nutrition, guided by metabolomics, is also 
used to treat individuals with phenylketonuria (PKU). 
PKU is an autosomal recessive IEM that is usually first 
detected via MS-based newborn screening for high blood 
levels of phenylalanine. PKU affects a patient’s ability to 
break down the amino acid phenylalanine [31]. The ex-
cess phenylalanine is converted to toxic metabolites (phe-
nylketones) which accumulate in the blood and brain. If 
untreated, PKU can cause irreversible brain damage, sei-
zures, and behavioral, emotional, and social problems 
[32]. To prevent the buildup of phenylketones, PKU pa-
tients must adhere to medical diets that are low in phe-
nylalanine. Furthermore, they must avoid foods contain-
ing the artificial sweetener aspartame (which is converted 
to phenylalanine upon digestion). As those with PKU will 
not receive all the essential nutrients from their restricted 
diet, they must drink age-specific medical beverages free 
of phenylalanine that includes all other amino acids, vita-

mins, minerals, carbohydrates, and fats to meet all their 
energy requirements and to support proper growth and 
development of affected individuals. PKU patients are 
regularly monitored via metabolomic methods for the 
buildup of phenylalanine and phenylketones through 
monthly blood tests.

Yet another example of an IEM that can be treated via 
metabolomics-guided precision nutrition is biotinidase 
deficiency (BTD). BTD is an autosomal recessive IEM 
that can be detected via MS-based newborn screening for 
low biotin levels. BTD prevents the vitamin biotin from 
being recycled by the body [33]. Biotin helps with the 
breakdown of protein, fats, and carbohydrates. If left un-
treated, those with BTD can develop breathing and bal-
ance problems, vision and hearing loss, and alopecia and 
skin rashes. BTD patients can avoid these neurological 
and dermatological disorders through oral biotin supple-
ments [34]. Blood tests are not usually performed to mon-
itor BTD patients; however, periodic monitoring for di-
etary noncompliance may be performed with younger in-
dividuals. Thus, for IEMs, metabolomics offers precise, 
personalized diagnoses that help catch the condition ear-
ly so that precise diets, customized lifestyle changes, or 
individualized medical foods can be developed or pre-
scribed. Indeed, metabolomics has been enabling preci-
sion nutrition for the proactive treatment of IEMs for >2 
decades.

Metabolomics and Comprehensive Food 
Characterization

Understanding what nutrients and micronutrients are 
in our food is key to understanding their health-promot-
ing or health-harming properties. This kind of molecular 
understanding is also key to the main goals of precision 
nutrition. Traditionally most food analyses have focused 
on measuring about 30–40 macronutrient or essential 
nutrients. These measurements are normally performed 
by national food agencies such as the USDA or Health 
Canada. Most developed countries have national food 
composition databases that provide detailed measure-
ments of these nutrients for thousands of raw or prepared 
foods.

However, most foods actually contain thousands of 
compounds, not dozens [35]. Indeed, the average fruit or 
vegetable is estimated to contain >15,000 different com-
pounds from >100 chemical classes with concentrations 
ranging from femtomolar (e.g., vitamins) to millimolar 
(e.g., sugars) [35]. Many of the unmeasured or less mea-
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sured compounds in foods include micronutrients such 
as polyphenols, which have effects that could lead to im-
portant health benefits [36], terpenes which give many 
foods their flavor and aroma [37], and various pigments 
which give foods their color. The only way to detect, iden-
tify, and quantify this rich chemical diversity in foods is 
through metabolomics. A diagram illustrating standard 
metabolomic workflow for analyzing food samples is 
shown in Figure 2. Comprehensive MS and NMR me-
tabolomics studies on milk [17], beef [38], bananas [39], 
wine [40], beer [41], rice [42], and tomatoes [43] have led 
to the identification of hundreds to thousands of previ-
ously undocumented chemicals in these foods and bever-
ages. This work has led to the creation of a number of 
online food constituent or food metabolome databases 
such as Phenol-Explorer [44], PhytoHub [45], and FooDB 
[46]. Phenol-Explorer contains detailed data on 501 poly-
phenols from 459 different foods along with data on the 
effects of food processing on polyphenol contents on 161 
polyphenols from 155 foods. PhytoHub includes data on 
> 1,800 food phytochemicals (including many terpenes) 
and their metabolites from 356 different plant foods. 
FooDB, which is the largest of these databases, has infor-
mation on >71,000 chemicals in nearly 800 different raw 
or lightly processed foods. FooDB is particularly notable 
for including information on the health benefits, flavor, 
color, and aroma characteristics for many of these food 
compounds. These food metabolome databases, which 
primarily capture metabolomics-derived food composi-
tion data, are becoming key resources for guiding preci-

sion nutrition and informing nutrition scientists. This is 
because they provide rich, actionable information about 
the natural, unnatural, and even the unexpected com-
pounds that can be found in common foods. This infor-
mation can be used to formulate foods for medical pur-
poses and advance our understanding of foods that have 
the desired ingredients at the desired concentrations to 
maximize health benefits.

Metabolomics and BFIs

For precision nutrition to deliver on its promises, it is 
vital to have a detailed understanding of an individual’s 
diet and their overall nutritional status. Nutritional as-
sessment has been traditionally done through surveys 
such as 24-h dietary recalls, food frequency question-
naires, or dietary diaries. However, these methods have 
many inherent errors and limitations. Problems with re-
call bias, subjectivity, deliberate deception, memory laps-
es, inability to estimate portion sizes, lack of preparation 
details, and food processing information can often lead to 
incorrect or incongruous data. Due to the limitations of 
these methods, there has been a strong push to use more 
objective analytical methods that are more precise and 
more reliable to measure an individual’s food consump-
tion. This led to a major initiative launched in 2013 called 
the Food Biomarker Alliance (FoodBAll). The goal of 
FoodBAll was to use metabolomics to identify biomark-
ers of food intake (BFIs) [47]. FoodBAll has created an 

Food Samples Extraction Food Extracts

Chemical AnalysisData Analysis

Fig. 2. Standard food metabolomics work-
flow showing how samples are extracted 
and liquified and then analyzed via NMR, 
GC-MS, or LC-MS methods. Compound 
identification and quantification are often 
done through sophisticated annotation 
software. NMR, nuclear magnetic reso-
nance; GC-MS, gas chromatography-mass 
spectrometry; LC-MS, liquid chromatog-
raphy-mass spectrometry.
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inventory of metabolite markers in blood, urine, or other 
tissues/biofluids that can be used to reliably identify what 
a person has eaten and how (rapidly or slowly) that food 
has been metabolized. Understanding exactly what a per-
son has eaten, how much they have eaten, and how it has 
been metabolized is critical to doing precision nutrition. 
Indeed, without this kind of reliable information, the de-
velopment of personalized dietary interventions or the 
measurement of personalized dietary responses is almost 
impossible.

To catalog these BFIs, members of the FoodBAll con-
sortium systematically reviewed the literature and con-
ducted independent metabolomic studies to identify doz-
ens of BFIs for many classes of foods [17, 48–52]. The 
FoodBAll consortium also developed protocols and defi-
nitions for BFI identification and validation [53, 54]. 
Many of these BFIs are now listed in the HMDB [55], 
MarkerDB [56], and in Exposome-Explorer [24]. Some of 
the more useful BFIs identified include urinary 1-meth-
ylhistidine and 3-methylhistidine as BFIs of meat intake 
[57], urinary proline-betaine as a BFI of citrus intake [58], 
urinary TMAO as a BFI of fish consumption [59], serum 
daidzein as a marker of soy intake [60, 61] and urinary 
2-furoylglycine as a BFI for coffee consumption [62]. In 
many cases, the performance of these biomarkers in terms 
of their sensitivity, specificity, and area under the receiv-
er operating characteristic curve is quite impressive. In 
every case, these BFIs must be measured using targeted 
metabolomic methods.

BFIs offer nutrition scientists an unbiased, scientifi-
cally rigorous approach to molecularly assessing food 
consumption and avoiding the failings of food question-
naires. They also open the door to understanding indi-
vidual differences in terms of dietary habits, food metab-
olism, and gut microbial activity. This kind of informa-
tion is critical to implementing precision nutrition 
strategies. Indeed, without a solid understanding of what 
a person consumes and how their body processes, it is al-
most impossible to develop effective dietary or lifestyle 
interventions that could improve a person’s health or 
well-being [63].

Metabolomics and Precision Nutrition for Chronic 
Disease

Metabolomics is now being used to understand the di-
et-related mechanisms associated with many chronic 
conditions such as cardiovascular disease, diabetes, and 
obesity [64–66]. Among the most impressive examples of 

how metabolomics and precision nutrition have comple-
mented each other has been in diabetes control or preven-
tion. Diabetes is rapidly becoming one of the most com-
mon life-threatening conditions in the developed world. 
Approximately 10% of adults in the United States are di-
abetic and 35% are prediabetic [67]. To explore how me-
tabolomics, metagenomics, and precision nutrition could 
work to control diabetes, Zeevi et al. [68] integrated these 
omics techniques with machine learning to develop cus-
tomized dietary recommendations for controlling elevat-
ed postprandial blood glucose. In performing this study, 
the authors collected metabolomic-based blood parame-
ters, anthropometric data, physical activity data, self-re-
ported dietary intake, and gut microbial composition and 
function from 800 healthy and prediabetic participants. 
Participants were given standardized meals (glucose, 
bread, bread and butter, bread and chocolate, and fruc-
tose), and their blood glucose levels were continuously 
monitored for 1 week. Even though all participants ate the 
same food, they found a high interpersonal variability in 
postprandial glycemic responses. Using the data collected 
from these 800 individuals, they developed a machine-
learning algorithm to accurately predict glycemic re-
sponses for each participant (based on their omic profile) 
after consuming different types of food. This algorithm 
was later successfully validated in another cohort of 100 
individuals. This work led to the establishment of one of 
the first precision nutrition companies, DayTwo Inc., 
which specializes in using both individual metabolomics 
and microbial genomics data to create custom diets that 
can control or prevent prediabetes [69].

In another example of metabolomics being used to 
guide precision nutrition, Anwar et al. [70] conducted a 
study on 40 healthy adults with normal blood glucose lev-
els to predict the risk of developing type 2 diabetes. At the 
beginning of the study, blood samples were collected 
from participants to quantify metabolite levels using LC-
MS-based metabolomics. The blood metabolite levels 
were then used to calculate health risk scores for the de-
velopment of type 2 diabetes, insulin resistance, and as-
sociated comorbidities. Based on the analysis of their 
health risks scores, participants were provided with health 
reports with several lifestyle recommendations including 
personalized diets (guided by their dietary preferences 
and food allergies), exercise (based on physical limita-
tions), and nutritional supplements to normalize their 
blood metabolite levels. After following the recommen-
dations for 100 days, a follow-up metabolomic assess-
ment showed significant reductions in the health risks as-
sociated with type 2 diabetes and associated comorbidi-
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ties. Larger studies of up to 1,000 North American adults 
showed similar positive results when participants were 
given personalized nutrition and lifestyle recommenda-
tions based on baseline dietary behavior, preferences, and 
health markers measured via metabolomics [71]. While 
most metabolomics-driven precision nutrition studies 
have been limited to controlling diabetes, prediabetes, 
and/or obesity, it is clear that these approaches are having 
positive effects. Given that diabetes, prediabetes, and/or 
obesity affect >30% of American adults and given that 
they also lead to heightened risks for heart disease, stroke, 
and cancer, these success stories for precision nutrition 
and metabolomics are highly significant.

Conclusion and Future Directions

The application of metabolomics to diverse areas of 
nutritional and food science research has significantly ex-
tended our knowledge about the many chemicals in food. 
This work has also revealed the diversity of human meta-
bolic responses to these chemicals. As highlighted in this 
review, the development of specialized food composition 
databases and the identification of robust BFIs using me-
tabolomic platforms have provided new opportunities for 
researchers to design evidence-based dietary recommen-
dations and to assess their effectiveness on human health. 
While the use of metabolomics to guide precision nutri-
tion has largely been limited to treating IEMs and diabe-
tes, the success of these metabolomics-informed inter-
ventions suggests that similar kinds of lifestyle interven-
tions could be used to treat or prevent many other 
chronic conditions.

Certainly, there are a number of limitations and chal-
lenges to using metabolomics in nutritional research (ex-
tensively discussed by Maruvada et al. [72]). However, 
increased adoption is happening and important advances 
are being made. For instance, recent improvements in 
NMR and MS-based technologies for targeted metabolo-
mics combined with much more automated metabolomic 
analyses have made these techniques much cheaper and 
more widely accessible. Indeed, the projected cost to 
quantitatively measure up to 600 metabolites in a drop of 
blood or urine is predicted to be <USD 30. These dra-
matic cost reductions should open the door to widespread 
adoption and use in precision nutrition applications. As 
a result, a number of new precision nutrition companies 
are emerging that are taking advantage of these pricing 
dynamics. However, a key limitation of metabolomics be-
ing applied to diet and nutrition studies is the relatively 

short-term dietary window (a few hours to a few days) 
that blood, urine, or stool samples provide. New develop-
ments in the area of hair [73–75], fingernail, and toenail 
metabolomics [76] offer the possibility of analyzing and 
interpreting much longer term dietary patterns. We ex-
pect that, as more metabolomics and nutrition data are 
collected and more BFIs continue to be identified, it is 
likely that many more robust connections to health out-
comes will become apparent. While this may take some 
time, these unique datasets and these important health 
connections will go a long way to making precision nutri-
tion more ubiquitous and more useful to a larger segment 
of the population.
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