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FOREWORD 

This document discueees t h e  general p r lnc ip le .o f  doing Honta 

-10 calcula t ions  wi th  pa r t i cu l a r  emphasis on reducing t he  amount 

of work involved. It does not discuss, but  f o r  a few ~rxceptione, 

re la t ionships  btween probabi l i s t i c  problems and determinis t ic  ones, 

and how e i t h e r  can be ~ h o s m  t o  model t h e  other. More importantly, 

it does not  include any important spec i f i c  applications.  ~ 0 t h  of 

these  other sub jec t s  a r e  widely discussed in  Monte Carlo l i t e r a t u r e  

by many people. A t  a l a t e r  da te  t he  author  hope8 t o  put  out  a 

book on t he  sub jec t  which w i l l  supersede t h i s  r epo r t  and include 

?$ applications.  

- 9 The work t h a t  preceded t h i s  repor t  has been supported by t h e  ,- 
-U "1 !) 

U.S. A i r  Force and several  l abora tor ies  of t h e  A.E.C. In  addit ion,  

I would l i k e  t o  express my appreciat ion t o  t h e  Reactor Division of 

1 .  

b 
the A.E.C. f o r  t h e i r  sympathetic and long range support of  basic 

I v s tud ies  in t h e  Monte Carlo method. 

A sho r t  descr ipt ion of  the  Monte Carlo method can be given 

a s  follows. The expected score of a player i n  any reasonable 

game of chance, however complicated, can in' p r inc ip le  be e a t i m t d  
1 

by averaging the  r e s u l t s  of a l a rge  number of plays of t he  game. 

1 Such est imation can be rendered more e f f i c i e n t  by various devices 

which replace  the  o r ig ina l  game with another knom to have t h e  

same expected score. The new game may lead t o  a more e f f i c i e n t  

est imate by being l e s s  e r r a t i c ,  t h a t  i s ,  hav-ing a score of lower 

variance o r  by being cheaper t o  play with t h e  equipment on hand. 
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I There a r e  0.bviously many problems about p robab i l i ty  t h a t  can be 

I viewed as problems of ca lcu la t ing  t h e  expected score of a game. 

S t i l l  more, t he r e  a r e  problems t ha t  do not  concern probabi l i ty  but 

a r e  none t h e  l e s s  equivalent f o r  some purpGses t o  t he  calcula t ion 

of an expected score. The Monte Carlo method r e f e r s  simply t o  the 

exploi ta t ion of these  remarks. 

The method has been exbns ive lg  used by s t a t i s t i c i a n s  and 

others  under t he  name of Model Sampling. Many of t h e  variance 

reducing techniques diecwssed i n  t h i s  repor t  have been developed by 

s t a t i a t i c i a n s  f o r  use i n  Survey Sampling. 

John von Neunann and Stanley Dlam seem t o  be mainly responsi- . > 

ble ,  both a s  p r ac t i t i one r s  and propagandists, f o r  t h e  present 
1 

., . 
widespread use i n  physics and engineering. They a l s o  seem t o  have - ,  

.' 

been t h e  first t o  have advocated the  idea  of systematically inver t ing  

t he  usual s i t ua t i on  and t r e a t i n g  determinate mathematical problems 

by f i r s t  f ind ing  a probabi l i s t i c  analogue and then solving t h i s  

analogue by some experimental sampling procedure. In  this repor t  

though,most of t h e  appl icat ions  a r e  t o  problems which have been 

derived from probabi l i s t i c  s i tua t ions .  The &me of Monte Carlo.  i s  

used ra ther  &an Model Sampling p a r t l y  because we wish t o  di f feren-  

t i a t e  the  r e l a t i v e l y  sophis t ica ted sampling techniques used in t h e  

former from the  straightforward approach t h a t  seems to b s  customary 

in the usual  ap'plications of t he  l a t t e r ,  and..partl$ because the  . 

more picturesque name ;of Monte Ca,rlo has j u s t  :about . . .replaced, i ts  

preddcsssor i n  physical applications.  



I n  w r i t i n g  a r e p o r t  of t h i s  na ture  it i s  d i f f i c u l t  t o  appor t ion  

c r e d i t s  and acknowledgments i n  a reasonable nariner. The author  has 

spent  about half  of h i s  time betwuen 1948 and 1952 on a p p l i c a t i o n s  of 

t h e  method. Some of t h e  a p p l i c a t i o n s  v i t h  which he  has been concerned 

have teeri f a i r l y  l a r g e  problems involving t h e  col labora t ion  of 

s e v e r a l  organiza t ions  and many indiv iduals .  Because major emphasis 

has always been oc physics o r  engineering, and no t  s t a t i s t i c s ,  and 

a l s o  because most of t h e  problems a r e  c l a s s i f i e d ,  it is d i f f i c u l t  t o  

pinpoint  many indiv idual  cont r ibut ions .  Therefore, except  f o r  

Part I (Impired by John van B a m m n )  and for #peaifla rtefiistid 

suggestions, t h e r e  w i l l  be almost no s p e c i f i c  acknowledgment& mde.  

.I.: Instead,  a  simple l i s t i n g  of t h e  ind iv idua l s  who have contr ibuted  

i;: t o  t h e  problems upon which we learned how t o  do Monte Car lo  will be 

given. 

The fol lowing e i t h e r  o r ig ina ted  p rob lem o r  col labora ted  on 

t h e i r  design: Hans Bethe, Jim Coon, Robert Day, Walter Ooad, 

Herber t  Goldstein, Frederic de Hoffmann, Frank Hoyt, Richard U t t e r ,  

Louis Nelson, Lothar Nordheim, Milton P lesse t ,  Pred Reines, Paul  

s t e i n ,  Eduard T e l l e r ,  Robert Thomas and Carl Wahlske. 

I am indsbted to  t h e  fol lowing f o r  h e l p f u l  discussions:  

George Brown, Herman Feschbach, Francis  Friedman, Gerald Goertzel,  

Mario Juricosa, John von ~ k n n ,  Melvin Peisakoff ,  Leonard J. Savage, 

John W. Tukey and Theodore Welton. 

~ o s t  of t h e  a c t u a l  work of programming, coding and oomputing 

was done by Barbara Batchelder, Barbara Cohen, Ruth Ann Engvall, 

Lois ~ o s t e r ,  Fs the r  Gersten, Irwin Greenuald, Jean Hall ,  Clyde Hauff, 



v i i  

Herbert Hilton, Robert Johnson, WfnFfred. Jonas, David Langfield, 

I - , -  

Don Madden, l?es Melahn, Cynthia Mercer, Leona Otfinoski, Josephine 

Powers, Frieda Rosenberg, C l i f f  Shaw, and Charles Swift.  Without 

t h e i r  high morale, professio2al  s k i l l ,  and enthusiasm, it would have 

In - 
been impossible t o  have met many of our deadlines on the  always 

I capricious and sometimes malignant computing equipment ava i lab le  

from 1948 t o  1952. 

Final ly ,  an inadequate thanks t o  Theodore Harris and Andrew 

I Marshall, with whom t h e  author has collaborated extensively and on 

I whom he has always been ab l e  t o  lean f o r  a learned opinion on 

I a t a t i s t i c 8  and probabil i ty.  Some of t h e  ideas i n  this repor t  have 

previously appeared i n  j o i n t  papers by them and the author. 

I would a l s o  l i k e  t o  thank Leonard J. Savage f o r  reading an 

L - 

e a r l i e r  version of this r epo r t  and maicing p r o l i f i c  comments. This 

version doesn' t  show the  full a f f e c t  of h i s  comments as I am mving  

many of them f o r  3 fu tu r e  book. 
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INTRODUCT TON 

The Monte Carlo Method i s  concerned with t h e  app l ica t ion  of _. t 

random sampling t o  problems of .applied mathematics. While m b t l e  

o r  d i f f i c u l t  questions mag a r i s e  i n  applications, ,most  problem 

can be t r ea t ed  without using much s t a t i s t i c a l  theory. Neverthelers 

a t a t i e t i c a l  theory can be very  helpful .  This repor t  presents an 

elementary exposition of same of t h e  ideas and techniques t h a t  have 

proved useful  i n  problems with which t he  author has been concerned, 

I n  this case, t h e  word elementary implies t h a t  t h e  author ha8 t r i e d  

t o  make t h e  presentation i n t e l l i g i b l e  t o  a mathematician, physic is t ,  

o r  engineer with only  a s l i g h t  formal background i n  probabi l i ty  
1 

theory. There will be a s t rong f l avo r  of t h e  @oookbookn about mlUly 
C.,. 

;i . ., y .. . 

selections.  The author can only suggeat judicious skipping. 

It w i l l  be assumed that t h e  reader has in i n t u i t i v e  notion of 

t he  idea of p robab i l i ty  (even though philosophers may argue), That 

is, t h a t  he knows what is meant by t h e  statement "The probabi l i ty  

t h a t  a t fa i r f  coin l ands .  heads up when tossed i s  1/2," and t h a t  he 

knows and has had some basic experience with t h e  simplest rule8 of 

t h e  calculus of probabilities.1 I n  any case most of t he  statistical 

ideas t h a t  a r e  used w i l . 1  be presented o r  reviewed i n  the  first two 

chapters. - 

1 These ru les  are of t h e  following typea. The probabi l i ty  t h a t  
- 

one o r  t he  other  of two mutually exclusive events occurs is t h e  sun 
of t he  separate  probqbi l i t ies .    he p m b a s i l i t y  that two independent 
events occur i s  t he  product of t h e i r  separate  p robabi l i t i e s ,  e k .  
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I. TECHNIQUES WITH RANDOM VARIABLES 

1. Random Variables 

In  t h e  following a random var iab le  (general ly  denoted by a 

c a p i t a l  l e t t e r )  will mean a numerical quan t i ty  ( o r  quan t i t i e s )  

associated with a game of chance in such a way t h a t  as t he  various 

events o r  possible outcomes o f ' t h e  game occur, t he  random variable 

t akes  on d e f i n i t e  values. Thus one could assoc ia te  a random var iable  

C with t h e  coin toss ing process by ~ y i n g  t h a t  when a head comes 

up, C = 0, and when a tail comes up, C 1. C then has a probabi l i ty  

of 1 /2  of being zero and 1/2 of being. 1. A l l  other  values have zero 

probabil i ty.  

Associated with any random var iable  X i s  a cumulative d i s t r i -  

bution function (c.d.f .) which w i l l  be ca l led  l l~ (x) t l .  F(x) is defined 

as the  probabi l i ty  t h a t  the  random var iab le  X w i l l  assume values l e s s  

than o r  equal t o  x. I f  ~ ( x )  is t he  in tegra l ,  a t  l e a s t  in some regions, 

of a function- f  (x), the. random var iab le  is sa id  t o  have a probabi l i ty  

densi ty  then and f ( x )  i s  c a l l e d  the  p robabi l i ty  dens i ty  function 

(p.d.f .). If ~ ( x )  makes a f i n i t e  junp a t  some point  xo, t he r e  is  a . 

non-zero probabi l i ty  of xo ocourring. Thus i n  t he  coin  toss ing problem 

mentioned above 

r , .  

. . 

. . . . 
. . 



I f  f (x)  e x i s t s  everywhere, ~ ( x )  must be continoua, end the 

random var iable  has a se ro  p robabi l i ty  of  taking on any pa r t i cu l a r  

value.' It i s  then customary t o  speak of t he  p robabi l i ty  t h a t  t h e  

random var iab le  l i e s  i n  t h e  i n t e rva l  between x and x + Ax. This 

probabi l i ty  is F(X + Ax) - ~ ( x ) ,  fo r  pos i t ive  Ax, or  appmldmately 

f(x)Ax i f  Ax is small. A common but  e l l i p t i c a l  statement, " the  

p robabi l i ty  t ha t  X takes on t h e  value x is  f ( x )  L o r  f ( I C ) A ~ , "  is  t o  

be in terpreted i n  t h e  above sense. In  t h e  case of a f i n i t e  i n t e r v a l  
b 

(a,b) the  p robabi l i ty  t h a t  a < X < b i s  F(b) - F(a ) , o r  1 f (x1d.x if - 
f (x )  exis ts .  I n  the fu tu r e  the  qua l i f i c a t i on  " i f  f ( x )  existsn w i l l  

not  be used but ahauld always be understood. 

It i s  sometimes necessary t o  associa te  two o r  more random 

var iables  with t he  same process. One then has a j.oint c.d.f ., F(x,y), 

which i s  defined t o  be the  p robabi l i ty  t h a t  the  event (X < x, T < y) - - 
occurs. The function f(x,y)  defined by 

is  ca l led  the  j o i n t  p.d.f. fbr x and y. f(x,y)bxdy is approximately 

t he  p robabi l i ty  t h a t  the event (x < X < x + Ax, y < Y < y + by) occura. - - - - 
Some other  important def in i t ions  and concepts a r e  

1 It is e t i l l  poss ible  t o  use p.d.f.'s when ~ ( x )  is discontinuow 
by using t he  formaliem of the  Dirac delta function. T h i s  w i l l  
occasionally be done when Ft simplifies the  appePrmce of formulae. 



- p.d.f. of x ( c a n e d  marginal p.d.f, of 

x i n  t h i s  context.) 

- marginal p.d.f .  of y 

f (x:y) = f (x,y)/g(y) 

p.d,f. f o r  X given t h a t  Y has the value g 

(sometimes ca l l ed  t he  condit ional  p.d.f. of x)  

g(y:x) - f (x,y)/f(x) 
p.d.f. f o r  Y given t h a t  X has t h e  value x 

The same f o r  ~ ( x : y ) ,  ~ ( y : x ) ,  and t he  extensions t o  

more than two var'iables. 

The p.d.f. of a random var iable  r e s t r i c t e d  to  a portion of i t s  

f u l l  domain i s  sometines used, f o r  example t h e  p,d.f. of X f o r  a < x is 

i.e., proportional  t o  the  old densi ty  i n  t h e  region jus t  1 x 1  ; 

a < x but renormalined, and zero elsewhere. 

I f  ~ ( x , y )  happens t o  be equal t o  F ( x ) G ( ~ ) ,  t he  random var iab les  

a r e  sa id  t o  be independent of each other.  If t h i s  i s  not  t rue ,  t h e  

random var iables  a r e  sa id  t o  be dependent. Three random var iables  

a r e  ca l led  independent if ~ ( x , y , z )  - F(x )G(~)H(z ) ;  it is not enough 

t h a t  the  var iables  be independent i n  pai rs .  

A random var iab le  has associa ted with it a a-called expected value. 

This notion is  cen t r a l  t o  our considerations and we w i l l  discuss  it 

more in, what follows. I f  f (x)' is t he  p.d.f, of X, the  expected value 



The reader w i l l  r e a d i l y  n o t i c e  t h a t  t h i s  is a genera l i za t ion  of 

t h e  ordinary a r i t h m e t i c a l  average o r  mean. Monte Carlo is uon- 

cerned almost exclus ively  w i t h  t h e  c a l a u l a t i o n  of such averages. 



2. Transformations of Random Variables 

and Thei r  Real iza t ion  

Consider two random var iab les  X and Y and t h e  monotonic 

inoreas ing transformation Y = TO(). I f  X has t h e  known c.d.f. ~ ( x ) ,  

it i s  a simple mat ter  t o  c a l c u l a t e  ~ ( y ) ,  t h e  c.d.f. f o r  y. Since Y 

is  less than o r  equal  t o  y i f  and on ly  i f  X i s  l e s s  than o r  equal t o  

T-'(~) the p r o b a b i l i t y  of t h e s e  t vo events  occurring must be  t h e  

same. Therefore if x and y a r e  corresponding values, 

F(x) = G(Y) 

But 

x = T-'(~) 

A c r u c i a l  s t e p  i n  the  Monte Carlo m e t h 0 d . i ~  the  r e a l i z a t i o n  of 

a given d i s t r i b u t i o n  funct ion  ~ ( x ) .  By that i s  meant t h e  cons t ruct ion  

o f  a n  a c t u a l  game o f  chance wi th  which i s  assoc ia ted  a sequence of 

independent random var iab les  X1, x2, , xn' each wi th  t h e  

c.d.f. ~ ( x ) .  It is  t h e  empirical  va lues  x  $3 X 2 9  • • • 3 Xn' in a 

s i n g l e  a c t u a l  p l a y  of t h e  game t h a t  c o n s t i t u t e  t h e  s t a t i s t i c a l  data 

f o r  a Monte Carlo ca lcula t ion .  

The const ruct ion  of some of t h e  necessary games of chance is 

I discussed i n  t h e  s e c t i o n s  which follow. The p o i n t  t o  be made here  
- 

is  that some d i e t r i b u t i o n s  can be r e a l i z e d  more e a s i l y  than o the r s  

t' so t h a t  it is Important t o  s tudy t h e  process of cons t ruc t ing  a, 

r e a l i z a t i o n  of ~ ( y ) ,  given a r e a l i z a t i o n  of ~ ( x ) .  How important  

may be judged from t h e  f a c t  t h a t  i f  ~ ( x )  . i s  continuous, then f o r  any 

O(y) t h e r e  is a T such t h a t  (1) holds. 

. , 
2 . 3 0 ,  r l L  

- - - 



The most obvious, and of ten t he  best ,  way t o  r ea l i z e  ~ ( y )  on 

t h e  ba s i s  of a r ea l i z a t i on  of ~ ( x )  i e  simply t o  take f o r  t h e  

sequence yi, 

I n  ac tua l  computations on high speed machine8 it my, however, 

be qu i t e  d i f f i c u l t  t o  evaluate '!(xi). It may then be convenient to 

use instead an approximate transformation '?(xi) or one of the 

other techniques t o  be discuesed* 

Before a u a t i o n  ( 2 )  can be used t o  r ea l i z e  ~ ( y )  it is necessary 

f i r s t  t o  generate independent values d i s t r ibu ted  according t o  ~ ( x ) .  

For t h i a  purpose it i s  often convenient t o  use as a basic  d i s t r i bu t i on  

t he  uniform d i s t r i bu t i on  between 0 and 1; i.e., with 

f ( x )  - 0  o r  F(x)  - 0  x s o  

A discussion of various techniques f o r  producing independent 

values with t h i s  d i s t r i bu t i on  i s  found i n  Appendix I. These values 

a r e  referred t o  as random numbers (sometimes reasonable facs imiles  

ca l l ed  pseudo random numbers a r e  used instead.), and denoted by Ri. 
1 

By using equation (2 )  which now takes t h e  equivalent  forms 

1 Because of previous commitments, these  independent random variable8 
and t h e  independent var iab le  of t h e i r  p.d.f. w i l l  both be denoted by a 
c a p i t a l  l e t t e r .  It is  hoped t h a t  t h i s  w i l l  not  cause confuaion. 



it is possible t o  generate a a e t  of independent random var iables  

Yy . . Yn with  an a r b i t r a r y  c.d.f. ~ ( y ) .  

Sometimes it is necessary t o  represent a multidimensional 

podof .  For instance, equation (3 )  can be .generalized t o  handle 

" t h r ee  var iables  a s  follows: 

From f(,x,y,s) the  p.d.fO1s f ( x ) ,  g(y:x), and h(z:x,y) a r e  

obtained, A random (x, y,z) can be determined by f i r s t  picking 

three  random numbers and then solving the  following equations 

consecutivelys 



3 The ReJection Technique 

It has been mentioned t h a t  muat ions  (1) and (2) m y  be awkward - 

to use i n  a high speed computing device. An a l t e r n a t e  method of 
- 

producing independent e a q l a  values of a d i s t r i bu t i on  ~ ( x )  i s  by the  

use  of t h e  r e j ec t i on  technique. 

For a simple example of this technique a p.d.f. f (x) v i t h  the 

following proper t ies  w i l l  be considered (see  Filmre l,.page 12). 

f (x) = 0 x c a ,  a + b < x  - 

0 < f ( x )  < lul - - a ~ x < a + b  - - 
The r e j ec t i on  technique as it appl ies  here can be explained 

graphical ly  wi th  reference t o  Figure 1 as follows. Let a point  be 

chosen uniformly a t  random from t h e  rectangle with base of length  b 

and height M. If t h i s  point  fal ls  below the  graph of f (x)  accept 

t he  abscissa  as a sample value. If not;, r e j e c t . i t  and t r y  again. The 

f u l l  technical  meaning of these  ins t ruc t ions  m y  be exprwsed una ly t ica l ly  
I : .  . 

thus. 

1. Obtain two random numbers, R1 and Rp, 

f ( a + b ~ ~ )  
2. I f  R1 i s  l e s s  than o r  equal t o  , l e t  X = a+bR2, 

f ( . + b ~ ~  ) 
3. If R1 is greater  than n , pick two new random numbers, 

5 and R2, and t r y  again. 

If no re ject ion procedure 'had been used, X would have been 

uniformly d i s t r ibu ted  between a and a+b. However, only t hos t9 .x '~  

uere  saved that happened t o  have R1; T, an event t h a t  has a prob- 

f (4 a b i l i t y  ,r, of occurring (s ince  if k is  l e s s  than 1, t he  



t h a t  R i s  independent of R2, t h e  probabi l i ty  of se lec t ing  a value 
1 

of X i n  t he  region x t o  x+Ax i s  equal t o  the  p robabi l i ty  of o r i g ina l l y  

ge t t ing  a value i n  this region (fib) times the  probabi l i ty  of saving 

t h i s  x value [f(x)/li]. 

The probabi l i ty  of obtaining a sa t i s f ac to ry  x on the  first 

t r i a l  i s  t he  sum of t he  p robab i l i t i e s  of se lec t ing  an x in any one 

of the  separate  Axi regions, o r  approximately 

I n  the  l i m i t ,  88 b i + O ,  this i s  just, 

a+b 
s ince  f (x)dx = 1 the  above expression is j u s t  l / b ~ .  The probabi l i ty  

of accepting some value the f i r s t  time is ca l led  . the eff ic iency of t h e  

technique, because of i ts  obvious economic implication fo r  appl icat ions ,  
. .a,  
,.I.,. . 

and is denoted by E. 1-E i s  t he  p robabi l i ty  that t h e  f i r s t  value 

picked w i l l  be rejected. The p robab i l i ty  t h a t  t h e  process w i l l  f a i l  

n-1 times and then succeed on t h e  nQ t r i a l  i s  (~-E)~-'E. The expected 

number of trials, c, is  then 



The pr inc ip le  of  the  re jec t ion  technique can be i l l u s t r a t e d  by 

t he  following diagram. 

I n  Figure 1 a rectangle of a rea  bM encloses t h e  p.d.f, f (x) . 
The shaded port ion under f ( x )  has u n i t  area. If a number of points  

a r e  se lected i n  t he  rectangle a t  random from a uniform d is t r ibu t ion ,  

but  only  those po in t s  saved that f a l l  within  the  shaded portion, 

then the  p robabi l i ty  t h a t  any of these  saved values l i e s  between 

x and x + Ax w i l l  be f ( x ) ~ x / b ~ .  The f r ac t i on  of points  saved w i l l  

be given by (shaded a r e a ) / ( t o t a l  area)  o r  l / b ~ .  

The re jec t ion  technique may be generalized as followe. Let 

n(x) and m(y) be p.d.f. 1s and l e t  ~ ( x )  be an a r b i t r a r y  function. Then 

1. Selec t  an x out of t he  p.d.f, n(x) 

2. Select  independently a y out  of t h e  p.d.f. m(y) [c.d.f. ~ ( ~ f l  

3. If y < ~ ( x )  accept x. Otherwise repeat  s teps  1 and 2. - 
It i s  of ten  computationally convenient t o  wr i te  t h e  inequa l i ty  

< ~ ( x )  in t h e  form s (y)  < t ( x )  where 3'- - 

The a p r i o r i  p robab i l i ty  of ge t t ing  an x i n  t h e  region 

(x, x + AX) is,  of course, n(x)bx. The probabi l i ty  of accepting 

x, wility t h a t  y - < ~ ( x g  , i s  M P ( x g  . Therefore, t h e  



probabi l i ty  of se lec t ing  an x i n  t he  region dx and accepting it is 

The probabi l i ty  of ge t t i ng  any x a t  a l l  on t h e  f i r s t  i t e r a t i o n  

By choosing m, n, and T appropr ia te ly  it is usua l ly  possible 

t o  design a numerically convenient and e f f i c i e n t  process f o r  . 

se lec t ing  an x from the  p.d.f. f ( x )  - M & ' ( X ~  n(x)/l?. 

If, i n  a spec ia l  case, Y i s  the  m e  a s  R, M i s  then t h e  

d i s t r i bu t i on  of R. If a l s o  ~ ( x )  is bounded such t h a t  u(x)< - 1, we 

can say 

The technique now becomee: 

1, Selec t  an x out of t he  p.d.f. n(x) 

2. Selec t  an R 

3 If R < f (x )  where K is l a rge r  than o r  equal to t h e  - 'K 
maximum value of f (x) , accept x. Othexwise repeat  s t ep  

1 and 2. 

The e f f i c i ency  of the technique is nar  1/~. Hence E can be equal 

to ,  but not  l a r g e r  than, t h e  minimum value of 4 x 1  If it h.ppC)M 
fCx7 ,. 

that only a lower bound f o r  t h i e  mininum value ia known, than t h e  

e f f ia ianoy  w i l l  be less than it would have been. 

Since the  a reas  under t h e  curves f ( x )  and n(x) a r e  t h e  same, 

t h e  requirement t h a t  the e f f ic iency  be high (i.e., c lose  to 1) imposes 

a eerious r e s t r i c t i o n  on n(x). One way t o  meet it i s  t o  choose n(x) 

t8similarn t o  f (x ) .  It must a l s o  be simple t o  s e l e c t  from, o r  the re  

r v' 

;? 0 t i  0 (? ow 



would be no point  i n  us ing a r e j e c t i o n  technique. The choice of 

n(x)  i s  a  comprcmlse between . these  two c r i t e r i a .  

Var ia t ions  of t h e  bas ic  r e f e c t i o n  techniaue 

In c e r t a i n  cases ,  r e a l i z a t i o n  .of t h e  v a r i a t i o n s  mentioned below 

may give r i s e  t o  considerable savings i n  computing time. 

1. Se lec t  x ou t  of n(x) ,  yl out  of ~ ( y ) ,  and y2 ou t  of m p  (Y) 

and accept  x i f  e i t h e r  yl < T ~ ( X )  o r  y2 < T2(x). The - - 
p r o b a b i l i t y  o f ' a c c e p t i n g  x now beccmes 

r I 

2. Break up t h e  p.d.f. i n t o  t h e  form 

With p r o b a b i l i t y  p ick  x out  of ni(x) and y o u t  of 

m. (y) and make t h e  test  y < ~ ~ ( x ) .  1f t h e  t e s t  f a i l s  re- 
1 - 

: .  . peat  t h e  whole process. The expected number of  i t g r a t i o n s  

, .,: 
.$ ,. 

I:? i s  ZA,; i.e., t he  e f f i c i ency  is  1 1 ~ ~ ~ .  - 
A b r i e f  i n s i g h t  i n t o  the  na tu re  of  this second v a r i a t i o n  can 

be obtained by consider ing  the  case  when the  ~ ~ ( y )  - y: i .e., y i s  

s e l e c t e d  from t h e  uniform d i s t r i b u t i o n .  Then f (x) can be broken up 

i n t o  t h e  form 

The Ai here  are, it i s  c lea r ,  t h e  proba.bl.lity of g e t t i n g  i - 
mul t ip l i ed  by t h e  rwdmum value  o f  T~ (x) . The Ai must he l a r g e  enough 

C-C;f-P p 2 $  
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r i (x)  
t o  insure  t h a t  < 1. As before t h e  e f f ic iency  i s  ~ / Z A ~  and 

Ai- 
an e f f i c i e n t  process i s  one i n  which the  r i (x)  vary but  l i t t l e ,  

i n  o sense. When the  ri(x) a r e  constants then the ZA, - 1 and 

t he  process i s  100% e f f i c i en t ; .  it then j u s t  reduces t o  a convenient 

way t o  sample from a podofo 

If the  i t s  with r e l a t i v e l y  uniform ri(x) have l a r g e  Ails while the  

ones with l a rge  var ia t ions  have small Ai18, t he  process w i l l  s t i l l  be 

e f f i c i en t . ,  

Sometimes a s  a spec ia l  case of the  above, it i s  des i rab le  t o  take 

t he  ni (x) t o  be the  same function; i .e., t o  break up f (x) i n t o  t h e  form 

f ( x )  = A ~ T ~ ( x ) ~ ( x )  

T (x) = 1 A ~ T ~  (x) 

This is  advantageous when it is d i f f i c u l t  t o  f ind  t he  laaxhum value 

o f  ~ ( x ) ,  'but r e l a t i v e l y  easy t o  find t he  maximum value of t he  individual  

terms.. However, breaking up ~ ( x )  i n to  separate  terms always decreases 

t h e  e f f io iency  of t he  technique, 

A spec i a l  case of t h i s  last s i t ua t i on  oacurs very f requent ly  

when the  p.d.f. f(x) i s  f i t t e d b y  sections.  For example i f  

rXi+l 

i s  the  p robabi l i ty  t h a t  t h e  event xi X < occurs and fi(x) i s  - - - 

f (x) a f i t  t o  - i n  this segment of t h e  x axis then 
p i  

where the  fi(x) a r e  themselves properly normali%ed p.d.f. Is. The 

computer can then pick t h e  i index with p robabi l i ty  pi and then pick 

x out of f i (x)  by any convenient technique.. 



4. l h i p u l a t i o n s  with Dis t r ibut ions  

The problem of generating values  of random var iab les  will - 

now be considered from a s l i g h t l y  d i f f e r en t  point  of view. 'Given 

two independent random var iab les  x and y and t h e i r  c .d. f .I s, ~ ( x )  

and ~ ( y ) ,  what is  t h e  c.d.f. of a function z(x,y)? There is  perhaps 

no general answer e a s i l y  given here, But a number of i n t e r ee t i ng  

spec ia l  functions w i l l  be considered. 

lo1 Z m X + Y  

The domain of X i s  conaidered broken in to  i n t e rva l6  by t h e  points 

xl,. . .,xn. The length of each i n t e r v a l  is Axi - - xi0 
I 

The probabi l i ty  t h a t  Z - < z i e  equal t o  t he  s u m  of t h e  p robab i l i t i e s  

of a l l  t h e  mutually exclusive ways in which X + Y can be less than a. 

Neglecting d e t a i l s  of r igor ,  t h i s  can be obtained by multiplying t h e  

-i 
probabi l i ty  t ha t  xi < X 5 pxi+l ) - ~ ( x ~ ) l  by t h e  pmbabi l f  ty  

t h a t  Y < s - xi p(z-xi)] , and summing over a l l  possible xi; so 
4 

The l i m i t  of the  above expreesions will be recognized a e  being 

t h e  de f in i t i on  of the  S t i e l t j e s  and Riemannian (ordinary) in tegra l8  
2 

respectively.  60 00 

H(z) - j O ( r - t ) d f ( t )  - l-(z-t)f ( t ) d t  (8) 
-00 

00 - z - t t  - J2z-t)g(t)dt 

by symmetry. 

1 In  individual  instances of t h i s  and eone of the other  functiona it 
i s  often simpler i n  theory and prac t ice  t o  use Fourier  and Laplace 
Transform techniques. For a discussion of these  methods see  s.g. Craunsr, 
Mathematical Methods of S t a t i s t i c s ,  and Wilks, Mathematical S t a t i e t i c s .  

2 Seee .g ,Widder ,AdvancedCalculus , foradiscuss ionof the  
de f in i t i ons  of these  in tegra l s .  

$'3@ ~ 2 3  



This can a l s o  be wr i t t en  

h ( z )  g ( z - t ) f ( t ) d t  C 

The probabi l i ty  t h a t  Z < z is t h e  p robab i l i t y . t ha t  X is  on - 
region b t  b ( t )  o r  f ( t ) ~ g  t i n e s  t h e  p robabi l i tg  t h a t  Y c i [O(z/tg - - 
eummed over a l l  poss ible  value8 of t; so 

/ O 0  roo 

The probabi l i ty  that Z - < z is d ~ ( t )  o r  g ( t ) b t  Ehe probabi l i ty  

that Y i s  i n  r e g i o n - A 4  times ~ ( z t )  &he probabi l i ty  t h a t  X < z q  - 
- 

s q e d  over a l l  possible y; so 

- (12 

- 

I" h(z) -["(zt)do(t) = tf ( z t ) S ( t ) d t  (13) 



4. Z = s m a l l e r  of X and Y 
I 

The p r o b a b i l i t y  t h a t  X is' in t h e  region Ax i s  of course  

f ( x ) ~ x  and the  p r o b a b i l i t y  t h a t  Y i s  l a r g e r  than  x i s  1 - ~ ( x ) ;  

s o  t h e  p r o b a b i l i t y  of g e t t i n g  X i n  t h e  r eg ion  Ax and accep t ing  

[ it (i.. , of i t s  be ing  the  sma l l e r )  i s  f (x)bx 1 - G ( X ~  . S i m i l a r l y  
- 

'II 

t h e  p r o b a b i l i t y  of g e t t i n g  y i n  t h e  r eg ion  hy and accep t ing  i t ' i s  

g ( y ) ~ y  [l - ~ ( y j ]  Since  t h e  two events are mutually e x c l u s i v e  

ignor ing  t i e s ,  a s  may he  done, t he  probaoi1. i ty  of  one o r  t h e  o t h e r  

i s  j u s t  t h e  sum o f  t h e  s e p r a t e  p r o b a b i l i t i e s ;  s o  - 

h ( z )  = f ( z )  [l - G(z)] + g(z)  [l - F ( Z ~  (a) 

,.' . . . . .. . A . fm more r e s u . l t s  fo l low wi thout  complete d iscuss ion .  

5. Z = l a r g e r  of X and Y 

h ( z )  = f ! z ) ~ ( z )  + &(Z)F(Z)  
i 

6. z > ( smal le r  of X and Y) / ( l a rge r  of  X and Y) (0 c X,Y) - ~ 
. . Thi s  i s  a c o r o l l a r y  of  axample 3. 

h(z)bz  = p r o b a b i l i t y  t h a t  (E = z  o r  = 2)  > t .  

Y X 

Since  t h e  two p o s s i b i l i t i e s  are d i s j o i n t ,  
00 

h ( z )  -/ t {f ( z t ) g ( t )  + f ( t 1 d . t ) )  d t  O< z 5 1 (16) 
0 - 

7. .Z ( l a r g e r  of  X and  smaller of  X and Y )  (0 c x,Y) - 
Same d i s t r i b u t i o n  as 6, 1 c z - 

8. W = t h e  middle o f  X, Y, and Z - 

V(W) - f(w) b(u) + ~ ( u )  - ~~(W)H(Y)] , 
(17)  

+ h(u) [F(v) + O(W) - ~F(w)G(w] 
where v(u) is of  cou r se  t h e  p.d.f.  f o r  W. 



Introduction 

The various methods t h a t  have been described a r e  i l l u s t r a t e d  

by the  examples i n  t h i s  section.  Some of these  examples a r e  

a c t u a l l y  use fu l  f o r  computational purposes, some have been included 

f o r  pedagogical reasons, and some a r e  included f o r  t he  sake of 

completeness ( i n  t h e  handbook sense). In some cases t h e  ver i f ica-  

t i o n  of t h e  f o m l a e  involved i s  so  simple t h a t  it i e  l e f t  out. 

It might be a usefu l  exercise f o r  inexperienced readers  t o  a c t u a l l y  

ca r ry  through t h i s  ve r i f i c a t i on  f o r  a few of the  examples. Others : 

may want t o  sk ip  t h e  whole sec t ion  accept f o r  reference purposes. 

I n  many of t h e  examples several  methods a r e  considered, Which 

method t h e  computer should use depends on t he  application,  t h e  

computing equipment available,  and the  r e l a t i v e  importance of 

programing time, computing t h e ,  and memory. 

.It is often desi rable  t o  r e f l e c t  a p,d.f. about a l i n e  x =.a.  

This can always be done by replacing x by 2a-x, as i s  occasionally 

e a p l i c i t y  done i n  t h e  examples which follow. 

Primarily, however, t he  examples (conaieting of t he  der ivat ions  

which follow them) can be thought of as part of a l i b r a r y  which w i l l  
- 

be usefu l  i n  applications.  This means that where in a c t i o n  4 t he  

d i e t r i bu t i on  was unknown, i n  this sec t ion  we begin with a dis t r ibu t ion ,  

and consider the m a t  oonvsnlent method which w i l l  r e a l i z e  it. More -. 

euch examples and methods are of course invited.  



Table of k a m p l e a  t o  be Conaidered 1 

1 The order in whiah the p.d.f.Is are given has l i t t l e  significance. 
They are just  grouped somewhat according t o  simplicity,  method ,of 
generation, and field of application. 







i -a 
.18. 

a e 
for 0 < a, 

i! 

(sinh 1 - sinh x)  0 < x < 1 
e-1 - - 



ex sinh x 

e.(cosh 1 - cosh x) 0 < x < 1 - - 

Also the following jo int  p.d .f. s of b.,.i) 8 

Also, the marginal p.d.f.r , 

1 ,  1 m i D 1 , 2 ,  o o 9 



Also the following p.d,fi8s f o r  (x,i) or i alone: 



Also the joint  p.d.f. f o r  (x , i )  and i alone: 

23, The Klein-Nishina Scattering Formula. 

24, Neutron-deuteron e l a s t i c  scattering, 

25, Neutmn-dauteron ine las t ic  scattering . 
26. General inelastic aoattering of neutrons. 

27, F i t  to experimental data o f  e la s t i c  scattering of  4 PIEV neutrons in 

copper a 



R e ~ r e 8 e n t a t i o n S  o f  t h e  ~ . d . f . s  Considered 

I n  t h e  d i scuss ion  of  t h e  r e p r e s e n t a t i o n s  o f  e a c h  of t h e  d i s t r i b u t i o n s .  

below, it is  ass~?med t h a t  t h e r e  l a  a large s t o r e  of (independent, uniformly 

d i s t r i b u t e d )  random numbers, symbolized R, R1, etc. ,  a v a i l a b l e .  , 

Let  Z be t h e  l a r g e s t  of n  random numbers. 

The proof i s  by induct ion.  Let X be  t h e  l a r g e a t  of n-1 
. . 

random numbers and assume t h a t  i t s  p.d.f. is (n-l)xn-2, 0 < r < 1. - . -  . - .  ' \. - ;.?, 

Le t  Y equal ano the r  rand.om number and l e t  Z be t h e  l a r g e r  of X and  Y. 

Then as mentioned i n  Sec t ion  4, 

Since  Z i s  t h e  l a r g e s t  o f  n-1 random numbers and ano the r  random 

number, i t  i s  t h e  l a r g e s t ' o f  n  random numbers. 



- ~ 

2. h(z)  = n(l-s)"-l o < z < ~  - - 

Let Z be t he  srnalleet of n  random numbers. 

This is j u s t  a r e f l ec t i on  of example 1 about t h e . v e r t i c a 1  

l i n e  z 1/2. 

x(l-n)/n o r  o < n 3. f(x) - 
Let X = R" 

The c.d.f. ~ ( x )  can be found as fo l lovs r  

~ ( x )  = probabi l i ty  t h a t  X < x - 

= probabi l i ty  t h a t  R" < x - 
= probabi l i ty  t h a t  R < x - l/n 

= X l /n  

1 x(l-n)/n Then f(x) = 

I n  'ac tual  practice,  only t he  i n t e g r a l  values of n  a r e  of 

i n t e r e s t .  The p.d.f .s obtained by pu t t ing  n  - 1/2, 1/3, etc .  a r e  

often more simply obtained by the  method of example 1. 

If X - 1 - iln, .11 of t h e  above curwea are r e f l ec t ed  about 

the line x = 1/2. 



Let X = R1 - R2 
Then from emample 1 of Section 4, 

If X 5 + R2, the p.d.f.  would have been translated one 

unit i n  the pos i t ive .  direction. 

l e t  x - I R ~  - or l e t  X - the m a l l e i  of R1 and R2. 

Then the density of f ( x )  is  the sum of  the k r o  dis jo int  possi- 

. b i l l t i e s  that 5 - R2 = x or tha t  R2 - R1 x.  us+ng' example 4, 

we have 

elsewhere 



This is  just a t rans la t ion  and d i l a t i on  of example 5. Use 

f o r  t h e  X of th i s  eucaniple a + by where P i s  t h e  var iab le  of 

example 5 ,  

2 (a-x) 

T h i s  is a r e f l e c t i o n  of example 6, 

L e t  X be, with probabi l i ty  p, t h e  smallest  of n random numbers; 

with p robabi l i ty  (lop), t h e  l a r g e s t  of m random numbers. 

This is a mh tu re  of a m p l e 8  1 and 2. With probabi l i ty  p 

(that is, a f t e r  a t e s t ,  R < p 1 )  use example 1. If not  example 1, 

use example 2. Then 

If p - 1/2 and m = n, 

which is  symmetric about x -' 1/2. 



(~=p)rn(a-z 
1"' 

9. a - c < z < a  - - 
h(z )  ={ , 

pn ( z-a 
' 

a < z < a + b  
bn 

- - 

With p robab i l i t y  p, pick X out  of 2 - I  and l e t  Z - a + bX. 

With p robab i l i t y  1-p, pick X o u t  of mxm-I and 1st Z - a - cX. 

One piece ie l i k e  example 1 and the  o the r  i s . l i k e  .example 2. 

If p - 1/2j m - n, and b - c, then t h e  p.d.f. is  symmetric about 

z - a and 

2 lo. h(x) = 6(x-x ) o < x < l  - - 

Let X be t h e  middle of R1, R2, and R ( sec t ion  b, example 8). 3 

The most obvioue method i s  t o  solve t h e  equation 

This  is  inconvenient, because both the  exponential  and a logarithm 

must be calculated. i n  most appl icat ions.  

5 CJ 5) r38 



Five r e j ec t i on  methdds f o r  s e l ec t i ng  from t h i s  p.d.f. w i l l  now 

be oonsidered, The example w i l l  be given such a thorough treatment, 

not  because there  i a  a great  p r ac t i c a l  lmpor,$ance i n  avoiding 

exponentials and logarithms, but because it gives a good opportunity 

t o  explain and i l l u s t r a t e  device8 heretofore mentioned only abst ract ly ,  

a. The straight-forward general method: 

The a p r i o r i  probabi l i ty  of a r r i v ing  a t  a given value of x 

1 dx and the  p robabi l i ty  of accepting it is --, so t h e  efficiency 
is a;;I 

Thus f o r  example, E, .25 f o r  a - 10.' 



The computations required by t h i s  method are  of the  s h p l e s t  

s o r t  from almost any calculat ional  point of view, and the yield i s  

1/2 Ea per random number used. 

I TEST I 

19, - smaller of  R1 and R2 

2 
With probabil i ty a+l, 3 i s  chosen unifomly;  with probabil i ty 

- , y i s  chosen from the p.d.f. 2(1-y). Weighting the =-x m 

two p.d . f . s  with these  probabi l i t iee  ..gives 



Since 

h ( z )  i s  a s t r a i g h t  l i n g .  

The p m b a b i l i t y ' i n  t h e  f i r s t  box was chosen so t h a t  

Because f (x)  i s  convex in t h e  i n t e r v a l  of  i n t e r e e t ,  t h i a  cho ice  maximizes 

t h e  e f f i c i e n c y  Ea of  t h i s  second method where t h e  a u x i l l i a r y  p.d . f .  is a 

s t r a i g h t  l i n e  segnent.  

W e  now chooae from h (z )  and t e s t  whether R < where K i s  the -m 
maximum value  of  We have 

n 



Hence the test  is: 

and 

The computations are again simple. In general E+, is about twice E,. 

c. In this case, h(z)  is  a step 'function. 

r 

Find smallest i 

such that 

a < 2  
i - 

r 
- 

P + G 
Find j such that 

J c y < J + l  

- 
Let % = 2'(1+~~) 

i 1 

TEST 

z < a  - 
no ' i  

T r n  
R z < 2  
3 - 3 

no J 

yes 

Let x - Ir 

(a choice diofiated by 

ef f i c iency)  

(discrete  uniform j) 

(needed only if j = 1 - I) 



The probabil ity of picking a given value of x is  

Ec 
. f (x) - (prob. of picking j) (prob. of picking a) 

(prob. o f  accepting 1;) 

h a  
Therefore E, - - or roughly kr2. 

1 

do In t h i s  method, s is picked out of 



Find smallest 1 

such tha t  



Similarly a6 in c ,  

e. In this method, x  i s  picked f r o m  f ( x )  with probability p and g(x) 

.: . 
with probability 1 - p. 

& f 

l e t  z - 1 + %(a-1) 

TEST 
a 

R2 5 

Yea 
+ 

TEST 
1 1  

Rj 5 4 (; - ?) 
a 



The probability of  getting a given x I s  (prob. of  yea branch) (prob. that 

a 
s - x) + (prob. o f  1st no branch) (pmb. that z - =)'. 

L Hence 

and 

For large a, E, is  about 4 %. '- . 

I$ ,  Eo, Ed, and E,, are shorn for  a range of a i n  graph number 1. , - 
C .  

2 
12. *(x) - e - .x /2 o < x <  04 the (half) huesian.  ... 



The probabili ty of gett ing a given value of x is equal ta the probabi l i ty  

of picking tha t  value of x times the  probabili ty of accepting it o r  

- .76 , which is remarkably .high, 

A random sign can be attached to x to tu rn  it in to a true Ckussian, - 

It is possible t o  pick from an approximate Gaussian p.d.f. by using 

the  Oentral Limit theorem which s tates ,  i n  one of ita forms, t h a t  t h e  6um 

of a l a rge  number of .independent and ident ica l ly  dis t r ibuted random variable8 

with a f i n i t e  variance i a  aagmtotically normally dis t r ibuted (Qaussian), In 

particular,  the random variable defined by t he  equation 

becomes normally distr ibuted w i t h  0 mean and variance 4 3  as n -+ 00 - 
(The variance is  defined below, see Psrt 11, Po 2), The sxsret p,d.f. 

and corresponding cedof. can be shorn t o  be 



The easieat way t o  obtain a random variable u n i f o m l y  distributed 

from -1 t o  1 i s  to take it equal to 2R-1, T h e  fornula for X then becomes 

Another approximation to a two-sided Qausrdan is given by the p.d.fe 

2 2 
f(x)  has mean 0 and variance rr / 3 ~  . To pick from this ,p.d,f., the tstandard 

t e c  M q u e  

uan be used, q -  

Cunes for1 the p.d.f. 1s for the huss ian ,  the sum o f  6 Ri, the sum 

of' 12 Ri, and the approximate Gaussian are ;given in graph number 2. Oraph 

- 
number 3 shows the c ,d.f,  s o f  the same d i a t r i  b t i o n s ,  plotted on cumulative 

probability paper. They have a l l  been n o m l i a e d  to have variance 1, 



Pick from E,(x) - 
u 

Let the  p.d.f, f o r  Y be n$-l, 0 - < y <  - 1. 
--a2 

Let Z have the p.d.f, ae , O < z < C = .  L e t X - T Z .  - 
A s  in sect ion 4, the p.d,f, f (x) of X is given byt 

1 
Letting y = 



Then 

and f (x) is as given. 

A 8  abwe, but let a - b. 
Then T 

n 
let x - R~~ 

i-1 

Then 



Let Y and 2 hare the  p.d.f .I s aeaY and beobz respectively.  

Let X - Y + Z. 

Then 

-a ( x - ~ ) ~ - b z &  

.- I 
If a = b, then the  process y i e l d s  

2 -ax 
f (x) - a xe 

The sum o f  n random variables each with the p.d.f. ie 

similarly &awn t o  have the p.d.f. 1 

Let X - YZ Po 

1 See Watson, Theory of Bessel Functions, p. 181. 



Y 
L e t  X = z 

Then 

Oar + be-& - (a+b)e - (a+b)x f (x) - ae O < X ~ W  - .  

Let X larger of Y and Z 

smaller of Y and Z , ,,, 

L e t  x = 
larger of P and Z 



larger o f  Y and Z 
Ld 

smller of Y and Z 

-aY L e t  X = the  middle of 3 randola variables with the prndrnf . I  s ae , 
, beobz, and ce 'y  respect ive ly .  

-bs 
Let Y have t h e  p.d.f. l /a ,  0 - < x - < a, and Z the  p.drnf* be 

L e t X  - Y  + 2. 

Then 

f (x) - I 

d 

x-a 



It is of'ten useful  to pick values from the random var iable  

X = cos nR, of which t h i s  i a  t h e  p.d.f. The following technique 

i s  due to von Neumann. 

Pick R and R -?= 

The accepted R1 and R2 can be used t o  d e f i n e a  point 

(x - 5, y a R ~ )  i n  t h e  f i r a t  quadrant. These points have a 

2 
uniform d i s t r i bu t ion  i n  the l/h c i r c l e  0 < x < 1, 0 < y < 1 - x . - - - - 
There fon  the  angle defined by q = tan-' f has a uniform distri- 

bution between 0 and n/2.  Since twice t h i s  angle i a  uniformly 

d i s t r ibu ted  between 0 and n,  taklng X = cos 2q w i l l  produce t he  

desi red p.,d.f. 



2 2 
cos 2q cos q - s i n  T) 

cos T) ' A 

m 
s i n  q = R2 

The p,d,f. f o r  T i s  also of  interest ,  

E . g(y) = ( ~ m b a b i l i t y  of y) (probability that R2 <vG-) - 

. . 
n' 

and E . 

i -a . . 
a e 

18, ' f ( i ) -  T- 
for O < a I. ' 0, 1 2, . . ( ~ o i s s o n  distribution) 

. . .  - 
. , .  . 



l e t  k 0 

Yo - Ro I,. 
r C .1. 

TEST 
-B 

Yk 2 " 
Yes no 

Yk a Rk Yk-1 

1 I 

Because Rk < l , y k  f a  a monotonically decreaeing function of 

k. Therefore t h e  probabi l i ty  that yk f a i l s  the test q < eoa i s  - 
equal t o  the  p robabi l i ty  t h a t  a random var iab le  

i s  grea te r  than eoa. It was shorn in example that t h i s  prob- 

a b i l i t y  i a  
k .  

Since t h i s  p robab i l i ty  decrease8 by a n  amount ak 4 
r;f 

after 'every 

t e s t ,  t h e  p robabi l i ty  t h a t  i k is j u s t  
ak a 
F e  

The  average nunber of Rk used i n  each choice i s  a + 1. 



19. The following j o in t  p.d.f. 1s w i l l  be obtained: 

The following p.d,f. f o r  i alone; 

1 1 
E-FIX 1-1,2,... 

X 9 
Also the following p.d.f.1~: xe , e - e , 

" x cosh x, e 1 z 
&I e-P (sinh 1 - s inh y), 8 , 

ex s inh x, e(cosh 1 - cosh y) 
1 

S t a r t  with Ro and R1 and i t e r a t e  a s  follows. 
- 'I 

If Rii-l 5 Ri, increase  t h e  i index by one and t e s t  again. As 

soon as the  inequa l i ty  f a i l s ,  take X = Ri,l, Y - Ri, Z = Rg, 

and I - i. Schematically, 

Plck Ro and R1 

C V 
TEST 

Ri-l I Ri 

Yes no 

V 
'choose Ri+ 

V 

I 

i+1 ---, 1 

x - RiD1' 

Y = Ri 

1 ' Z E R O  

I - i  



Let the probabi l i ty  of wking a t  l e a s t  i tests be Pi. 

Then Pi+l = Pi. (pmbabFUty t h a t  Ri - - < R ~ ) .  Since Rial 
i-1 

i s  t h e  l a r g e s t  of i random numbers, it has t he  p.d.2. i R i  .- . 
1 

Therefore the  probabi l i ty  that Ri - I < Ri is  Ri . The probabl l l ty  

of the t e s t  succeeding is: 

But PI - 1. 
Then 

The jo in t  p.d.f. f o r  I and X i a  product of  the  probabi l i ty  

of making i t e s t a  (l/i!) and t h e  probabi l i ty  of get t ing  a glven x on 

the  ig t e s t  (ix 
th 

i-l) and the pmbab i l i t y  o f  then f a l l i n g  this i- 

test ( x ) ;  so 

X 
i 

f b , i )  -. n $  

The jo in t  p.d.fels f o r  I and Y, and I and Z a r e  s imi la r ly  

obtained by: 



The marginal p.d.f.  f o r  i can be obtained by integrating any of 

I the  above. For example: 

The marginal p.d . fb t s  for X, Y, and Z can be obtained by 

summing the reispective jo int  p.d. f . ' s  over I; so 



By aceopting x, y, or z only when i i s  odd the following 

p. d. f .' s are obtained: 

and 

- sinh 1 + 1 - cosh 1 

= I - e  
-1 

as before 



By accepting only even it s one obtains : 

- cosh 1 - cosh y 



I f  t h e  t e s t  Ri - - < Ri i s  replaced by the t e s t  Ri - - + Ri, then 

it is  easy t o  see t h a t  t h e  dnly.change i n  the  r e s u l t  is to replace  
- 

x by 1-x, g by l-yj  and s b p  1-s, and t he  following p.d.fOts 

- obtained: 

The r e  j'bction technique i l l u s t r a t e d  in t h e  last  example uas 

Lil suggested by John von Neumann . He a l s o  pointed out  t h a t  the 

technique for picking out  of 

.with:an e f f i c i e n c y  of $ could be  used t o  pick out  of ' 

f(x) - eoX , o < x < ~  - 

by esimply taking x - z + j where j is  the number of times t h e  t e s t  

has fa i l ed .  The probabi l i ty  that a tr ial  will be re jec ted  is eol 

and s ince  



we are choosing from succeeding intervals with exactly the right 

The expected number of R i n  a single t r i a l  is 1 + e, so the 
3 

number of R for each x selected is about 
3 

(1 + e )  &2=6 

Start with an Ro and R1 and i terate a s  follnrs. If Ri 5 80, 
fncreaae the index by one and t e s t  again. A s  soon as the inequality 

f a i l s ,  take X - I+,, I - i, and Y - Ri. Schenntically: 

Pick Ro and R1 

L-,J 



The j o i n t  p.d.f. f o r  X and I is 

The probabi l i ty  of ge t t ing  a given x times the probabi l i ty  

of passing t h e  first i - 1 t e s t s  times the  p robabi l i ty  of failing 

t h  
t h e  i-- t e s t .  The marginal p.d.f. of x has not  been changed by 

t h e  processing and is a t i l l  uniform. 

The marginal p,d.f, f o r  i is 
-, 

t h  Since t h e  j o in t  p.d.f. f o r  Ro a n d  I a t  the i- t e s t  is R ~ ~ - ' ,  t h e  

t h  
p robabi l i ty  of making the  i- t e s t  is 

t h  The jo in t  p.d.f. f o r  Y and I i s  given by (prob, of =king i- 

t e a t )  . (prob. of ge t t ing  a given y) . (pmb. t h a t  Ro < p). 

The marginal p.d,f. of P is 



If only the odd i are accepted, 



If only the wen i are accepted, 

If the inequality i s  changed toRi _> %, the p . d . f . 1 ~  become: 



Number 2 1  can be modified s l i g h t l y  by making the  comparison 

Schematically: 

Pick % and R1 I1_1I 

lIai-l 
0ive.n RO, the  probabil ity of pausing i - 1 tests  is *-. 

& 

Since Ro is  i n i t i a l l y  u n i f o d y  distributed this is  juat  the^ j o i n t  

th p.d.f. of  Ro and i entering the i- test. The p b a b i l i t y  :of 

th  1 
fa i l ing  the  i- test is 1 - ~ ; r  % so 

!l'EsT 

( i + l ) ~ ~  - < iRg 

The marginal p.d.fe for X is uniform. 

. 
Yea no 

V V 
Choose Ri+l 

i e 1 - i  

X = I$, 

1 - 1  

I 
Y RI 



The p,d,f. f or  I fe  

,1 

The jo int  p.d.f. f or  Y and I is 

for y * i 
-T?f 

i 
~+71:L' 

The marginal p.d.f, for  Y seems too d i f f i c u l t  t o  bother with, 

If only the odd values o f  i are accepted: . 



If only t h e  men  values are acceptedr 

22, Picking f r o m  t h e  Klefn-Nishina Scat ter ing Formula 

2 
It can be ahown that i f  a y r a y  of energy a (in ntc ) is 

t r ave l ing  i n  a cloud of f r e e  electrons,  then it has a probability 

g(x,a)dxdl of having a c o l l i s i o n  i n  the dis tance d l  and emerging 

from t h i s  co l l i s i on  with an energy a t  such that 

where cos 8 = l/a = x/a + 1 = cosine of angle of ma t t e r i ng ,  

a = c l a s s i a a l  radius of e lect ron 
0 

m2 = , 2495s  x an2  
0 

n = number of elect rons  per cc  

a1 = xa = energy of y r ay  after w l l i a i o n ,  



u(a> If u(a)  = / g(a,x)dx then --;;-- i s  t h e  so-called Compton 

'1 

sca t t e r i ng  cross  aect ion and i s  tabulated i n  R-170 [2], Tables 5 

I - 
and 6. The probabi l i ty  t ha t  t h e  y r ay  w i l l  have any kind of 

I . -  

sca t te r ing  co l l i s i on  i n  t he  dis tance d l  is  then a (a )d l ,  g(a,x) 

I can now be wr i t t en  i n  t h e  form: 

I - 
where 

1 2 1 f (a ,x )  =I, (cos e - 1 + x + ? ) h ( a )  
X 

and 

I f (a ,x )  i s  then t h e  p.d.f, f o r  t he  energy r a t i o  x of a y ray uhich 

1 -  . 
en t e r s  co l l i son  wi th  energy 6. The normalizing factor,  ~ ( a ) ,  is 

. - 
shown i n  Oraph b. 

Graphs and Tables of t he  equation 

I can a l s o  be found in R-170. 1 

Enpir ical  f i t s  t o  these  functions could be made, but it is 

undesirable to have to f i t  a two va r i ab l e  function unless absolute ly  

neces wry, 

I S w e r a l  exact  methods f o r  picking out of the  Klein Nishina p.d.f. 

I . w i l l  now be discussed, This is p a r t l y  pedagogy and p a r t l y  because 

I -. 
t h e  method used may depend on the  pa r t i cu l a r  sec t ion  being picked 

fmm or  the  ava i lab le  mc.hine. 



First,  techniques in which x i s  drawn f r o m  a p.d.f. m(x) 

and then accepted if R i s  < ~ ( x )  w i l l  be considered, This implies - 

a. Let 
1 

m(x) = 

It i s  clear that t he  axpression t o  the right of the pmportion 

1 
s ign  i s  < 2, since - ,-. < 0 and -(x + g), < 2 in ths  I'8@.0ll - 2 - .  

X 

the inequality 0 < ~ ( x )  < 1 i s  sat i s f ied .  The ef f ic iency  is - - 

b? Let 

1 See axample 11 for  technique o f  picking out of l/Scln(l+2a) 



That 0 - c ~ ( x )  - < 1 can be ve r i f i ed  by noting t h a t  x * $ is  a 

ltlonotonically increasing function i n  t he  region 1 - c x and t h a t  

2 
cos 8 - 1 has a maximum value of 0. Therefore t he  function 

d. It i a  a l s o  possible t o  break up f(x,a) i n to  t he  sum of 

two p.d.f . Is;  f o r  example: 

As always. 

2 *a+l 2 (l _ 1 + 1 cos 8 )  
" ~ 5 " ~  

x ;2 ;5+,2  

The e f f ic ienc ies  E, through E d  a r e  shorn in graph number 5. 

y t j  p,'?2 



23. Pick from e l a s t i c  n-d s ca t t e r i ng  

See Figure 2 (p. 67) f o r  schematic which gives t he  

simplest  re jec t ion  technique f o r  pi'cking an  angle of - 

s c a t t e r  out  of t he  n-d e l a s t i c  s ca t t e r i ng  crosa sec- 

t ion ,  It has been obtained by ca re fu l  f i t t i n g  t o  t h e  

b e s t  t heo re t i c a l  and experimental data a r p i h b l e .  The 

ef f ic iency  of t he  technique i e  of course a function 
., 

of a and is This i e  shown i n  graph number 6. 

The angle of soartter y in the l a b  system and t he  new energy 

at a r e  obtained as f allowst 

... 24. Approximate i n e l a s t i c  n-d scattering 

The energy spectrum of i n e l a s t i c a l l y  sca t te red  neutrons i e  

not  very wel l  known. A reasonable approxination is t o  sub t rac t  the 
- 

Sinding energy of the deuteron f r o m  t h e  inoident neutronand then ,. 

assume t h a t  the  two neutrons and proton coming off  share t he  remain- 

ing energy, each p a r t i c l e  having a uniform energy from 0 t o  t h e  maxi- 

m avai lable .  Let a, ;, z t ,  at be fhe square roo t  o f -  the incident  

energy i n  lab,  incident  energy in C . of M., f i n a l  energy i n  C. of W., 

and final energy i n  lab ,  respectively,  



Gr. 

L ' TABLE OF C: 
LC 

2 o 1 2 3 4 5 RANGE OF a RANGE OF a 
2 

"\ 1. 0.10897 4.60059 0.25289 0 . 1 U  -0.078966 0 .~954-U 2 < a al = 01 < a < 02 c * - - 

I I i i 

67 
1 

Figure 2 

CGHWTE an(.) 

Ma) 

MOTE: 

a(, = 1/2 
1 5 

6 &,(a) = 2~ 
CoMFnrB xan(a)Pn(21L1-1) ,A 

I 
0 

~ ( a ) =  .49912762 + .1966ll82a + .36139778a2 -. 21189316a3 + .0399a747a4 - .001W3%7a5 



To pick t h e  new energy of the first neutron 

z12 - F$(z2 - 2.18) 2.18 = binding energy of deuteron 

- 
cos y - 2R2 3 1 bsumes sca t t e r i ng  is i so t rop i c  i n  C. of H. 

The energy of the second neutron can now be picked fran t h e  

energy t h a t  i s  l e f t  by the  f irart  neutron. For the purpose of calcu- 

l a t i n g  expected values  t h i s  is not necessaq-the first neutron can 

be given a weight of 2 and t h e  second neutron ignored--even though 
. . 

t h i s  is physical  nonsense, 

25. Approximate general  i n e l a s t i c  sca t te r ing  

A u s e f i l  appmxlmation to i n e l a s t i c  s ca t t e r i ng  of n h t r o n s  is  

to  assume t h a t  t h e  neutron l o se s  a t  least a minimum amount o f  energy 8 

t o  t h e  exci ted nucleus and t h a t  its energy18 uniformly d i s t r i bu t ed  

between 0 and t h e  maximum possible.  I 
If a, G, E l ,  at are t h e  square roots  of  the incident  energy 

(lab), incident  energy (c. of M.), final energy (C. of NO), and 

f i na l  energy (lab) reepect ively  then: 

where A is the  atomic. weight. 



The angle  o f  s c a t t e r i n g  (7) i n  t h e  C. of M. i s  t o  be picked 

ou t  of its dis t r ibu t ion .  For want of better i n f o m a t t o n  t h i s  i a  

u s u a l l y  taken as isot ropic .  

cos  3 - 2R2 - 1 

= + Ei  cos 3 
cos  y - A+T 

a' 

y, o f  course, i s  t h e  ang le  o f  s c a t t e r i n g  in the  lab system. 

26. F i t  t o  experimental data of n-copper s c a t t e r i n g  (graph number 7). 

Picking from another  empirical  p.d.f., the angular  s c a t t e r i n g  

of l.4 MID neutrons on copper, i s  now diecussed. If x = t h e  coeine 

of angle of s c a t t e r ,  then this p.d.f. can be represented i n  t h e  form 



whare the hi(x) satisfy the inequality 

0 hi(x) L Mi when xi x 5 xi - 

The parameters are a s  followsr 

x 1 (The scattering for  x < - .1 18 essentially zero. ) 
4 

A set of pi can be defined by the equation 



Then pi - piO1 10 the probability that the event (xi < x < xi OoOllr6. - - -  

I f  now in addition a set of bits i s  defined by 

+ ( 
bl 

= 1-6 5 50%) = .2759820108 

+ ( b2 = 1-s 4 4-5) = *553%04260 

4 
+ ( = 1-. a) 5-5) = *9713421940 

b4 = 1-e + 4 ( ~ 4 - 5  ) = .9743189497 

Then the following achematic indicate8 how to piok from f ( x ) .  

-- . - - 
NO R ~ L  MO ? NC 

) R1'1.P2 - 1 R1 I P3 9 
4 

YES YFS 
4 ', 

ln ( 1- b4R2 ) 

"4 - 

V Y 

I 

JI J/ 4 4 

Let x = y I 



The method can be ver i f i ed  a s  fol lows.  The probability o f  going 

down the i t t h  branch i s  p - piole Am R, varies from 0 t o  1, y 

variee from x t o  x The probabil ity of  acceptance i n  any 1 
i-1 i - 

interval is  proportional t o  hi(x)e-ai(l-x) and the pi have been 

chosen t o  make everything properly normalizedo J 
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. EVALUATING INTEGRALS 

1. Introduction 

I - - The simplest  appl icat ion of Monte Carlo i s  t he  evaluation of in tegrals .  

While in  ac tua l  p rac t ice  it i s  r a r e ly  e f f i c i e n t  t o  use Monte Carlo unless 

t h e  i n t eg ra l  i s  r a t h e r  highly multi-dimensional, t h i s  chapter is r e s t r i c t e d  

t o  one- or  two-dimensional in tegrals .  The generalizations t o  more dimen- I 
I -. 

sions,  however, a r e  o b i o u s .  In f a c t  most of t h e  discussion i s  unchanged 

if t h e  var iables  of in tegra t ion  (x,y) a r e  each considered t o  represent 

multidimensional. spaces. The r a r e  ins tances  i n  which .this i n t e rp re t a t i on  

i s  not l eg i t imate .  will be c l e a r  from t h e  context. 

I The appl icat ion t o  in tegra t ion  and, in f a c t ,  most appl icat ions  o f  
'I 

Monte Carlo depend on t h e  following two theorems which will be s t a t ed  
- - 

without proof. 

Theorem I (The Strong Law of Large Numbers) 
1 

If a sequence of N random var iables  x1 t o  5 a r e  picked .from the  

I p.d.f. f (x) and a random va r i ab l e  /i defined by the equation 
N 

I - 
and i f  t he  i n t e g r a l  

b 

1 See Doob, Stochastic, Processes. 

. \ 

&; &30  c.: f s- S O  



A e x i s t s  i n  the  ordinary sense, z wi l l ,  almost always, approach as a l i m i t  Y 
N 

The in t eg ra l  (2) is  ca l led  t h e  expected value1 of the function 

.-T 
z(x) , and $ is c a l l e d  an estimate of z. ,If z , t h e  expected value of  

N 
2 

1 

z. (x), a l s o  mists, an  est imate can be mde  about t h e  amount t h a t  $ 

deviates  from fo r  l a r g e  N. ~ e n o t e  the  variance of z(x) by e i t h e r  a 
2 

o r  V; define it by t h e  equation - 

and then apply Theorem 11. 

Theorem XI (The Centra l  Limi t   heo or em)' 

For l a rge  N the p r o b a b i l i t j  t h a t  t he  event - 6 < $? c + 6 occurs - - 
i s  asymptotically independent of the exact nature of  z (x) o r  f (x) but  depends I 
only 

2 
and a . I n  f a c t ,  

order 

1 Most readers w i l l  be f ami l i a r  with .the f a c t  t h a t  the  n a p a c t e d  value 
may be very unexpected. For example i n  the coin toss ing  earample of Part 
I the. expected value of C was 1/2 though C can take on only t h e v a l u e a  
0 and 1. 

2 Almost any book on s t a t i s t i c s  discusses t h i s  theorem; Cramer, Mathenultical 
Methods of S t a t i s t i c s ,  is espec ia l ly  full and i n t e r e s t i ng  on this theorem and 
i t s  var iants .  

5 5, fj ~ 9 1  . . 
, . 

. . 
\ i 



1 

. . and deviations g rea te r  than - + */fl so uncommon t h a t  i f  t he  t a b l e  app l ies  

1, 

The probabi l i ty  t h a t  t he  deviation of % from i. w i l l  exceed - + X a f l  i s  
y o 0 2  

given in the  following abbreviated tab le  of 1; / e -X /26x ; 
X 

- 
X Probabi l i ty  

t h e  pos s ib i l i t y  thz+ t h i s  l a a t  event may occur can usual ly  be ignored. 

u/ @is  c a l l e d  t h e  standard deviation (8.d.). of t h e  estimate %. 
The reason t h a t  sampling i s  usefu l  in evaluating multiple integrals of 

a high order is  t h a t  ne i ther  of t h e  theorem depend on t h e  dimensionality of 

t h e  in tegra l .  The number of points  required t o  evaluate a multidimensional 

i n t e g r a l  t o  a fixed l e v e l  of accuracy depends only  on a, or  ufi  if a f i xed  

... .6745 

1.0000 

2,0000 

- 3 .ocloo 

4 .m 
- 

percent accuracy is desired, once there  are enough so that t he  Centra l  Limit 

Theorem is re l i ab le .  While it i s  t r u e  t h a t  in  t h i s  perverse world u o r  ufi 

.5000 

03173 

.&55 

.0027 

,0001 

eeema t o  increase  with the dimensionality, there  is no reason i n  p r inc ip l e  why 

t h i ~  should be so. By contrast ,  i n  almost a l l  standard techniques t he  number 

of points  required t o  evaluate an i n t eg ra l  go up i n  geometrical progression 

It can be seen fmm the above tab le  t h a t  deviations g rea te r  than 

+ b/wwill be frequent, deviations g rea te r  than + 2 u / f i n o t  uncownon, - - 

1 be discussed i n  Appendix 11, t h e  t ab l e  i s  almost cons ia ten t ly 'op t imis t i c  
f o r  t h e  p.d.f,ts and N t s  a c t u a l l y  used i n  practice.  I n  f a c t ,  its * m e e t  bye 
and byen form does not always admit too confident an application.  It i s  
therefore  to  be conaidered.as suggestive and not categorical .  



I 
with its dimensionality. In part this undoubtedly is due t o  a defea t  in 

t h e  theory of in tegra t ion  i n  reany diasnsi-ens,' but  p a r t i a l l y  it s e e m  t o  be 

unavoidable. This exponential i n c m s e  almost never occurs 1P t h e  inte-  

gra t ion is  done by  Monte Carlo. The o ther  ocoarional advantage of  Monte 

Carlo l i e s  in t h a t  it may be cheaper t o  compute points  by Monte Carlo than 

in t h e  etandard ways. This shows up m a t  sharply i n  trg5rg t o  mlve c e r t a i n  

&.enr s function types of problsas.2 On the whole, though, it xust be 

adnittad t h a t  Monte Carlo has not  ahown up very  well in corepetition wi th  

standard techniques, when the standard technique8 were a t  all r eaaonable. 

It has been used most mccess fu l ly  where t h e  standard numeriaal tschnipueer 

~ o l a p l e t e l y  fail. In t h i s  sense it is a method of laslt resor t .  

The r e s u l t s  of Theorem 11 depend on 19 being l a rge  enough and t h e  variance . t 

being known. Of course, it i s  nrre t h a t  the variernoe should be knoun and 
. - 

- 
z unknown. The question "What is large enough?n is  dimusred in Appendix 11. 4 

1 on. y t 0 ~ ~ 1 ~ ~ l l t ~ d  . . + ~ s ( ~ ~ . . . ~ \ ) $ . O . &  1 d d b . b  w&w~@ 
e a t  t h e  $ points  obta in  by di ding each x s ce id!o I4 In t e rva l s  and 
W i n g  the  midpoints of t b s e  in te rva l s .  If & t a d  the f h c t i o n  s ( 5 ,  ..., x ) 

n 
were expanded i n  t h e  form A $l$ik(xi) the oorresponding numerical 

i n t eg ra t i on  would only require, H r S  ppinta. Routine methods exi8t fo r  =king 
such expansions, but  if the  function z (x , . . .,a) is in any way mu&, a Very 
l a r g e  K may be needed t o  make t he  expans$on accurate enough. In general, i n  
any d e f i n i t e  problem specia l  techniquers can be used to.reduce the  number of . 

point8 t o  less than il" but i n  a la rge  class o f  problem not enough l u a  t o  
make the  c l a s s i c a l  numerical in tegra t f  on competitive with the '  number of points  
required by Monte Car10 (see  equation (8) ). Hwmver, it a l s o  aoms to be t r u e  
in  t h e  pas t  t h a t  Monte Carlo has been most useful  in .evaluating i n t eg ra l s  t ha t  
have a r i s e n  out of pmbab i l i e t i c  s i tuat ions .  m e  author knows of '  no serioue 
rion-probabilistic i n t eg ra l s  evaluated by Monte Carlo. It i s  hard t o  W t h e r  
t h i s  is coincidenta l  o r  symptmatic. 

2 

2 J. H. Curtias, llConparison of Effioiency of Monte Carlo ~ e t h o d s  with t h a t  
of Claes ica l  Methods fo r  Linear Computation Problemstt Symposium on 'Monte 
Carlo Methods, John Xiley and Sons, 1956. 



The variance1 oan be estimated by 

general, whenever it is desirable to estimate values of formulae i n  
A 

7 
which s and involved, the expected value can be replaced by i2 and a re- - 

spsctively. While the  estimate w i l l  almost aluaya be biased, the amount of 

1 
the bias i s  usually proportiorul to and can be ignored i f  N is reasonably 

I 

I large. 
P - 

I - . .  
The eatimate of V i n  equation ( 5 )  i s  aften unrel iable  unless N i e  very 

A 
large. If V. is not .known to be rel iable ,  t h e  computer may be able, by ex- 

p lo i t ing  special  properties of the problem, t o  obtain an upper bound fo r  V 

A 

or (v-v). In other  caaes t h e  computer may beable t o  depend on experience, 

intui t ion,  or Just  plain f a i t h  fo r  his bel ief  i n  the accuracy of the  answer. 

I Thla point beare a l o t  of dfaoussion, some of which can be found i n  Appendix 11. 

I -  The estimate * equation (6) is  useful i f  only becausb i t  may give 

A 
negat im Information. I f  the estimated V i e  la rger  than t h e  aomputer can 

- 

tolerate ,  this information, a t  l e a s t  is  usually r e l i ab le  and. the computer must 

e i the r  inareaae the number of samples or  change the sampling techfique. 
A 

5 -7 - 1 While the  experqted values of a and 4 are z and respectively, the 

AZ 
expected value of (i2 - m ) is not V but. V. This occurs because the 

axpected value of 82 is 2 + (1 - l)i2.3 It is customary to prwant  a b ias  
f ~ o m  occurring i n  the e s  I b a t e  of V 1 y multiplying the in tu i t ive  estimate by . Unfortunately, wen i f  this i s  don@ the axpec.tex$value o f  @ u i l l  not 
@o but w i l l  a lso  b e  biased b y  terms of the order of 

' T 9 '  
The bias  however, 

. is prac t ica l ly  never signlfioant.  



2. The Economics of Sanpling 

The e r ro r  i n  the  est imate of is measured by  a/ v. !l'here a r e  two 

vaps to make this e r r o r  small-to increase  N or  t o  change t h e  sampling 

technique t o  make o small. The extent  to  which each of  these  a l t e rna t i ve s  

should be used depends on the  r e l a t i v e  cos t  of each f o r  t h e  problem to bs 

done. Before goirig i n t o  a descr ipt ion of the sampling techniques ava i lab le  

f o r  reducing o, it i s  worthwhile t o  consider b r i e f l y  how much of t h e  work 

should be a l loca ted  t o  decrease a and how much into maMng M large. 

It ia assumed, f o r  simplici ty,  in  what follows t h a t  t h e  computer i e  In- 

t e r e s t e d  i n  obtaining the  g r ea t e s t  accuracy possible a t  a f ixed  c o s t  or-what 

is i n  t h i s  context much t he  same thingomthe minimum cos t  f o r  a f ixed  accuracy3 
- 4 

t h e  t r u t h  w i l l  general ly  l i e  between these  extremes, b u t  e i t he r  of them 
8 .  

af fords  a bas i s  f o r  t h e  analysis .  The desi red accuracy i s  s e t  by requir ing 
4 

t h a t  a/ fi be equal t o  a preassigned r .  

The coat of doing a problem can be divided i n t o  t h r ee  par ts ,  t he  cos t  o f t  

a. designing the  sampling including t h e  cos t  of extra analysis  

if fancy methods a r e  to be used. 

b. programming, coding, and code checking.' This cos t  is  usua l ly  

determined by the  sampling design. It is l b t e d  separate ly  because 
- 

eve? though it can be very important, it i s  often ignored. For 

small problems it may be the  l a r g e s t  part  of  the cost .  

- 
1 Programming r e f e r s  t o  the  d e t a i l s  of  pu t t ing  the  problem into a form 
t h a t  is  su i t ab l e  f o r  mchine  computation. Coding r e f e r s  t o  the eendcler ical  
job of t r ans l a t i ng  these d e t a i l s  i n t o  t h e  ins t ruc t ions  t h a t  t h e  machine will 
follow and t o  the  recording of these  ins t ruc t ions  on a medium which t h e  
machine can read. Code checking i s  the pe r i l om job of f inding all tb 
mistakes. Anything t h e  computer can do to simpljfy these  time consuming 
s t e p s  may r e su l t  i n  a l a rge  reduction i n  t h e  cos t  of doing the  problem. 



c. the  computing machine on which the  problem i s  done. Fkcept 

f o r  t he  time used f o r  code checking and therefore a l ready  counted 

in (b), t h i s  cos t  i s  usually considered t o  be proportional  t o  N. 

Since t h e  propor t ional i ty  constant w i l l  vary with d i f f e r e n t  

P 
sampling methods it is  a l s o  a function of (a). 

If t h e  c o s t  of ( a )  and (b) i s  denoted by C1, t h e  cos t  of ( c )  by C2N, 

and t he  t o t a l  coat  by C then 
, 

C1 and N are under the  control  of the computer, but it i s  usual ly  impossible 

t o  p red ic t  in advance, wen  approximately, t h e  form of a(cl).  The analysis  

:+ : 
from t h i s  point  on therefore takes  on a c e r t a i n  f i c t i o n a l  character .  

D - 
The e r r o r  is 

d c , )  
&I- 

F 

Solving equation (8) f o r  N and subs t i t u t i ng  i n  (7 ) ,  

In most cases ' can be ignored and (10) becomes K 

By solvlng equation (11) f o r  C1, t he  o(cl) of the  sampling plan and 

therefore  t h e  sampling plan i t s e l f  is determined. M is a l s o  determined 



2 2 
aince it i s  equal t o  a /t . The l e s s  s a i d  about how sampling plans a r e  

I chosen i n  ac tua l  pract ice  t h e  be t te r .  

The only place i n  t h i s  repor t  where the  cos t  w i l l  be brought in  

I e x p l i c i t l y  w i l l  be i n  the  discussion of the  device of Russiam.Roulette and 

S p l i t t i n g  where it w i l l  be shown t h a t  a modification of equation (10) 

can be used t o  determine t h e  sampling scheme, Even though it i s  not mentioned 

e x p l i c i t l y  t h e  computer must always keep cos t s  a t  l e a e t  roughly in mind - 

when designing o r  evaluating sampling schemes. 



3. Methods of Sampling 

The sampling techniques most of t& used i n  Monte Carlo problems a r e  

o.lled : 

1, straightforward Sampling 

2. Impar tance Sampling 

3, Systematic Sampling 

S t r a t i f i e d  Sampling ( ~ u o t a  sampling) 

5 ,  Use of Bcpected Values 

6, Correlation 

7. Russian Roulette and Sp l i t t i ng  

I n  order t o  introduce and compare the different  techniques, a br ief  

dfscussion of how each one would be used by i t s e l f  in connection w i t h  a 

typ ica l  problem is  given In Sections 4 t o  10.. After the g e n e r a  discussion 

there i s  a more d.eki led  explanation of each technique in Sections 13 to 19, 

It i s  of course possible, and often advisable, t o  use two or more of the 

t ec  hniquea simultaneously, 

The problem that w i l l  be used t o  i l l u s t r a t e  the  various techniques is  

t o  .estimate the  in tegra l  

A 

sere f(x,y) is  a p.d.fel The area A m e r  which the integration i s  done, i s  

divided infa J mutually exclusive areas, A l ' b  I f .  It is the dif fer&t char- 

a c t e r i s t i c s  of the integrand i n  thasb lagions which w i l l  be exploited in the 
. . . . 

methods which follow, .' 

1 This implies o n l y t h a t f ( x , y )  - > ( l a n d t h a t  / / f (x,y)&ciy=l .  
A 



The following quanti t ies  a r e  defined for  esch value of j: 

t he  probabili ty of A 
3 

probabili ty density of (x, y) given A 
r j 

f (x, y)/pj if (x, y) is  i n  A 

~ + x , Y )  = 
j 

if (x,y) is not i n A  j 

conditional expected value of z given A 
j 

conditional expected square 

conditional variance 

p i s  the probability tha t  a point (x,y), picked a t  random out of the 
3 

p.d.f . f (x, y) , w i l l  be in the region A f (x, y) is  a properly normallzed 
J;  j - 

p.d.f.; and f(x,y) is  equal t o  1 p f (x,y). 
3 j j 

is the average. value of 



Z(X,Y) i n  A The expected value of z(x, y) over A i s  t h e  expected value 3 
of the  

L' . 
J 

Similar ly  

2 
Fina l l y  a measures the f luc tua t ion  of t h e  random var iab le  z(x, y) given 

3 

t h a t  (x,y) i s  i n  A It is  shown i n  Section 4 (equation 24) t h a t  the  
3 - 

variance of z(x,y) is  t h e  weighted sum of the values of these  condit ional  

varfrnces and a variance due t o  the  f luctuat ion of fmm one j t o  another. 
3 

The same formulation can be used t o t r e a t  a s l i g h t l y  more general problem 

than the  simple evaluation of an in tegral .  For example, consider t h e  sval- 

uation of t h e  expected value of  a random ~ r i a b l e  W t h a t  is generated by t h e  

following procese: 

t h  
a. Let p be t h e  probabi l i ty  of a j- event occurring. 

3 
t h  

b. If t he  3- event occurs l e t  t h e  p.d.f. for  (x,y) be g (x,y) 
j 

and l e t  U - w (x,y) 
3 

J 



i 

where t he  obvious de f in i t i ons  f o r  and apply. A l l  
j 3 

t h e  techniques t o  be described can be used as e a s i l y  to 

evaluate a G, defined by q u a t i o n  (20), aa t o  evaluate a 

- 
z, defined by q u a t i o n  (12).  In f a c t ,  some of t h e  techniques 

a r e  unnecessari ly complicated f o r  the simple in tegra l ,  bu t  

are usefl~l  f o r  t he  ' more general problem, pa r t i cu l a r l y  f f the 

p . I  s a r e  defined imp l i c i t l y  ins tead  of exp l ic i t ly .  
J 



h. Straightforward Sampling (A)  

This i s  the sampling which was already discussed i n  sect ion 1. N 

samples a r e  picked frcm the p.d.f .  f ( x , y )  and an estimate o f  .; i s  defined 

The variance o f  the estimate is 

It  can be written 

Since  

Theref ore 



5. Importance Sampling (A) 

. . 

Another method of evaluating by sampling would be to: 

(a)  pick a j out  of a s e t  of p robab i l i t i e s  pJ i n s t e a d  of p 
j 

(b) once j i s  picked, pick an (x,y) dut of f (x, y) 
3 

(c )  with t h i s  (x,y) evaluate the  function 
P. 

The g can be chosen completely a r b i t r a r i l y  except f o r  tb usual  

conditions : 

j 

together  with the  condition that 

9 - o (unless p 0) 
j 

-7 , : .. .: The f i r s b t w o  conditions guarantee t h a t  t h e  s h a l l  be a se t  of 

probabi l i t i e s ,  the  l a s t  one t h a t  p /pit is  never i n f i n i t e ,  
j J 

Despite the  a r b i t ~ a r i n e s e  of  pit, the expected value of z*(x,y) i a  
J 

. e a s i l y  seen to be i :  



- 
2   ow ever, i s  n o t  equa l  t o  s 

There a r e ,  t he re fo re ,  a n  i n f i n i t e  number o f  sampling schemes here  

'- . 
. t h a t  can be  used to es t ima te  - each wi th  a d i f f e r e n t  var iance .  The 

computer would presumably l i k e  to use  a set of  p#ls t h a t  m i n i e z e s  t h i s  
3 

var iance .  To minimize V p  it i s  s u f f i c i e n t  t o  minimize Z * ~ ( X , ~ ) .  The. 

term, z2, is  n o t  a f f e c t e d  by changing t h e  9. O f  course  t h e  minimizing 

on 9 must be done s u b j e c t  to t h e  cond i t i ons  of equat ion  (25). 

A s  shown i n  Appendix III, t h i s  is equ iva l en t  t o  f i n d i n g  t h e  va lues  

I of t h a t  minimize 

f o r  a s u i t a b l e  X to be determined l a t e r .  



The unique minimizing s e t  is  given by 

To make t h e  s u m t i o n  of t he  g equal t o  one, it is  necessary t o  take 

If the  sampling i s  done w i t h ' t h i s  optimum s e t  of p t s ,  the variance 
J 

becomes ,- x 

The improvement over straightforward sampling i s  measured by 

The variance i s  reduced by t he  variance of a random var iable  which has a 

7 
p r n b a d i ~ t ~  p of taking on t he  value K. 

3 
It i s  s l i g h t l y  misleading t o  c a l l  sampling wi th  the  p?J Xutportance 

Sampling. The inrportance of any mgion i n .  contr ibut ing to t h e  answer is, 

i n  a ,sense, measured by p but  t h e  sampling should be done by a e e t i  

of probab i l i t i e s  proportional  t o  p 7 j,- -2 zj + , 2 so i f  u 
2 

3 



i s  small compared t o  ;;, r lid. In f a c t  i n  ce r t a in  optimum s i tua t ions  

t h e  quant i ty  corresponding to a is  zero; in which case t he  sampling 
3 - 

probabilities should be taken exact ly  proportional t o  the  importance of 

the  various regions. I n  any case it is  usually ea s i e r  f o r  the  computer t o  
1. 

- 

oonjure up estimates of ; than R. 
9 

If t h e  Ej  are all pos i t ive  and the a r e  taken proportional to  i thsn 4 3 

and 

1 .  
It is  c l e a r  t h a t  sampling proportional t o  15 may be poor i f  any 

3 1 
of the  tens p %/ ( i I is large. The computer can himself against  

3 3  3 
t h i s  pos s ib i l i t y  if whenever his estimate of is very small he replaces 

3 



it with a l a rge r  number i n  the calcula t ion of 9. Exactly how f a r  the 

computer should go i n  t h i s  d i rec t ion  is  s t rongly dependent on t h e  problem 

%hat is  being done. 

The problem of. est imating 7 or a is ortrcial  if importance sampling 
5 3 

is  t o  be done, In tu i t ion ,  approximate calcula t ions ,  experiments, o r  

previous Monte Carlo calcula t ions  can be used to get information about 

-7 
z and I n  most problems i t  i s  easy f o r  t h e  computer to get  some idea  
j j' 

of  the r e l a t i ve  importance of d i f f e r en t  regions. When it i s  necessary though, 

-7 it is worthwhile to go t o  some e f f o r t  t o  get  reasonable est imates of z 
- 

- j 

fo r ,  a s  shown i n  Appendix 11, there  are r e a l  d i s a s t e r s  poasible i f  

t h e  assumed importance functions a r e  very badly chosen. 



6. Systematic Sampling ( A )  

If it has been decided i n  advance how l a rge  W i s  t o  be and the p 1s 
j 

- 
are known exp l i c i t l y ,  then instead of choosing a random j f o r  each sample, 

t h e  expected number o f  samples can be assigned t o  each region. 

Denoting these  expected numbers by then 
j 

The est imate of is 

th th 
where (%j,yij) i s  t h e  i- sample value picked i n  t he  j- region and 

. . ( x i j , y i j )  is  an e s t i m t e  of 
j 

The variance i s  given by 

can be wri t ten  



Subs t i tu t ing  aua t i ons .  (38) and (b) i n b  (391, 

and 

+ cross  product terma which drop out 

whm the averaging is done. - 

The variance i s  reduced by t h e  variance of the average values of the 

d i f f e r e n t  j regions, one of t h e  terms of equation@u. ?&ether o r  not the 

gain i n  doing systematic sampling is  l a rge  will depend on the  amount of 

t h i s  variance, but  a s  it r a r e l y  involves any ex t ra  work, if t h e  pj are 

a l ready  known, it is  almost always desirable.  



7. S t r a t i f i e d  Sampling ( ~ u o t a  ~ a m p l i n g ) ~ j  

. A s  i n  Jystematic Sampling, each region i s  assigned a d e f i n i t e  number 

o f  samples ins tead of a random amount. However, ins tead of j u s t  taking 

this number equal t o  p N, it is chosen t o  minimize t he  variance of t h e  
j 

estimate. In t h i s  respec t ,  s t r a t i f i e d  h p l i n g  is Bimilar t o  bnportance 

If n4 samples a r e  taken j.n each region, then t h e  estirnate of 'i 
J 

As usual3 (xi3,yij ) i s  the  i- t h  sample value i n  the  j- th region and 

n3 

z(xij ,yij) is  an estimate o f  i 
J ' 

By following t he  p rocedu~e  i n  the previous sec t ion  on Systematic 

Sampling, t he  variance i s  shown t o  be 

To minimize V subject  t o  t h e  r e s t r i c t i o n  t h a t  4' i n j  = A, it is 

necessary t o  take the  unres t r i c ted  minimum of j* 

This minimum occurs when 



where 

t h e r e f  o r e  

The r e s u l t  i s  reminiscent  of Importance Sampling except that the  

importance o f  a region i s  measured by p a r a t h e r  than p 
3 3 

The variance becomes 

As in Systematic Semplixg, the var iance  &e to t h e  v a r i a t i o n  i n  e 
3 

i s  eliminated,  In  a d d i t i o n  a var iance  due to t h e  v a r i a t i o n  i n  a i s  also 
5 

eliminated. 

A 
As might be expected, $ i s  more accura te  than spa 



Subet i tu t ing a 
2 -7 - 2  

3 - =5 - one ge t s  

whlch i e  greater than 0. 

The problem may bar suoh t h a t  t h e  p ce are not knwn expl ic i t ly .  It 
3 

.. a m  then be very Inconvenient t~ t r y  t o  force, i n  advance, the  reglon i n  

. - 
which t he  point (xny) i s  t o  fall .  In this extremity a va r i a t i on  of the  

above sampling technique can be wed. 

a. A point  (x, y) i e  picked a t  random and th 3 region t o  which 

it belong8 i den t i f  led .  

b. If. poin t s  i n  thie 3 region have already been picked, t h e  
"j 

point is d f ~ c a r d e d  and a new choice made.. 

a. If l a s s  than n points have been pioked then t h e  evaluation 1 
"(xiJ8yiJ) is made and the value recorded. 

- 
The above prooaes can only  be useful  i f t h e  cos t  of  picking a p o r n  is 

I 

depend on how many points  have'already been picked i n  a l l  t h e  regions, and/ - 

aamrpletely negl igible  compared to the cost  of evaluating z(x,y). If t h e  

i 

ooet of picking the  point (x,g) i s  .not negligible,  t h e  process in principle ,  i -. 
should be changed. The decieion whether o r  not t o  discard a point ahould 

~ - o r  on the r e l a t i ve  cos t s  of picking and evaluating. Further Nscusaion 

1 - on this point  will be found i n  Section 19. 



If, a s  is often true, the  computer has good estimate o f  ; available,  
3 

he may wish t o  take n proportional to t h i s  quantity. 9 

In t h i s  case 

Since equations (54)  and (s) are ident ical ,  there 18 no advantage to - I 

. . .  
be gained by doing ~$temat ic  Gampling, of &rat i f i ed  Sampling pmportlonel . . 

to Zj, when tportance  Sampling proportional to P ha8 already bean used. 
3 



8. Using Expected Values (A) 

Solnetinss it is a simple matter to  evaluate ana ly t ica l ly .  Than i f  
3 

t h e  p a r e  known one can write 1 p and t he r e  i e r  no necess i ty  t o  do 
3 3 3 

Monte Carlo. Sometimes though the p a r e  not  given eucplicitly and but only  

a camplicated way of  sampling f o r  them ia givcm. There i s  then no point  

in using Monte Carlo t o  do t h a t  part of t h e  problem which can be  done d y t -  

ioal ly .  Only t h e  j value should be drawn at random and then uscad f o r  
S 

t he  estimate8 

I 

=J (0 i s  the  a n a l y t i c a l l y  aalcula ted expected value of e(x,y) i n  

t h  
t h e  j region t h a t w a a  picked on the i-- ssuaple, The variance is 

A8 would be i n t u i t i v e l y  expected, the  va r i a t i on  due t o  t h e  f luc tua t ion  

of a(x,y) within a 3 region has been elininated.  I n  many problems this 

variance .Ilninated is vary l a rge  compared to V5. 



9. Correla t ion (A) 

It i s  sometime8 desi rable  to do two o r  more problems aimultaneoualy. 

This occurs, i n  par t i cu la r ,  when one of the following th ree  conditions 
- 

holdr - 

a. The answer to one of the problems is  known. The a n s w r  to the 

unknown problem can be calcula ted more accurate ly  by adding the 

e s t i m t e  of t h e  di f ference t o  t he  known answer ra ther  than by - 

estimating the  unknown one d i rec t ly .  The known answer is  usually 
- 

t h e  so lu t ion  of an idea l iza t ion  of the  problem of i n t e r e s t .  

b. The difference between problems i s  of in te res t .  If the eompling 

is  ca r r i ed  out  i n  a cor re la ted  fashion, it i a  usua l ly  posaible 

t o  est imate t h e  di f ferences  more accurate ly  than i f  t h e  sampling 

were done on t h e  problems independently and t h e  answers subtracted. 

c. A parametric study of n pmblema i s  being conducted. If t he  

problems a r e  done simultaneously, it may not be neees@ary to 

dupl icate  n times the similar portions.  This w i l l  br ing down the 

total cost ,  o r  enable t h e  computer t o  do a much l a r g e r  study fo r  

t he  same cost .  
' I * 

For the  sxaarple to be considered, it w i l l  be assumed t h a t  t he  computer 

knows how t o  evaluate, ana ly t i c a l l y  o r  otherPrlse, 
- 

and t h a t  z - cm w i l l  be estimated by the sampling (condit ion a). Aa before, 

/ 

a s e t  of quan t i t i e s  is defined f o r  each j region: 



(x, y) not i n  A 
5 

In addition, the correlation coef f ic ient  p is defined by 

where u is the s.d. of E(X,Y) for the sampling method used and cr2 i s  the 
1 

corresponding quantity for v(x,y) It can be shorn by a p p l y h g  Schwarzl s 

2 
i ~ u a l l t y  t o  the /( z - i) 2f (x, y) dxdy, /(r - i )  f (x, y)dxdy, and 

( - ) (V - ; ) f ( ~ , ~ ) d x d ~  that -1 - < p - < 1. 



The correla ted sampling can be amied out by t h e  follawingt s c b :  

a. g 3 value i s  picked a t  random from a r ~ e t  of p robabi l i t i es  q . 7 
b. For every value of j picked, an (x2,yi) i s  picked out  o f  

I f j (x ,y)  and an (xi ,yi)  from gj(x,y). If it is feas ib le  t h e  

(XI, yl ) nay be correla ted with ( x , ~ ) ;  i n  t h i s  case the ( ~ , y i )  

i s  picked from a g(x' ,yt :x,y). 

c. (a) and (b) a r e  repeated u n t i l  N samples a r e  picked. An estimate 

of % i s  then calculated by 

I& e re  

The computer should t r y  t o  pick a t o  minimize 

where 



av6 
The optimum a i s  determined by s e t t i n g  - 0 which mkes  

. - 

With t h e  optimum a t h e  variance becomes 

Therefore it i s  seen t h a t  t h e  higher the corre la t ion,  the .smal ler  t h e  

variance V 
6' 

Unfortunately the  comp'uter u rna l l y  cannot ca lcu la te  a ana ly t ica l ly .  

'-2 It can be estimated by subs t i t u t i ng  2, C, G, and v f o r  the corresponding 

mpeoted values' i n  . 

0, 



If the same sample t h a t  i s  used to estimate and is  a l so  used t o  

est imate a, then the  variance of S6 can no longer be s inp ly  expressed. In 

addit ion,  it i s  conceivable that a ser ious  bias could be introduced by 

such a procedure. The following a l t e rna t i ve  can be used. The sample i e  

divided i n to  two equal parts : I ? ,  ' 8 1  , and St a r e  calcula ted from t h e  

F i r s t  part, all, a", and 9" from the  second part ,  and the estimate is  changed 

The variance of e i t he r  of  the above est imates is 

" This i s  twice .as big  as t h e  optimum variance of equation (66). 

I f  the average of 3 and % i s  taken a s  the estimate, then the variance 

becomes 

which can be shown to be l e s s  than 3. 

In  some cases t h e  computer w i l l  be ab le  t o  ca lcu la te  %2 ana ly t ica l ly ,  

but  can only est imate polo2. It is  not necessar i ly  des i rable  t o  use this 

combination, because the  estimates o f  t h e  two quan t i t i e s  a r e  correlated,  



f and " - 2 v iv - 5 'V 

m may have a smaller variance than 
7-f2 

Jdhn Tukey has pointed out  t o  t h e  author t h a t  equation (70) i s  not 

"maximally ingeniousn. It su f f e r s  from the  defect  t h a t  the correct ion 

- tam td/2 has not been mde as t3maI.l as possible. (ine m y  i n  which 

i t - c a n  be made smaller i s  t o  proceed a s  followst 

a. Divide the  samples i n t o  K pa r t s ,  each with N/K samples. 

f i  
A 

2 
b. Estimate 4, e,, (Pu1cr2)k and (02 f o r  each par t ,  k - 1,2,. . .,KO 

A 
c. Define by. A 

A 
a f t  k t 9 G I  > 'Po?) i 

(71) 
19k (@22)1 

a r  is the re fore  independent of t h e  other  quan t i t i e s  with the  

same k subscrf p t  . 
d.  Let 

Then - 

and the  correction term is  divided by K ins tead of 2. 
- 

e. Bec use the  number, N/K, of  samples i n  each part  may be small, R 
(PO - f==la2 a may be a very biased est imate of - While a b i a s  

A 

(u22 lk u22 

- i n  the est imate of awl does not b i a s  t he  e s t i na t e  of it i s  

desi rable  t o  keep such b i a s ' s  small. It can be reduced by changing , 

A 
ths def in i t ion  of a t {  t o  



It i s  i n t u i t i v e l y  c l e a r  t h a t  the cor rec t ion  term will s t i l l  be 

A 
of t h e  same order  of magnitude i f  this de f in i t i on  of at1  is  used 

ins tead  o f  the  one i n  (c) ,  but  t h a t  the b ias  will be smaller. 

If the  a  is fixed then the computer should try t o  choose to minbdze QS 
t h e  varimce, Going back t o  equation (63) and rearranging terms 

The optimum q to use f o r  any given a i s  given by f 

I f  t h i s  is  done then 

r 



10. Russian Roulette and S p l i t t i n g  (A)  

'Iko of t he  techniques, Importance and S t r a t i f i e d  Sampling, depend 

f o r  t h e i r  ef fect iveness  on t h e  computer being ab le  t o  change the sampling 

probabilities s o  t h a t  a high percent of t he  samples a r e  i n  t he  important 

A regions and small percent in the  unimportant ones. I n  some problems 
3 

this cannot be done eas i ly .  If, f o r  instance, p j  uere not h o r n  exp l i c i t l y ,  

bu t  were obtained by an involved process with rmny .stages of s a p l i n g ,  t h e  

computer might not know how t o  fo r ce  the  separate  s tages  t o  make t h e  f i n a l  

sampling of 3 proportional  t o  an a r b i t r a r y  set of  pY1s, In  t h i s  eventuali ty,  
J 

when the  sampling i s  such t ha t  f i r s t  a j i s  picked and then an (x,y), t he  

following procesa can be used: 

a. Class i fy  each region k as being of type I or  11. In type I, 
\ 

5 
e i t h e r  because t he  variance i s  small o r  the  expense of picking 

(x,y) and evaluating s(x,y) f s large,  t h e  computer wishes to 

avoid ge t t i ng  many samples. I n  type I1 the. exact .opposi te  is  

t m e .  The numerical c r i t e r i a  f o r  distinguishing the . two types 

i e  developed in t h e  argument. 

b. I n  type I regions, where t h e  r e l a t i v e  contribution t o  the  anawer 

1 is somehow smll, Russian Roulette is  used. When i n  such a 

region, a sample (xi,yi) is  obtained only  some of the  time, say 

wi th  probabi l i ty  q knd z(xi,yi)/qj recorded f o r  t he  sample; 
J 

otherwise, with p robabi l i ty  1 - .  the re  i s  no sample takm 
q3' 

1 The name, of  course, is  derived from a well  known game of ahance s a i d  
to be popular among Russian army men. The sampling technique i t s e l f  
or iginated a t  'Los ~ l & o s .  John von Weumann and Stanley Ulam a r e  responsible 
f o r  both t h e  sampling technique and i t s  name. 



and zero i s  recorded. If the  f i r s t  eventual i ty  i s  real ized,  

only one (x, y) need be picked and one z(x,y) evaluated. If 

t h e  second even tua l i ty  material izes,  no (x,y) need be picked. 

The expected va lue  of the  sampling h a s  not been changed. The 

variance V for -eetimating , given t h a t  j has been picked, 18 
3 J 

c. In type I1 regions, S p l i t t i n g  can be used. n values of 
3 

(x,y) a r e  picked f o r  every j. The sample est imate i s  then 

the ar i thmet ica l  average z(xI,yi) where (xi,yi) is the 

th i- point  picked on t h e  sample. The variance of t he  above 

The variance of t h e  whole process i s  given by equation (23) which 

takes the form 



where 

The expected marginal cos t  of a sample is  given by 

where Co is the  cost  of picking j and C is t he  cost  of picking (x,y) 
3 

and evaluating z(x,y) i n  the  jg region. 

. It was shown i n  equation (9)  t h a t  an e f f i c i e n t  sampling scheme 

lninimizes H = C V ~ ?  To f i n d  the n I s  that do th i s ,  it is  convenient t o  
3 

assdme that they  a r e  ccmtinuous var iables  so t h a t  t h e  ordinary techniques 

of d i f f e r e n t i a l  calculus can be u$ed. This assumption has only  a minor 
-. 

. . e f f e c t  on the resu l t s .  

- 
Using (81) and (82), and solving f o r  n 

3 : 

where 

2 1 Cv7 correspbnds t o  C 2 0  i n  equation (9).  



This r e s u l t  i s  i n t u i t i v e l y  pleasant (and reminiscent of equation 48). 

Similar ly  it can be sliown t h a t  

If these  n and q a r e  used, B. i s  obtained by subs t i t u t i ng  (85) and 
j j 7 

(87) i n t o  (8i) and (82). 

By dividing (89) by (86) and using A2 c/V , )i can be evaluated: 
7 

2 1  
The condition for  a type I region i s  t h a t  X z ./c < 1, For a type 

J j 
2 2 

I1 region A o,/~+ - > 1. It can be shown it i s  bes t  t o  ass ign the border- 

;. 2" 2-7  
l i n e  cases, X o./c > 1 > X. z ./c t o  type 11. Q u a t i o n .  (90) f o r  X i s  

J >  - J J '  
an imp l i c i t  r e l a t i on .  Vo depends on t h e  number of type I1 regions which 

i n  t u rn  depends on X. The dependence is, however, not sensi t ive ,  so  it - 

i s  easy t o  adfust the two fac tors .  In fact ,  almost any i t e r a t i o n  procedure 

1 
- 

w i l l  converge.. 

In  most problems C is no t  a s ens i t i ve  function of j and can be taken 
j - 

equal t o  an average C l .  Simi la r ly  there  is  very l i t t l e  e r ro r  introduced 

if Vo is taken equal t o  Vb = (ij - z)' and t he  t o  aj. When is  s e t  
- 

equal taF and these approximate subs t i tu t ions  made, equations (88) 

0 

1 It should be pointed out t o  the more cautious reader's, t ha t  t h e  
der ivat ion of equations (85) and (87) can be j u s t i f i e d  even i f  the regions 
I and I1 a r e  allowed t o  depend e x p l i c i t l y  on X o r  q .  and n 

J ,  3" 



and (89) become 

In this i n s t ance ,  t h e  improvement due t o  t h e  change i n  va r i ance  

- cannot  be  c a l c u l a t e d  d i r e c t l y  as before ,  because he re  c o s t  o f  a sample 

is taken i n t o  account .  When o rd ina ry  sampling i s  used,, t h e  product  of  

- 
t h e  c o s t  and t h e  v a r i a n c e  is  

i 'J CV1 = (co + C ' )  v; + Uj 

I - 

Using Russian R o u l e t t e  and S p l i t t i n g ,  
. . 

Sub t rac t ing  ( 9 4 )  from (73) and c o l l e c t i n g  terms 
. 

- 
cv, - cv5 2s (oo+ c f  ) (oj - O j l Z  + ( \IC'V; - 5 f-o)2 ( 9 5 )  

The f i rs t  term on. t h e  r i g h t  s i d e  of equat icn  (95) i s  e a s i l y  i n t e r -  

p re ted .  (c0 + CI) i s  +he average c o s t  of a sample when doing s t r a i g h t -  

- 
forward sampling s o  t h e  improvement is  measured by comparing ( a  - p j )?  

j' 

with  VL ( i - e . ,  t h e  v a r i a n c e  of  o. wi th  the va r i ance  of z(x,y) ). There 
J 

is  an a d d i t i o n a l  improvement given by t h e  second term which is  r e l a t e d  t o  

t h e  f a c t  t h a t  even if o d i d n ' t  v a r y  a t  a l l ,  it might s t i l l  pay t o  sample 
j 

many (x,y) va lues  f o r  every j picked. 



11. Introduction t o  Section B 

The seven methods j u s t  introduced i n  Sectior. 4 through 10 w i l l  

nou be t rea ted .  again i n  Section 1 3  through 19. The point  of view 

w i l l  be somewhat d i f f e r en t  and i n  most cases the d i scus s ion . i s  mom 

complete. There w i l l ,  necessari ly,  be some paraphrasing and repe t i t ion  

of t he  pmvious sections.  However, t h e  a b i l i t y  t o  s e t  up an e f f i c i en t  

Monte Carlo problem depends more on t h e  i n t i i t i o n  of the computer than 

on being ab le  t o  evaluate the formulae given, and paraphrasing rnay mke  

t h e  ideas  c lea re r ,  thus helping t o  c r ea t e  a sound i n tu i t i on .  For t h e  same 

reason, a possibly  excessive number of  specia l  cases and techniques a r e  

discussed. 

A s  already explained, most of t he  discuesion and formulae a r e  

unchanged i f  x o r  y a r e  a c t u a l l y  multidimensioned variables.  I n  most 

. , 

appl ica t ions  it is  necessary to make this extension. 

I n  what follows, each value of x is thought of a s  def in ine  a ~lcutll 

o r  region of the whole space. These regions take the  place of  t he  j 

r eg ionso f  t hep rev ious  section.  Thus z(:x) i s ana logous  t o ;  Though 
j 

t h e  imp l i c i t  multidimensionality of t h e  var iab le  nade two dimensions 

superfluous u n t i l  t h i s  point, now f o r  much of the  analysis  which follows, 

two var iables  a r e  necessary. 
- 



I The following quant i t ies ,  some of which have been defined befom, 

are needed i n  t he  discussion: 

- 
f (x)  - Jf(X.y)dy = the marginal podof ,  of X 

- - )  f (x,Y)& t he  marginal padof .  o f  Y 

f ( x : ~ )  I f (X ,Y) /~ (Y)  - the p o d e f o  of X given t h a t Y  = y 

g(y:x) P f (x,y)/f (x) = the  podof .  of Y given t h a t  X = x 

z(:x) /z(x, y)g(y:x)dy - the  expected value of  z(x,y) 

given t h a t  X - x 
2 Z( rx) =/z2 (x,y) g(p: x)dx I the expected value of z (x, y) 

given t h a t  X = x 

i =J S ( : x ) f ( x ) a ~  



12.  Estimating i ( : x )  and zZ(rx) 

7 
It i s  often desi rable  t o  est imate z(:x) and z (:x) by sampling, 

I n  pr inciple  t h i s  can be done by picking N values of y from g( y:x) and 

7 
then estimating i ( :x )  and z ( :x) in t h e  standard way: 

However, t h e  computer usual ly  wishes t o  est imate t h e  whole function - - 7 
z( :x) and 2; ( :x) . It may then be too  expensive t o  sample in tens ive ly  a t  

w e r y  value o f  x or  t he r e  may be same evaluations of z (xI,yi) avai lable  

from previous problema i n  which t he  xi have been picked i n  some random - . 

fashion. The simplest  procedure in t h i s  case ia t o  divide t h e  x space 

i n t o  a number of intermala 
ar 

a ] ( i f  x i s  d t i d i m e n s i o n a l ,  these  I - r 

a r e  subspaees). Then by t e s t i n g  if ar - < xi 5 ar, each of the  z(xi,yi) 

can be assigned t o  a n  in terval .  Ekpected values f o r  each i n t e rva l  can be 

est imated byr 

where 

where 



The b and ci can be taken equal t o  one if desired.  If ,  however, 
i 

I 

I -  t h e  z(xi,yi) have been produced by d i f f e r e n t  processes, and 

i 

I 1 A 

A 2 
i - t h e  variance of z and zr a r e  mininized ( see  discussion on averaging 
I . r 

di f fe ren t  eejtimates i n  Section 18). If t h e  i n t e r v a l s  a r e  taken small . - .. - , -\ 

enough the  computer "can assume t h a t  

However, it i s  undesirable to take  the  i n t e rv a l s  t o o  small, because then 

t h e r e  won't be enough sample G l u e s  i n  each i n t e r v a l  t o  make t h e  est imate 

accurate. 

There i s  an a l t e r n a t i v e  technique which the author f e e l s  is  s l i g h t l y  

more 'desirable. Define 



The previous est imates can be wr i t t en  

It is c l ea r  t h a t  Ff the  empirically determined ~ ( x ) ,  ~ ( x ) ,  ~(x), and 

~ ( x )  a r e  first  smoothed out so  t h a t  d e r i v a t i k  Jt (x), Kt (x) ,  etc.  can 

-2 
be calcula ted,  es t imates  of z(:x) and z (:x) a r e  given byr 

The advantages, i f  any, of t he  above technique l i e s  i n  t h a t  there 

a r e  no i n t e rva l s  to bother with, and t h a t  t he  smoothing operation makes 

every sample contr ibute  t o  the  est imate f o r  any given value of x. It is  

a l s o  possible t o  use various curve f i t t i n g  t e c h i q u e s  (see  Appendix IV), 

but  these  have the  disadvantage of requiring t h a t  hypotheses be made about 

t h e  h c t i o n a l  nature  of ~ ( x ) ,  ~ ( x ) ,  ~ ( x ) ,  and ~ ( x ) .  Nevertheless, curve 

f i t t i n g  techniques can be ,very useful  i f  it is  des i rab le  t o  make t h e  . 

-7 
estimation of z ( : x )  o r  z (:x) completely automatic. If the functional  form 

7 
assumed for E(:x) or z (:x) has some v a l i d i t y  then using it may be a very 

advantageous way to ex t r ac t  a l a rge r  amount of information from the sample 

than is  done by the  o ther  methods suggested, 



1). S tra i  ghtforrard Sampling (B)  

!I 

A s  i n  Section A where first j uas chosen, nav first the xi w i l l  

1 be choeen, and then the yi. T h i s  can be done by solving the equation . 

for xi, and then the equation 

for yi; or any o f  the techniques suggested in P a r t  I can be used. Once 

the sanplo values have,been drawn, 

N 

:- . .. .. . 5 '7 

The two terms can be interpreted as being the variation .of z(x,y) for  
, :. 

a : : .  . - , ? I  ' '. , 

fixed x and the variation o f  ;( tx) ;espectPv@l-y; . . _  . _  : ::. :. ,,, . 
. , I. 

I 
I i 

i : 



Ik. Inrportance Sampling (B)  

By dividing and multiplying by an arbitrary p.d.f., f+(x,y), 

can be written 

I 
I ( 

which indicates that is also the expected value of 

I :  

where the (xI,yI) are picked from the p.d.f. f*(x, y). The variance is 

given by 

V2 isminimleed (~ppend ix  111) when 

~f ~ ( x , y )  i s  everywhere positive and the optimum f*(x,y) l a  used, 

V2 - 0 for 

and 



- 
independently of what (xi, yi) happened to be picked. It is  c l ea r  

that there must be something a l i t t l e  fraudulent  about t h e  resu l t ,  and 

in f a c t ,  in order t o  know what f*(x,y) is, the  n o m l i z i n g  constant  ,; 

. . 
I. - met be known. It is  therefore  not miraculous t h a t  i f  t he  answer 2s 

h o r n  i n  advance, a per fec t  sampling scheme can be designed. The chief 

value  of t h e  above theorem is t h a t  it demonstrates t h a t  t he r e  a r e  no 

nConsarvation of Costn laws and t h a t  i f  the computer is  clever,  wise, o r  
I 

lucky, he may, in  choosing from the i n f i n i t e  number of sampling schemes 

availeble,  he ab le  to  choose a very e f f i c i e n t  one. 

When z(x,y) changes s ign i n  t h e  a rea  of in tegra t ion  a per fec t  sanpl ing 

scheme cannot be deeigned on the  bas i s  of importance sampling alone. If 
& .  

6(x,y) i s  +1 o r  -1 according as z(x, y) i e ,  pos i t ive  o r  negative, t h e n  
. . 



where z(x, y) i s  negative i n  A1 and pos i t ive  i n  A2. 

If, as might be t h e  case, there  is a known l one r  bound X f o r  z(x,y), 

then t he r e  would be a per fec t  Importance Sampling scheme f o r  a(x, y) + 1. 

O r  it might wcur that the pos i t i ve  and negative par t8  of s(e,y) could be 

t r e a t e d  separately.  But it i s  o m  not p r a c t i c a l  t o  consider these  devices 

,. . . .. as p a r t  of pure Importance, Sbunpling. It i s  s t i l l  possible In pr inc ip le  

4 

t o  design a perfect  sampling technique f o r  a general z(x, y) by using 

. . 
Correlat ion in addi t ion t o  Importance Sampling. If, f o r  'example, it ie 

possible  t o  f i n d  a funation v(x, y), such t h a t  

., ,. 
..?% ,.>if 

can be evaluated ana ly t ica l ly ,  and such t h a t  
. . 

~ ( X , Y )  + v(x,y). * - o for a l l  (x, y) (117) 

then a zero variance scheme could be designed for the  fn t eg ra l  

and ; estimated by (? - 7). There i s  some more dikcuasion bn t h i a  point  

i n  Section 18. 

. . 

~ h &  Mms Importance :Sampling was suggested by the thdore t ica l  zero 

variance. estimates and by the corresponding generalization t o  i n t eg ra l  

equations. I z(x, y) 1 f (x, y) meaaurss the  important e o f  t h e  point  (x, y) and 

t h e  optinnun sampling p,d.f ,  is  taken proportional  t o  this quanti ty.  



It nright be i n t e r e s t i ng  t o '  note t h a t  if' z(x, y) - > 0,. the optimum 

importance sampling fo r  6 w f l l  a l so  reduce t he  variance f o r  t he  est imate - - 
n 

of t h e  higher moments, % . The variance of the  est imate of zn without 

importance sampling i e  

and with optimum importance sampling. it i s  

\ 

-2n-l -z 
k o  ahov that z z < s it can be shown more generally t h a t  Ff - - 

-I iX < 8. . Since $(v) - l og  // zw(x, y)f(x, y ) ~ y  is a 
' 

e(x,y) 5 0, 2 - 
convex m e t i o n  of w and 4(0) - 0, it f o ~ o v a  that $(u) + $(v) < +(u + v) - 
which is the property above. Hence t h e  variance ha9 been reduced3 . ' ~ 

- 

It is, however, not true t h a t  any f*(x,y) t h a t  decrease8 the  varialice - 
- of t h e  estimate of E alero decreases the variance of the  estimate of an. 

In  f a c t  it i a  easy t o  exhib i t  counter examples. 

,' 
.. . In t he  general case as shown i n  Importance S ~ p l i n g  ( A )  (sect ion 5 ) ,  

t he  sampling should be taken proportional t o  t h e  a p r i o r i  probabi l i ty  of 

ge t t ing  i n t o  a region times t he  square roo t  of the average of t h e  square 

of .a(x,y) In  .the region. This rule i s  i l l u s t r a t e d  i n  t h e  d i f f e r en t  types 

of Important e Sampling discussed below, 



=rtance SEfnpling in the x space onlz. 

Let i be writtenr 

= J X  . f*(~)g(~:~)rhd~ 

"" I 
and 

where the (xi,yi) are picked out of f*(x,y) a f*(x)g(yzx)o 

The minimizing f*(x) (~ppendix  111) is given by 



If this f*(x) is used, t h e  variance becomes 

The difference between th is  variance and t h a t  obtained by straightforward 

sampling is 
r 

b 
- and t he  variance i s  reduced by the  variance of  a random var iable  that haa 

a p r o h b i u t y  of f ( x )  oi b i n g  s q d  to(=). 

Smpl lng  only from t h e  x space i s  s ign i f i c an t  because it i s  common 

i n  praot ice  t o  break t h e  problem up i n t o  two o r  more stages. If this i s  

- done, optimum Importance Sampling means t h a t  the a prior% probabi l i ty  

f(r) of ge t t i ng  i n t o  a region x should be modified by the f a c t o r  \I=. 
- 

Only when Importance Sampling i s  done in t h e  e n t i r e  space i s  the fac tor  

I - 

Iz(x,y)l.  I n  that case, t he  word Rlmportancell i s  used i n  i ts  na tura l  

sense--that is, those regions a r e  c a l l e d  i m p o r k t  t h a t  make l a rge  contr i -  

I. - 

butions t o  t h e  answer being calculated.  However, t h e  na tura l  analogue 



o f  I s (x, y) 1 , I i(rx) 1 , i s  n o t  t h e  c o r r e c t  f a c t o r  f o r  optimum Importance 

Sampling i n  t h e  x space  a lone ,  b u t  r a t h e r  P z (1x)  . 
In  some pmblems t h e  d i f f e r e n c e  between and 1 E(rx) I m y  

2 2 n o t  be g r e a t *  F ( t x )  - o (rx) z2(rx). If CY ( t x )  is smsu then 

-7 LQ general, if t h e  computer f i n d s  it easier t o  e s t i m a t e  ; ( t x )  than a (tx), 

he can t r y  to take 

I f  t h i s  i s  done, t h e  va r i ance  becomes 

f 7 

While V2 i n  this case is o r d i n a r i l y  much l e s s  t h a n  V1, it i s  easy to see 

t h a t  it can be large and i n  f a c t  d i s a s t e r s  a r e  p o s s i b l e  i f  care . i .8  not 

taken. f-- - .  3 1 

and t h e  computer must t h e n  worry about  a p o s s i b l e  special t r ea tmen t  of 

regions i n  which ;/I E(:x) 1 i s  large. 



7 
As remarked before, the problem of estimating s ( t x )  or z ( t x )  is 

crucial  in Importanoe Sampling (estimation by sampling i s  discussed i n  
I 

Section 12). This is not necasearily d i f f i c u l t ,  In particular,  know- 

ledge,gained from any soume can be exploi ted.for  t h i s  purpose, I n  any 

d .- 

aase, only the r e l a t ive  importance of different  regions and not t h e i r  

abaolute values need be knuwn. 

Importance Sanpling with a pirrmeter. 

I n  many pract ical  problems it is convenient to- r e s t r i c t  the choice 

of f*(x,y) t o  a single  family of p.d,f's. T M e  may be desirable t o  do 

f o r  e i the r  computing o r  theoretical convenience. I f  euch a family is  

rapresented by h(x,y,a), then it is desirable t o  determine a so a s  t o  minimize 

b -  the  variance. T h i s  i e  equivalent t o  minimid ng 
I 

h(x,y,a) i8 sub,ject to the usual conditionst 

If the form of h(x,y,a) i s  such that  these conditions are satisifPdd 

for d l l ~ v a l u e a  of a, then the optimum a id formally determined by 
- 

I f  the h(x, y,a) i s  not already normalized f o r  a l l  a,. equation (132) l a  
. .. 

replaced by the s e t  (~ppendix 111). 



... 4 
and two unknome, a and A, must be determined, X, of course, is a 

LagrangIan multiplier. When h(x,y,a) is  not a function of y, the inter-  

v a t i o n  on y can be performed and the quan t i ty  .-) is replaced 
h (x,y,a) 

Often the only prac t ica l  method of solving equation8 (132) or  (133) 

is to do a ,preliminary parametric study by Monte Carlo. The m c t i o n  

It is  of aoarae possible t o  evaluate (135) by Monte Carlo, It ie 1 
'''.." not necessary t o  aanpls flora h(x,y,a) h e n  doing this evaluation beatuse I 
... ,, . .yi;. 2.  .. .. 

.-I ':$ ~ ( a )  can be writ ten 

so t h a t  an est imate  of f ( a )  is - 

where t he  (%,yi) a r e  picked out of f*(x ,~) -  

, 

1 

c9  3 l 4 : x  
u' U'" 



 ha chief application of (137) i s  when f*(x, Y) - h(x, y,%) and we 

wish t o  evaluate ~ ( a )  f o r  a seriea of a' s, say q, a2, and a3. Then 

It is important t o  notice tha t  a number of a ' s  can be a t u d i d  with ~ 
the .pnu (xi, yi) maple value., oa only yh(3, yAsa) needs t o  be reca1cuat.d in 

eaah case. I n  principle, all ~ ( a )  velues desired aould be estimrted 

using the same importance function but it i s  l i k e l y  t h a t  t h i s  will be good I 

I 

Importance Sampling only i n  some region of the a space, perhaps i n  a 
I 

neighborhood of 5. 

Thle', of course, is  an example of  correlated sampling, Not only is . . bi 

t he  work per value of a rsduaed by the correlation, but since the computer 

is  interested in comparing different ~ ( a )  the  samp1ing.i~ more accurate 

than if  it had been car r ied  out independently for  each value of a, This 

acaura because i n  most problema t h e  ~ ( a )  will be pos i t ive ly  correlated and 

f luotuats  i n  the same direction. It is, of aourse, posrrfble t o  use t h e  

a2i 
s u n  technique t o  evaluate ?@ and mybe even 7 d i r e c t l y  and use them 

act 
quant i t ies  t o  estimate whot a should be in a mbeequent calculation. 



In partioular,  i f  a2 < q and a) > 5, 1(a ) f o r  these three  values 3 
mlght indicate haor a should be changed t o  deurease the  sampling variance. 

A 

The pmblem might even be so progr'annued tha t  t h i s  ad3ustmmt of a is  done - I 

outonratically by the computing xnachine. The author howmr,  does not know ~ 
of any case where t h i s  has been t r ied ,  and the p m e d u r e  cer tainly ha8 

- 1 

dangeroue p i t f a l l s .  It seeme, houever, natural and intr iguing enough 

Use of Extra Freedom 

It bas be@n pointed out1 that t h e  a i n  h(x,y,c) provides extra freedom 

which =an be qlo1t.d by giving it a p.d.f., p b ) .  If this is don?, the 

a can f i r a t  ke picked a t  random f r o m  p(a), and the (x, y) selected from 

h(x, y,a) . For the problem and technique of this section it would 
- I 

presumbly be valurleas t o  & th i s .  Sbae an optimum a exists, . - I 
the  best p(a) is 8(a-a,,), where a. is this optimum a. However, i f  tha 

technique i a  combined with the use of expected values, it can be very  

helpful. T h i s  combination of Importance Sanpling and Use of kpoc ted  Values I 
is discussed here ra ther  than i n  Section 17 becsuee it seem t o  be more an I 
axample of the former than the l a t t e r .  Also, as the ideas @ven here are I 
somuhat spooulative, the d e t a i l s  a r e  neceaearfly sketchy. 

- I 
The point (x,y) is a function [ x ( % , ~ ~ , a ) ,  y(~~,~~,a)] of the d f o r m l y  - 

distr ibuted random nunbars 5 and R p  and the parameter a. If a i s  g i v a  

1 !?ale F. Trottar  and ~bhn W. Tukey, nCondd.tional Honte Car10 f o r  No-1 
Samplesn, Symposium on Monte Carlo Meth- John Wiley and Sons, 1956. 

I 



ap.d.f. p(a)  then z(x,y) hwf can be in tegrated over a l l  a to give 
x,y,a 

1 '  : an estimate Xi f o r  w c h  sample 
1 

If t h i s  i s  dons 

< = Jv(a)p(al )I(a,al)dadal 

where 

. l a  a symmetric function of a and at, and 

- .  x - x(5,R2,a) 

In o lde r  t o  minlnize //p(a)p(al)~(a,at)dmial s u b j e c t  to t h e  condition 

that p(a) be a p.d.f. it i s  necessary t o  mininizs the  form 

- 
fo r  those p(a) - > 0. This minimization yie lds  the i n t e g r a l  equation 



If I(a,al) happens to posaess a resolvent kernel ~ ( a l , $ )  with the 

then 

and 

Integrating over p(a) oan also be used t o  estimate a a ' ,  where % I  

. - 
i a  defined by 

- 
2 '  - // . (x ,y ) f (x ,y )~dy  (fi8 

gl 
and A1 is  a subregion o f  6. To do t h i s ,  a subregion of the a apace, 

. . 

s ( ~ , R ~ )  18 defined, ao that  when a is i n  s ( R ~ , R ~ ) ,  the point 

[x(q,R2,a) J ~ ( q , ~ 2 ~ a ) ]  is i n  kl0 Then 

i s  an  eetimate of independently of the form o f  p(a) so long as 

h(x,y,a) i s  not zero for any (x,y) in A The opthum p(a) is defined bya 1 
- 

I 

I 

St>f!J $ 4 5  \ 



I 

where 

I 

if (x,y) is i n  A1 
(151) 

i; -. otherwise 
I 
l 

and the other quantit ies have obvious d e f i n i t i o n s .  

If the computer wishes t o  est imate the condi t ional  expected value 
I -. 

I of %(x,y) given that (x,y) i a  i n  Al, then 

- 

. .. 
- i'fm1) 

where P ( A ~ )  i s  the probability of the  p o i n t  (x, y) being in A. If P(A~) 

I - ,  is not known, it can be estimated by 



15. Systematic Sampling (B) 

Instead of solving the equation 

for xi, it my be  aimple t o  s e l e c t  the  xi systemat ical ly  by solving t h e  

equation 

Used i n  t h e  r i g h t  places, it is almost always t r u e  t h a t  syetematic sampling 

in x is mlatively or  completely coat  f ree .  

The expected value of e(xi,yi) w i l l  not i n  general be appreciably . <  s 

. I 

changed by t h i s  process. However, t he  purpose of using (i - 1/2)/N is 
. - 

t o  pick systemat ical ly  the midpoint of  t h e  N i n t e rva l s  defined by - 1 
- 4 

Always picking t h e  midpoint may introduce biases.. These are eliminated 

i f  S p t e m t i c  Sunpling i s  combined with random sampling by using (i-%)/N 
- I 

i n s t ead  of (1-1/2)/~. A d i f f e r en t  R1 i s  used with every i. 

The yi can be obtained by a re jec t ion  technique o r  by solving the 

usual  equation 

Lf t h i s  is  done, the  est imate is 



n 
where t h e  x are determined. The expected value of z is given by 

i 3 

li. - There ia no averaging over the xi since they are determinate, not random, 

quantities. However, Prom equatiolzs (155) and (156) 

Substituting i n  equation (159)  

- S 

The variance is w i l y  calculated. 

. . 
. . I  . .> . 
. ,.. ,. ,.., ,." :, , , . .  , 

. . t . :  '. 
8 ' .  



The saving over Straig!!tforward Sampling is simply (see squat  ion ( ~ 8 )  ) 

The variance due to the  v a r i a t i o n  of H(:x) has been eliminated. 

It is possible  to do Systematic Senpling i n  t he  x and y spaces 

-1 2 
s ~ t a n e o u s l y ,  in a sense, by a l s o  taking a a e t  of numbers j&, 

Q - 1, 2,...,N and randomly so r t i ng  them. These numbers can then bm 

subs t i t u t ed  f o r  R2 in equation (157). Whether t he  s o r t  i s  c o s t l y  o r  no t  

depend  on t h e  aomputing equipment being used. 

If Sgatematic Sampling i s  used i n  both t h e  x and y spaces, t h e  variance 

is s t i l l  m e r  reduced and the  improvement become ( a s  shown i n  Appendix V )  

t h e r e  H ( t j )  is  defined by 



- 
z ( t  3 )  is  a e o r t  of analogue in t h e  y space to G ( t x ) .  If for  any reason 

it ie inconremiant t o  randomly s o r t  t h e  numbers akG and if  [rc,j,-;I2 
P 

is  grea te r  than .-, then the x can be sumnlsd a t  random and the - 

y systematically.  In  t h i s  case the  variance is only reduced by [;02 . 
P - 

Equation (la) ind ica tes  t h a t  t h e  variance V associa ted with t h e  

ordinary Monte Carlo calcula t ion o f  an n-dimensional in tegra l  must be 

larger than t he  sum of n t e rns  of the type [i(ri)* , one for each 
- 

dimension. If all t he  terms are of the same order of magdtude, then 

- doing Systematic Sampling on any one var iab le  w i l l  reduce t h e  variance by 

lees than ~ / n .  While t h i s  implies t h a t  t he r e  w i l l  be no spectacular  gains 

by doing Systematic Sampling, as already mentioned it i s  usually cos t l e se  

.. ,.? 

to use it. 



16. Stratified Sampling (B) 

In Stratified Sampling, equation (155) of S p t e t i c  Sampling is 

replaced by 
P, 

where 

and s ( x )  i s  an arbitrary positive function. Here e(x) is the f*(x)/f ( x )  

' o f  Importance Sampling. The estimate is 

. - 

where the yi are chosen randomly. The expected value of the estimate i s  
4 

- 
It i s  easy to see that 2b is equal t o  E for 

If t h i s  value of $ i is  substituted into (168) 



The variance is given by 

Ideally s(x) is chosen to minimi.ze V 
Ir ' 



1 
Equating co J f i c i e n t s  of 6s (x) and oancelling f (x), 

The mininavn V,, is obtained by taking 

e(x) - a(rx) 

Then 

. - 

In many oases it is  more convenient t o  take e(x) proportional to 

l a ( r x ) l .  If this is done 

As can be seen from equation (129), this variance is the m e  as would have , 

been obtained if the eampling on f*(x) had been done randomly rather than 

systematically. 

However, i t  is  usual ly  better  t o  do the sampling systematically 

because for a general f*(x) the difference i n  variance between the two 

techniques is 



since V2 - V is the tarianca assoaiated with doing Bportance Sampling on 4 
the integral J i(rx)f(x)ctx. ~hwforor., *ere it is .asy to use ~trat~id 

- h p l i n g ,  it is preferable to Inportame SanipUng.. 



If it is possible to calculate analyt ica l ly  

f 

.. 
then this analytic calculation can be used in the sampling. r can b. 

e s t h n t e d  by 

where the are picked out of f (x) If t h i s  i s  done 

and 

The reader should not conclude from the t r i v i a l  nature of the 

example that the technique is n o t  valuable. As 5.8 shown i n  the chapters 

on applications, the use of  expected values is often suf f ic ient  to change 

what would have been a hard problem into an easy one. For a aort 

of corollary of this type of sampling Bee the example a t  the end of the 

next section.  



18. Correlation ' (B) 

Only one of the three s i tuat ions mentioned i n  Section 9 on 

Correlation (A) vill be diglcuaeed i n  de ta i l .  That is: given that 

is known, how oan t h i s  knowledge be used to  reduce the variance of the  

The first part of t h i s  seation w i l l  briefly .discuss some of t h e  

a l te rna t ives  available to the calculation. However, exactly what r o l e  

these alternastives should play depends on t h e  specific application. 

It will be aasumed a t  first t h a t  the  correlat ion is t o  be done on 

the x space only and that the jr's i n  the problems are to ba picked 
i... 

independently. There are then a t  l e a s t  two d i f fe rent  ways in which this 

can be Qnet 

1. To use tha same random numbers i n  p i c m g  x an.d XI, 

i.e., I.et 

F(xi) - o ( q )  - Ri 
We oan write 



and the problem can now be put In  t he  form 

2. to pick both x and x' from the same p.d.f. and thon 

t o  use migh t ing  faotors as in importance sampling. 

I n  this caso the problem io transformed to 

The a ' s  are t o  be chosen t o  minbdse the  v a r i k e e  of  t he  respective 
.' * 

".'?eetimates. f+(x) can be any a rb i t r a ry  p.d.f.  but it is usually aonvonia t  

t o  l e t  it be e i the r  f(x) or g(x). It can, hawever, be chosen to minimize 

the  variance of 66. 

A s  i n  Seation 9, tho  variance of  both estimate6 can be writ ten 

A 
where s6 is respectivelyr 



In the .firat case 

and in the second oase 



The two types of correlation mentioned above a r e  actual ly special 

casee of a th i rd  m e  general type i n  which x is aelected from the p.d.f. 

f*(x) and X I  from the  p.d.f. &r); the sane randon numbers being used 

i n  each case and the ,weighting factors  f(x)/f*(xi) a d  g ( x i ) / @ ( ~ i )  being 

y e d  with t h e i r  respective funations. 

It is also  t o  correlate the y and pick the x independemtly. 

For the f i r s t  type of correlation it 18 then neceesary to introduce 

functions y.(x) and %(x) defined by: 

If R - (3-1/2)/N then yR(x) i a  ident iaal  with the  y ( x )  dlscuased i n  
3 

Section.15 on Systematic .Sampling. The correlat ing i e  done by picking 

x and XI - independently from f (x) and f (XI ) respectivelyJ but always 



picking the same A curve when picking y and yl.  One way t o  do t h i s  is 

t o  pick y fromthe conditional p.d.f. f(yrx); ident i fy  the R curve to 

which this value of y belongs; and then l e t  yt - %(XI).  If t h i s  type 

2 2 
of correlation is &one al and u2 a re  unchanged but  palu2 bscomasr 

*ere 6[y1 ' -  ~ f i ( ~ J  is  the Mrac delta function, Its pmeence i n  the 
- 

i n t e s a n d  guarantees .that y' falls on the same'R curve as y. 
I 

- I n  the  second way of correlating y, the x and x1 are st i l l  picked 

independently from f (x) and g(x1) but y and yf are identical and picked 

out o f  a p.d,f, f*(ytx,xl). These tuo waw of correlating Y . a n  also be 

considered a s  a special  case of a general correlation method i n  which y is 

. . picked out of f*(px,xc ) and yl. from ga(yl rx,xl ), using the  aam random 

number in both picks. The usual estim;rte 

is then used. By allowing the conditional p.d.f.18 f*(yrx,xf) and 

p(y l :x ,x l )  t o  depend on both x and X I ,  the computer obtains the f l e a -  

- bility he n e d s  to'maximiae t h e  co r reh t ion  between the two problem. It 

is of course passibla t o  correlate  both the x and y apace8 simultaneously. 
- 

No matter haw the correlat ing is done, the  optianuP a still i s  given by 



The variance, i f  this optimum a i s  used is 

and a l l  the comments made i n  Section 9 about es that ing  a stil l  apply. 

Averaging Several Estimates 

I so net he^ ,the coquter  has K estimate8 4, . . ., 4 of E. When 

this occurs the computer aan use a weighted average 

with the condition that as an satimate of 

The varlmce' of the estimate ia 

A I\ 
- 

where put i s  the correlation ooefficient between % and ak, and pkk - 1. 
V is t o  be minimisad eubject to the condition that % - 1. 

Let 



I ~ 
., :, 

If bik i s  an element of the inverse of  the symmetric mtrixllmISPlrI(l 
I .  

Equat'ion (205) can be considered as defining the bik. If equation (204) i a  

m l t l p l i e d  by bik and a m d  on k, then 

Emce by the condition on the arts, 

i ' -  

By gubatituting equation (206) i n  (2021, and using (201) and (2051, it 

fo l lovs  that the minimum value of  V is givm by 

V - X  

There are, two cases o f  special interest: 

1.  he 2k are independent . (p&, - 0) .  



2. Them are only two q. Then l e t t i n g  u2/a1 - y and 

P12 = P p 1  - 6'8 



L 

If o2 i s  greater than q t.hen the factor -'l-pl can be 
l 0 2 p y + y  

d cansidered asmeasuring the amount by which the variance of < is cu t  

1 - down if it i a  weighted +n ancptintum fashion with another random variable 

.. - which has the same expected value but a larger variance. Curves of  th i s  

factor as a function of p and y are given i n  graph number 1. 

E l b i n a t  ing the Variance of i( : x) 

If f (x) ie simple enough so that integrals o f  the type 7 I Jv(r)f(x)& 

can be calculated, then tha probleii of equation (186) can be reduced to 

the following special  case: . 

. . The problem is t o  determine r(x) so t h a t  3 is  a minimum where 

- 
/) \ 

. . 
T 

TI'V(JC) makea s6 a mini!?um then to first order 3 VU not ohange when 

- 
v(x) i s  replaced by v(x) + &(x)'. So 

R 





A l l  t h e  integrandas can be col lected together . .  The coef f ic ien t  

of &(x) must be zero because 6v(x) is  arb i t ra ry .  This gives f o r  t h e  

1 

- optimum v(x) t 

V(X) - &x)  + 2 - G 
, 

(218) 

t -  

7 
Then v(x) can '  be put equal to i ( t x ) .  If t h i s . v ( x )  i s  used, a6 (equation 

216) becomes r 

7 z, - -2 a + ;2 a (IX) - - 2 + 2 ; 2 - ; 2  2z (:I) 

7 -2 v - % - 25 (ax) 

which is t he  same as (vl - v ~ )  (equation &&I) ). one of  the impl ioat iom.  

of the above formula is t h a t  i f  the computer knows ;(ox) approximately, 

he can sti l l  take advantage of th ie  knowledge without introducing a b i a s  

- i n t o  the calculat ion so long as he has an axact, o r  a t  least f a i r l y  

rceura te  knowledge, of  the  expected value of this appmltinulte ~ ( , P x ) ,  

- 
In  some aaaea (sect ion 6, Part 111), it may be convenient to do a sort of 

revere8 problem byt 

a. F i r s t  est imate '-7' dirsctly by any standard tech'dque. 



b. Use t he  data of "at1 to obtain  an appmximate z ( t x )  

and l e t  v(x) equal this approximate ;(ax). 

o. Calculate accurately ; - /v(r)f (x)dx by sonic numerical - 

o r  Honte Carlo technique. 
- 

d. Re-eatinate by using the  data o f  nan In 

It would not be reaeonable t o  estimate C i n  "cll' by Honte Carlo unless  
- 

t he  cost of picking x and evaluating v(x) is ,mch l e s s  than the cos t  of  

/' 
piaking (x ,y) and m l u a t i n g  e(x,y). The bookkeqing i s  very  much simpli- 

2 
fied if v(x) is  restricted t o  the form a + bx + ax . I n  t h i e  case *cn 

7 can be ';Bed to estimate i and x i n  advance and then "an can be used t o  
,' 

2 pick reasonable values of a, b, and c. If the  form, a + bx + ox , is  

not accurate enough, the  range of x can bet broken up into in te rva l s ,  and 

a separate form used f o r  each in te rva l .  



19. Russian Roulette and S ~ l i t t i n a  (B) 

The continuous analogue of Section 10 i s  put here f o r  t h e  sake of 

completeness thou& the details are c lose  enough so t h a t  t h e  reader 

.- - is referred to t h a t  seot ion fo r  them. 

A general Russian Roulette and S p l i t t i n g  procedure can be described 

as follows: 

Let the x space be divided into two regions, R1 and R2. Setlect a - 

value of x. If it Ues i n  R1, Russian Roulette i s  done with probabi l i ty  

If i t  Ides i n  R2, n(x) independart values  of y a r e  se lected f o r  each 

x w i t h  

- .  n(x) = XIT2(x) 

The variance o f t  he above process is 

where the lt,n sign is  used i n  t he  last equation because n(x) must-be 
4. 

i n t e g r a l  and is therefore  only  approximately equal to )SZ(x). If Co i8 
- 

th6 cost of picking x, ~ ~ ( x ) ,  the cos t  of picking y and @valuating 

- z(x,y), and C t he  total marginal cost of a s m p l e j  then 



The value of X t h a t  minimizes CV7 i a  

With this value of A, 
lg 

Vo is an appmximately f ixed v a r h c e ;  Co is  a . f ixed  cost .  The 

optimum choice of  X mkes t h e  actual coat and variance proportional t o  

the fixed c o s t  and variance. If the computer chooeea q(x) and n(x) 

in optimum fashion, then 

With t h i s  optiwun choice, 



and the r a t i o  of the cost  contributed by my x sub-rsgion to the 

variance contributed by the same region i s  

- 
If the rwnpling i s  optimum, the region R1 is  chosen as large as possible 

as dotemined by the equation, 

A s  mentioned preariously, (236) and (237) are really'simultaneous Oquatibnrp 

far X and R1. 

In many cases it i s  inconvenient t o  use Spl i t t ing and the cornputer 

use8 only Russian Rrmletter. In t h i s  situation; .-\ 

where 

The optirmun X i s  given by . . 

I 

. .. , 
. ; '3 

. .:, . . 

Pk1)  
u ( x ) c ~ ( x ) ~  (x)& . , 

. . 
, . .*,  



where t he  appmldmation assumes t h a t  the in tegra l  over R2 is  replaced by 

an in t eg ra l  over a l l  a p e .  If ~ ( x )  is  chosen i n  optimum fashion,  

and t he  lagion R1 f o r  Russian Roulette can be taken as being determined by I 
1 

Applioation t o  Pa r t i c l e  Diffusion 

A special  case o f  some i n t e r ea t  involving three  random var iables  

(x,w,N) a r i s e s  i n  particle diffusion problems. X is a generalized posit ion 

variable which represents. the  posit ion and momtum of  t h e  particle. W 
\ 

is  a pseudo weight that ie assigned t o  the particle, and which changes a3 

t h e  par t io le  jumps fmm point  20 point. M is :the final weight of the 

particle divided by the current weight., It i~ convenient to think of it 

the other way, as a f ac to r  which mult ipl ies  the  current  weight when t h e  



random walk is terminated, The function whose expectadvalue is deefred 

, . 
i s  the f i n a l  weight 'of the e part ic le;  SO 

Z(X, w, la) - ( 245 

where i f  ordinary sampl*g were being done the m would be independent of W. 

However, i f  the w happened t o  be vbry m a l l  one would be willing t o  sample 

m rather  inmcurately i f  it wved some cos t j  if it ware la rge  one would 

want to sslople m quite accurately even if it were expensive. This is thus 

a natura l  pmblem on which t o  use Russian Roulette and SpUtting. 

The regions R1 and R2, w i l l  be defined i n  the  (x,w) .pace and ths 

decisions of Russian Roulette or Spl i t t ing concern the number of m values 

t h a t  .are t o  be picked fo r  an (x,w) value. 

I n  discussing par t ic les  it i s  convenient t o  change the.Language 

s l ight ly.  Inatgad of  speaking of picking n independent values of m f o r  

each (x,w) i n  region R p ,  t h e  par t io le  i s  said t o  s p l i t  into n independent 

par t ic les  each of weight w/n. ~ i n d h r i y  i n  region R1 i f  the pa r t i c l e  losea 
. . 

the Russian Roulette it i~ .aid t o  hare :wed ( o r  disappeared)j i f  it w i n .  
\ 

\ it i s  assigned a new weight, u/q(x,w) and Fta random walk  continued. 

I n  the case of moat in te res t  t h e  p.d.f'; fo r  (x, W, #) .(after thai Russian 

Rouletts and Sp l i t t i ng  ha. been done) has t i e  special  from,. g(mix)f (x,r) j 

t h a t  i s  the conditional podmfo  of m is not dependent on tr,  he plausi- 

b i l i t y  of the assunption is  discussed belov.) with t h i s  assumption, 

2 
a ( w )  - Y 2 p ( * X )  - i2 ( :x j  



Since the cost  of: picking an m value is independent of w, the optimum 

c h o i c ~  of q(x,u) and n(x,w) i s  given by 

and re@.ons R,, and R2 are determined as before by the appropriate inequal- 
- I 

itles.. If the par t ic le  is  i n  R1 and happ.ns to surr lve  the  Russian Roulehte 
- I 

it is  assigned a new weight 

If the  par t io le  i s  i n  R;, then each of t he  n independent partj iclss i e  given 

a w o i  ght . 

- 
fn both coase, the f i n a l  weight of the pa r t i c l e  l a  indepdndemt of the 

d r ig ina l  m i g h t  and i a  a f i nc t ion  of x only.  his sesns t o  be, i n  general, 
- 

on. of the c r i t e r i a  f o r  a good aampling echme for par t ic le  .diffusion prob- 

lema.) It is becauee4M weight of the partiole a f t e r  collleion is indepen- - 

dent of the weight before col l is ion that m can be taken t o  be indepemdent 

I of w. 



Trunoating Sample S e r i e s  

Sometims i n  doing a Monte Carlo problem ins tead  of  gettFng a s i n g l e  

L\ 
number f o r  t h e  es t imate  from a s i n g l e  sample, one obtain8 an i n f i n i t e  - 
series; more p r e c i s e l y  each sample generates a process  f o r  ca lou la t ing  an 

i - 
infinite e e r i e r  term by term, and it is t h e  s u m  of t h e s e  s e r i e s  whiah are 

t o  be averaged i n  obta in ing the  f l n a l  estimate. Th i s  oocurs moat o f t en  

i n  t h e  Use of Expected Valuw. 

The computer is then faoed withthe  problem of t e n h a t i n g  each of t h e  

i - 
sample series. This can be  dono by summing each a e r i e r  t o  a fixed number 

I of terms o r  it can be, done by maming u n t i l  a term get6 crmaller than solas 

I previouoly assigned amount. Both of these  methods are i n e f f i c i e n t  an one 

I i s  then faced with e i t h e r  ca lou la t ing  a number of very small terma o r  

I . - -  
t runca t ing  too aoon and introducing an  unknown bias i n t o  the estimate. 

A much more e f f e c t i v e  method o f  ter ininating ouch sample series I 8  

I 
- made poaaj.bl@ by t h e  use of Russian Roulette. One can slmply play the 

supplementary game of cllancs i s  soon a. tha  tom i n  t h e  s e r i e s  begln t o  

I get m a l l .  If a term f a i l e  t o  surrive t h e  supplementary game t h e  series 

I i s  terminated r i g h t  then and there;  i f  it survives, the weighta of  all 

eubsequsnt term a r e  multiplied by the proper f a c t o r  and the term by  term 

ammation continued u n t i l  a nsw t e n  becomes small. fn this way the asriee 
- 

can be terminated in o oonpletely u n b i n s d  fnohion and yat very  l i t t l e  

effort i s  erpent computing om11 and i n e i g n l f i c a n t  n u b e r e .  
- 
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Introduction and Definft iona 

. . 

The treatment of i n t e g r a l  equations v i l l  follow as c lo se ly  as 

p o s d b l e  the  treatment of i n t eg ra l s  i n  order  t o  emphasize sinilaritiw 

and differences... Again t he r e  w i l l  be a certain amount of paraphrasing, __  - 

but this time an attempt v i l l  be made t o  minimize it. 

The problem i s  to estimate 

/If 

by Monte Carlo. ~ ( x ,  y) is  an unknown functior! which is determined by 

t h e  i n t e g r a l  equation f /  

a(x,y), ~ ( x , y i x '  ,y8 ), and Mo(x,y) are knom. K(x,yrxt ,yt ) i s  c a l l e d  
I 

t h e  kernel  o f  the  i n t e g r a l  equation. The above'equation i s  known as a 

Fredholm equation. It arises na tu ra l l y  in many appl icat ions  i n  pkjsics, 

mathemtic s, and engineering. Associated with t h e  Fredholm equation i s  

another equation lcnown as t,& ad jo in t  equation. 

It can be shown t h a t  
ff 

1 The reader is reminded t h a t  judicious skipping (or  skimming) may be 
advisable. In most sect ions  more d e t a i l s  are given than a r e  needed for  
applications.  

The mathematician may f i n d  the chapter c l ea r e r  i f  he r e a l i z e s  from 
t h e  ou tse t  t h a t  we a r e  ,here studying a Marko'ffian proceas i n  the  t h r e e  
dimensional space (w,x,y). The process is  s p e c . i a l i z ~ d  $ 0 - t h a t  it is 
still m k o f f i a n  i n  any of the averages over w. 

It should be oboious to t h e  reader t h a t  almost anqyLhing said i n  t h i s  
context about i n t eg ra l  equations applies a l s o  t o  aratrix equations. .. . 

,is A <  .. , 
. _  . , .  



I S(XI ,y@ ) i s  now the  unknovnf unction. By multiplying Equation (15) 

I - -  

with ~ ( x ,  y)dxdy and muat ion  ( ~ a )  with M(X' , yf )&'dyl and integrating,  

t 

I 
it is. easy t o  show that 

There a r e  thus always two d i f fe ren t  s e t s  of equations which can be u e d  

t o  ca lcu la te  2. 

It i s  convenient t o  discuss  the problem i n  t e rns  of a random walk 
- 

i n  which a p a r t i c l e  jumps from one point  to another, changing its weight BJ 

a f ac to r  which may depend on t h e  ini t ial  and f ina l  posi t ions  every time it 

jumps. The points  t o  which it' jumps a r e  ca l led  c o l l i s i o n  points. If it 

ever jumps outsi.de a preassigned area, A, t he  p a r t i c l e  is said t o  have 

I 
bi . been trapped o r  d i e  and the  random walk is terminated. It will be shown 
I - 

- t h a t  B can be in te rpre ted  as t h e  expected w e i g h t  t h a t  jumps i n t o  a par t i cu la r  

L 
- .  

t r a p  state and can be e e t h a t e d  a la Monte Carlo by performing N random 

walks. and a~eraging t he  trapped weight of the  N pa r t  ialee.  
1 

i 

Most o f  the  appl icat ions  o f  Monte Carlo to i n t e g r a l  equations have , . . 

a c t u a l l y  been concerned with studying random wa3.k~.  The author would, 

however, l i k e  to emphasize t h a t  fo r  the  purposes of t h i s  chapter t h e i r  

in t roduct ion i s  an expository device and does not l i m i t  i n  any way t h e  

c l a s s  of i n t eg ra l  equations which can be treated.  

Before showing the  connection betxeen i n t eg ra l  equations and random 

I - '  

walks some def in i t ions  are needed: 

p(x,y:x1 ,yl ) i s  the p.d.f. f o r  the  n m  non-trap posi t ion (x, y) of a 

p a r t i c l e  t ha t  was a t  (+' ,p).  If /p(x,yrx~,yt)&dy 
A 

i s  < 1 then the p a r t i c l e  has a non-zero probabi l i ty  of 

jumping d i r e c t l y  t o  a t r a p  s t a t e  f r o m  (x1,yI). 

1 See Sections onrtKealizationn and "CoUsions FomLat ion t l  . for  a mare 
de t a i l ed  descr ipt ion of t h e  random walk. 



p(2x ' ,y t )  = 1 - j/ p(x,y:xt,yt )dxdy i s  the probabi l i ty  t h a t  a 
A 

p a r t i c l e  a t  the  point  (xl  ,yl ) w t l l  be trapped ins tead 

of jumping t o  a new point  i n  1,. In  some case8 p(rx1,y') 

w i l l  be taken l e s s  than 1 - //p(x, y:xl, yt )dxdy; i n  which 
A 

case it is t o  be in te rpre ted  as the  probabi l i ty  of jumping 

to a given one of several  t r a p  s t a t e s .  

m(x,y.:xt, yl ) i s  t he  f a c t o r  by which the  weigiTt of a p a r t i c l e  ie 

mult ipl ied i f  it jumpe from ( X I ,  yt ) to  (x, y) . 
m(:x,y) i s  the f a c t o r  by which the  weight of the pa r t i c l e  is multiplied 

i f  it jumps t o  t h e  t r a p  s t a t e  f r o m  (x,y). 

w (x, y) i s  t he  ini t ial  weight of a p a r t i c l e  t h a t  starts a t  (x, y) . 
0 

The weight can have e i t h e r  sign, but i n  most problems it 

i s  posit ive,  

w. is  t h e  m i g h t  of t h e  p a r t i c l e  a t  t h e  i t  t h  co l l i s ion .  
1 

W W - m(:x )w i s  t h e  weight of the  p a r t i c l e  on being trapped. 
1 1  I 

fi(w,x,y) is  the  podof.  fo r  the  weight ar.d pos i t ion  of a p a r t i c l e  a t  

t h e  i l t h  co l l i s ion .  jJfi (w,x, y)dudxdy is the p r o b a b i l i t j  
A 

t h a t  t h e  p a r t i c l e  has not been trapped by the i t t h  

co l l i s ion .  

pi(x,y) /f i ( ~ , ~ , y ) d ~  i s  the  p.d.f. f ~ r  t h e  posi t ion of  t h e  pa r t i c l e  

a t  i t s  3.1 t h  co l l i s ion .  



q ( x , y )  r/wfi(w,x,y)du i 8  the. expected weight (actually w e i g h t  

density)  a t  (x,y) on the i'th collisiton. The expected 

weight of the p a r t i c l e  itself i a  Ffi (x,y)/~l(x. y) .* 
2 

Qi(x,y) =J)w fi(w,x, y)dw i s  the  expected aquare n i g h t  a t  

(x,y) on the i ' t h  collieion. The expected aquare 

of the weight of the par t ic le  is Qi(x,y)/Pi(x,y). 

gl(w:x,y) is the  conditional probability that a par t ic le  

tha t  s t a r t e  a t  (x,y) with weight one, is trapped 

i n  exactly i w l l i s i o n s  with weight w. 

Ri(zx9y) ' ~ g i ( w : ~ , y ) d w  is  the probability tha t  a par t ic le  

tha t  e ta r ta  a t  (x,y) is trapped d i rec t ly  a f t e r  the  

i ' t h  collieion. . 
& 

S ~ ( : X , Y )  J ~ ~ ~ ( w : x , ~ ) d w  i t 3  the eucpeoted weight that is  

trapped a f t e r  the i l th collfaion given tha t  the 

par t ic le  starts a t  (xsy) dtb weight one. The ex- 

pected weight of such a par t i c l e  when it is trapm is 
' 

2 
Ti(:~,Y) /v gi(w:x,y)dv 18 the expected square weight tha t  

l a  trapped a f t e r  the i ' t h  col l is ion glvtbn t ha t  the 

par t ic le  s t a r t e  st (x,y) with weight one. The ex- 

pected square of the weight of the pa r t i c l e  when 

& A 

P(x,y) = F p i ( x ,  y )  is  the expected number of collisions t h a t  
0 

the par t ic le  makes a t  (x,y) before it is  trapped. 

* The somew+t stilted language f a  used to emphaeiae the difference 
.betveen the notion of nexpected weight of a particle,@ given that it 
i e  a t  a point and nexpected weightm a t  the same point. The former fe 
aolnetlmea called the condltlanal expected valuej the l a t t e r  18 equal 
to  the former tlmes the probability of  the par t ic le  being there. 



a0 

H(x,y) = ~ M ~ ( X , ~ )  is the total expected weight a t  (x,y), and 
0 



Derivat ion of I n t e q r a l  Equations 

The only way a p a r t i c l e  can ge t  to the point  (x,y) In i (i > 0) colZislons 

is t o  be a t  some po in t  In A on i t s  i-11th co l l i s i on  and then  jump t o  

t he  point  (x,yI Therefore, 

Summing both s ides  from 1 t o  oo 

. r 

Equation (6) i a  i n t u i t i v e l y  plausible. . It e ta tea  that the  expected 
, . i 

number of co l l i s ions  a t  (x,y) ie equal t o  the  sum of the probabi l i t i es  

of a l l  the vaye i n  which a  p a r t i c l e  can have a co l l i s i on  a t  some o ther  

. point  and then jump' t o  (x,y), plua the  probabil i ty tha t  t he  p a r t i c l e  

had i ts '  f i r s t  co l l i s i on  a t  (x,y). 



Similarly it can be shown that 

where MO(x,y = w~(x,~)P~(x,~) (3 )  

If m(x,y:x' ,y' 1, p(x,y,xV ,y' 1, wo(x,y), and p0(x,y) are chosen so. that 

1 .  

then Equation (7) is identical with Equation (2 1. This is, of ccurse, 

the identification which is intended. 

The expected trapped weight i s  given by 

Therefore, if m(:x, y) is taken to be 

m(:x,y> = z(x,y)/p(:x,y) , 

the expected trapped weight i e  (Equation 3 )  which completes the 

identlf ication. 
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Equations can also be writ ten f o r  R(:x,y), S(:x,y) and T(:x,y), 

For e q p l e 9  . 

- because the  probabil i ty of being trapped in exactly i co l l i s i ons  is  

equal t o  the  probabil i ty of jumping to aomewhere e l s e  i n  A, tlmes the  

probabil i ty of being trapped in i-1 co l l i s i ons  from the second point. 

- From Equation (13) it i s  easy t o  obtain  

This equation i s  alio i n tu i t i ve ly  plausible. A p a r t i c l e  can be 

- trapped i n  two ways. I t  can f i r s t  jump t o  some other  point in A and 

then eventually be trapped o r  it can jump d i r ec t l y  i n t o  the  t r a p  etate.  , 

Equation (14) s t a t e s  t h a t  R(:x,y) is  the sum of the  probabi l i t i es  of 

these mutually exclusive events. Because 

Ro(:x,y) =z p(:x,y) = 1 -~ /p(x ' ,y ' :x ,y )dx 'dy '  , 
A 

it can be shown t h . a t  2(:x,y) = 1 is a solut ion o f  the equation. 

If there were different types o f  trap s t a t c e  and ~ ~ ( t x , y )  were the 

probability of jumping d i r e c t l y  into just one of the t rap states,  

then ~ ~ ( : x , y )  would be less than 

and R(:x,Y) would be l e s s ,  than one. I n  p rac t ica l  problems, t h i s  

s i t ua t i on  1 e . t h e  common one. 



Equations for  S(:x ,y)  and T( :x,y)  can also be written 

I t  should be noticed that Equations (141, (15 ), and (17) are adjoint 

:. ., respectively to Equations (617 (7) and ( 8 ) .  



Realizati'on of Integral Eq - uation by Monte Carlo 

The of Equation ( l a )  can be estimated a s   follow^: 

a. An ( x , ~ )  i s  picked from P0(x,y) and 8 weight Wo wO(x?y) 

assigned t o  the  par t ic le .  

b.' I f  on the  i l t h  co l l i s i on  the  p a r t i c l e  is  a t  (xI,yi) with 

weight wi, then the  computer f i r s t  picks randomly between 
- - 

t he  a l te rna t ives  of being trapped p( :xi ,yi 11 
f r -4 \ 

or  of having another co l l i s i on  1 - p( :x i ,y i )~ .  1 
I f  the  f i r s t  a l t e rna t ive  mater ia l izes  the p a r t i c l e  is 

asaigned a trapped weight, W = m(:x ,y )u 
i i i *  

. % 

c.' I f  the  p r t i c l e  i s  not trapped then an i a  . 

P ( X ~ + ~ ' Y ~ + ~ : X ~ , Y ~ )  
picked from the  normalized p.d.f., 

1 - p(:x ,y 9' 
i i )  

and a weight, wi+l - - )wI' a ~ s i g n e d  to 

the  par t ic le .  

d. b and c a r e  repeated u n t i l  the  pa r t i c l e  is  trapped. If .\, 

M pa r t i c l e  h i s to r i e s  a re  traced and t h e i r  weights when 

trapped denoted by W1, ... Idn, ... UN respectively,  then 

i s  an estimate of z. 

* In  many problems it is more natural  t o  describe (b)  and ( c )  a s  
follows: an (xitl9yit1',. ) i s  picked fmm P ( X ~ + ~ , Y ~ + ~ : X ~ , Y ~ ) .  If - 
(xitl,yitl) i s  i n  the  t r a p  s t a t e  a ueight U r(:x ,y )w i s  i i i  . 
assigned to it. Otherwise the  weight wi+l = r n ( ~ ~ + ~ , y ~ + ~ : x ~ , y , , ) w ~  

. assigned to the  par t i c le .  



Becake of the existence of adjoint equations, two different  - 
in tegra ls  can be written for  , l?, otc.  For instance, 

The f i r s t  in tegra l  can be read aa saying that the expected 

trapped weight i s  equal to the expected weight a t  any point, times 

the probability tha t  the par t ic le  vill be t r a p p a ,  times the factor 

by which the weight i a  multiplied i f  the par t ic le  jumps to a t r ap  

s t a t e ,  all t h i s  summed over a l l  possible points. The second integral 

says that the expected trapped weight i s  equal to a similar sum of 

the  expected weight s t a r t ing  a t  any point time8 the expected factor  

by which the original  weight i s  multiplied when the par t ic le  i a  

f ina l ly  trapped. 



Sampling from t h e  Initial Dist Abut  ion p0 (x, y) 

Equations (1.9) t o  (22)  ind ica te  that if  any of the techniques of 

Part 11 were t o  be applied .to sampling the i n i t i a l  posi t ion of the  

par t i c le ,  %hen the  following correspondence, 

can Se used i n  designing the sampling. If it is desirable  to use the  

sampling techniques only on t he  x coordinate o f  the  initial posi t ion 

cf the  p r t i c l e ,  thm t n e  analogy is given by: 

Thus, j u s t  about a l l  of Par t  I1 can be applied t o  sampling from 

- 
po(x) o r  -pO(x,y). Because T(:x,y) depends on p(x1 ,yl rx,y) and w i l l  

change if t h e  t r ans i t i on  probabi l i ty  i s  changed, the  tecliniques and 

I .  idea8 of Part I1 must be modified before being applied t o  the i n t eg ra l  

1 .. - 
equation as a whole. 



The Collision F o m l a t i o n  

The whole formulation of the problan of solving in tegra l  

equations by Monte Carla can be changed sUght ly  t o  make it look 

l i k e  the s i tuat ion considered in Section A of Chapter 11. The- 

following additional deffnftions a re  needed: 

where the subscript on A indicates which (x,y) a r e  

being integrated and 8 L. .] is  the Dirac de l t a  f'unction. 

qi is  the probability that the pa r t i c l e  is trapped on i t s  i ' th  collision. 

hi(xyy) i s  the p d . f .  of the ( x , ~ )  from which the pa r t i c l e  jumped when 

it was  trapped. hi(w,x,y) is. the similar p.d.f. fo r  (w,x,y). The 

sampling problem can now be defined as follows: 

1. An i value i s  pick& from qi 
, 

2. An ( X , ~ )  is  picked from hi(x,y) 



3 .  A w i s  picked f r o m  hi(w:x,y) 

4 .  The function W = WE( : x , ~ )  f s calculated 

The average value of the samples W8s is m estimate of ;. 
Unfortunately the % are not known explici t ly ,  and the only 

way i n  uhich i values can be picked is  t o  ample all the previoua 

i valuea. For most problems focusing at tent ion on the collision 

number rather  than the pasition of the par t ic le  i s  a highly arti- 

f i c i a l  and no-productive point of view. However, when the  i i (  :xjy) . 
a re  strongly dependent on the i and not ~ n ( x , ~ ) t h s n  this point of 

view can be useful. In th i s  report the main application of the 

col l is ion formulation i a  i n  deriving formulae. 



1. Straightforward Sampl ix  

The. sampling procedure deecribed i n  t h e  previous sec t ions  i s  

1 no t  r e a l l y  a f a i t h f u l  analogue of most physical s i tua t ions .  In  the 

t yp i ca l  p a r t i c l e  d i f fus ion problem the re  a r e  a l t e rna t i ve  mys, besides 

i Jumping t o  a unique t r a p  s ta te  o r  s t a t e s  of i n t e r e s t ,  i n  which t h i  

i ' p a r t i c l e  can terminate i t s  random walk, Some of them correspond to  

i unin te res t ing  t r a p  s t a t e s ,  while o thers  correspond t o  a spec i a l  type of 

trap s t a t e  i n  which t h e  p a r t i c l e  simply disappears. If t h e  l a t t e r  event 

oecurs, t he  p a r t i c l e  i s  said to have been absorbed. If it does not  the 

p a r t i c l e  i s  sa id  t o  have survived t h e  co l l i a ion .  In  t h i s  physical  

s i t ua t i on  t h e  weight of the p a r t i c l e  does not change as i t  j c w s  

from one point  t o  another or t o  t h e  t r a p  s t a t e ;  m(x, yrxt ,yt ) i s  not 

a weighting f a c t o r  bu t  a su r r l va l  probabil i ty,  and therefore 
" 

necessar i ly  l e s s  than one. m(rx, y) is the product of a surv iva l  

p robab i l i ty  and some f inc t ion  o f  t h e  ~ a r t i c l e o  coordinates; f o r  

A p l e  the  energy. If t h e  surv iva l  o r  absorption of a p a r t i c l e  is 
I 

t r ea ted  as a random event then t h e q u a t i o n s  f o r  P(x,y), 6 ( J ~ Y ) ,  ~(:x ,y) ,  

and ~ ( r  q y )  c w e  t o  have any meaning; the  equations f o r  ~ ( x , y )  and 

s(:x,y) a r e  unchanged i n  form, bu t  ni(x,y) i s  now t o  be in te rpre ted  

as t h e  pmbab i l i t y  of being a t  (x,y) a t  the i l  t h  collision, and [if m ( : q  y) 

i s  a probabi l i ty  of survival]  Si (x, y) i s  t h e  probabi l i ty  of t h e  p a r t i c l e  

being trapped d i r e c t l y  a f t e r  its i l t h  co l l i s i on  if it starts f i m '  (x,y). 

Under this i n t e rp re t a t i on  the  p a r t i c l e  has a weight of one i f  it 

ge ts  t o  the t r a p  s t a t e  and is defined as having a weight of ze ro  

if' it f a i l s .  If primes are t o  dis t ingu ish  the  physical  random 



walk from the  previous one, and P' i s  t he  probabil i ty of ge t t ing  

to t he  t r a p  s t a t e ,  then 

- 

and the  variance is  

I 

i 
. s 

In  the  previous formulation the  variance was given by: 
I .  

- 2 
It i s  easy to see t h a t  Vi - V1 > 0. m ( :x,y) i s  l e s s  than m( : x , ~ )  

because m(:x,y) i a  l e s s  than one. Similarly,  from the f a c t  t h a t  

2 0 0 

m (x ' ,y l  :x,y) C m(xl ,y8 :x,Y), it can be deduced t h a t  Q(x,y) < M(X,Y ), 

2 -' 

so Qm < Mm and V1 7 Vi.. 

The formulation with weighting fac tors  corresponds to. replacing 

the  random survival  of the  physical random walk with a weight that' i s  

the  expected value of the survival  probability. This i s  an example of 

the  application of the  use of expected values and therefore  it i s  not 

surpr is ing that ' t he re  is  a reduction i n  t.he variance.. There is  also 



an increase in the expected cost of  a efngle history, for if the 

particle were o c c w s i o d y  allowed to terminete its walk before 

jumping intc  the trap state then the average history wuld involve 

fewer col l is ions and be l e s s  work to compute. The s w t i o n  on Ruseian -. 
Roulette discusses the i n t e ~ p l a y  of  these two factore i n  more detail .  



The problem i s  to s e l e c t  the  SIX functio- p( :x,y) , p(xl ,Y' :x,Y) , 
~ ~ ( x , y ) , m h , y ) ,  n(xl,yl:x,y), and vo(x,y) so t h a t  the weight of a 

0.. 

p a r t i c l e  when trapped i s  an estimate of 2, and so t h a t  l a  a 

minimum. The condition on i e  satisfied i f  

and only the  three  p.d.fO1e a r e  arbi t rary .  
$3 

Under these circumstances the equations f o r  ~ ( x , ~ )  and S(:x,y) a r e  

given by ( l b )  and (2b). The equations f o r  ~ ( x , y )  and T( r x , ~ )  a r e  o b  

. tained by subs t i tu t ing  Equation (29) i n t o  Equatio,m ( 8 )  (17) 

respectively: 

and from Equations (21) and (22) 



- ' - 
Because Ij! - 92 7 0, the  minimum value of i s  #. If this value 

I i s  achieved then the variance i s  zero and the smpllng i s  perfect)  

a sample of one gives the correct ansuer. If ~ ( x ~ ~ : x , y ) ,  ~ ~ ( x , ~ ) ,  

I and z(x,y) a re  a l l  positive,  a zero variance random walk can be 

sbtained and i s  given by the follcving choice of the three p.d.f.'a: 

By using Equation (2b) f o r  S ( : X , ~ )  it can be ahown that the  
Y 

p( : x , ~ )  and p(x1 ,yl:x,y) given above sa t i s fy  p( :x,y) + Jp(x1 ,yl:x,y)dx'dy' = 1. 

l - - T - m ~ ~ l a r l y  Quationa ( l a )  and (3  ) guarantee that f j p 0 ( x t y  ) d x d ~  = 1. 

Substituting in to  the equation8 f o r  Q(x,y) and T( :X ,~) :  

Solutions of these equations a r e  given by 

f o r  as  can be verif ied by substitution, Equationr~ (33a) and (33b) then 

reduce ta Equations ( l b )  and (2b) respectively. Either of the above 

solutions when subst i tuted in to  Equation (31) give 



- 
Even though a gre& deal more than just the answer, s, must be 

knoun before a zero variance sampling technique can be designed, 

. the result does indicate that the variance can be cut down if it is 

possible to exploit some previous knowledge about the problem. 
' - 

It is interesting to e d n e  some of the details of the zero 

variance estimate. Any particular particle history can be represented 

B a set of numbers. ( ~ o ~ ~ o ~ ~ o j ~ l ~ ~ ~ ~ ~ ~  ~ ~ i , ~ i , ~ I j ~ I , ~ I , ~ I )  where . 
the (xI,yi) are the suacessLve positions of the particle sod the wi 

- are the weights at the ilth collisioh. The sample e s t a t e  is 

. If the optbum inportance sampling is wed, . ., . . 



Because of the successive oancellations, the weight wi does not 

depend on the hiatory of the par t ic le  but only on i t 8  ~ e i t i o n .  It 

w i l l  turn out i n  the section on Russian Roulette that there a re  other 

ways ladde.8 importance sampling i n  which this condition occurs. 

It is customary.in engineering practice t o  r e fe r  t o  S ( : I C , ~ )  as 

the importance o r  influence function. Aa can be seen from Equation 

(32), the  sampling is  taken proportional t o  this function. Normally 

.!. i S( : x , ~ )  i e  not known and an approximate importance function, 1(x,y),' 

must be used. The sampling p.d.f.'s then becomes 

where 

and 

a r e  required for  nonaallaation purpoaee. 



The equations for Q( :x,y) and T( :x,y) now become 

If the substitutions 

are made, Equstions (@a) and (@b) become: 

M*(X,~) =,,@(X,~:X' ,yl ) lw.f wl(xl,yt )dxadyl + Mo(x,y) (a) 

,vj dxldyl + z(x,y) . S"( :x,y) = Jj*( :xt ,yt )K(xl ,yl :x,y) * x,y 
I (44b) 

.,.. 
If the optimum sampling had been used, lu[w(xSy) would be equal to .%. 

H(x,y) and S*(:x,y) would equal S(tx,y). They are not equal to the 

desired functions because in effect, there is an extra multiplying 

- factor, C(x,y)/I(x,y). 

For this approximate importance sampling, using (31a) md (ho)  
- 



or using (31b) and (lie) 

- 
z* is the ordinary expected weight of trapped part i c l e s  when the 

weighting factors of the random walk have the addit ional  factor 

C ( X , ~ ) / I ( X , ~ ) .  The variance i s  

The fornula c o S  for P i s  exactly what would have been ex- 

pected. I f  a random walk uses the p .d . f . ' s  of Equation (@ ) and the 

weighting of ( 2 9 )  then 

For the z* random walk with the same p.d . f . ' s  , 



Therefore C U * = W 2  
0 

The e q ~ t l o n  does, however, lndicate how the variance can be 

estimated for an importance function I 1 ( x , y ) ,  when an I (x ,y)  is 

actually used i n  the calculation. The weight wi i s  multiplied .by the 

I -- factor 

and the trapped weight U by the additional factor C 1 ( x I , y I ) / I 1 ( ~ I , Y I )  

I. 



The sampling variance, i f  ~ ' ( x , ~ )  had been used inatead of 

E s t i m a t l ~  the Iraportaze f (x,~) 

Method I. 

Usually the most convenient method f o r  obtaining good impor t  

ance functions is  to t r y  to calculate S( :x,y) by some approximate 

analytic,  numerical, o r  experimental procedure. It Is somewhat 

eas ier  t o  d o ' t h i s  than might be thought because only re la t ive  values 

of the function a re  needed. I f  there is a comietent  bias i n  the 

rpproxlmate calculation, even i f  it is  large, it may cancel i t s e l f  

out f o r  the  purposes of sampling. In many cases the computer has 

suf f ic ient  in tu i t ion  about the problem to be able to  guess a reason- 

able I(X,Y) with very l i t t l e  work. 

Method 11. 

The sampling is s e t  up so that  the p.d.f.'s have parameters in 

them. The parameters can then be varied u n t i l  the estimated value of - 
$ is suff icient ly small .  While does not change when t h e  parameters 

are varied, the author has found tha t  there i s  usually suff ic ient  
rr* 

positive correlation between 7 = 3 - 3 and 3, t ha t  ?/Q i e  a bet ter  

guide than just 7. 

Method 111. 

Method 11 can be used i n  a l i t t l e  m r e  sophlaticated manner i f  

the  reaul te  of Equations (53), (541, and ( 5 5 )  are  applied. It i e  

mmaUy re la t ive ly  cheap to carry along v i t h  the  sampling fo r  the 



anewer, some addi t iona l  machinery which will enable t h e  computer t o  

est imate w h a t  the  variacce would have, been i f  a d i f f e r en t  import- 

ance function had been used. As soon es i n fo rmt ion  about t he  

sampling cha rac t e r i s t i c s  of d i f f e r en t  importance functions i s  ob- 

tained,  i t  can be fed  back in to  the problem. 

Method.. m 

It i s  pe r f ec t l y  f e a s i b l e  t o  interchange t he  m l e s  of t h e  normal 

and ad jo in t  equations. Sampling can then be done cn t he  ad jo in t  

equation and ~ ( : x , y )  es t im ted .  This estimated ~(rx,y) can then be 

used to  i q r o v s  t h e  sampling that estimates ~ ( t x , y )  and v ice  versa. . - 

If necessary the i t e r a t i o n  procedure could be ca r r ied  through m y  

timgs. A s  far'asthe author knows Method IV has never been used i n  

a systematic fa3hion. The f i r e t  three have, 

Importance Sampling Only In The x Spaca 

It is  sometimes des i rab le  t o  separate the x and y epaces and do 

Importance Sampl-ing only on the  former. The simplest  th ing t o  do ia 

t o  take ~ ( x )  proportional  t o  an approximate S ( t x )  where S ( t x )  i s  a 



su i tab le  average of S( :x,y). T h i s  correspond8 t o  the sampling pro- 

portionel , t o  ;( :x) in the seaond chapter and l i k e  tha t  aampUng i s  

by no means optimal. However, the description of the o p t h  

sampling for the x space only i s  extremely non-intuitive and while 

a shor t  discuaeion is included here f o r  the sake of completenesa, 

the equations tha t  determine this optlmum's~~l~pllng i n  the x space 

do not aeem very ueeful. 

The k e e n s  function f (rn,yn:rl  ,yl  ) is  defined by the equation 

By multip1yI.q Quat ion (&$a) by j?(x",yw:r,y) and integrating over 

(x,y), the  equation 

is obtained. By eubstituting Equations (41b) and (54b) in to  (458) an - 
expresaicn f o r  V2 

can be written i n  terms of I(x,y) where f ( I C , ~  rxl ,yl ) depends implicitly 
- 

on I(x,y) through Equation (54a). T h i s  dependence is  very complex, 
- 

even when I(x,y) i s  epecialrted to be a function of x only. Therefore, - 
when the condition t h a t  make8 d a nninfmum i s  derived, the equations . - 

are re la t ive ly  in t rac tab le  and non-~uggestive. 



3. Systematic Sampling 

The mst important application of systematic sampling is to the 

sampling of initial pints. This subject i s  discussed i n  the section ~ - 
on sampling Po(x,y) and also Zn Section 6 on correlation. The die- 

I cussion which follows concerns the much l e s s  important but s t i l l  

I in te res t ing  subject of the systematic sampling of t h e  t rans i t ion  

~ probabili t ies.  

A surface x (x,y) can be defined by t h e  equsltioae: 
j .  

I f  systematic samIjling is used vhen picking values of xi then the xi I - 

I . 
' value6 vill f a l l  on one of these )I surfaces x (x 

j i-i'yi-1 
) However, 

i .since acme of the N par t ic le  h is tor ies  w i l l  have terminated before 

reaching the i l t h  coLlieion it i e ~  not t rue  that each on@ of the 

. . . .  surfaces vill have an xi value on it. 

The reduction i n  variance due to eyatematic sampling can be 

calculated exactly aa in Section 15 of t h e  previous chapter. h random - 

variable Ui i s  defined which is  equal to the weight W of the  trapped 

- 
par t ic le  given tha t  the par t ic le  had a t  l e a s t  i-1 collielone before 

I being trapped. Then 

. , ' - - ( ' Y  1' ~n t r a p  s t a t e  

, 



- 2  2 - w 1  ( if (xi,yi) i n  t r ap  r t a t e  . . 

where pGl = f i - l ( ~ , ~ , ~  )dvdxdy 

- 
i s  the pmbabLUty that a par t ic le  vill have an i - l e t  collision, 

Ui - 
- and $ can be calculated by integrating this p.d.f. against  the 

1 

conditional expected values defined in Q u a t i o m  (58 )  and (59). It 

i s  a lso  neceseary t o  define the expected value, 

on the equiprobability surface x ~ ( x ~ _ ~ , ~ ~ - ~  ) While the surface i e  
- 

def lned indepsndently of the col l is ion number, Dl ( : j ) depends on it 

because the p.d.f. is a function of i. 



I - -  where S'K' is defined as equal to  SK if (x , yi) is  i n  A and i s  e q u  
j 

t o  m(:xi - , P l l ~ i l  if (x j  ,Yi) is  i n  the t r ap  s tate .  

I f  N1 par t ic les  had an 1-1st col l i s ion  and o d i n a r y  sampllng - 
- 

was used then the variance of the estimate of N1 ti would be Ill(< - q). 
By a t r i v i a l  modification of the technlqus of 3B it can be shovn t ha t  

t h i s  var imce l a  approximately reduced by an amount B 

Therefore the variance of the or ig ina l  aampllng problem i s  reduced 

If syshaa tdc  sampling i s  used on yi then a surface yk(~i-l,yiwl,~i) 
.. . 

is defined by 
b 

- 
x y ) on this surface by and the expected value of U(:wl-l,xi-l,yl-l, - 

- 2 
The reduction i n  rnrianos is Pi - lpi(:k) - UJ I f  syst-tic 

eampling 1e.used a t  eeveral pointe in the par t ic lea his tory then the I - 
reductions are  approximately additive. 



4. Strat i f i ed  Sampling; 

Aa i n  systematic sampling the important application i a  t o  the 

i n i t i a l  poaitions o f  the particles.  This subject i s  discussed i n  the 

sect ion on sampling po(x,y) and a l so  in Section 6 on correlation. 

The application to the transition probabilit ies 'seems completely 

negligible and w i l l  not be diecuseed. 



5. Use of Expected Values 

Let H denote the s e t  of numbers, (uo,xo,y, j w l x l y l  . . . j 
x y ), t ha t  const i tute  a history. The estimate W i s  a simple - "I' I' I 

function of Ii: 

There a re  many other functions of H that can be used to estimate z. 

Becauee moat of t h e m  can be in tu i t ive ly  jus t i f ied  by replacing a 

random variable by i t s  expected value, they a re  discussed i n  th i e  

section. The aetimate in Equation (73) w i l l  be r e f e n e d  t o  by the 

symbo1.L and w i l l  be called a Type I eetiaate.  A feu other function8 
-t 

of H t ha t  can be used will now be diecueaed. 

- Type I1 

Instead of recording the weight of the pa r t i c l e  a f t e r  it juznpe 

in to  the t r ap  e ta te ,  the computer calculates the weight that every 

. col l i s ion  i e  expected t o  put i n t o  the t r a p  e ta t e  by: 

The expected value of any term of L2 can be obtained by .. 

calculating the expected value of the weight given that the par t ic le  

- .is a t  ( x , ~ ) ,  and then averaging over all (x,y). 

The former i s  given by 



the latter by 

If each term ie replaced by its expected value the sum must be taken 

to infinity instead of just to I and 

The expected value of L: can aleo be calculated 

The expected value of the 1' th term i n  the f i r s t  aura i a  



If the ( v  ,I ,y ) were M e p a d e n t  of (vi,xi,yi), the seaond 
j j j  

sum vould drop out of the aalculation of the v a r h o e .  Because 

there is a positive correlation between the tuo s e t s  of random .. - 

variables the variance i a  increased. It i a  convenient a t  t h i s  point 
- 

to  make some additional definitions. 

pi(x,y:xt,y') is the probability tbt a p r t i c l e  vNch starts a t  (x,y) - 

is at (xl ,y ' )  on its i u t h  oolliaion. Ki(xl,y':x,y) ir th. expected , 

- 
veight a t  (x' ,yt ) a f t e r  i collleions, given tha t  the par t ic le  starts 

a t  (x,y) d t h  weight one. mi(xl,y@:x,y) is the expected factor  by 
- 

which the original veight of the m i a l e  i a  multiplied if  the 

par t ic le  goes from (x,y) to (x' ,y f )  Fn i collisions. 

The expectd value of w in the second am .of Equation (78) is 
j  



The expected-value of mj-i(~j ,yj :xi,yi)p( :xj ,yj )m( :x ,y for given 
j j 

.(xi,yi) Is 

The expected value of the (1, j )'th term of the second sum in 

Equation (78 )  is 

The sum from j=i+l to rn replaces the S ( : x , ~ )  by[S( r ~ , ~ )  - S (:x,y)l. 
j-1 0 

The sum from i* to a, replaces Qi(x,y) by Q(x,y) in both Equations (79) 

and (86). Making these changes and substituting So(x,y) = p( :x,y)m( :x,y), - 
2 

the expected value of L2 becomes - 



The method'is useful when the approptiately weighted average 

In  eome problems S (  :x,y) i s  of the  order a m ( : ~ , ~ ) R (  :x,y). 

Using t h i s  rough estimate roughly gives 

p ( : ~ , ~ )  7 1 - 2&- 
- - 

2 
f i r  the  condition that i s  necessary f o r  L: to be l e s s  than L1. The 

- implicaticn i s  t h a t  the  estimate i s  useful  when p(:x,y) o r  R(:X,~) 

i s  small. This i a  i n  contraet  to a type I e a t h a t e  which works beat 

vhen p( : x , ~ )  or  a su i t ab l e  average of R ( : X , ~ )  i s  large. 

The method i s  par t icu la r ly  advantageous when eskbates of 

I 

- .the function H(x,y) a r e  desired. The usual e s t a t e  of M(x,y) is  
I - 

1. given d i r ec t l y  by the  his tory,  H, and can be writ ten 

1 If the  r e s u l t s  for a number of h i s to r i e s  a r e  averaged and smoothed 

out  i n  the  manner discussed i n  the  sect ion on estimating: ;( :x) and - - 
2 
z ( :x) ,  then something l i k e  a Type I estimate of M(X,~) i s  obtained. 

I , -  

The corresponding Typd I1 estimate would be 

I - 
Equation (92) has a famll iar  look. It corresponds to improving an 

I approxlmote solution,  M I  (x,y),  of an i n t eg ra l  equation by i t e ra t ion .  - 
H1(x,y) i s  subst i tu ted into the  r i gh t  a ide  of Equation ( l b )  and 

integrated. An i t e r a t i v e  procedure of thie type i e  especial ly  



ef fec t ive  vhen there i s  a large separation between the f i r s t  tvo 

eigenvalues of K(xl ,y :x, y 1. I n  the  present s t a t i s t i c a l  eituation, 

i t e r a t i c n  may be useful even i f  the condition on the eigenvalues i s  

not sa t i s f ied ,  because every sample i s  allowed a be t te r  chance t o  

contribute effectively to the answer. The expected value and 

variance of the estimate can be calculated i n  a straightforward 

manner j 



where 

is the expected total weight a t  (xPy) i f  the part ic le  starts a t  

(xl,y"). The variance o f  the estimate i s  

The expression could have been obtained direct ly  from &pit ion 



- 208 - 
It seems d i f f i c u l t  to make any general coxnents about Equation (96) 

vithout making fur ther  aasuraptions on K(xl ,yl : x , ~ )  5 therefore they 

w i l l  be deferred t o  the chapters on applications. 

It i s  sometimes inconvenient to compute p(:xi,Yi)m(:xi,y ) or  
i 

K(x,y:xi,yi) f o r  use i n  Equations (74) and (92) respectively. In 

pa r t i c l e  diffusion probleme part icular ly the expreelaionrs may become 

simpler i f  the col l is ions a r e  "mixed." For example, i f  i s  used 

with yi the f i r s t  estimate is  changed to something of the form 

The detailed discussions of these estimates a re  also deferred to the 

chapters on applioations. 

Type I11 

The Type I estimate can usually be obtained very cheaply even i f  

one of the other estimate8 are being used. It might therefore be 

conjectured that it w u l d  be e f f i c i en t  t o  use an appropriate average 

of Type I and any other estimate. For example 

is  an e s t h e t e  of ? with a variance of 



It i s  ahom in Section 68 of the prevlous chapter that a;! i s  

e2 -Pale2 
1 

a ~ U I P  i f  aI = 2 
The variance then becomes 

a: - 2 Pels2 + s2 
- 

Whether it i s  advantageous to use t h i e  estimate depends rather  

sensit ively on P and y = a2/al and on the computer's a b i l i t y  t o  
- 

- estimate 4 . It i s  part icular ly advantageous i f  P i e  negative. The 

exact dependence o n 3  and y i s  given in Graph 1 of Chapter 11. / is 

given by the standard fonaula. 

The expected value of any t e n  in the above sum i s  easi ly  calculated: 



I Summing from I=I to CD gives 

There will be some discussion of  the application o f  these formulae i n  

Chapter VII. 

Type IV 

Sometimes the transition functions are o f  such a nature that it 

u ) as a simple function o f  ( X ~ , Y ~ , W ~ ) .  i s  possible to write (xi,yi, 

calculated, then an equally good history .can be obtained by picking 



I 

from Po(Y:xo), calculat ing w: = wo(x0,yA) and then ge t t ing  a 
I a Yo 

[ - .  new h is tc ry  H I  = ~ ~ , ~ ~ , y ~ j ~ i , ~ ( x ~ , ~ ) ,  Y ~ ( X ~ , Y : )  iwi,xf ( H , Y A ) , Y ~ ( H , Y A ) ~  

1 
The functions x i  are the  xi and yi t h a t  would have ~ - 

1 - 
been obtained if the  his tory had started with ( W ~ , X ~ , ~ ~ )  instead of 

I (wo,xc,yo) and the  same random numbers used. The w l  a r e  calculated by 

w ' 
0 

w; = - w m ( x f  ,y t  :x ,y t  ) . . . ~ ( X ' , ~ ' * X  
0 

i i o o  i i* 1 - 1 ' Y i - 1  1 

In  most of the s i tua t ions  i n  which the  technique i s  useful  
- 

Equation (1C6) reduces t o  

I i :  
When the calculation of x l ,y l ,  and w l  is  comparatively easy an 

estimate,  L can be obtained' by picking s e v e r a l  yo's  f o r  each H 
4' 

and averaging t h e i r  estimates. This reversed s p l i t t i n g  technique, . . 

i n  which the  "samen f i d  his tory i s  joined on to  di f fe ren t  i n i t i a l  

points, i s  useful when there  i s  a marked dependence on initial 

I conditione. It is  especial ly  cheap t o  do t h i s  when the  new hietory 

can be produced by ~ h t 1 0 ~  or' r?.fl.crWum, or rota t ions .  
- 

The his tory HI may want to terminate sooner o r  l a t e r  than H 

I . doesv a corresponding adjmtment must 'be made by adding o r  dropping 

( ~ l , x [ , ~ l )  se ts .  , I : 

I - 
I f  the  functions X ~ ( H , ~ ~ )  and Yi(J!,yo) a r e  su f f i c i en t ly  simple, 

I - 
it i e  possible fa get  a very useful  estimate by integrat ing a Type I 

! estimate over a l l  poasible y:. Let Bi be a subapace of y: such that 
- 

all ( x j , y j ) , j  < i, m e  i n  A but ( X : + ~ ~ Y ~ + ~ )  is  i n  t he  t r a p  s t a t e .  



Then, using the Type I estimate f o r  HI and in tegrat ing over all 
\ 

I n  most problems the  Bi go t o  zerc a t  some f i n i t e  i. Whether 

o r  not t h i s  happens, it i s  always possible to use a Russian Roulette 

procedure t o  keep down the  number of t e r n  (Section 7). Type I 3  

estimates a r e  important not only because they cu t  dcwn the variance, 

but because the computer, using the  sane hie tor ies ,  can study 

elmultaneouely d i f f e r en t  A regions o r  d i f f e r en t  i n i t i a l  conditions. 

Thia last often r e s u l t s  i n  a very l a rge  saving of  computing time. 

Some typ ica l  s i t ua t i cns  i n  which an in tegrat ion over i n i t i a l  

values can be useful  occur uhen Y is: a pcsi t ion var iable  in plane 

slab problem) an energy var iable  when the diffusion process i s  

independent of the  energy) an angle variable vhere it is  possible 

ta take advantage of some sylrnaetry ccndit ionj an angle variable  f o r  

a problem i n  which, by revolving the  history, a t a r g e t  area can be 

h i t  v i t h  a high degree of probabil i ty;  etc. 

Type V 

Integrat ion over initial conditions can be combbed with a 

Type I1 estimate. The Bi n u t  then be defined a s  the  subspce  of 

I 
yo such t h a t  all x l ( ~ , y o ) , y j ( ~ , y O ~  a r e  i n  A f o r  j 7 i. The L j I 

estimate ie 



A dieadvantage of t h i s  teohnique over Type ZV is the  necessity f o r  

calculat ing p( :x,Y). In  some problems this calculat ion l a  =re 

t r ac t ab l e  i f  L5 is  w e d  with a "mixed" col l is ion.  L5 is  useful  f o r  

the  same s o r t s  of s i tua t ions  a s  L It i s  obvioua t h a t  LA and L5 
1 - 4' 

could a lao be defined i n  t e w e  of an ' in tegra t ion  over xo instead 

of yo o r  it i s  concefvable t h a t  both in tegrat ions  could be done 

simultaneously. 

T Y D ~  V1 
- 

If the  kernel K ( ~ l , y ' : x , ~ )  has the  form 

it i s  poesible t o  t r e a t  the k(xa:x) a s  the  kernel  of a simpler 
- .  

- .Integral equation 

and a e e t  of h i s to r i e s  in x calculated. Each.hietory in x space can 

then be used i n  calculat ing a his tory in y space. For example, the  

angle and energy h i s to r i e s  of a . p a r t i c l e  di f fusing through a homo- 

. geneow medium a re  independent of the  space h i s to r i e s  and a l i b r a ry  

of energy - angle h i e w r i e s  can be calculated i n  advance. This 

- 
' l i b r a r y  can then be used t o  calculate  space h i s to r i e s  f o r  d i f f e r en t  

I 
i - problems, o r  a Russian Roulette and s p l i t t i n g  technique can be used 

i and many space h i s to r i e s  calculated f o r  a s ing l e  angle-energy history.  

In the  ear ly  days of Monte Carlo when computing was done on I.B.H. 

', . . 
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punched card machinery o r  by hand, this procedure waa sometimes 

fohloved. It does not seem to be e f f i c i en t  f o r  the high speed 

computers. 

In  eome problems it i a  possible t o  write down the kernel 

ki(y~:xo,xll' .. .xi9yo) f o r  the expected weight a t  yi given yo and 

the his tory in x space, I f  it Is possible to calculate in tegra ls  

dth ki(yl:xo,xl,.,.,xi,y,) as  par t  of the integrand then a 

potent ial ly  u e f u l  Type V I  estimate can be made. For example i f  

(xi9y1) is in the t r a p  &ate and (%,yo) isi i n  A then 

Q) 

L6 ~ / / . ( ~ ~ ~ ~ ~ ~ ) k ~ ( ~ ~ ~ ~ ~ ~ ~ ~ ~ * * * ~ ~ ~ ~ ~ ) ~ ~ ( ~ ~ : ~ ~ ) d ~ j d ~ ~  
i=1 

. '  i e  an estimate c f  1. The mst important case uhere L6 can be 

calculated is  when Y i s  a random variable associated with survival 

o r  absorption, and x i s  a l l  the other  variables of the problems. 

L6 is then evaluated i n  a t r i v i a l  fashion to be the product of the 
.i . 

. *  . .  

,. .survival probabi l i t ies  of each separate collision. It i s  actual ly  

poasible te evaluate L6 analyt ical ly  in other cases, but the author 

doe's not know of any i n  which the formulae are  not too cumbersome 

to be useful.  As always an equation similar to ( U )  could bc 

wri t ten fo r  a Type I1 eetbaate.inetead of a Type I. 

9 
Martin Berger of the Natioral Bureau of Standards has in- 

formed me tha t  he i s  planning to use an L6 type estimate 'in 
t rea t ing  the diffusion of grays i n  f i n i t e  plane slabs where 
the x space i s  the angle-energy his tory and the y space the 
distarice i n t o  the slab. 



6. Correlation 

i n  Section 16 of Tart I1 there are t w o  f mdamenttilly d . i f f  eren t  

, . ways of correlating problems. The f i r a t ,  and poesibly the most 

important, is tc use the same P ~ ( X , Y )  and p(xl,yr:x,y) and to  l e t  
- 

the weights and/or weighting factors be d u f e r e n t  f o r  the different  

problems. Specifically i f  two problems a r e  determined by the  

respectively, the computer can use any c~nvenient  P o ( x , ~ k ~ ( x 1  ,Y '  :x,Y) , 
and p(:x,y) t o  compute the partial history ~ x o ~ y o ~ ~ ~ y ~ ~ ~ ~ ~ ~ ~ I ~ y I ~ ~  

- The w i t s  and U r s  f o r  the two problems can then be obtained from the 

waights and weight* factore: 

A s  discussed in Part 11, t h e  st.rength of t .he 'corre la t ion is - - - -  - 
measured. b y ~ a  a' = WUr - W W 8 .  WWr oan be calculated a8 the expeoted 

- 
value of a random walk. If Sn(:x,y) and M8'(x,y) a re  defined by the 



then 

The other Important method of correla t ion i s  to u e  the  same 
.- ~ 

random numbers a t  a corresponding 'point in the  two calculat ionso It 
- ~ 

i e  then uaually eomewhat more than twice a s  cost ly  to do the tws 

problems than to do one of them. Ity contrast ,  carrying along an 

. ex t r a  weighting f ac to r  usually increases the  cost  by an almost negli- 

g ib l e  amount. The implication is  that the  variance, i f  the second 

method of correla t ion i e  u ed ,  should be l e s s  than half of what it 

would be if the first were uaed. If, a s  defined in  Section 3, 



x~ (xl-lf~i-l emd ~ ~ ( X ' ~ - ~ , Y ' ~ - ~  ) a r e  equiprobabil i ty surfaces f o r  

t h e  two problems, then using the  second type of corre la ted sampling 

on the  x space is equivalent to picking the  same j surface i n  the  

two problems. I n  t h i s  case the  expected value of WW! is given by 
b. - 

where 81% - 
x j  (xi 

that x i  and xi a re  on the  same j 

surfaces and the convention been made t h a t  SK = m(x: I-l'yi-l )p( ' X i - l ' Y i - l  1 -. 
I 
1 .  
I '  and S 'K '  = m(:x~-l,~i~l)p(:~[-l,~l-l) when ( X  ,y ) i s  i n  t h e  t r a p  

j j ' . s t a t e .  Neither of the  expressions i n  Equations (115) o r  (116) i s  

par t icu la r ly  revealing. The reader w i l l  probably ge t  more out  of 

considering the examples a t  the  end of thie eection and i n  Appendix 
I 

V than by studying the  above equations. 

- 
Parame.tric Study of 

- I n  many important uses of corre la t ion by weighting, t h e  e f f ec t  

of corre la t ion,  while benef ic ia l ,  i s  secondary. The reduction i n  

cost  i s  the  primary reason f o r  using it. For example it may be 

desirable  to study w h a t  happens when d i f f e r en t  MO(x,~)  a r e  w e d  and 

everything e l s e  is  l e f t  unchanged. This s i t ua t i on  could a r i s e  when 

~ ~ ( x , ~ )  is  one of the  design parameters being etudied, o r  more 

U e l y  diff  erent  Mo(x,y) correspond to  d i f f e r en t  idea l i sa t ions  of 



t he  physical problem. I t  i e  almoet no extra  work t o  ca lcu la te  three  

o r  four pro6lems simultaneouslj by using the same h i s to r i e s  with 

d i f f e r e n t  wO(xo,yo). It i s  convenient i n  this case t o  s t r a t i f y  

the  i n i t i a l  d i s t r i bu t i cn  of (x,y) according t o  some ?(x,y) and t o  

l e t  wo(x,y) 1. The Wonte Carlc calculat ion can then be used to 

estimate S( :x,y) and T( : x , ~ ) ' .  The estimated S(:x,y) and T(:xVy) can 

be in tegrated against  Wo(x,y) and $ ( X , ~ ) / P ~ ( X , ~ )  to get  estimates - 
Z 

of , ;  and E respectively f o r  any Mo(x,y) and Po(x,y). I f  it i s  

inconvenient to' estimate S(  :x,y) and T( :x,y), then l a b e l i n g  each 

his tory vith the  subscr ipt  n, the  ( x ~ ~ ~ Y ~ ~ ~ W ~ )  can be recorded arid 

the  estimates 

used. 

Ic. 

N *o(xons~on) 

= i t Un p ( ,  ,y 
n-1 on on)  

of K(x',Y':x*Y~ Parametric St* 
J 

~ e t  K(x',yl : r 7y )  ' k0(xt ,Y':X,Y) + ZE . k . ( ~ ' , ~ '  : x ~ Y )  
1 J J  

where the  E.. are small. If the  t r ans i t i on  probabilities are  
J 

 XI ,y l  :x,y) ~d p( :x,y) than 



- 
where 

1-1 
A d  the symbol means t h a t  the  term Fi i s  l e f t  ou t  of the  

r=O. 
jroduct. In  an ac tua l  computation the  y can be computed.by a slmple 

.i 
i t e r a t i v e  scheme and not by the  ra ther  formidable looking formula i n  

1 the  above equations. To f i r s t  order in  E , .  

If the  Monte Carlo calculution i s  used to estimate Yo and '- - 
then the  computer can use these 'estimates t o  study how var ies  a s  8 

h c t i o n  of € i n ' t h e  region around E = 0. A much more i n t e r e s t i ng  - J 
problem i s to assume t h a t  is knovn and the  E unknown. A n  example . 

j 

of such a problem would be when the  r e s u l t s  of bulk sca t te r ing  

experiments a r e  k n 0 ~  and the  computer wants to  use these r e s u l t s  to 

improve the  knowledge of the  d i f f e r e n t i a l  sca t te r ing  cross sections. 



In t h i e  s i tua t ion  the reeul te  of K di f ferent  problem must be given 

uith K 5 J. b c h  of the K problem then determines an equation l i k e  

(122). By using a l e a s t  squares technique it i s  possible to obtain 

J simultaneous equations which can be solved f o r  the E It 1s not 

known aa a praot icel  matter under what conditions the process can be 

carr ied through accurately. The question i s  currently being studied 

i n  connection vith the problem diacuased in Chapter V I ,  and it i e  

hoped tha t  some resul t8 will be available soon. 

4*> 

Comr>arian Different Stratenies  a t  Draw Poker 

kt us assume that the coniputer vishes t o  compare two d i f fe rent  

drawing strategies.  A simple vay to achieve correlation would be to 

use ident ical ly  shuffled decks and play out  the two types of s t rategies .  

This vould not be very sat isfactory though, became the two decke 

would ge t  out  of s t e p  ae soon as the number o f  cards dravn i n  the 

two s t ra teg ies  differed. The obvioua solution to the d i f f i cu l ty  i s  

to disoard the &fa cards. This bas the happy re su l t  t ha t  a zero 

difference r e su l t s  whenevor the tvo etrategies  are the same and the 

Monte Carlo is  being used to estimate d l reo t ly  only the frequency and 

importance of the ei tuat ions i n  which there i8 .a  difference between 

the two atrateglee. 

* 
Comparing Different Bombing Strategies  

I f  a s t ra teg ia  o r  t a c t i c a l  bombing campaign is studied by Mante 

Carlo it is customary to introduce same o r  a l l  of the following random 



elements. 

1. Number of planee t h a t  abort  

2. Number of planes shot down by area defense on the way in 
' 

3. Number of plane8 that etray through navigational errors  

4 .  Number of planes shot dovn by l oca l  deferme . 

1 . 5 .  Weather conditions over ta rge t  

6. Place where b o m b  land - 
7. Damage done 

I - 
8. Good o r  bad reconnaissance 

I 9. Number cf planes shot down by area defense on the way out 
, , 

10. Number of planee that don't ge t  back f o r  a m i s c e w  of 

minor reasons 

Becauee some of the probabi l i t ies  concerned depend on the number 

1 of planes, the above problem i e  non-linear. This does not prevent the 
. - 

uple of any of the teohniquee mggested. 
./? 

If the computer wishes to compare d i f fe rent  bombing s t ra teg ies  
2 - 

it i s  often effect ive to use correlation to  cut  dovn the sample s ine 

I required to get  s ignif icant  information. I f  the correlation is done 

I - 
by using the same random numbers, there w i l l  be di f ferent  numbere of 

I - 
planes aborting, shot dovn, etc. The computer cannot w e  a single  

l i s t  of r d o m  numbers in aequence i n  the two p r o b l a ~ ,  for  they 

would moon ge t  out  of etep. He can e i ther  t h r o w  away the exceee 
, 

random numbers o r  what ie eomethee bet ter ,  rave them f o r  use on 

l a t e r  strlkes.  For example, i f  a la rger  number of ta rge ts  were 

attaoked on the f i r s t  a t r u e  of s t rategy one, the ex%& random numbers 



be saved. I f  i n  a l a t e r  s t r i k e  an axcese number of ta rge ts  i e  

attacked under s t rategy two, the saved random numbers can then be 

used on these targets. Correlation can thua be achieved by using 

the same random numbers whenever the two s t ra teg ies  give r i s e  to the  

same type of contingencies - even ff they are. on d i f fe rent  s t r i k e s  

with di f ferent  planes and targets.  

If the di f ferent  s t ra teg ies  a re  such that a def in i te  type of 

event i s  all-important t o  the compriaon then correlation by weigh t  

ing aray be bet te r  than wing the same random numbere. For example, 

i f  the e f fec t  of d i f fe rent  types of defensive armament a re  being 

studied, the same k i l l  probabi l i t ies  could be used for  the enemy 

f ightera  in the sampling, and weighting factors  carried along to  

account f o r  the differences. The correlation may be higher i f  t h i s  

l a  done, because exactly the same number of bombers are  shot down 

each time, so all of the subsequent history is the same. I f  the 

correlating were done by using the same random numbers, different  

numbers of planes would be shot down and the actual  progress of the  

two strategic campaigns would be quite different.  It would sti l l  be 

possible to obtain correlat ion by using the same random numbers f o r  

the same types of contingencies, but it i s  unlikely t h a t  the correla-. 

t i on  vould be ae high. 

Another case where weighting might be preferable to using the 

same random numbers would be when tw difforent  reconnaissance devices 

were being compared. The poseible weather c i tuat ions can then be 

c laeer i f id  according t o . t h e  following c r i t e r i a :  

1. Both devices work 



2 .  One 'vorka and the  other does not 

3. Beither works 

Cnly s i tua t ion  2 makes a difference between the tw devices so 

t h a t  i n  the sampling only it should be allowed to occur. I f  1 and 3 

occur, the sample would give zero f o r  the estimate, eo they need not 

be calculated, only the percent, P, of time they occur 18 needed. 

Thie i s  a u t o ~ ~ ~ t i c a l l y  calculated by the weighting factors. I f  

instead of being an all o r  nothing s i tua t ion  the devices have dif- 

fe rent  probabi l i t ies  of wcrking as the weather changes, then the 

appropriate modification must be made i n  the sampling. If the same 

randcm numbers were used to do the correlating then (1-P) of the time 

the sample would be wasted. 

Polarization 

In tracing y rays through a medium it eimpUfiea the problem 

great ly  to assunre tha t  the y raya are  unpolariaed. Thie assumption 

can be checked by doing two correlated problems, one using the exact 

laws and the other the approximate one that is obtained when i t - i s  
' 

- a~sume$ t h a t  the par t ic les  are unpolarised. I f  weighting factors  a re  

used to do the correlating they would f luc tua te  wildly became the - 
d i f f e ren t i a l  ecattering lam are  qui te  d i f fe rent  in the two cases. 

The actual  e f fec t  of polarization turns out to  be qui te  nmnll ln  m e t  

problems of interest .  This i s  shown very effect ively i f  the o o r r e l a t h g  

i s  done by using the same random numbers. It then turns out, in most 

eituations,  t ha t  even though qui te  different  azimuthal angles are picked 

The above technique has alao been used Mependently by Lewis V. Spencer 
of the National Bureau of Standards. 



in the two problems every time a y ' r a y  s ca t t e r s ,  tale answer is  not 

affected very sharply. 

When the  kernel  of the integral equation is as i n  Equation 

(110) and the  computer f inds  it very easy t o  t r e a t  Equation (111) 

e i t h e r  ana ly t i c a l l y  or  by some numerical technique, then t h e  

t e c b i q u o  a t  t h e  end of Section 18 of Part  I1 [~ l imina t i ng  the 

Variance of ;(:x)] can be used i n  t h e  manner deeoribed there  to 

cu t  *down the sarianc e. 
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7 RUSS I A N ,  ROULETTE AND SPLITTING . . . 

I n  Sect ion  2 on Importan.ze Sampling there was a f a i r l y  

complete discuaaion on the  c i r t e r i a  t o  use i n  choosing t r ans i -  

t i o n  p r o b a b i l i t i e s  f o r  a  Wonte Carlo ca lcu la t ion .  I n  many . 

p r o b a b i l i s t i c  problems, however, the s e t  of t r a n s i t i o n  prob- - 

a b i l i t i e s  and weighting funct ions  given d i r e c t l y  by the physi- 

cal s i t u a t i o n  a r e  o f t e n  oomputationally much simpler  t o  sample 

from than the ones t h a t  the computer would choose i f  the  p r inc i -  

p l e s  of importance sampl ing were followed. It  i s  poas ib le  to 

, uee a non optimum (in t h e  sense of importancs sampling) s e t  o f  

t r a n s i t i o n  p r o b a b i l i t i e s  and s t i l l  spend most the  computing t h e  

w on Important regionsw by using Russian -Roulette and S p l i t t i n g .  

The d iscuss ion which followe, asslimes t h a t  a  Type I e s t i -  

mate i s  being used. If some other  type i s  used an appropr ia te  

modificat ion of . the formulae and r e s u l t s  must be made. 

The variance of a  Russian Roule t te  and S p l i t t i n g  sampling 

procedure waer calcula ted  i n  Part  I1 by represen t ing  the 

variance of  t h e  e t ra ight forward  esmpling procadure i n  a form 

such as 

and then no t i c ing  that t h e  first term l a  modified i n  a very 

simple fashion i f  Russian Roulet te  o r  S p l i t t i n g  is  used and 

t h a t  the second term i s  not a f f e c t e d  by t h e  modificat ion.  The 



aame technique wf l l  be used in th i s  aection. 

If W(tx,y,w) i s  the conditional.random trapped weight 

given that the. partic le  starts  a t  (x,y) with weight w and no 

Russian Roulette or Spl i t t ing i s  used, then 

The variance V(:x,y,w) of W(:x,y,w) i s  given by the usual 

expression 

Define v' aa the weight of the p a r t i d e  af ter  co l l i s ion .  

Then using Equation (30b) for ~ ( r x , ~ )  an integral equation can 

be written for  V(rx,y,w) 



~- The variance of the  sampling procedure is  given by 

i' 
I i3 

A s  already indicated only . the f i r s t  term i s  affected by the  

~ introduction of ,Russian Roulette and Sp l i t t i ng .  It i e  con- 

venient a t  t h i s  po in t  to introduce e few def ini t ions:  

1 - a.  W*(:x,y,w) i s  a condit ional  random variable t ha t  i s  the 

sum of the  random trapped weiphte of  t h e  p a r t i c l e s  
7. 

produced by a parent  p a r t i c l e  t h a t  atcarts from (x,y) 

with weight w . Because t h e  expected value of the 

I trapped weight i s  not changed by the  use of Russian 

I - .  
Roulb tte or  Sp l i t t i ng ,  

2 I The expected values of W (:x,y,w) i s  changed. 

Let 

-72 
W(:x,y,w) - W* (:lqy,w) 

b. R1 i s  a subarea of A. 'he i n i t i a l  (x,y) poin t  i6 
1 

I - picked out  of po(x,y). I f  it happens to be  I n  R t  
r 1' 

I a Russian Roulette procedure with a probabi l i ty  

q (x,y) of survival  i s  used. I f  the  p a r t i c l e  sur- 
0 

I . -  

vives i t  i s  assigned a weight 



The variance &ssociated with this event i r  given by 

point i s  i n  q, the pa r t i c l e  i s  a p l i t  into n ( x , ~ )  
0 

independent part ic les ,  each of weight 

The variance amroclatad ~ 5 t h  t h i s  event is  

d. '%(x,y,w) 18 a subarea of A that depend8 on the part i -  

c l e  position and weight. I f  the. par t ic le  3wape t o  a 

point (xl ,yl ) i n  I$(x,y,w) then a Rwsian Roulette 

procedure wlth probability q(x' ,y 1 r x,y,w) i s  used 

befor0 the next col l is ion point i s  chosen. If the 

par t ic le  survivee the Ruseian Roulette it i s  given a 

weight 

The variance introduced by an event of t h i s  type is 

8 .  RZ(x,yrw) - A - I$(x,y,w) i s  the r e s t  of A. I f  

( x , )  i s  i n  RB(x,y,w), then the  p a r t i c l e  is  -1st 

i n to  n(xl ,gl t x,g,w) independent part ic lea.  Each of 

these pa r t i c l e s  is given a weight 



n(xl ,yl  :x,y,w) mat be ui integer, but i n  the very 

rough derivation which follows It  w l l l  be consider'ed 

ae being a continuous variable. The variance intro- 

11 
,7 duced by tb n(x9 ,yt  nx,y,w) Independent part ic les  i s  

n(x* , yV  :x,y,w)~*(ox",y',w~) 
2 (144) 

Using.'al  t o  ' % I  the modification of Equation (133b) 

- 
appropriate t o  Rusaian Roulette and Spli t t ing can new be 

written 



Equation (1311) becomes 

~ ( x , g )  i s  independent of the choice of q(xt  ,yt tx, y,w), 

n(x' ,yt rx,y,w), and t he  regions R and R2. If the computer 
1 

then it iei easy t o  show k y  using Equation (15)I that  B ( ~ , Y )  

i s  eero.  

If i n  addi t ion t h e  region R1 i s  chosen to be zero so  t h a t  

no Russian Roulette i s  used, then A(x ,~ ,R  ) i s  eero and there- 
1 

f o r e  a lao V*( r x;y ,w) . Since the  above choice weighting functions 

and t r ,anai t lon p robab i l i t i e s  corresponds to opt- o r  zero 

variance importance sampling i t  i s  not. completely surpr is ing 

t h a t  the  ep l i t t ine ;  process should still be zero variance. 



It was shown i n  Sect ion 1 9  of P a r t  I1 that the Russian 

Roulet te  o r  S p l i t t i n g  should be done i n  such a m n e r  t h a t  the 

weights ut o r  w t  assigned t o  the  f l n a l  p a r t i c l e  o r  p a r t i c l e a  
1 2 

are independent of w t  , b u t  unique (d i f fe re r , t )  funct ions  of the  

poei t ion .  I n  t h e  d iscuss ion which follows it w i l l  be assumerd 

that; t h e  computer has decided t o  ca r ry  o u t  a scheme i n  which 

t h e  p a r t i c l e  or p a r t i c l e s  u U 1  alvays end up with a weight 

always equal t o  some function,  l/XU(x,y). Since t h i s  final 

weight does not  depend on whether t h e  p a r t i c l e  ha8 j u s t  gone 

through the  ordeal  of Russian Roulet te  o r  merely s p l i t ,  the 

scheme w i l l  not  be optimum, but  it w i l l  be c lose  enough f o r  

al l  p r a c t i c a l  purposes.   he scheme l a  a s  follows: 

a .  The region R t  i s  determined by 
1 

w o (x,Y) < l h u ( x , y )  (149a) 

and t h e  p r o b a b i l i t y  of su rv iva l  

b. In th.e complamentary region R; 

c.  The region R1(x,y) no longer  depends e x p l i c i t l y  on 

the  weight s ince  .w - 1/AU (x,y)- is  a funct ion of (x, y )  



The region i s  determined by the inequality 

and 

q(xl ,yl rx,g). - U (x' , y') 
m(x' ,y' :x,y) 

Nx,Y) 

d. In the complenentary region ~ ( x s Y ) ,  
d - 

It it9 clear that  rules 'at  to 'dl w i l l  result  i n  the 

particle alway8 having a weight equal t o  the desired. l / lu(x,y) .  

Under these circumstmcee Equations (145b) and (1L7) become 



By combining the regions I$ and R2, defining 

and making standard aubstitutiona the equations 

are derived. If the cormapondsme 

is  made, then Equation (156) i s  the rame ae Equation (2b) and 

the First  integral i n  (157) l a  the sme a s  (?a).. .Therefore 

by using Bhe equivalent of Equation ( 3 ) ,  (157) can be writtan 



In addi t ion to t h e  variance V7 of the eanpling procedure, 

the  coat C must be considered. Let: 

C be the  expected marginal cos t  of s t a r t i n e  a his tory .  
0 

C (x,y) be the  expected cos t  of t racing a his tory  t h a t  
1 

starts with weight l / ~ ~ ( x , y )  . 
C (x,y) be the expected cost of terminating hie tory t h a t  
2 

jumps t o  t he  t r a p  e t a t e  from (x,y). 

C (x,y) i a  t h e  cos t  of computing a new co l l i s i on  point  
3 

e t a r t i n g  from .(x,y) . 
The e q e c t e d  marginal cos t  of a sample is  given by 

C1(x, y )  is determined by t h e  i n t e p a l .  equation 



where 

D(x,Y) - C3(x,y) + P ~ ( x , Y ) [ C ~ ( X , Y )  - c3(x,yq ( 1 6 1 ~ )  

In the same w a y  that Equation (159) uaa derived, 

Equation (160b) and (161b) imply that 

c = q%h,~)~(x,y)Mx,r)drdy + C o (162) 
A 

~ ~ u a t i o n  (159) and (162) are essentially the same as 

Equations (224) and (227) of P a r t  11. They are a little 

more c ~ l i c a t e d  because ~ ( x , y , R ~ )  in Equation (159) i s  a 

function of U (x,y) Using Equations (146a) and (151b), 

~ ( x , y , R ~ )  can be written 

Therefore V7 can be written: 



By interchaughg the order of integration, the f i r s t  f a r m  can 
I I 

be written: 

V can then be written i n  the form 
7 

where 

+ B(x,y) 

C can ,be written [ ~ ~ u a t i o n  (162)l 

where 

To minimize CV7 uith respect t o  A, l e t  



This value of  X makes 
l v 

- 

To minimize CV7 with respect t o  ~ ( x ,  y) it i s  sufficie.nt to mSnimize 

- 
CAT:. T h i s  minimum j a  obtained by taking 

where ~ ( x , y )  i s  the expected coat of  calculating a single collision from 

: the point ( x ,  y) and v (x, y) is approximately [the f i r s t  two tenas of  Equation 

I (1.66~) have a tendency t o  cancel] ~ ( x , y ) .  ~ ( x ,  y) can be m i t t e n  [ ~ ~ u a t i i n  

H 

+ [m(:x,y) - ~(:x,Y)]~P(:x.y).  

~ ( s , y )  is  therefore the variance of a random variable which has an expected 

value ~ ( : x , y ) ,  a discrete  probability p(:x, y) of taking on the  value m(:x,y), - 

and a p.d , f .  p(x',yl:x,y) for  t a k i n g  on values s( :xt ,y l ) .  

. . 
 his c&cludbs the exposition of the mord f6rm1. part o f b  thebry 

. . 
of Monte Carlo technfques. , . 

. . 
- .  



APPENDIX I 

Generation of Psuedo-Random Numbers 

It was ehown i n  P a r t  I t h a t  i f  one wishes t o  produce random numbers according 

to any dis t r ibu t ion ,  t h i s  can be done by choosing numbers from another d i s t r i bu t i on  

8,nd then performing c e r t a i n  a r i thmet ica l  transformations on these numbers. There- I 
fore ,  when one t a l k s  about using random numbers, he need only t a l k  about using a 

ce r t a in  basic s e t  of random numbers and get t ing the  o ther  kinds of random numbers 
- 

from this basic  a e t  by a t r ans formt ion .  By genex'a1,convention and convenience, - 

t h e  mdom numbers defined a s  being uniformly d i s t r ibu ted  between zero and one 

comprise t he  basic  se t .  

To c a l l  a e e t  of numbers random is not  so  much t o  make a statement about t h e  

p roper t i es  of t h e  numbers themelves  but  a statement about t h e i r  history.  It implies 
- 

t h a t  t h e  numbers were produced by some s o r t  of s tochas t ic  process. 'herefore,  

when one talks about random numbers one is  really t a l k i n g  about s txhas t3 .c  processes. 

Thtsre a r e  many processes which can be used to pmduce numbers, such as gambling ,. - . 

. . drvioes of any kind, physical processes such as radio-active decay o r  Itshot noisen,  

e tc .  Hmever, while it is pe r f ec t l y  poss ible  to adapt such a device to a high speed 

aachine (and i n  f a c t  t h i s  has been done i n  a t  l e a s t  one case) it is  ac tua l l y  incon- - 

v m i e n t  to  use such devices, both because of the  minor technical  f a c t  that it i s  
C 

d i f f i c u l t  t o  t e l l  when it  is i n  working order and t h e  much more important reason 

t h a t  one wishes t o  reproduce a ca lcu la t ion  t o  see  if it is correct .  I n  order t o  do 

one has t o  know w h a t  random numbers entered i n to  t he  calcula t ion.  

It is, of course, conceivable t h a t  if one was using a random device one could 

e imply .pr in t  al l  t h e  numbers t h a t  a r e  used and then reuse them in the check calcu- I 

l a t i o m  o r  as an a l t e rna t i ve  one could prepare the  numbers i n  advance. This is, 



- 239 - - 
' o f  cour'se, not  convenient o r  p rac t ica l  because of the l imi ted memory and input- 

output capaci ty  of modern machines. However, t he r e  a r e  extensive card t a b l e s  and 

I 
several  books of random numbers available,  and The FUND Corporation has put  out  a 

book with a mil l ion such numbers so that if desi red one can use  t h i s  a l t e rna t i ve ,  

What i s  r e a l l y  des i red i s  f o r  the mchine  to compute i n  a pe r f ec t l y  determinis- 

I t i c  fashion a s e t  of numbers which a r e  operat ional ly  indis t inguishable  f rom 

numbere which r e s u l t  from t h e  random process, By Itoperationally indist inguishable" 

; us mean indist inguishable by an reasonable1 s t a t i s t i c a l  test. ( ~ h e s e  t e s t s  are dia- 

I - 
cusaed i n  t he  references.) Such numbers have been c a l l e d  llpsuedo-random numberaw and 

I the re  a r e  a number of method8 for  ge t t ing  them. In  this Appendix we w i l l  discuss  

only one. The reason we r e s t r i c t  our a t t e n t i o n  t o  t h i s  one i s  t h a t  it seems t o  be 

almost completelysatisfactory f o r  our purpose and while o ther  methods can have s o m  

d n o r  advantages i n  ce r t a in  s i tuat ions ,  we know of no case where the  advantage i s  I . -  I r e a l l y  importanb. 

I . The following i s  t h e  method of congruences. Let So be any odd in teger  between * 

- 
l ' a n d  n. Let Si = k Si-l (mod n). The choice of k and n depends on the maohlne ' 

used. n i s  usua l ly  equal  t o  t h e  capacity of a s ing le  register i n  the machine, a 

I power of 2 or  10, according t o  whether the machine i s  binary o r  decimal. If t h e  

I - mult ipl iaat ion kSi is  done with double precision,  then it ta t h e  n l e a s t  signifi- 
0 

I cant d i g i t s  of t he  product which form the  next random integer.  Ri = si/n a r e  t h e  - 
psuedo-random numbers i n  t he  i n t e r v a l  (0 , l ) .  

One usua l ly  chooses k t o  be the  l a rge s t  in teger ,  which rill corweniently f i t  i n  

one storage reg i s te r ,  and which will r ea l i z e  the maximum possible  period length  of 

t h e  sequence. It is chosen la rge  mainly t o  avoid l o c a l  cor re la t ion  between t h e  

I 

2 
, By "reasonsbleH we maan "good enough f o r .  our purposeew . 
'2 By "good enought1, . . . 



numbers produced. When the congxuenes is modulo z8,  t h i s  period is a t  most 2 P2 
I 

u823sk 
d 

= 5 f o r  any odd d w i l l  achieve t h i s  grea tes t  length. If t h e  aon- 

gruence is modulo UP, then t h e  maxinun period i. 5 loPo2. If $ - > 5 and k - 3d, I 
where d is prime to 10, the maximum vill be obtained. There a r e  other  mul t ip l i e r s  i 
which w i l l  a l so  do, but  f o r  these purposes, they seem to be equivalent. 

. . 

References - I 
1. D. H. Lehmer, Matheinatieal Methods on Large Scale Computing Units, 

Harvard University Computation Laborator:?¶ Annals 26 (1951 1, PO u l - 4 6 .  

2. John von Neumam, Various Techniques Used i n  Connection With Random D i g i t s ,  . i  
National Bureau of  Standard Symposium, NBS Applied Mathematics Series 12, I 
June 1951. 

Machines, B a l l i s t i c  Research Laboratories Report No. 6 5 ,  Hay 1953. 

4. Olga Taussky and John Todd, Generation and Testing of Psuedo-Random Numbers, 

Symposium on Honte Carlo, John Wiley and Sons, 1956. 
- 

: 5. The RAND Corporation, A Piillion Random D i g i t s ,  The Free Press, 1955. 



Constrained 14axbm1 of a Function 

I. Consider the  problem of f inding the maximum of a funct ion f (xi,. . .,%). 

subject  t o  the inequalities 

ai 2 4 2 b i  (1) 

- 
The above i nequa l i t i e s  def ine  a region i n  t h e  (3,. . . ,\) space. I f  any of t h e  

4 happen to be equal to ai o r  bi, we will say t ha t  independent var iable  i s  a t  a - 

boundary, otherwise, we w i l l  r e f e r  to  the independent va r i ab l e  ae, being i n t e r i o r .  

It i s  w e l l  known t h a t  a t  t h e  maxirmun point the  following equations have t o  be ': 

' a .  sa t i s f i ed :  

(xi i n t e r i o r )  

- The above equations a r e  i n t u i t i v e l y  obvious. They state that at  a laaudlmtn point  you 

can ' t  increase  f by changing t he  value of any xi by a small mount  e i t h e r  because f - 
i s  s ta t ionary  with respect  to t h a t  xi o r  because t h e  is a t  a boundary. (1 t  i s  

of cuurse possible t h a t  equation (2) will be s a t i s f l e d  and yet  we w i l l  not  have a 

maucimum. We will defer  discuesing t h a t  p o s s i b i l i t y  f o r  a moment. ) 

1 The changes t h a t  have to be made fo r  a minimum w i l l  be obvlous to t he  mader. 



I n  ac tua l  p rac t ice  about t he  0nl.y way to solve a maximization problem l i k e  the  

above is  to. do it i t e r a t i ve ly .  An i t e r a t i v e  procedure t h a t  works wel l  in a l a rge  

muPber of cases (when t h e m  a r e  no i n t e rva l s  with f 0) is t o  consider first the 
1 

system of equations 

o f o r  a l l  xi 

After  this system is solved one checks t o  see i f  any xi v i o l a t e  the  limits 

If they do, one then moves these  xi t o  t h e i r  l im i t i ng  values and solves the 

reduced system o f  equations 

f o r  a l l  the  other independent variables.  One then checks again tx s e e  which new xi 

e o l a t e  thei r -  limits and a l so  i f  the previously placed xi should be l e f t  a t  t h e  
' 

boundaries, and repeats  the  process u n t i l  convergence. 

11. Let u s  now consider a s l i g h t l y  more complicated maximization problem. That 

is, l e t  us  consider the problem of ca lcu la t ing  t h e  maximum of f (5,. . .,x ) subject  
n - 

t o  the new condit ion 

( e x  n 1 K 

as wel l  as the  o ld  conditions 
. , 

c b  
a i F i -  i (7 

g ( 4 , .  . .,x ) - K defines a surface  i n  the  old volume. The point  (5,. . . ,x ) must l i e  n n . . 

on this surface. It i s  easy t o  see,. i n  t h i s  case, t h a t  a t  .the maximum whenever one 
. . 



of t he  independent points  is i n t e r i o r ,  that is 

~ t h a t  

af 

F - , a constant f o r  all i n t e r i o r  xi ( 9 )  

f 
- That is, the r a t e  of change o f  f with respec t  t o  any i n t e r i o r  xi when divided by 

the r a t e  of change of g with respect  t o  t h a t  same xi is a constant. The reason for 

- 
t h i s  is  clear .  If t h i s  rat30 d i f fe red  f o r  any two intex50r independent var iab les  

I then we could f o r  ins tance increase t he  xi f o r  which t h e  r a t i o  was l a rge  and decrease 

t he  xi value f o r  t he  r a t i o  which was small. By t h i s  means we could increase t h e  

qalue  of f without changing the  value of g. By the  same l i n e  of reasoning then it 

muat a l s o  be true t h a t  f o r  any xi t h a t  a r e  a t  a.boundary 1 : 
f o r  xi - bi 

f o r  xi - 8i 
It is  customary t o  w r i t e  equations (9) and (10) Fn the form 

'a .  < x < b 
1 i i  



The above equations can be solved by the  same s o r t  of t t e r a t i v e  procedure aa 
2 

suggested fo r  the .first e z a t i o n  problem. One f i r s t  chooses some value of X 

I and finda the  (5,. ..,a) tha t  s a t i s f y  equations (ll). One then subs t i tu tes  this 

( I ,  .. .,a) in g(xl, .. .,a) (equation (6) ) ta find K. In this way one can find K 

as a fbnction of X. One oan then find by inverse interpolation tki A t h a t  makee 

g(%,.. . , a )  equal t o  the desired value of K. 

I 111. Let us  consider a third miudrafxation problem t o  choose f (x )  t o  maximhe 

/A 
subJect t o  the conditiom 

f B  

a(x) - < f (XI 5 b(x) fl 

It i s  clear t ha t  i f  we divide the  interval (A,B) i n t o  n subintervals and wr i te  
4 

I . .  

t h a t  there is a f o m a l  s imi lar i ty  with Case I1 w i t h  



aL > 1 *en f(x) - b ( ~ 1  af- 

a~ " when f (x) a a(*) 3 r L X 3 r  

and the Iterat ive  method of finding the solution'is  identical t o  Case 11. 

I - We ahauld mention that i n  many caaea i n  the text wbre we had 
I '  

1 ' -  that equations (16) become 

-. 
L, J, Savage pointed o u t  to  me that one can gat the sane result  by using Schwam'f 

I - Inequality which s t a t e s  

2 .  . w i t h .  w u a l i t y  i f  and only a ( x ) &  $(x) . ' . Ue can 'simply. take a. (x )  = 'g(x)/f (x) and 



The Variance Adaociated With Double Systamattc SampUq 

In discussing double s p t e m t i c  eanrplhg, it is  advantageous to  define tvo 

new functions y (x) and 'i(rj) by 
3 

For any x, t he  probabili ty t h a t  y < yj ( x )  is Jsj y3 (x) l a  therefore a 

aurve of oquiprobabillty. Z(3.j) is  the  a t p e o t e d  value of m(x,y) along this curve. 

The mom ar l e s s  horizontal s t r i p  defined by y 
3-v2 (*) < Y 5 YJ+1/2 (x) w i l l  be . , 

t h  
called the J-- row, the v e r t i c a l  strip defined by xi < x 5 3+u2 is oalled 

0 

th 2 the  i- column. The region of integration is  divided in to  N subareas by the  4 

intersections- of the columns and rows. The points picked in double systemr$&& 
- 

sampling Ue, approximately i n  the center of # of theere subarea8 on the interseo- 

t ions  of the  curves y (x) and t he  ve r t i ca l  l ines  defined by x - xi. Ons and only 
3 

one of the selected subareas l i e s  in each oolumn and mw. 

It i e  instruct ive to  consider the varfanoe of this sampling echerae when it 

is ulsed t o  evaluate a t r i p l e  ra ther  than dcnzble integral. It all therefore be 

a a s m d  that there are three lndeprsndent random variable8 (w,x,Y) and that the 

- quantity t o  be &mates . is 

5 = /// . ( W S ~ , Y ) ~ ( W , X , Y ) ~ & ~ Y  

The sanditions1 p.d.f. f o r  W i s  

h(w:x,y) - f (w,x,y)/f (x, y) 



rhc standard definit ions 

9 

s(rx8y) = / z(v,r,y)h(wtx,y)hr ( 5 )  

2 
are  also needed, I f  a (:x,y) - 0, w i s  a deterministla function of (x,y) and tho 

- resu l t s  fo r  the t r i p l e  integral  reduce to the  double I n t e rn -1 .  

If the (xi, yi) are picked without replacment a s  described, but tho ui are 
9 

m b c t e d  randomly from h(nxi,yi) then the variance is I 

w b r e  the prime8 indicate that  (x8 ,yl ) i e  not i n  the upme r w  ar ~ o l m . a a  ( x , ~ )  - 

I w and w l  are, of course, picked independently from their nspective p.d.fIs. 

I : The seoond term i e  the  difference in variance due t o  double eystematid sup- 

I ,  l ing.  Denoting thls difference by S: 



becauere it. is the  only term in the sum of four products which is not 0. Before ,, 

the elcpected value can be aalculated, it is necessary t o  write down the jo in t  

p A f .  f o r  (x, y , ~ ' , ~ '  ). 
I 

~(x,Y#x'*Y' - j(x',y' tx,y)f(x,y) (10) 

Since (x i ,yc)  ha8 the eama p.d.f. ai (x,y) tmcept that it  ir not allowed t o  fall 

in t h e  fjalaa, raw o r  column a8 (x, y), j (xc ,p t x ,  y) must be e i the r  aaro or  propor- 

th th t i ona l  t o  f (x' ,y8 ). If the point (x,g) f a l l s  i n  the i-- aolunm and t h e  j-- row, 
? 

then the a r u  A ~ ( X , ~ )  f rm whlah (x8 ,  y8 ) is exeluded i8 defined by 

.. where i and j are t o  be considered as functions of (x, y). Thereform c 

The normalizing factor ,  1 - //f ( x ~ , ~ ' ) d x @ d y ~ ,  is  * p p m d m t d l y  aqua1 

A1(x, Y) 
1 - 2/N f o r  (using equations (155). (164) and 174) ) the in tegra l  o n ' ~ ~ ( x , y )  can 

,-, 



8 uan now be calculatedt 



~ubstit'ut5.n~ the resalt in equation (a), 

I Neglecting terma in -$, it kllov. that 

. . 

-and the variance is mduaed by the swn of the'fluctuations due to the variation 

of i ( t 3 )  and. z(rx). 
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