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" of work involved. It does not discuss, but for a few exceptions,

. book on the subject which will supersede this report and include

iv
FOREWORD

This document discuases the general principle.of doing Monte

Carlo calculations with particular emphasis on reducing the amount

relationships between probabilistic problems and deterministic ones,
and how either can be ghosen to model the other. More importantly,
it does not include any important specific applications. Both of

these other subjects are widely discussed in Monte Carlo literature

by many people. At a later date the author hopes to put out a

applications.

" The work that preceded this report has been supported by the
U.S. Air Force and several laboratories of the A.E.C. In addition, -
I would like to express my appreciation to the Reactor Division of
the A.E.C. for their sympathetic and long'range support of basic
studies in the Monte Carlo method.

A short description of the Monte Carlo method can be given
as follows. The expected score of a player in any reasonable
game of chance, however complicated, can iﬁ'principle be estimated

by averaging the results of a large number7of’piays of the game.

Such estimation cén be rendered mbre efficient by .various devices
which replace the originél game with another known to have the
same expected score. The new game may lead to a more efficient
estimate by beiné less erratic, th;t'is, having a score of lower

variance or by being cheaper to play with the equipment on hand.




There are Obviously many problems about probability that can be

viewed as problems of calculating the expected score of a game.
Still more, there are problems that do not concern probability but
are none the less equivalent for some purpcses to the calculation
of an expected score. The Monte Carlo method refers simply to the
exploitation of these remarks.

The method has been extensively used by statisticians and
others under the name of Model Sampling. Many of the variance .
reducing techniques discussed in this report have been developéd by
statisticians for use in Survey Sampling.

John von Neumann and Stanley Ulam seem to be mainly responsi-
ble, both as practitioners and propagandists, for the present
widespread use in physics and engineering. They also seem to have _
been the first to have advocated the idea of systematically.inverting
the usual situation and treating determinate mathematical problems
by first finding a probabilistic analogue and then solving this
analogue by some experimental sampling procedure. In this report
though,most of the applications are to problems which have been
derived from probabilistic situations. The name of Monte Carlo. is
used rather than Model Sampling partly because we wish to differén-
tiate the relatively sophisticated sampling techniques used in the
former from the straightforward appro#ch that seems to bé\customary'
in phe usual applications of the latter, and partly because the
more piqtu;esque name of Monte Carlo has jusxfabqut.replaced,its
pfedécessoq‘in_physical applications.

"oy
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In writing a report of this nature it is difficult to apportion
credits and acknowledgments in a reasonable manner. The author has
spent about half of his time betwwen 1948 and 1952 on applications of
the method. Some of the applicaﬂions with which he has been concerned
have been fairly large problems involving the collaboration of
several organizations and many individualé. Because major emphasis
has always been on physics or engineering, and not statistics, and
also because most of the problems are classified, it is difficult to
pinpoint many individual contributions. Therefore, except for
Part I (inspired by John von Neumann) and for specifis statistical
suggestions, there will be almost no specific acknowledgments madse.
Instead, a simple listing of the individuals wh§ have contributed
to the problems upon which we learned how to do Monte Carlo will be

given.

The following either originated problems or collaborated on
their design: Hans Bethe, Jim Coon, Robert Day, Walter Goad,
Herbert Goldstein, Frederic de Hoffmaﬁn, Frank Hoyt, Richard Latter,
Louis Nelson, Lothar Nordheim, Milton Plesset, Fred Reines, Paul
Stein, Edward Teller, Robert Thomas and Carl Wahlske.

I am indebted to the following for helpful discussions:

George Brown, Herman Feschbach, Francis Friedman, Gerald Goertzgi,
Mario Juncosa, John von Neumann, Melvin Peisakoff, Leonard J. Savage,
John W. Tukey and Theodore Welton.

Most of the actual work of programming, coding and computing

was done by Barbara Batchelder, Barbara Cohen, Ruth Ann Engvall,

Lois Foster, Esther Gersten, Irwin Greenwald, Jean Hall, Clyde Hauff,
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Herbert Hilton, Robert Johnson, Winifred Jonas, David langfield,
Don Madden, Wes Melahn, Cynthia Mercer, Leona Otfinoski, Josephine
Powers, Frieda Rosenberg, Cliff Shaw, and Charles Swift, without'
their high morale, professional skill, and enthusiasm, it would have
been impossible to have met many of our deadlines on the always
capricious and sometimes malignant computing equipment available
from 1948 to 1952. |

Finally, an inadequate thanks to Theodore Harris and Andrew
Marshall, with whom the author has collaborated extensively and on
whom he has always been able to lean for a learned opinion on
statistics and probability. Some of the ideas in this report have
previousl& appeared in joint papers by them.and the author.,

I would also like to thank Leonard J. Savage for reading an
earlier version of this report and making prolific comments. This
version doesn't show the full effect of his comments as I am saving

many of them for a future book.

vd



or difficult questions may arise in applications, most problems

.proved useful in problems with which the author has been concerned.

or engineer with only a slight formal background in probability

INTRODUCT JON

The Monte Carlo Method is concerned with the application of -

random sampling to problems of applied mathematies. While subtle

can be treated without using much statistical theory. Nevertheless
statistical theory can be very helpful. This report presents an

elementary exposition of some of the ideas and techniques that have

In this case, the word elementary implies that the author has tried

to make the presentation intelligible to a mathematician, physicist,

theory. There will be a strong flavor of the "cookbook" about many L o~

selections. The author can only suggest judicious skipping.

It will be assumed that the reader has in intuitive notion of
the idea of probability (even though philosophers may argue). That
is, that he knows what is meant by the statement "The probability
that a 'fair' coin lands heads up when tossed is 1/2," and that he
knows and has had some basic experience with the simplest rules of
the calculus of probabilities.1 In any case moﬁt of the statistical.
ideas that are used will be presented or reviewed in the first two

chapters.

1 These rules are of the following types. The probability that
one or the other of two mutually exclusive events occurs is the sum
of the separate probgbilities. The probability that two independent
events occur is the product of their separate probabilities, ef?.
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I. TECHNIQUES WITH RANDOM VARIABLES

1. Random Variables

In the following a random variable (generally denéted by a
capital letter) will mean a numerical quantity (or quantities)
associated with a game of chance in such a way that as the various
events or possible outcomes of the game occur, the random variable
takes on definite values. Thus one could associate a random variable
C with the coin tossing process by saying that when a head comes

up, C = 0, and when a tail comes up, C = 1. C then has a probability

‘ of 1/2 of being zero and 1/2 of being 1. All other values have zero

brobability.

Associated with any random variable X .is a cumulative distri=-
bution function (c.d.f.) which will be called "F(x)". F(x) is defined
as the probability that the random variable X will assume values less
than or equal to x. If F(x) is the integral, at least in some regions,
of a function f(x), the random variable ié said to have a probgbility
density then ana f(x) is called the probability density function
(p.d.f.). If F(x) makes a finite Jjump at some point x , there is a
nonezero probability of x, ocourring. Thus. in the coin tossing problem

mentioned above.

F(C) =0 C <O
- 1/2  0s$C<1
=1 1 <C<o®
¢5g 10



If f(x) exists everywhere, F(x) must be continous, and the

random variable has g zero probability of taking on any particular

-
')

value.1 It is then customary to speak of the probability that the -
random variable lies in the interval between x and x + Ax. This
probability is F(x + Ax) - F(x), for positive Ax, or approximately N
f(x)Ax if Ax is small., A common but elliptical statement, "the
probability that X takes on the value x is f(x)[:br f(x)A%]," is to
be interpreted in the above sense. In the case of a finite interval
(a,b) the probability that a < X < b is F(b) = FGE).or‘l: f(x)dx if
f(x) exists. In the future the qualification "if f(x) exists" will
not be used but should always be understood.
It is sometimes necessary to associate two or more random
variables with the same process. One then has a joint c.d.f., F(x,y),

which is defined to be the probability that the event (X < x, Y < y)

occura, The function f(x,y) defined by

£(x,y) = g;% " 3352%

is called the joint p.d.f. for x and y. f(x,y)AxAy is approximately
the probability that the event (x <X<x+AMx, y<YI<y+ Ay) occurs.
Some other important definitions and concepts are

F(x) = F(x, o0)

00 o
£(x -[ f(x,y)dy 4
) oo

- BF(x!oo)

1 It is s8till possible to use p.d.f.'s when F(x) is discomtimious
by using the formalism of the Dirac delta function. This will
occasionally be done when it simplifies the appearance of formulae.
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» p.d.f. of x (called marginal p.d.f. of

X in this context.)

g(¥) -[:f(x,y)dx

= aF(OO’Z)
Yy
= marginal p.d.f. of y

f(x:y) = £(x,5)/gly)
= p.d.f. for X given that Y has the value y

(sometimes called the conditioral p.d.f. of x)

gly:x) = £(x,y)/f(x)
= p,d.f. for Y given that X has the value x

The same for F(x:y), G(y:x), and the extensions to

more than two variables.,

The p.d.f. of a random variable restricted to a portion of its

full domain is sometimes used, for example the p.d.f. of X for a < x is

i.e., proportional to the old density in the region

a < x but renormalized, and Zero elsewhere.

If F(x,y) happens to be equal to F(x)G(y), the random variables

are said to be independent of each other. If this is not true, the

random variables are said to be dependent. Three random variables

are called independent if F(x,y,z) = F(x)G(y)H(z); it is not enough

that the varlables be independent in pairs.

A random variable has associated with it a sowcalled expected value.

This notion is central to our considerations and we will discuss it

more in what follows. If f(x) is the p.d.f. of X, the expected value

of X is definea as

r 00
X =/ x f(x)dx

o

")

s
-
g:-:,:.\
)



The reader will readily notice that this is a generalization of
the ordinary arithmetical average or mean. Monte Carlo is cons

cerned almost exclusively with the caloulation of such averages.
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G(y) there is a T such that (1) holds.

2. Transformations of Random Variables

and Their Realizatlion

Consider two random variables X and Y and the monotonic
increasing transformation Y = T(X). If X has the known c.d.f. F(x),
it is a simple matter to caléulate 6(y), the c.d.f. for y. .Since Y
is less than or equal to y if and only if X is less than or equal to
T-l(y) thé probability of these two events occurring must be the

same. Therefore if x and y are corresoonding values,

F(x) = G(y)
But
x = T°3(y)
so
oly) = ¥ [171()] | (1)

A crucial step in the Monte Carlo method-is the realization of
a given distribution function F(x). By that is meant the constfuction
of an actual game of chance with which is associated a sequence of
independent random variables X,, xé, « « + 5 X_, each with the
cedof. F(x). It is the empirical values Xy5 Xp5 0 0 0 s xn; in a
single actual play of the game that constitute the statistical data
for a Monte Carlo calculation.

The construction of some of the necessary games of chance is
discussed in the sections which follow. The point to be made here
is that some distribuﬁions can be realized more easily than others
so that it is important to study ﬁhe prbcess of constructing a
realization of G(y), given a realization of F(x). How important

may be judged from the fact that if F(x).is continuous, then for any

$50 . ik
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The most obvious, and often the best, way to realize G(y) on

the basis of a realization of F(x) is simply to take for the

sequence Y. , -
v, = T(x,) (2)
In actual computations on high speed machines it may, however,
be quite difficult to evaluate T(xi). It may then be convenient to
use instead an approximate transformation f(xi) qr one of the
other techniques to be discussed.
Before squation (2) can be used to realize G(y) it is necessary -
first to generate independent values distributed according to F(x).
For this purpose it is often convenient to use as a basic distribution
the uniform distribution between O and 1; i.e., with S
f(x) =0 or F(x) =0 x%0

-1 - x 0 <

A

b
1A

o
3

=0 =] l<x

A discussion of Qarious techniques for producing independent
values wiph this distribution is found in.Appendix I. These values
are feferred to as random numbers (sometimes reasonable facsimiles
called pseudo random numbers ére used instead), and denoted by Ri.l
By using squation (2) which now takes the equivalent forms

G(y;) = Ry ' | .

y, = 0°H(R,) = T(R)) (3) '

¥ -
/ g(Y)dY = Ri
— QO

1l Because of previous commitments, these independent random variables
‘and the independent variable of their p.d.f. will both be denoted by a
capital letter. It is hoped that this will not cause confusion.




-i_,.
it is possible to generate a set of independent random variables
Y45 « - - Y withan arbitrary c.d.f. G(y). }
Sometimes it is necessary to represent a multidimensional
p.d.f. For instance, equation (3) can be generalized to handle
three variables as follows:
From f(x,y,2) the p.d.f.'s f(x), g(y:x), and h(z:x,y) are
obtained. A random (x,y,z) can be determined by first picking

three random numbers and then solving the following equations

/xf(x')dx' = Ry
-0

| y
S | / g(y':x)dy' = R, (L)
- '

) : 2z
. / h(g':x,y)dz' = R3
- - oo

consecutivelys




3. The Rejection Technique

It has been mentioned that equations (1) and (2) may be awkward
to use in a high speed computing device. An alternate method of
producing independent sample values of a distribution F(x) is by the
ﬁse of the rejection technique.

For a simple example of this technique a p.d.f. f(x) with the
following properties will be considered (See Figure 1,.page 12).

f{x) =0 x<a,a+b<x
0 < f(x) <M a<x<a+bh

The rejection technique as it applies here can be explained
graphically with reference to Figure 1 as follows. Let a point be
chosen uniformly at random from the rectangle with base of length b
and height M. If this point falls below the graph of f(x) accept
the abscissa as a sample value. If not, reject it and try again. The
full technical meaning of these instructions may be expressed analytically
thus.

l. Obtain two random numbers, Rl and R2,

f(a+bR2)
2, If Rl is less than or equal to T sy let X = a¢sz,
f(a+bR2) .
3. If R1 is greater than —N pick two new random numbers,

Rl and R2, and try again,
If no rejection procedure had been used, X would have been

uniformly distributed between a and a+b. However, only those x's

were saved that happened to have Rl : £§Fl, an event that has a prob-

(o f ‘
ablllty'—é?l, of occurring (since if k is less than 1, the probability

that Ry < k is just k). Therefore, in view of the ever tacit assumption

P

01

e
w
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that R, is independent of R,

of X in the region x to x+Ax is equal to the probability of originally

the probability of selecting a value

getting a value in this region (Ax/b) times the probability of saving
this x value Lf(x)/@go
The probability of obtaining a satisfactory x on the first
trial is the sum of the probabilities of selecting an x in any one
of the separate Axi regions, or approxiﬁately
f(xi)Axi

THb
i

In the limit, as Ax,—> 0, this is Just

i

a+b
f(x)dx
[ ==

a+b * _
Sincng f(x)dx = 1 the above expression is just 1/bM. The probability
of accepting some value the first time is called the efficiency of the
technique, because of its obvious economic implication for applications,
and is denoted by E. 1-E is the probability that the first value
picked will be rejected. The probability that the process will fail
n-1 times and then succeed on the ntg'trial is (1-E)n-lE. AThe expected

number of trials, n, is then

o

ne- Z n(1-)*1 g | \ (9)
nn 'A

oo

.l EZ%E (1-g)"
n= .
oo
Egﬁ Z(l-ﬁ)’;j

n=1

«e-gd _(1-E)
a& I-(I-E)

)

?.ih‘

)
()
o
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The principle of the rejection technique can be illustrated by

the following diagram.

£(x) ‘ -
< b -
P »
M
| |
4 d X
a . a+b
Figure 1

In Figure 1 a rectangle of area bM encloses the p.d.f. f(x). .' -
The shaded portion under f(x) has unit area. If a number of points
are selected in the rectangle at'random from a uniform distribution,
but only those points saved that fall within the shaded portion, . o
then the probability that any of these saved values liee between
x and x + Ax will be f(x)ax/bM. The fraction of points saved will
be given by (shaded area)/(total area) or 1/oM.
The rejection technique may be generalized as follows. Let
n{x) and m(y) be p.d.f.'s and let U(x) be an arbitrary function. Then
. 1. Select an x out of the p.d.f. n(x)
2. Select independently a y out of the p.d.f. m(y) [:c.d.f. H(yi]
3. If y < U(x) accept x. Otherwise repeat steps 1 and 2.
* It is often computationally convenient to write the inequality
¥y < U(x) in the form s(y) < t(x) where
T(x) = s~ [t(xﬂ
The a priori probability of getting an x in the region
(x, x + Ax) is, of éourse, n(x)Ax. The probability of accepting

X, [?robability that y < U(xi] y is M [?(xi] « Therefore, the




probability of selecting an x in the region dx and accepting it is

M [1(x)] n(x)ax
The probability of getting any x at all on the first iteration

is ' . 00
E-/ P(’IEI‘(X)} n(x)Ax - (6)

By choosing m, n, and T appropriately it is usually ﬁossible
to design a numerically convenient and efficient process for
selecting an x from the p.d.f. f(x) = M[@(xé] n(x)/F.

If, in a special case, Y is the same as R, M is then the
distribution of R. If also U(x) is bounded such that U(x)< 1, we
can say ' .
M {ux)] = vx) (
The technique now becomes:

1. Select an x out of the p.d.f. n(x)

2. Select an R

3. IfR< 7?%5%%_ s where K is larger than or equal to the

maximum value of %%;% s accept x. Otherwise repeat steps
’ 1 and 2.
The efficiency of the technique is now 1/K. Hence E can be equal

to, but not larger than, the minimum value of ;%5% . If it happens
that only & lower bound for this minisum value is known, than the

efficiency will be less than it would have beén.

Since the areas under the curves f(x) and n(x) are the same,
the requirement that the efficiency be high (i.e., close to 1) imposes
a serious restriction on n(x). One way to meet it is to choose n(x)
ngimilar® to f(x). It must also be simple to select from, or there

Lo0 0 720

L
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would be no point in using a rejection technique. The choice of
n(x) is a compromise between these two criteria.

Variations of the basic rejection technique

In certain cases, realization of the variations mentioned below
may give rise to considerable savings in computing time.
1. Select x out of n(x), N1 out of ﬁl(y), and y, out of mz(y)
and accept x if either y; < Tl(x) or y, £ T2(x). The
probability of accepting x now beccmes

“(x%‘l G R A RO IR ENCT Efz(xﬂ}

2., Break up the p.d.f. into the form

£(x) -:g:AiMiE?i(xﬂ ni(x) |
A

With probability 1 pick x out of ni(x) and y out of
J

mi(y) and make the test y < Ti(x). If the test fails re-
peat the whole process. The expected number of iterations
is 3 A3 i.e., the efficiency is I/ZAi.

A brief insight into the nature of this second variation can
be obtained by considering the case when the Mi(y) =y: 1.,e., yis
selected from the uniform distribution. Then f(x) can be broken up
into the form

£(x) -:E}i(x)ni(x)
i

r, (x)
- ZA{K.—‘ n; (x)
N 1

1

= D ATy (0 (x)
-1

The A; here are, it is clear, the probability of getting i
multiplied by the maximum value of Ti(x). The A; must be large enough

con 0oL

O




-l5 -
. ry (x) : .
to insure that -I;—- < 1. As before the effiqiency is l/zfAi and
an efficient process is one in which the ri(x) vary but little,
in a sense. When the ri(x) are constants then the E:Ai = 1 and
the process is 100% efficient;'it then just reduces to a convenient

way to sampie from>a p.d.f.
If the i's with relatively uniform ri(x) have large A,'s vhile the

ones ﬁith large variations have small Ai's, the process will still be
efficient.
| Sometimes as a special case of the above, it is desirable to take
the ni(x) to be the same functionj i.e., to break up f(x)‘;nto the form
£(x) =3 AiTi(x)n(x)
T(x) =3 AiTi(x)

This is advantageous when it is difficult to find the maximum value
of T(x), but relatively easy to find the maximum value of the_individual
termg.' However, breaking up T(x) into separate terms always decreases
the efficiency of the technique.

A special case of this last situation occurs very frequently

when the p.d.f, f(x) is fitted by sections. For example if

X501
pi - / f(x)dx

Xy |
is the probability that the event x; < X < x,,, occurs and fi(x) is
a fit to fp(i) in this segment of the x axis then
1

£(x) = 2 p;f, (x)

where the fi(x) are themselves properly normalized p.d.f.'s. The
computer can then pick the i index with probability Py and then pick

x out of fi(x) by any convenient technique. -

33 ¢

Yo
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4. Manipulations with Distributions

The problem of generating values of random variables will by
now be considered from a slightly different point of view. Given
two independent random variables x and y and their c.d.f.'s, F(x) | ‘ T
and G(y), what is the c.d.f. of a function z(x,y)? There is perhaps
no general answer easily given here. But a number of interesting:
special functions will be considered.

1.1

Z=X+7
The domain of X is considered broken into intervals by the points
XpseeesXpe The length of each interval is Axi " X4 " %y

The probability that Z < z is equal to the sum of the probabilities
of all the mutually exclusive ways in which X + Y can be less than z.
Neglecting details of rigor, this can be obtained by multiplying the
probability that X, <X < X541 EF(xi¢l) - F(xiﬂ by the probability

that Y <z - X [?(z-xiﬂ , and summing over all possible X,; 80
H(z) = 30(z-x;) [F(x;,;) - Flx,)] = 3 (a-x)2(x, )ax; (7
i i

The 1imit of the above expressions will be recognized as being

the definition of the Stieltjes and Riemannian (ordinary) integrals2

respectively, o oo -
H(z) = J/PG(z-t)dF(t) - J/’G(z-t)f(t)dt (8)
-ozo —OZO . - .
-/F(z-t)d(}(t) -[F(z-t)g(t)dt !
/_Co . oo -
by symmetry.

1l In individual instances of this and some of the other functions it
is often simpler in theory and practice to use Fourier and Laplace
Transform techniques. For a discussion of these methods see e.g. Cramer,
Mathematical Methods of Statistics, and Wilks, Mathematical Statistics.,

2 See e.g. Widder, Advanced Calculus, for a discussion of the
definitions of these integrals.

q
ap NZe

o
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This can also be Wﬁi}ten

h(z) -'/ g(z=-t)f(t)dt (9)
00

._ o)
. -/ fz-t)g(¢)dt
. Go

2. Z=3XY (0 <XY)

The probability that Z < 2z is the probability that X is on _
region At Em(t) or f(t)AtZ’ times the probability that Y < § [o(z/t)]
summed over all possible values of t, 80

H(z) = G({)dF(t) / G(-u)f(t)dt (10)
' 0

o0

F(E)dG(t) / F(Pe(t)dt
0

3

0o
o
h(z) = %g(;)w<t>=f e(Pf(t)at (12)
o] 0
[# 2]
f £(Z)do(t) = %r(,;)g(t)dt
0 0

3. z2=%(0<xY)

The probability that 2 < z is dG(t) or g(t)at Ehe probability
that Y is in region*At]'times F(zt) Ehe probability that X < zg .

summed over all possible y; so

_ | H(z) J F(zt)do(t) wf F(zt)g(t)at (12)
| 0 | o
| P ® . A
- h(z) -f t£(zt)da(t) =-/ t£(zt)g(t)dt (13)

0

0 .
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L. Z = smaller of X and Y

i

The probability that X is in the region 8x is of course

f(x)Ax and the probability that Y is larger than x is 1 - G(x);
so the probability of getting X in the region Ax and accepting
it (i.e., of its being the smaller) is f(x)Ax P.- Gtxﬂ . Similarly
the probability of getting y in the region Ay and accepting it is
g(y)Ay’{? - F(yﬂ o« OSince the two events are mutually exclusive
ignoring ties, as may be done, the pfobabil;ty of one or the other
is just the sﬁm of the separate probabilities; so

h(z) = £(z) [1 - 6(z)] + g(z) [1 - F(z]] (1)

= £(z) + g(z) = £(2)¢(z) - g(z)F(z)

A -few more results follow without cpmplete discussion.
5. Z = larger of X and Y

h(z) = £(z)G(z) + g(z)F(z) : (15)

6. Z > (smaller of X and Y)/(larger of X and Y) (0 < X,Y)

This is a corollary of example 3.
h(z)Az = probability that (% = z or % - z)
Since the two possibilities are disjoint,
n() = [ ¢ {£G0E®) + f)em}ar oxa1 (16)
7. Z = (larger of X g;d Y)/(smaller of X and Y) (O < X,Y)

Same distribution as 6, l<z

8. W = the middle of X, Y, and Z

v(w) = £(w) [G(w) + H(¥) - 20(w)H(w)] Coan
+ gw) [F(w) + Hw) - 2F(w)H(w)]
+ nw) [F(w) + c(w) ~ 2F(w)o(w)

where v(w) is of course the pe.d.f. for W,

i

‘g3
e
€
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5. PExamples

Introduction

The various methods that have been described are illustrated
by the examples in this section. Some of these examples are
actﬁally useful for computational purposes, some have been included
for pedagogical reasons, and some are included for the sake of
completeness (in the handbook sense). In some cases the verifica-
tion of the formulae involved is so simple that it is left out.

It might be a useful exercise for inexperienced readers to actually
carry through this verification for a few of the examples. Others
may uaht to skip the whole section except for reference purposes.

In many of the exampleS geveral methods are considered. Which
method the computer should use depends on the épplication, the
computing equipment available, and the relative importance of
programming time, computing time, and memory.

‘It is often desirable to reflect a pod.f; about a line x ;,a.
This can always be done by replacing x by 2a-x, as is occasionallj
explicity done in the examples which follow.

Primarily, however, the examples (consisting of the derivations
which follow them) can be thought of as part of a library which will
be useful in applications. This means that where in Section L thé
distribution was unknown, in this section we begin with a distribution,
and consider the most convenient method which will realize it. More

such examples and methods are of course invited.

1
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Table of Examples to be Considered’

1.

24

3.

7.

n-1

n(l-x)n -1

=

< (3-n)/n

or

=

[

- lx‘

. o =
' h
N N
~~ —~~
o o
o) 2
i —

1

1A

1A

A

-~

1
a+b \
'
T ash
XxX<a '
- \
' L
o-4 &

The order in which the p.d.f.'s are given has little significance.
They are just grouped somewhat according to simplicity, method of
generation, and field of application.

23
)
o
2
[e=]
ad




8. 'pn(l-x)n'1 + (l-p)mxm'l 0<x<1

9« ((1-p)m(a-x)"2

- a~-¢c«<.xX<a
m -— —-—
N L '
n-1 2
n
pn(x-a) "~ a<x<a+h R

- b

A
IA
1”'

n

oo (Gaussian) -7 1\~

) <« x < OO

o
&
o
Y
)
QR




ab - -

15. S-:é-(eax bx) 0<x< <
n_n=1 _
DT Oxx<e

Qo

ab Ko (2Vabx) = ab /% e-‘\/aTx (y ¢ %)dy
0

O_<_x<0°

ae + be X (a+b)e"(‘a""b)x

ab - + 1 0 1
. < X <
(ax+b)  (asbx)? .=

ab<{;—3;-§ + 1 T l<x <
(ax+b) (a+bx)§ -

(a+b)e'(a"b)x + (b«*c)ez-(b":)x + (c+a)e

-2 (a+b+c)e-(a+b+c )x

Ofx

< 0O

-(c+a)x

0 <x <

e b e A O




16,

170

.18.

19.

..bx‘)

-

Xe

— X cosh x
e=1

®_ (sinh 1 - sinh x)

e-1

(e-b(x-a)_e-bx)

O
IA

1A

A

A

LA

IA
b
A
-

O, l, 2, L L] ®

[#5]

3
&

)

(Poisson)

%

N

4

b

]
bo

: \
I

)



e {cosh 1 = cosh x) 0<

A

”
1A

]

Also the following joint p.d.f.'s of (x,i):

X 1 - xt (1=x i-1 (i-x 1 0<x<1 ‘ : |
(i-l)" " ’ pay - - ot . A
- 1. . ie= 1, 2’ « o o '

Also, the marginal p.d.f,.s

20, e X 0

A

21. - 1n(l-x) 0

IA

1.hh3

-




721 In £X 0<x <1
X
3,259 T 0O<x<1l
“1.629 1n (1-x°) 0O<x<1

Also the following p.d.f.'s for (x,i) or i alone:

i»1, 2, 0.

Ao, 1d {o_<_x_<_1

I‘(T;I‘)" 1-1’2,000

22. 1.216 % in (1+x)

5.63 [1 - & 1n(1+x)]

-25 .

Ao e e = T

1}-"’—'— -




23.
2k,
25.
26,

- 27,

-26-

Also the joint p.d.f. for (x,i) and i alone:

x:L-l xi - JO0<x<1
IA-M ) 1.1’2’000

2i+l

T——? 1-1,2,000
1°(i+1)

The Klein-Nishina Scattering Formula.

Neutron~deuteron elastic scattering.

Neutron-deuteron inelastic scattering.

General inelastic scattering of neutrons,

Fit to experimental data of elastic scattering of 1l MEV neutrons in

copper.




Representations'of the p.d.f.s Considered

In the discussion of the representations of each of the distributions
below, it is assumed that there is a large store of (independent, uniformly

distributed) random numbers, symbolized R, Ry, etc., available.

-1

1. h(z) = nz" 0<z<1

Let Z be the largest of n random numbers.
The proof is by induction. Let X be the largest of n-1

random numbers and assume that its p.d.f. is (n-l)xn-2, 0<x<1.

Let T equal another random number and let Z be the larger of X and Y.
Then as mentioned in Section L,
h(z) = £(z)6(2) + g(z)F(z)

e (n-1)2""%z + 1

Ne
2 nz 1

Since Z is the largest of n-1 random numbers and another random'

number, it is the largest of n random numbers.




2. h(z) = n(l-—z)n"1 0O<z<1l

Let Z be the smallest of n random numbers. N
This is just a reflection of example 1 about the vertical

line z = 1/2. . -

3. £(x) = % x(l-n)/n for 0<n 0O<x<1
‘Let X = R* |
The c.d.f. F(x) can be found as follows:

F(x) = probability that X < x A

probability that R" <x

.
= probability that R < /0 :

1/n

e x
Then f(x) = % x(l—n)/n

In actual practice, only the integral values of n are of
interest. The p.d.f.s obtained by putting n = 1/2, 1/3, etc. are
often more simply obtained by the method of example 1.

IfX=1la- Rn, all of the above curves are reflected about
the line x = 1/2,




L.

f(x) =1 - ) x| ~l<x<1

Let X = Rl - R2

Then from axample 1 of Section L,

f(x) =0 x<=1
e1l+x -1<x<0
=]l -x 0<x<1
=0 l<x

’

If X = Rl + R2, the p.d.f. would have been translated one

unit in the positive direction.

£(x) = 2 - 2x 0<x<1

Let X = |Ry = Ry| or let X = the smaller of Ry and R,.

2
Then the density of f(x) is the sum of the two disjoint possi-
bilities that R, - R, = x or that R, - R, = x. Using example L,

we have

2 - 2x 0<x< 1

£f(x) =

elsewhere



6. f(x)-%l}-z—(%'—a{l o a<x<a+b

Let X =a+ b |R1 - R2| : X
. This is just a translation and dilation of example 5. Use

for the X of this example a + bY where Y is the wvariable of . d

example 5,

Te %»[% - 21%55%] a-b<x<a
LetX=a-blR1-R2|
This is a reflection of example 6. ‘ ' .1
e
. 8. pn(l-x)n"'l + (l--p)mxm'1 0<x<1

Let X be, with probability p, the smallest of n random numbers;
with probability (l-pz,the largest of m random numbers.,
This is a mixture of examples 1 and 2, With probability p

(that is, after a test, R < p ?) use example 1. If not example 1,

use example 2. Then

f(x) = pn(l-x)n-l §'(1~p)mxm-l 0O<x<1

If pA. 1/2 and m = n,
f(x) = n/2 [xn-l + (l-x)n-zl}
which is symmetric about x - 1/2.

o

A



- e
9e (1‘P)m(a'z)m-1 a-c<sz< a
_ m
h(z) = 1
5553%52—-— a<z<a-+ b
b

With probability p, pick X out of nx™ ~ and let Z = a + bX.

1 and let Z = a - cX.

With probability 1-p, pick X out.of mx"
One piece is like example 1 and the other is like example 2.
) ' If p=1/2, m=n, and b = ¢, then the p.d.f. is symmetric about

Z = a and

.; ' n=1
h(z) = n/2 JE%?L——- a-b<z<a+bh
b
10. h(x) = 6(x-x2) 0<x<1

Let X be the middle of R, R,, and R3 (8ection L, example 8).

1. £(x) = l<x<a

The most obvious method is to solve the equation

- J/’xi%ha dt = R

1

This is incohvenient, because both the exponential and a logarithm

must be calculated in most applications.
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Five rejection methods for selecting from this p.d.f. will now

be. considered. The example will be given such a thorough treatment,

not because there is a great practical importance in avoiding

exponentials and logarithms, but because it gives a good opportunity

to explain and illustrate devices heretofore mentioned only abstractly.

a. The straight-forward general method:

Obtain Rl and R

2 -

!

x‘- 1 + (a-1)R | ‘

v

TEST

X R < 1l

2

yes

fo

The a priori probability of arriving at a given value of x

is ég% and the probability of accepting it is %, so the efficiency

is:

Choose new

1 ax .
X a=1

R1 and R2.
e

Uz

Thus for example, E_ x .25 for a = 10.’

RSS2 r‘gg

PR
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The computations required by this method are of the simplest
sort from almost any calculational point of view, and the yield is

1/2 Ea per random number used,

yesi
Y= B - Ry

Y'Rl

or
Y = smaller of Rl and R2

z =1+ y(a+l)

TEST
RBz(a-z+1) <a

[_no
yes J{ :

let x = 3

With probability a—EI’ ¥ is chosen uniformly; with probability

1l- 3—31- - g—;% » ¥ is chosen from the p.d.f. 2(1~-y). Weighting the

two p.d.f.s with these probabilities gives

gly) = ;E% 2(1~y) + ;%T

N 2(::ay+z)



Since z=1

YT
d
9 " &1

h(z)dz = g(ég%)dy
2 |la - (a=1) ;E% 1

h(z) = vl o

.2
= - (a=z+1)
a =1

h(z) is a straight line.

The probability in the first box was chosen so that

h(1) _ h(a)
f4¢))] a

Because f(x) is convex in the ihterVal of interest, this choice maximizes
the efficiency Ea of this second method where the auxilliary p.d.f. is a
straight line segment.

We now choose from h(z) and test whether R <

maximum value of‘é{%}. We have o o ’ ~

K = f§1; S 1,2 8l - |
‘ Ina 2l 2alpa ' ‘ h

f(:) where K is the

a“"-1




Hence the test is:

and

‘R < £(z) _ a
= Khle) zla-2z+1)

éalna

Eb az-l

The computations are again simple. In general Eb is about twice Ea’

Ce

In this case, h(z) is a step function.

_ | Ve J§

(3)

4 ]

Find smallest 1

such that

a< 2i

— 3 J{

Find J such that
J < Rli <J+1

v

Let 2 = 2(1+R,)

N ¢ yes

no

N
TEST

z2<a

ke

TEST
J
R3z < 2

]
T L
Let x = 2

(a choice dictated by
efficiency)

(discrete uniform j)

(needed only if j = 1 - 1)

i)
s
N



L

The probability of picking a given value of x is

E, . f(x) = (prob. of picking j) (prob. of picking 8) A

(prob. of accepting z)

Therefore Ec - 18 or roughly 1ln2.

de In this method, 2 is picked out of

n(z)-B—zlno-fJ) 23 <z <23

instead of )

h(z) = 53 23 <z < 2‘1’1

as in method c. , : !




Find smallest i

such that
a < 2i
=
Find J such that
Jemi<gn
TEST
R, < 1/3
yes |
y = min (RB’RH) no
or vy~ R3
2 =23 (14y) |
TEST
z<a
| no
Yes |
TEST .
z hEDS
RSZ (3 - -23-) f 2
[ [ no

~3

]

K

-37 -
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Similarly as in c,

E,.fx) =2 . 3L - (3-X 29"t
4 < (3-X5),
175,51 237 x(3 - ga)
-4 01
3 Ix
v -hlna"'h S
ud T~3h2~09

e. In this method, x is picked from f(x) with probability p and g(x)
with probability 1 - p. | |

Vi

let z = 1 + Rl(a-l)

&N

b

6™

e =
gl
<y
ez
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The probability of getting a given x is (prob. of 1= yes branch) (prob. that

z = x) + (prob. of lst no branch) (prob., that z = ;—)'.

Hence |
- 1 1 1
Ee f(x) '3%H°F-IL‘ (;"x—f)
— L 1 ,a
=R s 2
- - La 1
a+]j)(a~1l) ° x
and

o lba 1lna _ La.
Ey a+]] ° a=l a+] By

For large a, E_ is about L4 E,.

E,s E» E, Eg, and E, are shown for a range of & in graph mumber 1.

2
12, f(x) = q%-e- x°/2 . 0<x< © the (half) Gaussian.

let y= - lxm._l
N , 1 i 200
1/2(3-1)% < 3

yeo | B

[tasy]

T

e




,ng:.

The probability of getting a given value of x is equal to the probability
of picking that value of x times the probability of accepting it or

E . £(x) -eT, e-(x-l)z/é

C V2 X

E -\é;-a-l/z

- .76 , Which is remarkably high,
A random sign can be attached to x to turn it in to6 a true Gaussian.
It is possible to pick from an approximéte Gaussian p.d.f. by using
the @Gentral Limit Theorem which states, in one of its forms, that the sum
of a large number of independent and identically distributed random variables
with a finite variance is asymtotically normally distributed (Gaussian). In
particular, the random variable defined by the equation

n

- +
X Z-Ri

i=l
bacomes normally distributed with O mean and variance n/3 as n —p ©0 «
(The variance is defined below, see Part II, P, 2), The exact p.d.f.

and corresponding c.d.f. can be shown to be

- Ar . :
r=0




- yl'-

The easiest way to obtain a random variable uniformly distributed

froh <1 to 1 is to take it equal to 2R«l. The formula for X then becomes

n .
X=2 :§j Ri -n

i=1

Another approximation to a two-sided Gausgian is given by the pedefe

f(x)-—(—————B—x-)j— B>0
£(x) has mean 0 and variance nz/BBz. To pick from this p.,d.f., the standard
technique ‘

x = F1(R)

°-gln (g-1)

can be used. -

Curves for' the ped.f.'s for the Gaussian, the sum of 6 Rys the sum

of 12 R,, and the approximate Gaussian are given in graph number 2., Graph

i’
number 3 shows the c.d.f.'s of the same distrititions, plotted on cumulative

probability paper. They have all been normalized to have variance 1.
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R
-Xu
13.  Pick from E_(x) = / *—du 0O<x<eoo
. u
1
Let the p.d.f. for Y be ny" 7, 0<y<l. )

Let Z have the p.d.f, ae -2, 0<z<oo, LetX=TYZ, i

> 3

As in section 4, the p.d.f. f(x) of X is given by:

1
£(x) = / % (ae~2%/¥ Jny*~Lay i

0

1
- an /e-ax/y yn-ady
0

&

Letting y = %{

£(x)

&
H\\
" &

[ ]
]
e
nw
—~
k
-~

F(x)

]
O\
L
H
~~
ct
~r
&
1




| /o _ [1/a

. f£(x) =% —Tx 0<x<1

L Let X = R, Rab.

Then

g F(x) = ery

and f(x) is as given.

-v-"l
f(x)----—l-z-x'a 1n x
a

- As above, but let a = b,

Then 1

r.. F(x)vx;(l-%-lnx)

f(x) = (-1n x)n-l

a"(n-1)!

-L3 -



15, f(x) = ;‘?5 (™% . &7P%)

O<x< XN

Let Y and Z have the p.d.f.'s ae 27 and be-bz respectively.
let X =Y + Z.

Then

x
f(x) = / a.e-a(x°z)be-bzdz
0

-%(eﬂ-e‘u) O§x<°° , o

If 8 = b, then the process ylelds

£(x) = azxe"&x 0<x<oo0

The sum of n random variables each with the p.d.f. ae 37 ig

similarly shown to have the p.d.f.

n _n-=1.
£(x) ~ 5o e 0xx<o
e (e » L
£(x) --ab K0(2 Uabx) = ab % e 8 (y * .)-')dyl 0 <x< ©0
Let X = Y2
Then £(x) = /‘t 00X/ Tyg b2y
0 L0 ,
--a.b[':zL -(&X/z‘bZ)dz Let y =Yg x =
£(x) = /% -Vabx(y *")dy
/ o
- ab K,(2Yabx) 0<x<®

1 See'Watson, Theory of Bessel Functions, p. 181l.
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£(x) = ——  0<x<®
(x+m)
) Let X = Yz
Then oo
£(x) = / gae 8%3 pe D2
b _
) adb
(mt*b)E
- m :
(x+m 2
if m = b/a.
£f(x) = ae™™* + be DX - (a+b)e'(a*b)x- 0<x<oo
TLet X = larger of Y and 2
1 1 |
- , f(x) = ab + 0<x<1
S {(ax-tb)? (aﬂxx?}A - -

- smaller of Y and Z
Let X = :
- X larger of Y and Z

B
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f(x) = ab 1 5 + 1 5 l<x < 0 |
(ax+b) (a+bx) -
: |
o larger of Y and Z . -
Let X smaller of Y and 2 }

=(b+c)x

-(a+b)x + (b+c)e

~(c+a)x -

£(x) = (a+b)e + (ﬁ*a)e

- 2(a+b+c)e'(a*b"°)x 0 < x<o0

Let X = the middle of 3 random variables with the p.d.f.'s ae o7,
=bz

be %, and ce"°%, respectively.

% (1 - ¢~P%) 0<x<a
f(x) =

‘:‘:‘ (e-b(x-&) - e-bX) a -<- x < o0

Let Y bave the p.d.f. 1/a, O < x <a, and Z the p.d.f. be .

Let X =Y + Z. -

[

Then

£(x)

X
1l
Ebe

%(l-e'bx) 0O<x<a
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17. f(X)-_l___ -1 <x<1

ﬂ'VI-xz -7

It 18 often useful to pick values from the random variable

X = cos nR, of which this is the p.d.f. The following technique

is due to von Neumann.

—

Pick Rl and R2

The accepted R1 and R2 can be used to define a point
(x = R, 7 = Ry) in the first quadrant. These points have a
uniform distribution in the 1/l circle 0 <x<1, 0<y<1- x°.
Therefore the angle defined by n = tan™t % has a uniform distri-
bution between O and w/2., Since twice this angle is uniformly
distributed between O and w, taking X = cos 2n will produce the

desired p.d.f.

q
v
[



- }8 -

cos 2n = cos?n - sinzn

I

‘V 2 2
B*h

cos n =

- R, ‘ : ' )
So cos 2n = Rl 2 .

The p.d.f. for Y is also of interest.

E . g(y) = (probability of y) (probability that R, <Y1-y?)

V—
g(y) -i,* V

andE-E.' ’ ' - ' .

18, f(1) = E"f?— for 0 < & i.=0, 1, 2, ... (Poisson distribution)

e A -
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let k = 0
Yo = Ry

Because Rk < 1,.yk is a monotonically decreasing function of
k. Therefore the probability that Yy fajils the tést e < e 2 is
equal tolthe probability that a random variable
k -~ |
X 'JIE Ry

is greater than e 2. It was shown in example 1l that this prob-

ability is
£ 3
} -Fle®) =1 -6 :E: %T
=0
k

Since this probability decreasss by an amount %T e after every
k -
test, the probability that i = k is just %T e 2,

The average number of Rk used in each choice is a + 1,

b o
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The following joint p.d.f.'s will be obtained:

X
0< {y <1 .
< 1-{_‘ (1-2)"1 _ (-z)t 3 )
G-It SR € T D 1 1! -

The following p.d.f. for i alone:

1 1
n-m 1'1,2,--0

Also the following p.d.f.!'s: xex, e - ey,

M

-e—fIxcoshx, -e-gT(sinhl-sinhy), ;_]-'Iez, Of{y}fl

ex sinh x, e(cosh 1 - cosh y)

Start with Ro and R‘l and iterate as follows,
If Ri-l < Ri’ increase the 1 index by one and test again. As
soon a8 the inequality fails, take X = Ri-l’ Y= Ri’ YA Ro,

and I = i, Schematically,

Pick RO, and Rl :

TEST '
Ria SRy

yes| no

Choose Ri+ X = Ri-l
i+l —> 1 Y=-R , ™
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Let the probability of making at least i tests be P

i.
Then P, ., = P, . (probability that Ri 12 Ri). Since Ry
. is the largest of i random numbers, it has the p.d.f. iRiiil.

<R, is R,Y. The probability

Therefore the probability that Ri-l 5 4

> of the test succeeding is:
1
i 1
/Ri b B
o
- 0
S P = Pi
° i+l TeT
But P1 =],
Then P, = fr

The joint p.d.f. for I and X is product of the probability
of making i tests (1/11) and the probability of getting & given x on
the 1 test (ix'™1) and the probability of then failing this 4%}
test (x); so
£(x,1) "Ti'l-s;ﬂ'

- The Joint p.d.f.'s for I and Y, and I and Z are similarly

8(},‘1) - %ﬁ :

obtained by:

n(z,1) = 2@z ey aea)t

l N il SO

i (1-5}1'1 _ -2t
- [ L ]
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The marginal p.d.f. for i can be obtained by integrating any of

the above. For example:

1
A
Pi-/m_ r dx
o)

- 1 1
(I+17 ° (]-];i
- L 1
Ir -~ T

The marginal p.d.f.'s for X, Y, and Z can be obtained by

suming the respective joint p.d.f.'s over i; so

f(15 = j;f-11§;7f.

i=}
= xeX 0<x< 1
wli
g(y)-Z—H—
i=1
-0 -e 0<yc=l

h(z) = Zl[_}-z) - G i]

-1
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: By accepting x, y, or z only when i is odd the follbwing

p.de.fe's are obtained:

- i" x2
o E.f(x)=x GO
0

= x cosh x 0<x<1
' 1
_ and E-/xcosh‘xdx
0
- -1-0-1
el 21+1
E-E(Y)'Z—Q——Ty\l
0
= ginh 1 - sinh y 0<y<1l

=3
[ ]

1 .
/(sinh 1l - sinh y)dy
0 .

-sinhi+l'-cosh1

=1 -a@a as before

2 1 &= 21+1
E.n() - ) o Z T
0] 0
OO
- Z )i (1"2)
- 0]
P 0<s<1
|
E=e1




By accepting only even i's one obtains:

E . f(x)

E . g(y)

E . h(z)

E

N
;

R

= cosh 1 - cosh y 0<y<l1

1/e

& (1-g)21%1 i & (1-2)2
& T & T

-1 Z (-1)1 - z)!

'l;e-lez 0<z<1

- 1/e

-5l -

-
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4 If the test Ri-l < Ri is replaced by the test Ri-l > Ri’ then

it is easy to see that the only change in the result is to replaée

X by 1l-x, y by l-y, and z by l-z, and the foliowing p.d.fe's

obtained:
(1- )i 1 - (1- )i i-l i
e(1-x)e”™, e(1 - &)

€ (1-x)cosh(l-x), =Sr [sinh 1 - sinh(1-y)], =2 @2
T=e =1 e-1

.e(l-x)sinh(l-x), e [cosh 1 - cosh(l—y)]

The rejection technique illustrated in the last example was .
suggested by John von Neumann [1]. He also pointed out that the

technique for picking out of

2 0«€z<1

h(z) = e—fr e

with an .efficiency of 2%1- could be used to pick out of :

f(x) = e 0<x<o0

by simply taking x = z + J where j is the number of times the test

has failed. The probability that a trial will be rejected is 0'1

and since

-1 e-x+1

e Xix = o dx

[

g
-
[
s

(&
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we are choosing from succeeding intervals with exactly the right
probability.

The expected number of R, in a single trial is 1 + e, 80 the

J

number of R, for each x selected is about

J
(1+e)-e—SIz6

o<{}=1

X - X ’

I 1-1,2,...
1 1.1, 2
m 9 €9 o o @
- In(1-y) O<y<1
143 = 7211n%11 | 0<{" <1
oI v -y =\y/ =

2

3.2591-3,‘;,-1.629 1n(1-y°) 0<{jr=1

Start with an RO and Rl and iterate as follows., If Ri < RO?

increase the index by one and test again. As soon as the inequality

fails, take X = Ro, Ie-~i,and Y = R;. Schematically:

Pick RO and Rl

E— \
TEST
Ri < RO
yaj( 1no
Choose Ri+l let X = RO
1414 I=1
] Y= Ri




u
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The Jjoint p.d.f. for X and I is

£ix1) = x 72 - x)

The probability of getting a given x times the probability

of passing the first i = 1 tests times the probability of failing

the iEE test. The marginal p.d.f. of x has not been changed by

the processing and is still uniform.

The marginal p.d.f. for 1 is
1 ' , ,
e i1 i 1 1 1
. /(x -X)dx =T -yt T
0

Since the joint p.d.f. for Rj.and I at the 1™ test is Roi'l

probability of making the 180 test is

1
1-1 1
/ Ry” "Ry = ¥

0
The joint p.d.f. for Y and I is given by (prob. of making 132

s the

test) . (prob. of getting a given y) . (prob. that Ry < y).
-] 1 = . ‘
I [ 1 [ ] Yi ;

The marginal p.d.f. of Y is
o0 yi
g = )

1 .
oo Y
Z / 21 tat
0
o0
ﬂt Zti‘l
0

1

(#9)
§&
(o

-3
N
‘g.'\ﬂ



y
. dt
It

= - 1n(1-y)

If only the odd 1 are accepted,

. cO
E . £f(x) =Zx21 -Zxaiﬂ

2 2141
E.oe(y) =) Srr

- 58 -



If only the even i are accepted,

oD
B . £(x) -Z xzi*l -ixzi
0

‘. o8
o)

'1%3:' o_<_x_<_1

= - 3 In(1-y°) 0o<y<1
If the inequality is changed to«Ri > Ro, the p.d.f.'s become:
x
- ' 0 }< 1
x(1-x)*7, | %(l-y)i 5{y -

1'1,2,000

«-ln y

1 2 n
1.“13 2-_"1' ’ ) 0721 1n (-y- - l) |

3.259 5%, -1.629 1n y(2-y) -




22,

1.216 £ 1n (1+x), 5.63 [1 - £ 1n (14x)) 0<x<1

Number 21 can be modified slightly by making the comparison

.
IR > %)

Schematically:

Pick RO and B’l

1e1
|
TEST

(1’1)31 < ir‘to

"

Choose Ri +1]

iel-—>1i

]

i-1
. R
0
Given RO’ the probability of passing 1 -~ 1 tests is -1

Since RO is initially uniformly distributed this is just the joint

Ped.f. of Ry and i entering the 1! test. The probability:of

failing the 13'-13 test is 1 ~ 1%1- RO 80
i-1
£(x,1) = B (1 - gy x)

xi-l xl

T "I

The marginal p.d.f. for X is uniform.




- 6] -

The p.d.f. for I is
1

1 1 2441
£(x,i)dx = - -
[ ’ 12 (1e1)° 12(141)2

The joint p.d.f. for Y and I is

i
i e for v 2 3y
g(Y:i‘) =4 -
g £

The marginal p.d.f. for Y seems too difficult to bother with.

If only the odd values of i are accepted:

E. f(x) :E:(-l) .

-—Z(-l) / tlat
/dx (-1)3

Nll—‘



-If only the even values are accepted:

E.f(x)-l-}—“;—l’l‘l

E = 1775

22. Picking from the Klein-Nishina Scattering Formula
It can be shown that if a 4 ray of energy a (in mca) is
traveling in a cloud of free electrons, then it has a probability
g(x,a)dxdl of having a collision in the distance dl and emerging

from this collision with an energy a' such that

a a, a
RS A
x

(nﬂa 2

| aO (cox2 0-1+x+ %) Q; l<x<1l+2a

g(x,a)dx = ¢ x
o x<1l,1+2a<x

where cos ® = 1/a = x/a + 1 = cosine of angle of scattering.

a, = classical radius of electron , -
= 2.81833 x 10713 em

= .24,9536 x 1072 cp?

n = number of electrons,per cc

a' = xa = energy of y ray after collision,

£
o
o
B
(&)
(252]
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1+2a
If o(a) = J/f g(a,x)dx then 2%21 is the so-called Compton
1 ,

scattering cross section and is tabulated in R-170 [é], Tables 5
and 6. The probability that the y ray will have any kind of
scattering collision in the distance dl is then o(a)dl. g(a,x)
can now be written in the form: |

gla,x) = no(a)f(a,x)

where . £(a,x) ei%-(cosze -1 +x+ %)/K(a)
1+2a ) 1. dx
and K(a) = (cose-1+x+§);-(.‘v

f(a,x) is then the p.d.f. for the energy ratio x of a y ray which
enters collison with energy &. The normalizing factor, K(a), is
shown in Graph 4.

Graphs and Tables of the equation
R = f(a,x)dx

can also be found in R-170.

Enmpirical fits to these functions could be made, but it is
undesirable to have to fit a two variable function unless absolutély
necessary.

Several exact methods for picking out of the Klein Nishina p.d.f.
will now be discussed. This is partly pedagogy and partly begause
the method used may depend on the particular section being picked

from or the available machine.

1 Actually cos © and 1/a' as a function of R and a are tabulated,
not x.

P
o

[4 )"“l
(L;:' »
<
3
e
rrn
o
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First, techniques in which x is drawn from a p.d.f. m(x)
and then accepted if R is < T(x) will be considered. This implies

that E . £(a,x) - m(x)T(x).

a. Let m(x)=-g‘a l<x<1l+2a.

(x) = & (cos’ = 14 x + 1)
X

It is clear that the axpression to the right of the proportion

. (cos2e -1 1 1
sign is < 2, since < 0 and =5(x + ;).5 2 in the region

1_<_x_<_1*2a.

So if

T(x) = -Z—iZ—I(cosze -1l+x+ -zi)

the inequality O < T(x) < 1 is satisfied. The efficiency is

E, - m(x):(xz

b.  Let m(x)'m' l<x<l42a

T(x) = %{-(cosQB ~l+x+ ;'lé')

K(a)

By * oIn(Tesay

1 See example 11 for technique of picking out of 1/%1n(1+2a)
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142a 1 :
a3 1 <x < l+ 2a

c. Let m(x) e 5

X
T(x) = (com%® - 1 + x + %)/(1 + 2a + 1712-5)

E (1020.)2 K(a)
° (20014 (1+20)°]

That 0 < T(x) < 1 can be verified by noting that x e % is a
monotonically increasing function in the region 1 < x and that

00829 = 1 has a maximum value of O, Therefore the function

2 1

(cos“®@ = 1 + x + %) <Sx+=

< 1l . 2a + Igfi if 1 <x< 1l + 2a.

d. It is also possible to break up f(x,a) into the sum of

two p.d.f.'s; for example:

‘ 2a+l <
. |' B s ?Z+97' |
yaa. J,é

' 2a+1
y = 1+20R, i o
no TEST TEST ho

1 1 1 2.1
Ry < h(; - ?) Ry < ?(cos e+§)

ye yes
let x = y
Ag always.
o 20+l 1 1 1 8 2a+1 1 2.1
Ed°f(x) Ya+9 Ta h(f - ;5) + a7y ° ;;;? ?(cos G+§)
2a+l 2 ,1 1 2
o = (= = + 1, c088,
+
2049 °a ‘x 7% ;3 x2

The:efficiencieS'Ea through,Ed are shown in graph number 5.

550 (72
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23. Pick from elastic n-d scattering
See Figure 2 (p. 67) for schematic which gives the
simplest rejection technique for picking an angle of -
scatter out of the n-d elastic scattering cross sec-
tion. It has been obtained by careful fitting to the
best theoretical and experimental data [3|available. The
efficiency of the technique is of course a function

of a and is ?E%ET . This is shown in graph number 6,

The angle of scatter v in the lab system and the new energy

a! are obtained as follows:

g! = %-q§—+ 4 cos ¢

2k, Approximafe inelastic n-d scattering

The energy spectrum of inelastically scattered neutrons is
not very well known. A reasonable approximation is to subtract the
binding energy of the deuteron from the ineident neutron and then -
assume that the two neutrons and proton coming off share the remain-
ing energy, each particle having a uniform energy from O to the maxi-
mum available. Let a, @, a', a' be the square root of the incident
energy in lab, incident energy in C., of M., final energy in C. of M.,

and final energy in lab, respectively.




67

AS

COMPUTE a_(a) NOTE:

M(a) | ay = 1/2 5

6 an(a) = 1E:Clncx"
COMFUTE Zan(a)Pn(‘znl-l) H =0
0

N
J( ' M(a)= 49912762 +.19661182a +.36139778a% -.21189016a° +.039941747a% -.0018623847G°
R M) & 3 a (P (R,-1) Ry(x) = 1
2M a ;an Rl N |
: — . Pl(x) =x
YES XO 1r
- P(x) =2 (2n-1)xPn_l-(n-1)Pn_2]
o8 y = 2R -1 | |Pick new R,y R,
124 "
¢ TABLE OF C!
e 1
d Y 1 2 3 A 5 RANGE OF a RANGE OF a
] 1 -0.10897 <0.60059 0.25289  O.144l  -0.078%6  0.0095411 .2<a< {4 & =05 C<ag.2
2 0.049252 -0.44156 1.10016 =0.6494 0.15812  -0.0139% 3<ag (4 8,20 0Lag .3
3 -0.15639  0.60643 =0.68341  0.26465 -0.047307  0.003672 9<ag & a;=05 0gag.9
4 0.02342 -0.071859 0.035517 0.025435 -0.010014  0.0008593 .9<a< [I4 &, =0; O0gag.9
5 1.50914 =3.56725 3.29214 -1.45866  C.3021  0.023347  1.395< a < |14 as =0; 0<agl.39%
6 =C.07806  0.37108 -0.54035  0.32282 -0.079385  0.006843 1.39%5<a<[lk a, =03 0<ag1.3%

-Lg-

as=s 'Ehergy. in MEV

Figure 2
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To pick the new energy of the first neutron

i=%a
;'2 - Rl(c-xz - 2.18) 2.18 = binding energy of deuteron
cos ; - 2R2 -:5’1 assumes scattering is isotropic in C. of M.

0 -
a! =4%—+§'2+2—3-—cos~?

a/3 + a' cos y

cos y = =T

The energy of the second neutron can now be picked from the
energy that is left by the first neutron. For the purpose of calcu=-
lating expected values this is not necessary--the first neutron can |
be given a weight of 2 and the second neutron ignored=--even though

this is physical nonsense.

25. Approximate general inelastic scattering
A useful approximation to inelastic scattering of neutrons is
to assume that the neutron loses at least a minimum amount of energy §
to the excited nucleus and that its energyis uniformly distributed
between 0 and thé maximum possible.
If a, a, a' , a' are the square roots of the incident energy
(lab), incident energy (C. of M.), final energy (C. of M.), and

final energy (lab) respectively then:
i-piyo
32 . 31(32 -5)

where A is the atomic weight,

rS

£
b
¢
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The angle of scattering (¥) in the C. of M. 1s to be picked
out of its distribution., For want of better information this is

usually taken as isotropic.

cos y = R, -1

2 R
. -2 24 a' -
at ;*.fozsz +at€ + -%;%— cos vy

a - -
+ al

1> S
al

cos y =

y, of course, is the angle of scattering in the lab system.

26. Fit to experimental data of n-copper scattering (graph number 7).

Picking from another empirical p.d.f., the angular scattering
of 1} MEV neutrons on copper, is now discussed. If x = the cosine

of angle of scatter, then this p.d.f. can be represented in the form

-ai(l-x)

£(x) = hy(x)e

¥IXIXNG




where the'hi(x) satisfy the inequality

0« hi(x) < Mi when x, <xX< X531

The parameters are as follows:

x =1

o

x = .98

x, = <93

x3 =.7

x, =-1 (The scattering for x < - .1 is essentially zero.)
8y .= ay = &g = 16.146952

34 = 4-5209%

h)(x) = 6826.237250x° ~13411,70412x +6603.930212
h2(x) = 4.271122975x +12.19273318

h3(x) = 130921.6C31 ~813913.1074x +2023593.429x2 -2513392.773°
+1558716.733x% ~385960.6254%

h, (x) = 1.05474959 =1.33330155x +2.12496606x° -2.63973279
+.T2947297x% +2.58277190%°

Ml = 18.5
H2 = 16.4
MB = 25.8
MA = 1.25

A set of p; can be defined by the equation

Py = vfl £(x)dx

X




Then p, - p;_; 18 the probability that the event (x, < x < x,_;) ocours.

P, = +69549204
Py = « 95437174

If now in addition a

3
b, = 1-6"01(%17%) = 2959820108
b, = 1-6"2(%) = 5530604260
b, = 1-a"3(57%) = Lom321948

b, = 1-6"84 (%) = «9743189497

set of b,'s 1s defined by

Then the following schematic indicates how to pick from f(x).

n 1 O 7 NC
RS py NO R ‘< p, R, < p,
YES YES YES ;

1n(1-b,R,) 1n(1-bR,) 1n(1-b.R,) . 1n(1-bR.)

. 12 2 : 2 - 4 2

R (F1ta T, ‘r”:"z+_§;'2_ 17,
" _
? NO 7 X0 ? NO ?
MRy < hy(y) MRy < hy(y) < MR;7< hy(y) MRy 'S b (y)
|¥Es YES | 1ES YES
Let x =y
o8
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The method can be verified as follews. The probability of going
down the i'th branch is pi - Pyye As R, varies fromO to 1, y

varies from xi-l to xi. The probability of acceptance in any

interval is proportional to hi(x)e-‘i(lux)

and the Py have been

chosen to make everything properly normalized.




Lo

2e
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IT. EVALUATING INTEGRALS

l. Introduction

The simplest application'of Monte Carlo is the evaluation of integrals.
While in éctual practice it is rarely efficient to use Monte Carlo unless
the integral is rather highly multi-dimensional, this chapter is restricted
to one~ or two-dimensional integrals. The generalizations to more dimen-
sions, however, are obvious. In fact most of the discussion is unchanged
if the variables of integration (x,y) are each considered to represent
multidimensional- spaces. The rare instances in which this interpretation
is not legitimate will be clear from the context.

The application to integration and, in fact, most applications of
Monte Carlo depend on the following two theorems which will be stated

without proof.

Theorem I (The Strong Law of Large Numberg)l

If a sequence of N random variables % to X, are picked from the

p.d.f. f(x) and a random variable‘iﬁ defined by the equation
‘ N
1
2y~ q X z(x, ) . (1)
1l

and if the integral

o0

z = /z(x)f(x)dx_ (2)

1 See Doob, Stochastic Processes,




/
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exists in the ordinary sense, 2 will, almost always, approach z as a linmit

_ N
as N aponroaches oo,

The integral (2) is called the expected valuel of the function

z(x), and Qk is called an estimate of z. .If—;?, the expected value of

z?(x), also exists, an estimate can be made about the amount that‘ﬁﬁ
deviates from z for large N. Denote the variance of z(x) by either o°
or Vy define it by the equation

2=V e (z-3)

= | (z - )% (x)dx

- /z?-f(xmx -2z /zf(x)dx + 22/f(x)dx

22 - 32 (3)

and then apply Theorem II.

Theorem II (The Central Limit 'I'heorem)2

For large N the probability that the event z ~ & <% < % + 6 occurs
is éaymptotically independent of the exact nature of z(x) or f(x) but depends

only on N and 02. In fact,

Prob, {9< z + 6} Y / -x W
1

+ terms of order r

1l Most readers will be familiar with the fact that the "expected value”"
may be very unexpected. For example in the coin tossing example of Part

I the expected value of C was 1/2 though C can take on only the values
0 and 1.

2 Almost any book on statistics discusses this theorem: Cramer, Mathematical
Methods of Statistics, is espe01ally full and interesting on this theorem and

'"5.;?, Jﬁ_

: 1ts variants.
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The probability that the deviation of % from z will exceed * Na1ﬁris

2
. oo _ .
given in the following abbreviated table of\ﬁg J[ e X /2dx.
: A

I\ Probability
67U5 5000
1.0000 <3173
2,0000 +0L455
3.0000 .0027
14.0000 .0001

It can be seen from the above table that deviations gréater than
+ a/ YN will be frequent, deviations greater than + 20/1rﬁ_not uncommon,
and deviations greater than + 30/‘fN'so uncommon that if the table appliesl
the possibility that this last event may occur can usually be ignoredf
o/ W is called the standard deviation (s.d.) of the estimate ﬁk.

The reason that sampling is useful in evaluating multiple integrals of
a high order is that neither of the theorems depend on the dimensionality of.
the integral. The number of points required to evaluate a multidimensional
integral to a fixed level of accuracy depends only on o, or a/z if a fixed
percent accuracy is desired, once there are enough so that the Central Lihit
Theorem is reliable. While it is true that in this perverse world o or o/z
seams to increase with the dimensionality; there is no reason in principle why

this should be so. By contrast, in almost all standard techniques the number

of points required to evaluate an integral go up in geometrical progression

1 As discussed in Appendix II, the table is almost consistently optimistic
for the p.d.f.'s and N's actually used in practice. In fact, its "sweet bye
and bye" form does not always admit too confident an application. It is
therefore to be considered as suggestive and not categorical,

98]
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with its dimensionality. In part this undoubtedly is due to a defect in
the theory of integration in many dimensions,l but partially it seéms to be
unavoidable. This exponential increase almost never occurs if the inte- -
gration is done by Monte Carlo., The other occasional advantage of Monte .
Carlo lies in that it may be cheaper to compute points by Monte Carlo than
in the standard ways. This shows up most sharply in trying to solve certain
OGreen's function types of problexm.2 On the wholse, though, it must be |
admitted that Monte Carlo has not shown up very well in competition with
standard techniques, when the standard techniques were at all r easonable.
It has been used most successfully where thé standard numerical techniques
completely fail. In this sense it is a method of last resort.

The results of Theorem II depend on N being large enough and the variance
being known. Of course, it is rare that the variance should be known and

z unknown. The question "What is large enough?" is discussed in Appendix II.

1 One way to calcu:latoe{ cee a(x.l,...,xn} eoedX_ would be to evaluate
z at the points obtained by dividing each x, spice 1n§o M intervals and
taking the midpoints of these intervals. If ifistead the function s(xl,... ,xn)

n
were expanded in the form kgl . 1¢ik(xi) then the corresponding numerical -

integration would only require MnK points. Routine methods exist for making

such expansions, but if the function z(x ,...,xn) is in any way rough, a very -
large K may be needed to make the expa.ns}on accurate enough., In general, in

any definite problem special techniques can be used to reduce the number of
points to less than M? but in a large class of problems not enough less to

make the classical numerical integration competitive with the number of points
required by Monte Carlo (see equation (8) ). However, it also seems to be true
in the past that Monte Carlo has been most useful in evaluating integrals that
have arisen out of probabilistic situations. The author knows of no serious
non-probabilistic integrals evaluated by Monte Carlo. It is hard to say whether
this is coincidental or symptomatic.

2 J. H, Curtiss, "Comparison of Efficiency of Monte Carlo Me'thods- with that
of Classical Methods for Linear Computation Problems," Symposium on Monte.
Carlo Methods, John Wiley and Sons, 1956. '

D




The variance- can be estimated by

R (2 - 3% (5)

where of course

(6)
2 -}]j zl(xi) '
1
In general, whenever it is desirable to estimate values of formulae in

N
which ;2and 8 involved, the expected value can be replaced by 32 and 3 re-

spoctively; While the estimate will almost always be biased, the amount of
the bias is usually proportional to %land can be ignored if N is reasonably
large. . ‘
_ The estimate of V in equation (5) is often unreliable unless N is very
large, If G.is not known to be reliable, the computer may be able, by ex=
ploiting special properties of the problem, to obtain an upper bound for V

or (V-%). In other cases the computer may beable to depend on experience,
intuition, or Just plain faith for his belief.in the accuracy of the answer,
This point bears a lot of discussion, some of which can be found in Appendix II.

The estimate in equation (6) is useful if only becauseé it may give

negative information., If the estimated 9 is larger than the computer c#n
tolerate, this information, at least is usually reliable and the computer must

elther inerease the number of samples or change the sampling technique.

1 While the expegtod'vglues of ;b and 2 are ;? and Z respectively, ths

N-l

expected value of (z2 -2 ) is not V but. V. This occurs because the

expected value of 82 is 1 22 + - 1)52.9 It is customary to prevent a bias

fﬁom occurring in the estimate of ¥V By multiplying the intuitive estimate by
—y. Unfortunately, even if this is dons the aexpected value of W will not

g;I& but will also be biased by terms of the order of W

is practically never significant,

o The bias however,
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2. The Economics of Sampling

The error in the estimate of z is measured by o/ AN. There are two
ways to make this error small--to increase N of to change the sampling
technique to make o small. The extent to which each of these alternatives
should be used depends on the relative cost of each for the problem to be
done. Before goirig into a description of the sampling techniques available
for reducing o, it is worthwhile to consider briefly how much of the work
should be allocated to decrease o and how muéh into making N large.
It is assumed, for simplicity, in what follows that the computer is in-
terested in obtaining the greatest accuracy possible at a fixed cost or=-what
is in this context much the same thing--the minimum cost for a fixed accuracy;
the truth will generally lie between these extremes, but either of them
dffords a basis for the analysis. The desired accuracy is set by requiring
‘that o/ fN be equal to a preassigned e.
The cost of doing a problem can be divided into three parts, the cost of:
a. designing the sampling including the cost of extra analysis
if fancy methods are to be used,

b. programming, codipg, and code checking.1 This cost is usually
determined by the sampling design. It is listed éeparately because
even though it can be very impoftant, it is often ignored. For

small problems it may be the largest part of the cost.

1 Programming refers to the details of putting the problem into a form
that is suitable for machine computation. Coding refers to the semiclerical
Job of translating these details into the instructions that the machine will
follow and to the recording of these instructions on a medium which the
machine can read. Code checking is the perilous job of finding all the
mistakes. Anything the computer can do to simplify these time consuming
steps may result in a large reduction in the cost of doing the problem,

r
e, 0 o9

o
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¢c. the computing machine on which the problem is done. Except
for the time used for code checking and therefore already counted
in (b), this cost isusually considered to be proportional to N.
Since the proportionaliﬁy constant will vary with different

sampling methods it is also a function of (a).

If the cost of (a) and (b) is denoted by C,, the cost of (c) by CZN,.
and the total cost by C then '
C =Cy + Cy(CyIN (7

C1 and N are under the control of the computer, but it is usually impossible
to predict in advance, even approximately, the form of o(Cl); The analysis
from this point on thefefore takes on a certain fictional character. ‘

The error is

ke L (8)
c - . .
)
Solving equation (8) for N and substituting in (7),
- 0202 ‘
Cs= Cl + —:2—- (9)
oC 2 d&C ‘
dC 2 do g 2
=] + 2 + =0 (10)
€, ACCRE A
dc,
In most cases g~ can be ignored ard (10) becomes
l .
do __ € o (11)
&, T, ‘

By solving equation (11) for Cy» the c(Cl) of the sampling plan and

therefore the sampling plan itself is determined. N‘is also determined .




enm——

since it is equal to 02/52. The less said'about how sampling plans are
chosen in actual practice the better.

The only place in this report where the cost will be brought in
explicitly wiil be in the discussion of the device of Russian'.Roulette and
Splitting where it will be shown that a modification of equation (10)
can be used to determine the sampiing scheme, Even though it is not mentioned
explicitly the computer must always keep costs at least roughly in mind

when designing or evaluating sampling schemes.
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3. Meathods of Sampling

The sampling techniques most often used in Monte Carlo problems &ré
called: |

1, Straightforward Sampling

2. Importance Sampling

3. Systematic Sampling

io Stratified Sampling (Quota Sampling)

5. Use of Expected Values

6. Correlation

7. Russian Roulette and Splitting

In order to intmducé and compare the different techniques, a brief
discugsion of how eé.ch one would be used by itself in connection with a
typical problem is given in Sections L to 10.j After the general discussion
thefe is a more detailed explanation of each technique in Sections 13 to 19.
It i3 of course possible, and often advisable, to use two ar more of the
techniques simultaneously. |

The problem that will be used to illustrate the various techniques is
to estimate the integral

Z - // 2(x,y)E(x,)axdy (12)

A
vwhere f(x,y) is a b.d.f.l The area A over which the integration is done, is

divided into J mutually exclusive areas, Ay'to Ag. Tt is the different char-
acteristics of the integrand in these regions which will be exploited in the
methods which follow. - - | |

1l This implies only that f(x,y) >0 and that //f(X,Y)dxdy -],
A

€47
TN
i
75
{ A Y
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The following quantities are defined for each value of j:

the probability of A 3
py = [/ £x,y)axdy (13)
, A '
3 A
probability density of (x,y) given A 3
f(x,y)/pj if (x,y) is in Aj

_ (1)
0 if (x,y) is not in A

fj(xl,Y) - J

conditional expected value of z given A 3

z; - / / 2(x,y)1 (x,7)dxdy
A (15)
- f]z(i,y)f(x,y)dxdy/fff(x,y)dxdy
Aj' Aj .

conditional expected square

?j' - //22(X:Y)fj(x,y)dxdy
) | (26)
- // z2(x,y)f(x,y)dxdy/// £(x, y)dxdy
AJ Aj

conditional variance
og-?‘j-ig_ amn
P 3 is the probability that a point (x,y), picked at random out of the
p.d.f. £(x,y), will be in the region AJ; fj(x,y) is a properly normalized

p.d.f.; and f(x,y) is equal to ijfj(x,y)o Ej is the average.value of
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z(x,y) in A The expected value of z(x,y) over A is the expected value

3
of the Zj.

ZeT =) by | (18)
Similarly _
Finally 02 measures the fluctuation of the random variable z(x,y) given

J
that (x,y) is in Aj‘ It is shown in Section L (equation 2L) that the

variance of z(x,y) is the weighted sum of the values of these conditional
varknces and a variance due to the fluctuation of EJ from one j to another,

The same formulation cah be used totreat a slightly more general problem
thean the simple evaluation of an integral. For example, consider the eval-
uation of the expected value of a random variable W that is generated by the
following process:

a, Let pJ be the p#obability of a jEE event occurring.

b. If the ;)E-r-1 event occurs let the p.d.f. for (x,y) be gj(x,y)

and let W = wj(x,y)

. |
Vo= Z Py //wj(x,y)gj(x,y)dxdy | (20)
< B

P¥;

Uhg®

&3
2
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where the obvious definitions for ;j and 3; apply. All

the techniques to be described can be used as easily to
evaluate a ¥, defined by @quation (20), as to evaluate a

z, defined by squation (12). 1In fact, some of the techniques
are unnecessarily complicated fdr the simple integral, but

are useful for the more general problem, particularly if the

pj's are defined implicitly instead of explicitly.
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L. Straightforward Sampling (A)

This is the sampling which was already discussed in section l. N

- samples are picked from the p.d.f. f(x,y) and an estimate of Zz is defined

by N -
’21 - %- ZZ(xi’yi) _ S (21)

The variance of the estimate is

7.3

v, - é—;(x,y) - 2]2 ’-é (z (22)

It can be written

1y + 4 S/l - 2 cnmroas e
- ,}gpj JJE - &° fj(x,y)dxdsj
- é?pj Jl=- + & - 7)) 2 fJ(X,y)dxd;J |
3
- %gpjag + ij(ij - 5)2]

// (z - zj)zfj(x,y)dxdy - og

g&ince

2 [f (2 - 3G, - D(x,y)axdy = 0

I/ Gy - Py naxay = Gy - B

Tharefaore

(2k)
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Se Impofﬁance Sampling (4)

Another méfhod of evaluating z by sampling would be to:
-(a) pick a j out of anset of-probabilitieé pg instead of Py
(b) once j is picked, pick an (x,y) out of fj(x,y)

(¢c) with this (x,y) evaluate the fgnction

z#(x,y) = zg(x,y) - —% z(x,y)
P;
The p3 can be chosen completély arbitrarily except for ths usual

conditions:

Ofpggl (25)
D -l
J

together with the condition that

'p3¢- O (unless Py " 0)

The first two conditions guarantee that the pg shall be a set of
‘probabilities, the last one that‘pj/pg is never infinite.

Despite the arbitrariness of pg, the expected value of z#(x,y) is

-easily seen to be %: . ' -

Z#(X,7) = Z Py /]zj(x,y)fj(x,y)dxdy f (26)
= z pgj]%l Z(¥,y)fj(x,y)dxd§
-ij //Z(X,Y)fj(x‘v‘y.)dxdy ( o “

- //z(x,Y)f(_x,y)de .

-z

5506 123




t‘"““‘“ﬁ : 2
However, z*(X:YQJ is not equal to 2z -

[ = v [[ad et (x,y)axay
2
= Z j/;—% zz(x,y)fj(x,y)dxdy

-
Z .
J

Rl

2

So v, = [z* (x,y) = z%]

There are, therafore, an infinite number of sampling schemes heére

that can be used to estimate z — each with a different variance.
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(27

(28)

The

computer would presumably like to use a set of p§'s that minimizes this

variance. To minimize V, it is sufficient to minimize z*z(x,y).
term, 22, is not affected by changing the pj.

on pj must be done subject to the conditions of equation (25).

The.

Of course the minimizing

As shown in Appendix III, this is equivalent to finding the values

of pg that minimize

ij j ”Z"B‘

for a suitable A\ to be4determined later.

€

€
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The unique minimizing set is given by
ij *;73 (29)
To make the swmmation of the pH equal to one, it is necessary to take

=3 o\ (30)

If the sampling is done with this optimum set of pﬁ's, the variance

A 2 .
1 1/_5; =2
V2 - " &pj ZJ -2 (31)

becomes

The improvement over straightforward sampling is measured by

i 2
v 95e - [Te B

i [R5 R

The variance is reduced by the variance of a random variable which has a

probaﬁility p:j of taking on the value 12?.

=1

It is slightly misleading to call sampling with the pﬁ Importance
Sampling. The importance of any region in contributing to the answer is,
in a sense, measured by pj'ijl but the sampling should be done by a set!

of probabilities proportional to Py |2y However ;g,- Eg + ag, so if °§
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S

is small compared to Eg, ﬁxli"
the quantity corresponding to °j is zeroj in which case the sampling

. In fact in certain optimum situations

i probabilities should be taken exactly proportional to the importance of
the various regions. In any case it is usually easier for the computer to
conjure up estimates of ;;) than 1;3..

1f the ij are all positive and the pj are taken proportional to ;j then

P.Z
pg - _l_l- (33)
2

~ >
VZ-%[Eij;J:--ZZ] ()
J

1 o}
“§Z) % gl
3
[2]
- }1! 2|l
%3
and AR A Rt )+ Gy D% (35)
3
- B(l - _i)J | (36)
- 251

It is clear that sampling proportional to |5 JI may be poor if any
of the terms pjo§/l ZJI is large. The computer can protect himself against

this possibility if whenever his estimate of "z':j is very small he replaces

e
[P
‘;"‘l\

G2




it with a larger number in the calculation of pg. Exactly how far the
computer should go in this direction is strongly dependent on the problem
that is being done.

—

The problem of estimating zj or EJ is orucial if importance sampling
is to be done, Intuition, approximate calculations, experiments, or

previous Monte Carlo calculations can be used to get information about

;g and Ej' In most problems it is easy for the computer to get some idea

of the relative importance of different regions. When it is necessary though,
it is worthwhile to go'to some effort to get reasonable estimates of ;g

or ;j for, as shown in Appendix II, there are real disasters possible if

the assumed importance functions are very badly chosen.

(D

oy

()
[ty
W
g
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6. Systematic Sampling (4)

If it has been decided in advance how large N is to be and the pj's
B are known explicitly, then instead of choosing a random j for each sample,
the expected number of samples can be assigned to each region.

Denoting these expected numbers by ﬁj’ then

ﬁj - pJN 37

The estimate of 2z is

3'i

J=1

Ay
Z:(x”’y“) , (38)

- where (xij,y. ) is the pRas sample value picked in the jEE region and
;; -z(xlj,y' .) is an estimate of zJ

LPIL:.U

The variance is given by

= (2 ')Z ' (39)

-2

Z can be written

(ko)
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Substituting equations (38) and (L0O) into (39),

2

-
W
f
P Co
S
[
Can
la)
4
Ca
-
o3
L
g
]
[ 1}
-

+ cross product terms which drop out
when the averaging is donse.

and | vy -V, %{ij(ij - ;)2]

(L)

(42)

The variance is reduced by the variance of the average values of the

different j regions, one of the terms of equationl). Whether or not the

gain in doing systematic sampling is large will depend on the amount of

this variance, but as it rarely involves any extra work, if the p 3 are

already known, it is almost always desirable.
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7. Stratified Sampling (Quota Sampling) (A)

.As in 8ystematic 8ampling, each regioﬁ is assigned a definite number
| of samples instead of a random amount. However, instead of just taking
this number equal to pJN, it is cbosen to minimize the variance of the
estimate. In this respect Stratified Bampling is similar to Importance
Sampling.

If nﬁ samples are taken in each region, then the estimate of z

is given by n
I g, ;I |
j=1 i=]
th . th .
As usual, (xij’yij) is the i— sample value in the jJ— region and
n
1

Hg z(xij’yij) is an estimate of %y
- f=
By following the procedure in the previocus section on Systematic
Sampling, the variance is shown to be
22
p:o.

D3 =3 (k)
=
J
To minimize Vh, subject to the restriction that :g; n3 = N, it is
j-

necessary to take the unrestricted minimum of

I 252 J - |
2%3-1+Xz'n3 | (Ls) .
j=1 j=1 : o

This minimum occurs when

pso v o :
ng = ) | (u6)

(X2
¢
e
G2
ke
bl
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Where
1
V% =3 py W)
7
therefore
% (48)
1T

The result is reminiscent of Importance Sampling except that the

importance of a region is measured by pjoj rather than pJ ng

The variance becomes

Vh - % ( Z pjoj)2 (4L9)
2

-1—
¥ %

ERARE [ZPJ(UJ -5pf e ) pylEy - 5)2]' 0)

As in Systematic Sampling, the variance due to the variation in 55

is eliminated, In addition a variance due to the variation in °j is also
eliminated,

As might be expected, gh is more accurate than 32.

foi? | o |
AR D LD (1)
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Substituting o = ;§ - 332 one gets
‘ 1 fi -2 =2 ‘
i vz.v,‘-,,LZp3 3',’] | (52)
b o | i -
32 - 7]

-1 P gy
ﬁng(pg )
which is greater than O.

The proﬁlem may be such that the pj's are not known explicitly. It
can then be very inconvenient to try to force, in advance, the region in
which the ﬁoint (x,y) is to fall. In this extremity a variation of the
above sampling technique can bs used.

a. A point (x,y) is picked at random and the j region to which

it belongs identified.

b. If‘ng points in this j region havé already been picked, the

point is discarded and.a new choice made.

c. If less than ng points have been picked then the evaluation

z(xij’yij) is made and the value recorded.

The above process can only be useful if the cost of picking a poift is
completely negligible compared to the cost of evaluating z(x,y). If the
cost of picking the point (x,y) is not negligible, the process in principle,
should be changed. The decisien whether or not to discard a point should
depend on how many points have’already been picked in all the regions, and/
or on the relative costs of picking and evaluating. Further discussion

on this point will be found in Section 19.

RS
L 2
g‘u 3 )
L)G L

G

(€8]
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If, as is often true, the computer has good estimate of Ej available,

he may wish to take ng proportional to this quantitj.

Np.» |
- d
In this case 2
1 - Z g
1 2,.. z ' - -2
V-V, " N[ijaj(l - %;) +ij(zj -z) ] (55)

Since equations (54) and (34) are identical, there is no advantage to
be gained by doing Syotematic 8ampling, or Stratified 8ampling proportional
to z 4» vhen Importance 8ampling proportional to ;j has already been used.




/
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8. Using Bxpected Values (A)

Sometimes it 18 a simple matter to evaluate ZJ analytically. Than if
the py are known one can write z =3 pJEJ and there is no necessity to do
Monte Carlo. Sometimesthough the p 3 ars not given explicitly and but only
a complicated way of sampling for them is given., There is then no point
in using Monte Carlo to do that part of the problem which can be done analyt-
ically. Only the j value should be drawn at random and then 'z'j used for
the estimates

N
SRt PR | (56)
i-l A
) is ths analytically ealculated expected valus of z(x,y) in

g[¢!
the J region that was picked on the i-t-'-]l sample, The variance is

v - i ijczj -1)° | (1)

V-V " ZPJ‘% (58)

As would be intuitively expected, the variation due to the fluctuation

of z(x,y) within a j region has been eliminated. In many problems this

variance eliminated is very large compared to VS'

§id

A
(8
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9. Correlation (A)

It is sometimes desirable to do two or more problems simultaneously.
This occurs, in particular, when one of the following three conditions
hold: |
a. The answer to one of the problems is known. The answer to the
unknown problem can be calculated more accurately by adding the
estimate of the difference to the known answer rather than by .
estimating the unknown one directly. The known answer is usually
the solution of an idealization of the problem of interest.
b. The difference between problems is of interest. If the sampling
is carried out in a correlated fashion, it is usually possible
to estimate the differences more accurately than if the sampling
were done on the problems indapeﬁdently and the anawers subtracted.
c. A parametric study of n prqblams is being conducted. If the
25 problems are done simultaneously, it may not be necessary to
duplicate n times the similar portions. This will bring down the
total cost, or enable the computer to do a much larger étudy for
the same cost. : -
‘For the example to be considered, it will be assumed that the computer

knows how to evaluate, analytically or otherwise, i

v -‘Z7ﬂv(x,y)g(x,y)dxdy (59)
A A

and that z - av will be estimated by the sampling (condition a). As before,

a set of quantities is defined for each j region:
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a; -4/g(x,y)dxdy
. | | :4655)] (x,¥) in Aj

) A
gj(x,y) o J (x,y) not in Aj

vy -//V(x,y)gj(x,y)dxdy (60)
x
:g -//vz(x,‘y)gj(x,y)dxdy

In addition, the correlation coefficient p is defined By

pe(z =32 (v-¥) (61)
%1%2

] where o, is the s.d. of z(x,y) for the sampling method used and o, is the

corresponding quantity for v(x,y) It can be shown by applying Schwarz's

- inequality to the f (z - Z)zf(x,Y)dxdy; / (v - F)Zf(x,y)d.xdy, and

/(Z -z) (v - ;)f(x,y)dxdy that -1 < p < 1,'.




The correlated sampling can be carried out by the following scheme:
a, A jvalue is picked at random from a set of probabilities qj.
b. For every value of j plcked, an (xi,yi) is picked out of

fj(x,y) and an (xi,yi) from gj('x,y). If it is feasible the

R |
(x',y') may be correlated with (x,y); in this case the (xi,yi)
is picked from a g(x',y':x,y).
c. (a) and (b) are repeated until N samples are picked. An estimate )
of z is then calculated by
wh are N
A1 (1
z-wé;%a— 2(x;,%;) ‘
(i)
N .
1l .
ol Z 3, V(xi,yi) _ )
i=]1

The computer should try to pick a to minimize

v6 - (26 -z) - (63)

- le-n - w6 -9)2

(£ -3)° -2(F-2)F-7) + a2(% - 7)°

- % [oi - 2apclc72 + azog]
where

P12 .
o‘i -qu //%J(X,Y) a—%:] fj(x,y)dxdy - 3% (64)

f”
P
~n
-
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2 R4
25 (x,¥)p; -
- Z/j—l_d:.;—-—i fj(x’y)dxdy - zz
J

POJO, = 2V - 2V

7 P ag]
Zv - z(x,y) J v(x',y') -1] g.(x',y' :x,y) f(x,y)dx'dy'dxdy
o5 o] e 8]
- 2 Sl 2 ’ -2
02 'qu /fj(xl,yi) qg gj(xl’yl )dxldy' -V

v Zx',y' o L
:E: j(x',y')dx'dy' -V

y . . av
) The optimum @ is determined by setting 1%? = 0 which makes

> . a= g = . . (65)
With the optimum a the variance becomes

1l 2 2
V=g -p0 (66)
Therefore it is seen that the higher the correlation, the smaller the
variance V6.
Unfortunately the compﬁter ugually cannot calculate a analytically.

It can be estimated by sybstituting 2, 9, é;, and‘:2 for the corresponding

expeoted values in

(67)
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If the same sample that is used to estimate z and v is also used to
estimate a, then the variance of Q6 can no longer be simply expressed. In
addition, it is conceivable that a serious bias could be introduced by
such a procedure. The following alternative can be used. The sample is
divided into two equal parts: Q;, Q', and ¥ are calculated from the
first part, 2%, @, and %" from the second part, and the estimate is changed

to

2y = 2 - M@ -9 | - (68)
or Qg - fn - G (o - v)

The variance of either of the above estimates is

Vi = VY- % [02 - 2§-ipolo2 + 3'202] (69)

~ 2 32(1 - 62)

This is twice -as big as t he optimum variance of equation (66).

If the average of gz and 22 is taken as the estimate, then the variance

_ . 2
V- %v& + 3 [a%v' - w'r), | (70)

which can be shown to be less than Vg.

becomes

In some cases the computer will be able to calculate a22 analytically,
but can only estimate PT1 0, It is not necessarily desirable to use this

combination, because the estimates of the two quantities are correlated,
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A A A N

AN

2V - 2 V . -2V
and may have a smaller variance than zv 2
73 no -
V ev -V

John Tukey has pointed out to the‘author that equation (70) is not
"maximally ingenious".‘ It suffers from the defect that the correction
term HTV_:_;72/2 has not been made as small as possible. One way in which
it can be made smaller is to proceed as follows: .

a. Divide the samples into K parts, each with N/K samples.
/N /\é
b, Estimate Qk, Gk’ (poloz)k and (02 )k for each part, k = 1,2,004,Ko
¢. Define e by /N
* % OV (poy0,)
A 1 172 i
11t =
% "¥I o
1%k (02 )i
a;‘ is therefore independent of the cther quantities with the

(1)

same k subscript.

do Let /\

z'é. .IZ[ _atl|(v -,;)] (72)
Then 2

~
vy - %[vi + fainpoya, o 5-702} JHEe L5 o

N
(0,°),

and the correction term is divided by K instead of 2.

- Besigse the number, N/K, of samples in each part may be small,

(po,0,) PoYo o
——1—2—3 may be a very biased estimate of —2 , While a bias
(o ) 022

in the estimate of a'' does not bias the estimte of z it is
desirable to keep such bias's small., It can be reduced by changing .

. . /\
the definition of a'ﬁ to

€

Ty

G
b
o
(4%

o
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A 'igﬁ (5Gi°2)1 |
al}! = S A, ()
1=k (% )y

It is intuitively clear that the correction term will still be
of the same order of magnitude if this definition of a’i' is used
instead of the one in (c), but that the bias will be smaller,

If the a is fixed then the computer should try to choose q'g to minimizé

the variance, Going back to equation (63) and rearranging terms

22 —_ 2 7
P.:2; = 2ap.p.2,V, + 4 q,V
T " é“ & W - o (75)

6

The optimum qg to use for any given a is given by

SRR R i (76)
where )
K=1/ Z\Jp§;§ - 2¢xp3qudv‘j + a2q§v3 (M

if this is done then

Vg " slr{;fz - (@ - m">‘°‘} (78)
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10. Russian Roulette and Splitting (A)

"~ Tvio of the techniques, Importance and Stratified Sampling, depend
for their effectiveness on the computer being able to change the sampling
probabilities so that a high percent of the samples are in the important

A, regions and small percent in the unimportant‘ones. In some problems

J
this cannot be done easily. If, for instance, pj wére not known explicitly,
but were obtained by an involved process with many stages of sampling, the
computer might not know how to force the separate stages to make the final
sampling of J proportional to an arbitrary set of pg's° In this eventuality,
when the sampling is such that first a j is picked and then an (x,y), the
following process can be used:
a, Classify each region Aj as being of type I or II. In type I,

either because the variance is small or the expense of picking

(x,y) and evaluating z(x,y) is large, the computer wishes to

avoid getting many samples. In type II the exact opposite is

true, The numerical criteria for distinguishing the two types

is developed in the argumenﬁ.
b. In type I regions, where the relative contribution to the answer

is sémehow small, Russian Rouletto1 is used. Whén in such a

region, a sample (xi,yi) is obtained only some of the time, say

with probability a5 and 2(11331)/h3 recorded for the sample;

otherwise, with probability 1 -‘qj; there is no sample taken

1l The name, of course, is derived from a well known game of chance said
to be popular among Russian army men. .The sampling technique itself
originated at Los Alamos. John von Neumann and Stanley Ulam are responsible
for both the sampling technique and its name,’

ooyt
658 1%%
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and zero is recorded. If the first eventuality is realized,

only one (x,y) need be picked and one z(x,y) evaluated. If ‘ |

the second eventuality materializes, no (x,y) need be picked.

The expected value of the sampling has not been changed. The T4
variance V 3 for estimating z 5 given that jJ has been picked, is
2
g (79)
v = -
TR

ce In type II regions, Splitting can be used. n j valuas of ‘
(x,y) are picked for avery ;J. The sample estimate is then
the arithmetical average N g z(xi,yi) where (xi,yi) is the

121. point picked on the sample. The variance of the above

expression is R
Z. - 2
73 ny
&
.12
n'j J

The variance of the whole process is given by equation (23) which

takes the form

J

" Zp Gy - 9 Zpa 73 (81) :
A = §
. 'ZPJ(ZJ =2 'Z"J ZPJ =) Py

, I

N

J

J

-
z
-V,O+ijad.- + ..L.l
R I s
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where
C -2 -2
Vo ijzj -2
11

The expected marginal cost of a sample is given by

C=C_ + C, + .n,C ' 82
o}r—pj“m D Py s (82)
11 .
where Co is the cost of picking j and Cj is the cost of picking (x,y)
‘and evaluéting z(x,y) in the j-té region.
It was shown in equation (9) that an efficient sampling scheme

minimizes H = CV,@ To find the n,'s that do this, it is convenient to

J
assume that they are cantinuous variables so that the ordinary techniques
of differential calculus can be used. This assumption has only a minor

aeffect on the results.

ov .
B%’;—’CE%*%V?'O (83)
av v
7 7 aC
5;1_3:. .- gn_j (84)
Using (81) and (82), and solving for ny:
2
P:C i
N = '%J‘ - "'Ezpjcj
n
J
ny = 7«13/\|Cj : (85)
where A= \JC/V.I . : | (86)

1 CVs7 corresponds to C202 in equation (9).
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This result is intuitively pleasant (and reminiscent of equation L8).

Similarly it can be sHown that

=

If these ny and q4 are used, V7 is obtained by substituting (85) and

(87) into (81) and (82).

V7=V * %{ZPJ J%Cj *D P50 \fq} (88)
I 11
.
C=C,+ )JLij\’-z-ng +ijoj \‘Eg} (89)
. I II :

By dividing (89) by (88) and using 3 - C/V7, A\ can be evaluated:

2

P (90)

5 B

2%/03 <1, For a type

II region X2a§/bj > 1. It can be shown it is best to assign the border-

The condition for a type I region is that \

line cases, deg/bjz 1> xzzg)bj, to type II. BEguation (90) for Xlis

an implieit relation. Vo depends on the number of type II regions which
in turn depends on A. The dependence is, however, not sensitive, so it

is eaéy to adjust the two factors. 1In fact, almost any iteration procedure
will converge.

In most problems Cj is not a sensitive function of J and can be taken
equal to an average C'., Similarly there is very littlé error introduced
1f V_ ie t:ken equal to V! = (Ej - Z)E and the4j2§ to oy When j is set

0

equal to R and these approximate substitutions made, equations (88)
o R

1l It should be pointed out to the more cautious readers, that the
derivation of equations (85) and (87) can be justified even if the regions
I and IT are allowed to depend explicitly on X\ or qj and njo

@ T g f'ﬁ_ 62 :‘;B

wh
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and (89) become

Vl .
Vo=l 33‘ \'GZ*'C' | (91)
lc
C=C,+ 33 vg.C' (92)
O

In‘this instance, the improvement due to the chanée in variance
cannot be calculated directly as before, because here cost of a sample
is taken into account. When ordinary sampling is used, the product of
the cost and the variance is

vy = (C +C') [Vé + ;’1 o (93)

1 J

Using Russian Roulette and Splitting,

.~_ , _ . |
CV7 = COVC'> + 20J. \‘COC‘V:> + Cf aj (9L)

Subtracting (94) from (93) and colleeting terms
' T =2 = — 2
vy - Vg = (oo+ c') ;(c:‘j - cj) +, (\]cwa- F \[c_o) . (99)

The first term on the right side of equaticn (95) is easily inter-
preted. (CO + C') is the average cost of a sample when doing straight-
.forward sampling so the improvement is measured by comparing (05,-.55)2
with V; (i.e., the variance of o5 with the variance of z(x,y) ). There
is an additional improvement given by the second term which is related to
the fact that even if’od didn't vary at all, it might still pay to sample

many (x,y) values for every j picked.




11. Introduction to Section B

The seven methods just introduced in Section L through 10 will
now be treated again in Section 13 through 19. The point of view
will bé somewhat different and in mést cages the discussion is more
complete. There will, necessarily, be some paraphrasing and repetition
of the previous sections., However, the ability to set up an efficient
Monte Carlo problem depends more on the intuition of the computer than
on being able to'evaluate the formulae given, and paraphrasing may make
the ideas clearer, thus helping to create a sound intuition. -For'the same
reason, a possibly excessive number of special cases and techniques are
discussed.

As already explained, most of the discussion and formulae are
unchanged if x ar Y are actually multidimensioned variables. In most
applications it is necessary to make this extension.

In what follows, each value of x is thought of as defining a "cut®
or region of the wholé space. These regions take the place of the j

regions of the previous section. Thus z(:x) is analogous to 2 Though

J.
the implicit multidimensionality of the variable made two dimensions
superfluous until this point, now for much of the analysis which follows,

two variables are necessary,

ey " ry
$30 127
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The following quantities, some of which have been defined before,

are needed in the discussion:

£(x) = [£(x,y)dy

the marginal p.d.f. of X

the marginal p.'dof. of Y

g(y) =/f(x,y)dx

flx:y) = £(x,y)/ely) the p.d.f. of X given that Y = y

the p.defe of Y g'ivén that X = x

Cgly:x) = £(x,y)/f(x)

the expected value of z(x,jr)

z(:x) =/Z(x,y)g(y=X)dY
given that X = x

;z(zx) -/zz(x,y)g(y:x)dx = the expected value of zz(x,y)
given that X = x

(S]]

=/ z(:x)f(x)dx
- [2(:y)ely)dy

= Jf 2o £(x, y)axdy

2 = 52(sx) = [ 2 () E(x)ax
--/;Z(zy)g(y)dy
.// za(x,y)f(x,y)dxdy
o?(:x) = 22(sx) - 22(:x)

oz(:x) = /02(:x)f(x)dx

vy --z-?- 52 e g“(:x) + %(:x) - '2']2

( P2
\o.\
o
e
)




12, Estimating z(:x) and ?(:x)

Tt is often desirable to estimate z(:x) and ?(:x) by sampling.

In principle this can be done by picking N values of y from g(y:x) and

then estimating z(:x) and -z-?(:x) in the standard way:

N
2(ex) ¥ g Z 2(x,y,)
1

A N
z2(:x) -%1 Zzz(x,yi)
1

(96)

(97)

Howéver, the computer usually wishes to estimate the whole function

z(:x) and ;2-( tX)e

It may then be too expensive to sample intensively at

every value of x or there may be same evaluations of z(xi,yi) available

from previous problems in which the x; have been plicked in some random

fashion. The si.fuplest procedure in this case is to divide the x space

into a number of interwals [ar-l’ ar] (if x 1s multidimensional, these

are subspaces). Then by testing if a_, <Xx; <a, each of the z(xi,yi)

can be assigned to an interval. Expected values for each interval can be

estimated by:

2
r

where B
r
%

Z
r

where C
r

Br Z biz(xi’yi) Bp1 <% Z 8 (98)
1/% by
C. Z ciz(xi,yi)' 8,1 <X <a | (99)

6. =
(T
Nz

e
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The bi and ci

the z(xi,yi) have been produced by different processes, and

can be taken equal to one if desired. If, however,

bi - 1/ .Z (xi ] yl) - ;2 (xi, yl )] - l/ojz_ (100 )
5 2 2
ci = 1/ z (xi’yi) -2 (xl:Yi) (101)

‘the variance of gr and zi are minimized (see discussion on averaging

different estimates in Section 18). If the intervals are taken small

RERN

AN

enough the compﬁter”can assume that

+ a

§ —~ Z(. ar-l r)
r %N

N + a
2 z?(: &1 ry

r (102)

However, it is undesirable to take the intervals too small, because then-
there won't be enough sample iélues in each interval to make the estimate
accurate. |

There i8 an alternative technique which the author feels is slightly

more desirable. Define

J(X) b %blz(xi,yi) xi : X‘
K(x) = % by
i (103)
2
L(x) = iZciz (xi,yi) X, <X

M(x) = g Cy



The previous estimates can be written

A ) - Ja,_4)
Zr © X&) - KT‘r—l)

;b ) L(a)) - L(a,_;)
r ﬁ(arf’- M(ar_17
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(10L)

It is clear that if the empirically determined J(x), K(x), L(x), and

M(x) are first smoothed out so that derivatives J'(x), K'(x), etc. can

be calculated, estimates of z(:x) and ;E(:x) are given by:

d

Ce

Rlg  Bl&

/

2(:x) -

A
z2(:x) - -

o
&/

e He

(105)

The advantages, if any, of the above technique lies in that there

are no intervals to bother with, and that the smoothing operation makes

every sample contribute to the estimate for any given value of x. It is

also possible to use various curve fitting techniques (See Appendix IV),

but these have the disadiantage of requiring that hypotheses be made about

the functional nature of J(x), K(x), L(x), and M(x). Nevertheless, curve

fitting techniques can be very useful if it is desirable to make the

estimation of z(:x) or ;?(zx) completely automatic.

If the functional form

assumed for z(:x) or‘;?(:x) has some validity then using it may be a very

advantageous way to extract a larger amount of information from the sample

than is done by the other methods suggested.

4
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13, Straightforward Sampling (B)

As in Section A where first J was chosen, now first the x, will

be chosen, and then the Yy This can be done by solving the equation -

i
/1 fx)dx = Ry

-OO.
for Xy and then the equation
Yy ,
/ g(y 1x;)dy = R,

- O

(106)

(107)

for ¥;5 or any of the techniques suggested in Part I can be used. Once

the sanple values have been drawn,

N
Al
5 N Z 2(xy,7;)

1=l :

O m———————

Yl'%?‘[?l'-]z

n {[ﬁ “I:;(;x")]" + [BGx) - 5]}2: |

(B ao] o i -3

- P + (360 3) 2

The two terms can be interpreted as being the variation of z(x,y) for

fixed x and the variation of 2{1ix) ;e'speéiivgiy;' I

(108)
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1}, Importance Sampling (B)

By dividing and multiplying by an arbitrary p.d.f., £#(x,y), %

can be written -
//Z(X:Y) m’%} f#(x,y)dxdy (109) -

which indicates that g is also the expected value of

f(x,,¥ -
3, = % iz(xi,yi T—-(-——)-*xi i (110)
s

where the (xi,yi) are picked from the p.d.f. f#(x,y). The variance is

given by
/ / [ £ xf;(rx ]2f*(x,y)dxdy - (111)
i // "‘aafi"“) txdy - '_ o
V2 is-minimized (Appendix III) when

2(x,y) = I( | 2(x,y) I £(x,¥) (112)

where K =1/ /1 2(x,5) £(x,5)dxdy

If z(x,y) is everywhere pésitive and the optimum f#(x,y) is used,

V2 = 0 for _
£ (x,y) = Z(x)Y)f(x)'Y) ‘ (113)
2
and
z(xioyi)f(xixyi) .
f‘i(xi’yi)

c"'\
G
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independently of what (x ) happened to be picked. It is clear

1974
that there must be something a little fraudulent about the result, and
in fact, in order to know what f#(x,y) is, the normalizing constant 2
must be knoﬁn. It is therefore not miraculous that if the answer is
known in advance, a perfect sampling scheme can be designed. The chief
value of the above theorem is that it demonstrates that there are no
"Conservation of Cost" laws and that if the computer is clever, wiée, or
lucky, he may, in choosing from the infinite number of sampling schemes
available, be able to choose a very efficient one.

When z(x,y) changes sign in the area of integration a perfect sampling
scheme cannot be designed én the basis of importanée sampling alone. If
8(x,y) is +1 or =1 according as z(x,y) is positive or negative, then

a(xy,y))0(x,5;)  8(xy) (124)

B 57;) X

Vo ® I]\i //[?i%ﬁr Kiz(x,y)| £(x,y)dxdy - 52} | (115)

- %{% [/lz(x,y)lf(x,y)dxd:/ - ;2} ‘
<1/ _ =2
i)
-% MIS(X’Y)lf(x,Y)dxdﬁz - [//z<x,y)f(x,y)ddeJ2
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=i

{//ﬁz(x’y)l - 2(x,)] f(x’Y)dde} {/j (2,1 + 2(x,9)]

£(x, y)dxdy
- #[[{lz(x.y)lf(x,y)dxdyJ [gZ(x,y)f(x,y)ddeJ

where z(x,y) is negative in 4, and positive in Aye
If, as might be the case, there is a known lower bound \ for z(x,y),

then there would be a perfect Importance Sampling scheme for z(x,y) + A.
Or it might eccur that the positive and negative perts of z(z,y) could be .
treated separately. But it is often not practical to consider these devices
as part of pure Importance Sampling, It is still possible in principle
to design a perfect sampling technique for a general z{x,y) by using
Correlation in addition to Importance Sampling. If, for exampie, it is
possible to find a function v(x,y), such that o

v -.JC[V(x,y)f(x,y)dxdy | (116)
can be evaluated analytically, and such that o

2(6,7) + v(,y) 2 0 for all (xy) (117)
then a zero variance scheme could bs designed er theyintgér;}

I= f/ B,y + V(X,Y)] £(x, ) dxdy (118)

and z estimated by (I - ¥). There is some more diééussidn,bn this point
in Section 18.

: Thé name Importanqe;Sémpling was-suggested by the théorotical zero
variancé.éstimates and by the corresponding generalizatioﬁ‘to integral
equations. |z(x,y)|f(x,§) measures the importance of the point (x,y) and

the optimum sampling p.d.f. is taken proportional to this quantity.
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It might be interesting to note that if z(x,y) > 0, the optimum
importance sampling for z will also reduce the variance for the estimate

of the higher moments, 2", The variance of the estimate of 2" without

importance sampling is

4 .
v = [ 2xy)ex,y)dxdy - 2 (129)
I Tno
=2 ez
and with optimum importance sampling. it is
2n —
v 17' #(x,y) dxdy -z ) (120)

—2
-z // zzn';(x,y)f(x.Y)rdxdy -2

oY -2
-z 2T L g
N
ﬁo show that 2 z2 ! -?- 1t can be shown more- generally that if
z(x,y) <0, z -I _“I . Since ¢(w) - log‘/y’z (x,y)f(x,y)dxdy is a

convex function of w apd ¢(0) = 0, it follows that d(u) + ¢(v) < ¢(u + v)
which is the property above.. Hénce tﬁe variance has been reduced} o

It is, however, not true that any f#(x,y) that decreases the variance
of the estimate of z also decreases the variance of the estimate of 2",
In fact it is easy to exhibit counter examples.

In the general case as shown in Importance Sapling (A) (Section S),
the sampling should be taken proportional fo the a pridri probability of
getting into a region times the square root of the average of the squére

of a(x,y) in the region. This rule is illustrated in the different types

of Importance Sampling discussed below.




Importance Saspling in the x space only.

Let z be written:

z = // [z(x,y) %E%] £#(x)g(ysx)dxdy (121)
d
an X ) N f(x1)
z =3 Zz(xi,yi) ™) % (122)

i=1

where the (xi,yi) are picked out of f#(x,y) = f#(x)g(y:x).

2
V2 '}lz // [Z(X.Y) fé{;)ﬂ re(x)g(yix)dxdy - 220 (123)

2 1

//%f—zk—) g(y:x)dydx - % 2]

i

] 2 ‘
/it e -

=

The minimizing £#(x) (Appendix III) is given by

ta(x) = [ £\ [2 ryvelysmiax (224)

- f(x)J ;?( 1x)
{?(.:x)

.3
fieh
&

s

LS

i
s
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If this f#(x) is used, the variance becomes

——ei e

v, - %{ [ 20PN o ;2} . (125) -
£(x) ;ﬁ(:x)

- %{\j ?(:x) / \{:z(:x)l i’(x)dx - 52]

- ;1:[ —;‘I;_;Xz - 52}

The difference between this variance and that obtained by straightforward
sampling is .

2 .
vV, -7, -‘% {;f(xx) - z-(:x) } (126)

and the variance is reduced by the variance of a random variable that has
a probability of f£(x) of being equal to ‘;7(:x).

Sampling only from the x space is significant because it is common
in practice to break the problem up ;nto two or more stages. If £his is
done, optimum Importance Sampling means that the a priori probability
£(x) of getting into a region x should be modified by the factor 425(:x).
Only when Importance 3Sampling is done in the entire space is‘thé factor

. In that case, the word "importance" is used in its natural

l z(x)Y)
sense-~-that is, those regidns are called importént that make large contri-

butions to the answer being calculated. However, the natural analogﬁe

¢ b
i)
22 d
=
(2

NN

G

[34)
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of | z2(x,¥)|, | Z(3x)!, is not the correct factor for optimum Importance

Samplingin the x space alone, but rather dzd(xx).

In some problems the difference betweenq—zg(:x) and | 2(1x) | may

not be great. ;!(tx) - c2(xx) * iz(xx). If oe(xx) 1s small then

ix) = 2(:x) (127)

In general, if the computer finds it easier to estimate z(1x) than ;?(:x),

he can try tb take

pa(x) = £0x) 12Gx)l | (128)
Z

If this is done, the variance becomes

M-{—} - 221 (129)
lZ(:x) J ‘

1 /-
V2 - R Z[

- 1l E 02(2X2
z(tx
L [ FTIY
While V2 in this case is ordinarily much less than Vl, it is easy to see
that it can be large and in fact disasters are possible if care is not

taken.

v, -V, -% 0% (1x) ll —-z--—] + [206x) - 2] 2 (130)

) ‘Z(:x)'

and the computer must then worry about a possible special treatment of

regions in which z/1z(:x)| is large.

550 139
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As remarked befors, the problem of estimating ;7(:x) or 3(1x) is
crucial in Importance Sampling (estimafion by sampling is'discussed in
Section 12). This is not necessarily difficult. In particular, know-
ledge gained from any source can be exploited for this purpose. In any
case, only the relative importance of different regions and not their
absolute values need be known. “

Importance Sampling with a parameter.

In many practical problems it is convenient to restrict the choice
- of f#(x,y) to a single family of p.d.f's. This may be desirable to do
for either computing or theoretical convenience. If such a family is
represented by h(x,y,a), then it is desirable to determine a 8o as to minimize

the variance. This is equivalent to minimizing

2 2
// [ s )} h(x,7,8)dxdy = // £ nE 5T axay 111)

h(x,y,a) is subject to the usual conditionss

//h(x,y,a)dxdy -]
h(x,y,a) >0

If the form of h(x,y,a) is such that these conditions are satisified

for all -values of a, then the optimum a i8 formally determined by

22
// (x,y)f (x,¥) Aahg),y,t“) dxdy = 0 (132)

h (x,7,a)

If the h(x,y,a) is not already normalized for all a&, equation (132) 18

replaced by the set (Appendix III).
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//ﬁ;ﬂm_“ X722, dxdy = l//g% (x,y,0)dxdy (133)

h(x,y,a)

//h(‘x,y,a)dxay -1 (13L)

and two unknowns, a and \, must be determined. 1\, of course, is a
Lagrangian multiplier. When h(x,y,d) is not a function of y, the inter-

2 2
gration on y can be performed and the quantity 2 (;J )2 (x,7) is replaced

by -z-?(txzfz(xz. h*(x,7,6)

o) (xa¢)

Often the only practical method of solving equations (132) or (133)

is to do a preliminary parametric study by Monte Carlo. The function

2 2
I(a) = // 2 %‘(2;’((1’)"” dxdy . (135)

It is of course possible to evaluate (135) by Monte Carlo. It is

to be minimized is

not necessary to sample from _h(x,y,a) when doing this aevaluation because

I(c) can be written

| 2

80 that an estimate of I(a) is

N .2 4 2
N 1 Z (xilyi)f (xi)yi) .
- - {1
I(a) N izlm—-—'—-)'f'myi,a ~ xi,yi (137)

where the (xi,yi) are picked out of f#(x,y).
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The chief application of (137) is when f#(x,y) = h(x,y)al)and ve

wish to evaluate I(a) for a series of a's, say @)y Gns and a3. Then

2 2
I(G) -//zxf;’a)f )(C):Yﬂ)‘l h(x’y’al?dxdy . (138)

1

2 2 T
5 (x;,5,)f ("1, yi)

Tye1S 1
I(a) R Zlh(xi,yi,a) h(x,,7,,0,) (13?)
ie ,

It is important to notice that a number of a's can be aiudied with
the same (xi,yi) sample values, as only 1/h(xi,yi,a) needs to be recalcuatgd in
each case, In principle, all I(a) val ues desired could be estimated
using the same importance function but it is likely that this will be good
JImportance Sampling only in some region of the a space, perhaps in a |
neighborhood of Oye |

This; of course, is an example of correlated sampling, Not only is
the work per value of a reduced by the correlation, but since the computer
is interested in comparing different I(a) the sampling is more accurate
than if it had been carried out independently for each wvalue of a, This
ocours because in most problems the I(a) will be positively correlated and
fluctuate in the same direction. It is, of course, poseible to use the
same technique to evaluate éééﬂl and maybe even g;g directly and use these

. quantities to estimate what a should be in a subsequent calculation.

$L0 h4AR
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In partioular, if @, < oy and ¢y > 4y, I(aj) for these three values
might indicate how @ should be changed to decrease the sampling variance.
The problem might even be so programmed that this adjustment of a is done
automatically by the computing machine. The author however, .does not know
of any case where this has been tried, and the procedure certalnly has
dangerous pitfalls. It seems, however, natural and intriguing enough
to mention. |

Use of Extra Freedom

It has been pointed ouf.l

that the a in h(x,y,a) provides extra freedom
which can be exploited by giving it a p.d.f., p(a). If this is done, the
¢ can first be picked at random from p(a), and the (x,y) selected from
h(x,y,a). For the problem and technique of this section it would
presumably be valueless to do this, Since an optimum a exists,
the best p(g) is 8(a-a ), where o 1s this optimum . However, if the
techniciue is combined with the use of expected values, it can be very
helpful. This combination of Importance Sampling and Use of Expected Values
is discussed here rather than in Section 17 because it seems to be more an
example of the former than the latter. Also, as the ideas given hare are
somewhat speculative, the details are necessarily sketchy.

The point (x,y) is a function [x(Rl,R2,a), y(Rl,Rz,a)] of the uniformly

distrituted random numbers R.l and R2 and the parameter a. If a is given

1l Hale F. Trotter and John W. Tukey, "Conditional Monte Carlo for Normal
Samples", Symposiwm on Monte Carlo Methods, John Wiley and Sons, 1956.

(j‘s
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a p.d.f. p{a) then z(x,y) fify i can be integrated over all a to give
J

an estimate Ii for each sample

£x(Ry Ry a) (R Rya)]
Ii = /Z[x(R1:R2’a)9Y(R1:R2:a)] h[)E(R:TRZfG),y(Rj}R‘?fGY,]T(Q)dG (140)

Iji’ - //p(a)p(a')l(a,a')dada' (141)

o) » st S, e

Jf this is done

where

is a symmetric function of & and a', and

X

X(R—lsnz)a)
Y(R-laag,“)

xt = x(Rl,RQ,a')

y' = y(Ry,R,,a')

y

In order to minimize_Z7-p(a)p(a')I(a,a')dada' subject to the condition

that p(a) be a p.d.f. it is necessary to minimize the form

J #(@p(a)Ile,a Jaadat - 2 fo(a)da | (143)

for those p{a) > 0. This minimization yields the integral equation

/p(d)I(a,a')da =\ \ (1Ll)




If I(a,a') happens to possess a resolvent kernel H(a',p) with the

property |
[ 1(a,6")H(at ,p)dar = 8(a - B) (115)
- then
/H(a.' ,a)da’
pa) = (116)
jQ(H(a',a)da'da
and
—
Iy
- 1//]AH(a',a)da.'da (1L7)

Integrating over p(a) can also be used to estimate a z', where g!

z! -//z(x,y)f(i,y)dxdy (1L8)

A

is a subregion of 4., To do this, a subregion of the a space,

is defined by

- and Al

S(Rl’R2) is defined, so that when a is in S(Rl’R2)’ the point

[x(Rl,Rz,a),y(R.l,Rz,a)] is in A). Then

e ol

5, (B,R,)

- f[x(Rl,Rz,a),y(Rl,Rz,a)J
’["(Rl’RZ’a)”(Rl’RZ”“)]n[x<a1.az,a),y<al,n2,a),g"(“)d“ (k)

is an estimate of z' independently of the form of p(a) so long as

h(x,y,a) is not zero for any (x,y) in A;. The optimum p(a) is defined by:

c >,
(A
buh,
o
Q k1
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anmm—

I' (a,at) = // DO,y ID(! 3 )a(x, )2t o) e TS AT ) s an an, (130)

where
1 if (x,y) is in Ay
D(x,y) = (151)
0 otherwise

and the other quantities have obvious definitions.
If the computer wishes to estimate the conditional expected value

of z(x,y) given that (x,y) is in A, then

Z(’Al) 'ﬂz(x:Y)f(XQY)uW/// f£(x,y)dxdy (152)
' A
h

A

- 2'/P(a))

" where P(Al) is the probability of the point. (x,y) being in A, If P(A;)

is not known, it can be estimated by

o(a)da (153)

P 5 fEX(Rl:R2)°)9Y(R1:RQ’a)]
1 h[x(R-]_:R?,“):Y(RlsRQ:a)";J
S(R,,R)

&

L

PR “
S o L



15. Systematic Sampling (B)

Instead of solving the equation

X, -
i ‘
/ f(x)dx = Ry (154) .
- OO
for Xy it may be simple to select the x; syntemé.tically by solving the
equation x, o | o
£(x)dx = 122 $=1, 2,.e0,N (155)
- O

Used in the right places, it is almost always true that systematic sampling
in x is relatively or completely cost free.
The expected value of z(xi,yi) rrill not in general be appreciably
changed by this process. Howevef, the purpose of using (i - 1/2)/N is

to pick systematically the midpoint of the N intervals defined by

Xi+1 ) .
flx)ax = g (156)

1
Always picking the midpoint may introduce biases. These are eliminated
if Systematic Sampling is combined with random sampling by using (i-R.l)/N
instead of (i-1/2)/N. A different Ry is used with every i.
The ¥; can be obtained by a rejeétion technique or by solving the

usual equation

"Yi .
g(yix)dy = R, : (157)
- OO0 '
If this is done, the estimate is
3, = %7 iz(xi,yi) (158)
1 .

[&£5)
€
o
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- : A
where the x, are detsrmined, The expected value of 23 is given by
~ :
X _ :
£y =3 > ix,) as9)
1l

There is no averaging over the x; since they are determinate, not random,

- quantities. However, from equations (155) and (156)

1~ fx,)ax (160)
. IO S SE 4

" Substituting in squation (159)

_ N .
3y = 5 (x)f(x, oxy (161)
1

~ / E(:x)f(x)dx

The variance is easily ‘.cal‘cul‘a'ted.

.'{% ZE(xi,yi). - "(”‘1,)—-'}2_

-?Z[z(xi’yi) - 3ixy) | 2.”

en
g
Yorsds
We
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: (162)

n
=3
Q
fi

The saving over Straightforward Sampling is simply (see equation (108))

V- Vg % [i(:x) - 'z']z (163)

\ The variances due to the variation of z(:x) has been eliminated.

It is possible to do Systematic Sampling in the x and y spaces
similtaneously, in a sense, by also taking a set of numbers J:ﬁllg,
J=1l, 24...,N and randomly sorting them. These numbers can then be

substituted for R_ in equation (157). Whether the sort is costly or not

2
depends on the computing equipment being used.

If Systematic Sampling is used in both the x and y spaces, the variance

is still further reduced and the improvement becomes (as shown in Appendix V)

H-V3'§<F0ﬂ-i]2*[ﬂw>-ir} (164)

shere z(:3}) is defined by

¥, (x)
/ gy:x)dy = J—,(&

- °° (165)

z(13) = /z[(xlyj(x)]f(x)dx

- 00

i 7
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z(13) is a sort of analogue in the y space to #(:x). If for any reason

it is inconvenfent to randomly sort the numbers J%%ZZ and if [gkzj) - E]?

is greater than [g(:x) - E]Q, then the x can be sampled at random and the

y systematically. In this case the variance is only reduced by [Z(:J) - E]? .
Equation (164) indicates that the variance V associated with the

ordinary Monte Carlo calculation of an n-dimensional integral must be

larger than the sum of n terms of the type [E(:i) - 2]? » one for each
dimension. 1If all the terms are of the same order of magnitude, then
doing Systematic Sampling on any one variable will reduce the variance by
less than V/n. While this implies that there will be no spectacular gains

by doing Systematic Sampling, as already mentioned it is usually costless

"7 to use it.




16, Stratified Sampling (B)

In Stratified Sampling, equation (155) of Systematic Sampling is

i | 4
)/A:(x)f(x)dx - 3-1/2 ' (166)

-0

replaced by

YN

where

o9

8= //’ 8(x)f(x)dx

and s(x) is an arbitrary positive function. Here 8(x) is the f#(x)/f(x)

“of Importance Sampling. The estimate is

(x,, '
Zz xs%y) (167)

where the y; are chosen randomly. The expected value of the estimate is

1. ey

Sh - N 8 T(;;T (168)
It is easy to see that ZE is equal to z for

1 - %141

ne" 8(x)f(x)dx | (169)

= s(x.i)f(xi)Axi

If this value of % B is substituted into (168)




The variance is given by

-3 522[2(’%”’1) - 36xy) *

N sz(xi)
-2 . 02 :xi)
F ’ Z sz(xi)
2, .
1 - —9 (xy)
xq 8 .—s;-é?;; B(Xi)f(xi)Axi

: 2
%33 /"s(;" £(x)ex

- & [/stex)ad [/é&’,‘l (x)ex]

Ideally s(x) is chosen to minimize Vh.
Varying s(x)

v, - %{[ Jrxes(x)ax] [/ 2084 - [femrtoa] | o2 (*x>f(x)as<x)dx]}

=0

gf)
¢

&
'—“\
e
B2
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(170)

(171)
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Equating coefficients of 6s(x) and cancelling % £(x),

2 2
( (1x)
U2 fowrrn - [Sghor e

The minimum Vh is obtained by takihg
8(x) = o(:x) (173)
Then

8\X

2
v, - %‘ E[" (ex £(x)dx (17p)

- § =

V-V, - %{Ev(;x) - Fﬁ‘x')’? + [E(:x) - 5]2} (17%)

In many cases it is more convenient to take s(x) proportional to

|2(:x)} . If this is done

—
- % 5 o (ex ]f(x)dx (176)

As can be seen from equation (129), this variance is the same as would have
been obtained if the sampling on f#(i) had been done randomly rather than
systematically.

However, it is usually better to do the sampling systematically
because for a general f#(x) the difference in vafiance between the two

techniques is
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| - o
v -i] R e [mte.
| a7

[ [ =2 2 :
T L/z Lo 52] |

>0

since V2 - Vh i8 the variance associated with doing Importance Sampling cn

the integral / z(3x)f(x)dx, Therefore, where it is easy to use Stratified

- Sanpiing, it is preferable to Importance Samplinge
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17. Use of Bxpected Values (B)

If it is possible to calculate analytically

g(zx) = /z(x,y)x(ytx)dy (178)

then this analytic calculation can be used in the sampling. z can be

estimated by

g = % Z;(:xi) Q)

where the x, are picked out of £(x). If this is done

v = & [f0m - 7 (160)
and ‘
vy - VS - % o (1x) (181)

The reader should not conclude from the trivial nature of the
example that the technique is not valuable., As is shown in the chapters
on applications, the use of expected values is often sufficient to change
what would have been a hard problem into an easy one, For a sort
of corollary of this type of sampling see the example at the end of the

next section.

O Ty —
x\r\//? 1:}0’




18. Correlation (B)

Only one of the three situations mentioned in Ssction 9 on

Correlation (A) will be discuseed in detail. That is: given that

v e //v(X',y' g(x',y! )dx! dy! (182)

A
is known, how can this lmowledge be used to reduce the variance of the

estimate of

z = ﬁ(x, y)£(x,y)dxdy (183)

The first part of this section will briefly discuss some of the
alternatives available to the calculation. However, exactly what role
these alternatives should play depends on t he spécific application,

i . It will be assumed at first that the correlation is to be done on
the x space only and that the y*s in the two problems are to be picked )
independentiy. There are then at 1eagt two different ways in which thism

can be done:

l. To use the same random numbers in picking x and x',

i.e., let

F(x,) = 0(x]) = B | (284)

We can write

x(R) = F"X(R) \ | (185)




and the problem can now be put in the form

z = ///s @(R).y] - alv[x' (R),y']} f[nX(ﬁ)] g[y' 1x' (R)] dydy'dR + o,V
- //{@(R).y]f[_yzx(n)] - ayv[zxr (1) g [yt (R)]} dydR + o ¥

2. to pick both x and x' from the same p.d.f. and then
to use weighting factors as in importance sampling.

In this case the problem is treansformed to

z- // [z(x,y) i(: = azv(an' ){i&%] gy ix)e(nx)ra(x)dy'dydx + az;
[t 558 - o, EfEE) wirere + o7

The a's are to be chosen to minimigze the variances of the respective

LR

“'estimates, f£#(x) can be any arbitrary p.d.f. but it is usually convenient

to let it be either f(x) or g(x). It can, however, be chosen to minimize
the variance of £:.
As in Section 9, the variance of both estimates can be written
1,2 2 2
L/ (c1 - Zapcicz +a 02)

whefc gz 13 respectivelyn
1 fgmd Y flen) - et + o]

(x,)
2. z6 NZ[ (xi’yi)m;l'j' 27(xi,y1);—(x-—7¢a, ]

(286)

(187)

(188)
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In the first case

o / / 2 [x(R), ] [yrx(R)] ayer - 22 (189)

S : / / 2(x,7)2(x,y)dxdy - 2
Og - //vz [X' (R)’y'] g(y'1x')dy'dR -~ ;2 | (150)
-0o O |

- //Vz(x'0Y')g(x'9Y' Jdxtdy' - ;2
‘ A
00 oo 1 |
90'10'2 ///{ [X(R),YJ - z}{[x (R))Y] - V} (191)

0
£ [y:x(R)] [y' 1x! (R)] dydy'dR

- [l{; [ix(r)] - 5}{5"Ex' (®)] - ¥} ar

and in the second case

2 | .
ai - //Fg%(—xl] £(y1x)f%(x)dxdy - G . (192)
A -

2 .
- //‘ (X* ifz(x f(x,y)dxdy - ;2
A
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2 R
o5 = [/ [1%{%?‘—)] g(yix)f#(x)dxdy - ¥° (193)

2 2
/ / LENEE) (0, gy

///z(x,y) f:) vix,y )fé(’%»t(yxx)g(y' 1x)fu(x)dxdydy' -~ 2 v (294)
J(gan;lfirxngpq dx-i;

The two types of correlation mentioned above are actually special

cases of a third more general type in which x is selected from .the P.defe
f#(x) and x' from the ped.f. g#(x); the same random numbers being used
in each caée and the weighting factors f(x)/f*(xi) and g(xl)/g*(xi) being
used with their respective functions.

It 18 also possiblo to correlate the y and pick the x independently.
For the first type of correlation it is then necessary to introduce

functions yR(x) and y}'i(x) defined by

y .
f f(y:x)dy =R . ‘
-7 0O<R«1l (195)

74 (=) - T
/ g(ysx)dy =R )

If R = (§=1/2)/N then y (x) is identical with the yj(x) discussed in

Section.15 on Systematic Sampling. The correlating is done by picking

x and x'_independently from f(x) and f(x') respectively, but always

G s .
o2 158




picking the same R curve when ﬁicking yand y'o One wéy to do this is
to pick y fromthe conditional p.d.f. f(y:x); identify the R curve to
which this value of y belongs; and then let yt' = yﬁ(x'). If this type

of correlation is done c:2l and ag are unchanged but POy 0, becomes:

- f//}(mv)ﬂxuy')b[y' - Th(y))EGoNelxt 7 Jaxdyaxtdy' - 27 (196)

where b[y' - yﬁ(y)] is the Dirac delta function. Its presence in the
intecrand guarantees .that y' falls on the same R curve as y.

In the’ second way of correlating y, the x and x' are still picked
independently from f(x) and g(x') but y and y' are identical and picked
out of a p.de.f. f#(yix,x'). These two ways of correlating y can also be '
considered as a special case of a gonerai correlation method in which y is
picked out of f#(yix,x') and y' from g#(y'sx,x'), using the same random

number in both picks. The usual estimate

£(y ’X,) e - |
?6 - %Z [Z(xi.yi)mg’;x—?;;p - av‘(x,'_.yl‘)-g-,%%,-%‘-ﬂ + av (197)

is then used. By allowing the conditional p.d.f.'s £#(y:x,x') and
g#(y':x,x') to depend on both x and x!', the computer obtainas thes flexi-
bility he needs to maximize the vcorrelation between the two problems. It
is of course possible to correlate both the x and y spaces simultaneously,
No matter how the ‘correlating is done, the optimum a still is given by
o.

a=p ;;- | (198)

£CO

(S8
(x'-\
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The variance if this optimum a is used is
sl 2 2 '

and all the comments made in Section 9 about estimating a still apply.

Averaging Several Estimates

Sometimes the computer has K estimates Z,, ..., &y of Z. When

this occurs the computer can use a weighted average

g = 2 sz (200)
S

with the condition that as an estimate of z

Za.k -] - | | | (261)

The variance of the estimate is

: § - [ :E}k(ek - ';TE ‘ (202)

® Z %Nt Piict “x ke
ik

vhere p,,, is the correlation coefficient between £k and é;, and py, = 1.
V 18 to be minimiged subject to the condition that Y a =1,

% -2 Z “-k'mkk.dkok. (203)
k! , '
Let _ .
A= ch'pkk'okck' - (204)
k! ; : , '

en
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It bik is an element of the inverse of the symmetric matrix||pyy. "k"k'“,
then
' 1 ifis=k
b 0,0, = (205)
Z“‘pk“'k"' {o 161 ¢ k

BEquation (205) can be considered as defining the bik" If equation (204) is

multiplied by b,, and sumed on k, then
) a = A Z bik (206)

Hence by the condition on the a's,

v

Ae b : » 207
Ui};ki“ (9)

By substituting equation (206) in (202), and using (201) and (205), it

follows that the minimum value of V is given by

Ve

- 1/1;(1’1}: (208)

There are two cases of special interest:

‘ A
1. The %, are independent (p,,, = 0).

1/<rk2 for k = k!
Bl ™ (209)
0 for k + k!
Vel
UE'}' ng



2. There are only two % Then letting c>':!_,/<71 = v and

P12 " P21 " P»
ey G50 -0
= ] 2
?;' 2p0)0, + o)

2
e lze
11 =~ 207 + vy

0’2 - o]
2 - PR

=z ]
oy - 2p010'2 * o,

2
.Y - PY
l-2p‘r#72

N

% ~ P99,
T 7
o) = 2p0y0, +- %

1-2p'f+;2

(4]
&
a2
et
o
&
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(210)

(211)

(212)

(213)

(214)
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If o, is greater than o, then the factor 1-p can be
2 1 2
1-2y+xy

considered aa‘measuring the amount by which the variance of ?.1 is cut

down if it is weighted in ancptimum fashion with another random variable
- which has the same expectsed value but a larger variance. Curves of this
factor as a function of p and y are given in graph number 1.

Eliminating the Variance of z(:x)

If £(x) is simple enough so that integrals of the type v = /v(x)f(x)dx
can be calculated, then the problem of equation (186) can be reduced to

the following special case: .
z" ]/ 2 Et(R),y] -'v[x(Rg} g[y:x(R)] dydR + v (215)

The problem is to determine v(x) so that -zg 18 a minimum where

;g - // {z E:(R),yJ - v[x(R)] '+ ;}2g[yxx(R)] dydR (216)
- ;2 + ;2} 7.2 /i(:x)v(x)f(x)dx + 295 - 272

- gl '0;2 -2 /E(xx)v(x)f(x)dx +275-%
§ )
If v(x) makes ;g a minimum then to first order ;g will not change when

v(x) is replaced by v(x) + &v(x). So

5;?; - a:z - 26 /i(:x)i(x)f(x)dx + 276% - 672 (217)

'- 2 /v(x)&v(x)f(x)dx -2 /i(:x)&v(x)f(x)dx

+ 28 /W(x)f(x)dx -2v /ﬁv(x)f(x)dx
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411 the integrands can be collected together. The coefficient
of &v(x) must be zero because &v(x) is arbitrary. This gives for the

optimum v(x):
v(x) = z(sx) + z - ¥ (218)

Then v(x) can be put equal to %(ix). If this v(x) is used, ;g (equation

216) becomess

;g - ;? + gz(zx) - 252(:x) + 25% - 2 (219)

22y, =2

o3 - g°(2x) + 2

< -

V6-

- T - 36)

- ?('tx)

which is the same as (V1 - vs) (equation (L80) ). One of the implications.
of the above formula is that if the computer knows z(:x) approximately,
he can 8till take advantage of this knowledge without introducing a bias
into the calculation so long as he has an exact, or at least fairly |
aceurate knowledge, of the expected value of this approximate z(:x).

In some cases (Section 6, Part III), it may be convenient to Ao a sort of

reverse problem by:

a, First estimate 2(X,y) directly by any standard technique,

22(1x) (220)

s Tanastel



b. Use the data of "a" to obtain an approximate z(sx)
and let v(x) equal this approximate z(:x).

c. Calculate accurately v = /v(x)f(x)dx by some numerical
or Monte Carlo technique.

d. Re-estimate Z by using the data of "a" 4in

’/‘\6 = }]f i[z(xi,yi) - v(xi) + ?] (221)
i=l

It would not be reasonable to estimate v in "c" by Monte Carlo unless
the cost of picking x and evaluating v(x) is much less than the cost of
piloking (x,y) 8/;1/d evaluating z(x,y). The bookkeeping is very much simpli-
fied if v(x) is restricted to the form a + bx + cx2. In this case "c"
can be used to estimate X and x° in advance and then "an can be used to
picl: reasonable values of a, b, and ¢, If the form, a + bx + ox? , is

not accurate enough, the range of x can be broken up into intervals, and

a geparate form used for each interval,
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19. Russian Roulette and Splitting (B)

The continuous analogue of Saction lO is put here for the sake of
completeness though the details are close enough so that the reader
is referred to that sesction for them.

A general Russian Roulette and Splitting procedure can be described
as followss

Let the x space be divided into two regioms, Rl and Rz. Salect a

value of x,. | If it lies in Rl’ Russian Roulette is done with probability
qa(x) = 0, (x) (222)

If 4t lies in RZ’ n(x) 1ndepeﬁdmt values of y are selected for each
x with
n(x):wa(x) (223)

The variance of t he above process is

L
V7 = Vo + T ’ (221;)
A 22(1x)f(x)dx - 22 | ‘ (225)
2
] ‘ ,
V= 48 i:: f£(x)dx + /R%-Z-'(i—g. f(x)dx (226)
| , |

where the " " sigﬁ_ is used in the last equation because n(x) must.be
integral and is therefore only approximately equal to wz(x). If C, is
the cost of picking x, C_l(x), the cost of picking y and evalua_ting
z(x,¥), and C the total marginal cost of a sample; then

C=C,*+) , (227)

L
()
=
G
oo

h
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ct = Ul(x)Cl(x)f(x)dx+ Uz(x)Cl(x)f(x)dx (228)

1 2
The value of \ that minimizes CV, is

2 (229)

c
[

D .
%

0dod

With this value of 1},

Vo, =V, +\[vc-;°-\,v;,c;) (230)
CO
C= CO + v; m (231)

" 52 (232)
o

Vo is an approximately fixed variance; Co is a fixed cost. The
optimum choice of \ makes the actual cost and variance proportional to
the fixed cost and variance. If the computer chooses q(x) and n(x)

in optimum fashion, then

0 (x) = Va2 (206 () (233)

U,(x) = o(1x)/\[c, (x) N 5N

With this optimum choice,
V- 1?<=x)c1(x) £(x)ax + [a(‘:x) Cy(x) £(x)ax  (235)
1 2 -

«C
o

£

L
fety
7>
Y o
40
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and the ratio of the cost contribtuted by any x sub-region to the

variance contributed by the same region is

c
2 o _C : .

) 7. ‘
If the sampling is optimum, the region R1 is chosen as large as possible

as determined by the equation,

-
‘2%5%1 <1 (237)

As mentioned previously, (236) and (237) are really simultaneous equatibns

for \ and R1;

In many cases it is inconvenient to use Splitting and the computer

uses only Russian Rouletts. In this situation, - A S
qQ(x) = \0(x) x in R, (238)
n(x) = 1 x in R,

- ;
Vg =V, +%/" ;" £(x)dx +/02(:x)f(x)dx (239)
! ‘ Ry
where V = 52(:x)f(x)dx f‘;2 .

2
C=C,+x [ U(x)Cy(x)f(x)dx + [Cl(x)f(x)h (2ko)

: : 2
The optimum A is given by

R / Cy(R)e(xex F (e
it 2 ’ RZ .. ' -Rl. .

Ll ) ' (241)
v, + Q (cx)2(x)ax - [ UG (x)E(x)ax s ¢

ﬁz’\
&

&
b
=3
@
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l 1(x)f(X)dx ( ydx’

{ 2°(: x)f(x)dx - 30 Q(x)cl(x)f(x)dx
2

=2
(1x)
. L%f“)d*

V; éU(x)Cl(x)f(x)dx

where the approximation assumes that the integral over R2 is replaced by

an integral over all space. If U(x) is chosen in optimum fashion,
o) = ¥ 22 (x/0y () (2w)
2 c . .
2\E T_; ‘ (2L3)
.and the region Rl for Russian Roulette can be taken as being determined by
Xz;? X - C ?(33‘ < 1 (21‘1‘)
cléﬂ V3 -

Application to Particle Diffusion

A special case of somes intersst inwolving three random variables

(X,W,M) arises in particle diffusion problems. X is a generalized position

variable which represents. the position and momentum of the particle. W
\is a pseudo weight that is assigned to ‘the particle, and which changes as
the particle jumps from point to point. M is the final weight ’of the
particle divided by the current weight. It is convenient to think of it

the other way, as a factor which multiplies the current weight when the
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random walk is terminated. The function whose expected value is desired
is the final weight of tpe particle; so

a(x, ¥, m) = wm (245)
vhere if ordinary sampling were being done thé m would be independent of w.
However, if the w happened to be véry'amall one would be willing to sampls
m rather inaccurately if it saved some cost} if it were large one vbuld
want to sample m quite accurately even if it were expensive. This is thus
a natural problem on which to use Russian Roulette and Splitting.

The regions R, and R, will'be defined in the (x,w) space and the
decisions of Russian Roulette or Splitting concern the number of m values
that are to be picked for an (x,w) value.

In discussing particles it is convenient to change.the.language | '
slightly. Instead of speaking of picking n independent values of m for
each {x,w) in region R,, the particle is said to split into n independent
particles each of weight w/n. Simmiy in region R, if the particle loses
the Russian Roulette it is said to have a}od.(or disappeared); if it wins
it is assigned a new weight, w/q(x,w) and\;ta random walk contimued.

In the case of most interest the p.d,f‘\, for (X, W, M) (after the Russian
Roulette and Splitting has been done) has th; special from, g(mix)f(x,w);
that is the conditional p.d.f. of m i8 not dependent on W. (The plausi-

bility of the assumption is discussed below.) With this aasumption;

22 (3x,u) = wome(x) | T (2u)

o? (1x,w) = vz[r-n?(:x) - i2(txi -(217)
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Since the cost of picking an m value is independent of w, the optimum

choice of q(x,w) and n(x,w) is given by .

2 .
qQ(x,w) = v !‘Eﬁ% A

(248) -

-2 =2
n(x,w) = )‘u\jm (’l(“)il.(-x? (1x)

and regions Rl and R2 are determined as before by the appropriate inequal-

1

1tios.. If the particle is in R1 and happens to survive the Russian Roulette

it 15 assigned a new weight

C, (x)
! » L] - 1 1 2h9
v qzx,ws X —7 ( )
n“(1x)
If the particle is in R? then each of the n independent particles is given
a weight.
- ¥
w! n(x,w) _
(250)
[ G
X

mn(:x) - r-nz(xx) |

In both cases, the final weight of the particle is independent of the

original weight and is a function of -x on-ly. (This seem? .to be, in general,

one of‘ the criteria for a good sampling scheme for 'particle .diffusion prob=-

lems.) It is because 4hé weight of the partiole after collision is indepen=- -
dent of the weight before collision that m can be taken to be independent

of w,

G
™
™
Moz
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Truncating Sample Series

Sometimes in doing a Monte Carlo problem inaiead of getting a single
number for the estimate from a single sample, one obﬁ#ina an infinite
seriesj more precisely each sample generates a process for calculating an
infinite series term by term, and it is the sums of these éeries which are
to be averaged in obtaining the final estimate. This cocurs most often
in the Use of Expected Values.

The computer is then facéd withthe problem of terminating each of the
sample series. This can be done by summing each series té a fixed number
of terms or it can be done by summing until a term gets smaller than some
previously assigned amouni. Both of these methods are inefficient as oﬁe
is then faced with either calculating a number of very small terms or |
truncating too scon and introducing an unknown bias into the estimate.

. A much more effective method of terminating such sample series 1e
made possible by the use of Russian Roulette. One can simply play the
supplementary game of chance as soon as the terms in the serieé begin to
get small, If a term fails to survive the supplementary game the series
is terminated right then and there; if it survives, the weights of all
subsequent terms are multiplied by the proper factor and the term by tern
summation continued until a new term beccmes small. In this vay the series
can be terminated in a completely unbiased fashion and yet very littio

effort is spent computing small and insignificant numbers.

LU 174
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PART II1

INTEGRAL EQUATIONS
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ITI INTEQRAL BQUATIONST

Introduction and Definitions

'The treatment of integral equations will follow as closely as
possible the treatment of integrals in order to emphasize' gimilarities
and d.iffero‘ncos.._v Again there will be a certain amount of paraphrasing,
but this Jc;nl.me an attempt will be made to minimize it.

.The problem is to estimate

zZe ffz(x,y)}‘i(x,Y)cbcdy (1a)
A

by Monte Carlo. M(x,y) is an unknown function which is determined by

the integral equation
M(x,y) = //X(x,y:x',y' M(xt,y! )dxrdyt + Mo(x,y) (1b)
A

3(X,¥), k(x,y:x',y'), and Mo(x,y) are known. K(x,y:1x',y') is called
the kernel of the integral equation. The above 'equation is known as a
Fredholm equation. It arises naturally in many applications in physicé R
mathematics, and engineering., Associated with the Fred‘noim equation is
another equation known as t he adjoint equation.

S{xt,y') = S(x,y)R(x,y:x',y )dxdy + z('x',y'). - (2a)

It can be shown that
ﬂ: - ﬁo(x',y' )8(x!,y* Ydxtdy? (2v)

1 The reader is reminded that judicious skipping (or skimming) may be
- advisable. " In most sections more details are given than are needed for
applications. - , -

The mathematician may find the chapter clearer if he realizes from
the outset that we are here studying a Markoffian process in the three
dimensional space (w,x,y). The process is specialized so' that it is
8till Markoffian in any of the averages over w. .

It should be obvious to the reader that almost anything said in this
context about integral equations applies also to matrix equations.

g )

-
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S(x',y') is now the unknown function. By multiplying Equation (1b)
with S(x,y)dxdy and Bquation (2a) with M(x',y')dx'dy' and integrating,

it is. easy to show that

| =T, (3)
There are thus always two different sets of equations which can be used
to calculate z. o
It is convenient to discuss the problem in terms of a random walk
in which a particle jumps from one point to another, changing its weight by
a factor which may depend on the initial and final positions every time it
jumps. The points to which it jumps are called collision points. If it
ever jumps outside a preassigned area, A, the particle is said to have |
been trapped or die énd the random walk is terminated. It will be shown
that Z can be interpreted as *he expected weight that Jump; into a particular
trap state and can be estimated a la Monte Carlo by performing N random
walks and averaging the trapped weight of the N particles.1
Most of the applications of Monte Carlo o integral equations have
actually been concerned with studying random walks. The author would,
however, like to emphasize that for the purposes of this chapter their
introduction is an expository device and does not limit in any way thé
class of integral equations which can be treated.
Before showing the connec@ion between integral equations and random
walks some definitions ére needed:
p(x,¥:x',y') is the p.d.f. for the new non-trap position (x,y) of a
particle that was at (xt,y'). If J/'p(x,yzx',y')dxdy
is < 1 then the particle has a non;iero probability of

Jumping directly to a trap state from (x',y').

1 See Sections on"Healization" and "Collisions Formulation" for a more
detailed description of the random walk. : :

oo '3
SN

e
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p(:x!',y') =1 - lyrp(x,y:x',y')dxdy is the probability that a
part?cle at the point (x',y') will be trapped instead
of jumping to a new point in A. In some cases p(tx',y')
will be taken less than 1 = lV;%x,y:x',y‘)d%@y; in which
case it is to be interpretedAas the probability of jumping
to a given one of several trap states.

m(x,y:x',y') is the factor by which the weight of a particle is
multiplied if it jumps from (x',y') to (x,y).

m(:x,y) is the factor by which the weight of the particle is multiplied
if it jumps to the trap state from (x,y).

wo(x,y) is the initial weight of a particle that starts at (x,y).
The weight can have either sign, but in most problems it
is positive,

LA is the weight of the particle atbthe i'th collision.
i%0,1, eoe, To

Wayms= m(:xl,yi)wI is the weight of the particle on being trapped.

fi(w,x,y) is the p.d.f. for the weight and position of a particle at
the i'th collision. ‘Zzyfi(w,x,y)dwdxdy4is the probability
that the particle has ﬁ@t been trapped by the i'th
collision, |

Pi(x,y) - J(fi(w,x,y)dw is the po.d.f. for the position of the particle

at its 4i'th collision.

et
=3
e

G0
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Hi(x,y) = fwfi(w,x,y)dw 1s the expected weight (actually weight
density) at (x,y) on the i'th collisiton. ‘The expected
weight of the particle itself is M, (x,y)/P, (x,y)."

Qi(x,y) =fw2f1(v,x,y)dw is the expected square weight at
(xyy) on the 1'th collision. The expected square
of the weight of the particle is Qi(x,y)/Pi(x,y).

gi(w:x,y) is the conditional probability that a particle
that starts at (x,y) with weight one, 1s trapped
in exactly i collisions with weight w.

Ri(:x,y) = fgi(v;x,y)dw is the probability that a particle
that starts at (x,y) is trapped directly after the
1'th collision,

Si(:x,y) = fvgi(v:x,y)dw 1s the expected weight that is
trapped after the i'th collision given that the
particle starts at (x,y) with veigh£ one. The ex-
pected weight of such a particle when it is trapped is
Si(:x,y)/ﬁi(x,y). |

Ti(:x,y) = /vzgi(v:x,y)dw 18 the expected square weight that
is trapped after the 1'th collision given that the
particle starts at (x,y) with weight one. The ex-
pected square of the weight ‘of the particle when
trapped 1is ‘l‘i(:x,y)/Ri(:x,y).

P(x,y) = fPi(x,y) 18 the expected mmber of collisions that
:he particle makes at (x,y) bcfofe it is trapped.

* The somewhat stilted language is used to emphasize the difference
between the notion of "expected weight of a particle,” given that it
is at a point and "expected weight" at the same point. The former 18
sometimes called the conditional expected valuej the latter is equal
to the former times the probability of the particle being there.

o5t 180
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© ’
M(x,y) = Z:H%(x,y) is the total expected weight at (x,y), and
)

similarly for Q(x,y), R(:x,y), S(:x,y), and T(:x,y).

o0 - 183

&
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Derivation of Integral Equations

The only wey a particle can get to the point (x,y) in 1 (i > 0) collisions
- 1s to be at some point in A on its i=-1'th cellision an,d then jump to

the point (x,yk Thérefqre,
Pi(x,y) =,{/’p(x,y:x' ,y')Pi_i(x',y')dx*dy' . | (4a)
Summing both sides from 1 to -

o ,
%‘)Pi(x,y) =,A[/'p(x,y:x‘,y' ) %Pi—l(x-’ ,y' Jaxtdy! (4b)

N,

m‘ .
L plxyysxtyyt) > P (x'yy! )ax'dy!
A °

={fp(x,y=X‘,y')P(X'ﬂ')dx'dy' ’

o |
W 2R () = 3B (y) - Blay) e
o . )

P(xyy) - Po(i’Y) ’
80 P(x,y) :{p(*,y;xl’yl)p(xl,yl)dxldyl + Po(x;y) ,. . ~ (6)

Equation (6) 1s intuitively plausible. It states t/.hat the expected
number of collisions at (x,y) is equal to the sum of the probabilities -
of all the ways in which a particle can have a collision at some other '

. . point and then jump to (x,y), plus the probability that the particle

had its first collision at (x,y).
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Sihilarly it can be shown that

M(x,y) =.§7ﬁ(x,y:x',y')p(x,y:x',y')M(X',y')dX'dy' + M (x;y)

Q(x,y) ={/m2(x,y=x',yi>p<x,y=xv,y')q(x',ywdx'ayv +Q_(x%7)
where M (x,3) = _(x,3)P_(%,5)

Q (xyy) = wﬁ(x,y)Po(x,y) .

If m(xyy:x'yy')y plx,yyxtyy'), uo(x,y), and Po(x,y) are chosen so that

K(xyy,x"yy") = m(xyy:x%,5")p(xyy:xt,yy*)

wo(x,y)Po(x,Y) = Mo(x,y) ’

then Equation (7) is identical with Equation (2). This is, of ccurse,
the identification which is intended.

The expected trapped weight is given by
S M(x,y)p(:x,y)m(:x,y)dxdy .
A
Therefore, if m(1x,y) is taken to be
m(:x,y) = z2(x,y)/p(:x,y) ,

the expected trapped weight is z (Equation 3) which completes the
identification,

IS
L
Y
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(8)

(11) .

(12)
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Equations can also be written for R(:x,y), S(:x,y) and T(:x,y).

For exampley

R, (:x,y) = {/Ri-l( :x%yy ¥ )plx!yyf:x,y)axdy®
because the probabllity of being trapped in exactly i»collisions is
equal to the probability of jumping to somewhere else in A, times the

probability of being trapped in i-1l collisions from the second point.

From Equation (13) it is easy to obtain

| R(:x,y) =~ﬁ7"R(:x',y')p(x',y':x,y)dx'dy' +. Ro(:x,y)
Ro(:x,y) = pl:x,y) o

This equation is also intuitively plausible. A particle can be
_trapped in two ways. It can first jurp to some other point in A and
then eventually be trapped or it can-jump directly into the trap state.
Equation (14) states that R(:x,y) is the sum-of the probabilities of

these mutually exclusive events, Because
R Cixyy) = plexyy) =1 =/ p(x?,y'ix,y)dxtay!
A

it can be shown that R(:x,y) = 1 is a solution of the equation.
If there were different types of trap states and Ro(zx,y) were the
probability of jumping directly into just one of the trap states,

then Ro(:x,y) would be less than

1 -.{fp(X',y' :x,y)dx'.dy',

and R(:x,y) would be less than one. In practical problems, this

’

situation 1is the common one.

(13)

(14)
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Equations for S(:x,y) and T(:x,y) can also be written
S(1x,y) =.//S(ax?yy Im(x!yy' s,y )p(xtyy'ixyy)axtdy® + S_(:x,¥)
T4
So(:x,y) = p(ix,y)m(ixyy) &
T(:x,y) =.49’T(:x',y')m?(x‘,y':x,y)p(x',y':x,y)dx'dy' + To(:x,y)'
A X

To(:x,y) = p(:x,y)mz(:x,y) .

It should be noticed that Equations (14), (15), and (17) are adjoint

respectively to Equations (6), (7) and (8).

(15)
(16)

(17)

‘(18)
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Realization of Integral Equation by Monte Carlo

The % of Equation (la) can be estimated as follows:
a. An (x,y) 1s picked from Po(x,y) and a weight w_ = wo(x,y)
-~ - assigned to the part{cle. |
| b.* If on the 1'th collision the particle is at (xi,yi) with
welght Wi thenlthe computer first picks randomly between
- the alternatives of being trapped[?robability p(:xi,yij]
or of having ancther collision {ﬁrobability [l‘ - p(ixi,yi)]}.
If the first alternative materializes the particle is
assigned a trapped weight, W = m(:xi,yi)wi .

c.* If the particle is not trapped then an (xi*l’yi+l) is

Plxgypsyppy Xpo9y)
1 - plixgoy, ) 7

picked from the normelized ped.f.,

and a weight, v, , = m(xi+1,yi+l:xi,y1)vi, assigned to
- the particle. |

d. b and ¢ are repeated until the particle is trapped. If -

AN

N particle histories are traced and their weights when
trapped denoted by Hl,...vn,...HN respectively, then
| ' N

W= > W
- n: )

=)

n

is an estimate of z.

'# In many problems it is more natural to describe (b) and (c) as
110V 141 %Yy )
(xi+1’yi+l) is in the trap state a weight W = m(:xi,yi)wi 1s
assigned to 1t. Otherwise the weight w
assigned to the particle.

) follows: an (xi+l’y1+l).;a picked from p(x If

g+1 = B0 gap 2oy oy
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Because of the existence of adjoint equations, two different

 integrals can be written for W ’ w2, etce For instance,

z2=W =‘A[/M(x,y)p(:x,y-)m(:x,y)dxdy (19)
=.AQAPO(x,y)wb(x,y)S(:x,y)dxdy . ' . (20)
"t

The first integral can be read as saying that the expected
trapped welght is equal to the expected weight at any point, times
the probability that the particle will be trapped, times the factor
by which the weight is multiplied if the particle jumps to a trap
state, all this summed over all possible points. The second integral
says that the expected trapped weight is equal‘to a similar sum of
the expected weight starting at any point times the expected factor
by which the original welght is multiplied when the particle is

finally trapped.

Similerly,
W =,ﬁ?’u(x,y)p(:x,y)mz(:x,y)dxdy : (21)
= P (xyy W2 (x53 )T (3 Jaxdy (22)
A

S
(X3!
)
fe
&2
o}
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Sampling from the Initial Distribution Po(x,y)

Equations (19) to (22)'indicate that if any of the techniques of
Part II were to be applied to sampling the initial position of the

particle, then the following correspondence,

£f(x) —> Po(x.y)
2(sx) —> R(ix,y) = w (x,y)5(1x,y) (23)

2(ix) = W(1x,y) = Wi, 1)T(1x,3),

can be used in designing the sampling. If it is desirable to use the
sampling techniques only on the x coordinate of the initial position

cf the particle, then the analogy is given bys

St > ) = [P (e
z(1x) —> W(ix) = fwo(X.y)S(:x,y)Po(y:X)dY (24)

22(1x) = W(ix) = [ (x, 9%, 9P, (1x)dy.

Thus, Jjust about all of Part II can be applied to sampling from
Po(x) or-Po(x,&). Because T(1x,y) depends on p(x',y'tx,7) and will
chiings if the transition probability is changed, the techniques and
ideas of Part II must be modified before being applied to the integral

equation as a whole,
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The Collision Formmlation

The whole formulation of the problem of solving integral
equatibns by Monte Carlo can be changed slightly to make it look
like the situation considered in Section A of Chapier II. The

following additional definitions are needed:
qi = f/i’i(xsy)p( :x’y)dXdy

= /R, 3P, (x,y)axdy

P, (xy3)p(:x,y)
9

hi(x,y) =

i
qihi(v,x,y) = {/‘... ,{f&&: -w, T m(xj,yj:xj_l,yj_l)jl Po(xo,yo)

1-1 =1
- ( )
AP\ Y 3 X 9Yp_y /A% dy_]
r=1[ r’r Tp-1'"r-1 17r-1

where the subscript on A indicates which (x,y) are

being integrated and & ..4 i8 the Dirac delta function.

hi(w:x,y) = hi(v,x,y)/hi(x,y)

q is the probabllity that the particle is trapped on its i'th collision.

hi(x,y) 1s the p.d.f. of the (x,y) from which the particle jumped when

it was trapped. hi(w,x,y) is. the similar p.d.f. for (w,x,y). The
sampling problem can now be defined as follows:
l. An i value is picked from 9

2. An (x,y) is picked from hi(x,y)

556 189
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3. A w is picked from hi(w:x,y)

4. The function W = wm(:x,y) is calculated
The average value of the samples W's is an estimate of Z.

Unfortunatquvthe q are not known expliciﬁly, and the only
way in which i values can be picked is to sample all the previous
i values. For most problems focusing attention on the collision
number rather than the position of the particle is a highly arti-
ficial and'non-productive point of view. However, when the 31(:x,y)
are strongly dependent on the i and not on(§,y)then this point of
view can be useful. In this report the main application of tﬁé

collision formulation is in deriving formulsae.

£
>N
o
¢4

G2

14
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- 1. Straightforward Sampling

The sampling procedure described in the previdus sections is
not really a faithful analogue of most physical situations. In the
typical particle diffusion problem there.are alternative ways, besides
jumping to a unique trap state or states of interest, in which the
particle can terminate its random walk., Some of them correspond to
uninteresting trap states, while others correspond to a special type of
trap state in which the particle simply disappears. If the latter event
occurs, the particle is said to have ﬁeen absorbed. If it does not the
particle i§ said to have survived the collision. In this physical
situation the weight of the parﬁicle does not change as it jvmps
from one point to another or to the trap state; m(x,y:x',y') is not
a weighting factor but a survival probability, and therefore
necessarily less than one. m(:x,y) is the productvof a survival
probability and some function of the particles coordinates; for
gxémple the energy. If the survival or absorption of a éarticle is
treated as a random event then theeuations for P(x,y), ¢(x,y), R(:x,y),
and T(1x,y) cease to have any meaning; the equations for M(x,y) and

S(:x,y) are unchanged in form, but Mi(x,y) is now to be interpreted

as the probability of being at (x,y) at the 1'th collision, and [if m(:x,y)

is a probability of survival] Si(x,y) is the probability of the particle

being trapped directly after its i'th collision if it starts fram (x,y).
Under this interpretation the particle has a weight of one if it
gets to the trap state and is defined as having a weight of zero

if it fails. If primes are used to distinguish the physical random

[25)

5t

€2
£A

==
feoh
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walk from the previous one, and P' is the probability of getting

to the trap state, then

z =W

P* .1+ (1-P') . O

P! , (25)
wi?

wl

2

P' . 1%+ (1=P') . O
= pt¢

and the vafiance is

2
V! Pt - P! . .
1 (26)

1]
(SR ]
{

N In the previous formulation the varlance was given by:
v, =.A?'Q(x,y)mz(x,y)p(:x,y)dxdy -7 . (27)

' = // 20, ' . -
vi-v, = /7 M(xyy)m(sxyy) = Qxyy)m“(:xyy)l p(:x,y)dxdy . (28) .

1-v > o. mz(:x,y) is less than m(:x,y)

because m(:x,y) is less than one. Similarly, from the fact that

It is easy to see that V

m2(x';y':x,y) < m{x',y¥:x,y), 1t can be deduced that Q(x,y) < M(xyy),

Ut
1 < Vlo

The formulation with weighting factors corresponds to. replacing

‘80 Qm2 < Mm and V

the random survival of the physical random walk with a weight that is
the expected value of the survival probability. This is an example of
the application of the use of expected values and therefore it is not

surprising that there is a reduction in the variance. There is also



an increase in the expected cost of a aiﬁgle history, for if the
particle were occasionally allowed to terminate its walk before
jumping intc the trap state then the average history would involve
fewer collisions ahd be less work to compute. The section on Russian

Roulette discusses the inter-play of these two factors in more detail.
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2. Importance Sampling

The problem is to select the six functions p(:x,y), p(x',y':x,y),
. Po(x,y),mﬁx,y), m(x',y':x,y), and v, (x;¥) so that the welght of a
particle when trapped is an estimate of Z, and so that W* is a

minimum. The condition on W is satisfled if

a(:xyy) = 2(x,5)/p(:xyy) | 7 (29a)
m(x',y':x,y) = K(x',y':x,y)/b(x',y‘:x,y) (29b)
wo(%y) = M (x,5)/P_(x,7) . (29¢)

and only the three p.d.f.'s are arbitrary.
. by .
Under these circumstances the equations for M(x,y) and S(:x,y) are
given by (1b) and (2b). The equations for Q(x,y) and T(:x,y) are ob-

.tained by substituting Equation (29) into Equations (8) and (17)

respectively:
2 M (x y)
_ s KS(x,y:x',y') o'™?
o) =7 SR ety daxtert ¢ 2y (08

2 ‘ 2
. - ot K“(x',y':x A z°(x,5)
Tlexyy) .ﬁ?’T(.x »y') P\X Y  :Xyy dxldy! + plix,y) ? (30b)

and from Equations (21) and (22)

a—— ) 2
W =,§7’Q(x,y)‘; ::,y dxdy | (31a)
M (x,7) ~ 4 |
| =‘A[/'T(\:x,y) W dxdy | | ‘ (31b)

3
N
G

¥ 2
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Because w o > O, the minimum value of HZ is ﬁz. If this value
is achieved then the variance is zero apd the sampling is perfect;
a sample of one gives the correct answer. If K(x,y:x,y), Mo(x,y),
and z(x,y) are all positive, & zero variance random walk can be

obtained and is given by the follcwing choice of the three p.d.f.'s:

~plaxyy) = 2(x,5)/8(:x,y) | - (32a)
plxt,y'ixyy) = S(:x',y' JK(xtyy':ix,5)/5(:x,y) (32b)
Po(x,y) = S(:x,y)Hs(x,yL/g. (32¢)

By usiﬁé Equation (2b) for S(:x,y) it can be shown that the
p(:x,y) and p(x',j':x,y) given above satisfy p(:x,y)';gAQQ(x',y'zx,y)dx'dy' =1.
L= ~Similarly Equations (1a) and (3) guarantee that,[?”fo(x,y)dxdy =1,
’. Substituting into the equations for Q(x,y) and T(:x,y):
M (x,y)

2 Ofet wt 1qert e
Aty daxtay' + gho

(33a) -

T(:x,y) =[/T( :x|’y|) K(X‘ ':: ,38(31 ) dx'dy' + z(x,y)S(:x,y) (33b)

Solutions of these equations are given by
Qxyy) = zM(x,y)/5(:x,y)
~ q?
T(:x,y) = S<(:x,y) ,

for as can be verified by substitution, Equations (33a) and (33b) then
reduce to Equations (1b) and (2b) respectively. Either of the above
solutions when substituted into Equation (31) give

92=

2

(34)
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Even though a greak deal more than just the answer, 3, must be
known before a zero variance sampling tecﬁnique can be designed,
the result does indicate that the variance can be cutAdown if 1t 1s
possible to exploit some previous knovledée about the problem.

It is interesting to examine some of the details of the zero
variance estimate. Any particular perticle history can be represented
by a set of numbers. (wb,xo,yo;wl,xl,ylg...wi,xi,yigwl,xl,yl) where
) are the successive positions of the particle and the w,

are the weights at the i1'th collision. The sample estimate is
W = m(ixpyyp)vpe

}If the optimum importance sampling is used,

LA
]

o Mo(xo’yo)/?o(xb’yo)

;A(:xo’yo)o

vy = mlxy a3y %y g0¥g g vy

K(xg ¥y iy y993)

PUxy sy ixy_q9Yy ;) 81'1

o S(:xi_l,yi_l)

- 1Xy9Yy ¥i-1

) s(:x ) -

s ( :xi"l ,yl-l . ;“2 ,y;_z eeooe 2
S(: i,yi s :xi_l’yi_l’ S(:beyoj

= E/S(=xi,y1) .

(&

e
C
}=

| (35)

(36)

(37)
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Because of the successive cancellations, the weight LA does not

depend on the history of the particle but only on its position. It

will turn out in the section on Russian Roulette that there are other

ways besides importance sampling in which this condition occurs,
m( =xI’yI) = z(xI’yI )/p( :XI’yI)

= S(:XI’YI) ’

'} va(:xI,yI)

- ; .
= SCragyp SU*pYD

= 2 .

It is customary in engineering practice to refer to S(:x,y) as
the importance or influence function. As can be seen from Equation
(32), the sampling is taken proportional to this function. Normally
i TS(:x,y) is not known and an approximate importance function, I(x,&);
must be used. The sampling p.d.f.'s then becomes

p(:x,y) = 2(x,y)/(x,y)

p(x'yy'ix,y) = I(x!,y" IK(x'yy':xyy)/C(x,y)

Po(x,y) = I(X’Y)HO(X’Y)A:O ’
where Clxyy) =L I(x%,y ' K(x!yy' ixyy)dx'dyt + z(x,y)
A

and Cé =u47‘1(x;y)ub(x,y)dxdy
A ,

are required for normalization purposes.

197

“0
(o

(38)

(39)

(40)

(41)

(41b)
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The equations for Q(:x,y) and T(:x,y) now become

I(x,y)Q(x,yy) ={/f<(x,y=x',y')C(x',y')Q(x',y')dx'dy' + C_M_(x,y) (42a) -

gi;::yg = {f% K(x',y':x,y)dx'dy' + z(x’y) . (42b)

If the substitutions

Qx,y) C M (x,y)/I(x,y) ' (43a)

T(:x,y) C(xyy)s#(:x,y) o (43b)

are made, Equations (42a) and (42b) become:

e (x,y) = PRlxyyixtyy!) FELTY We(xtyy daxtay! + M (xy) (44a)
S*(:xyy) = //5*(:x',y ' )K(x',y" 1xyy) g :,y dx'dy' + z(x,y) . (44b)

If the optimum sampling had been used, M*(x,y) would be equal to
M(x,y) and S*(:x,y) would equal S(:x,y). They are not equal to the
desired functions because in effect, there is an extra multiplying
factor, C(x,y)/I(x,y).

For this approximate importance sampling, using (3la) and (LO)

w2 ={ﬁ(x,y)z(x,y)0(x,y)dxdy ~ (45a)

Co /R (x5 Ya(xsy) HEL axay

P
Coz ’



or using (31b) and (L0)

-y ( QY)
W c /ﬁ'(.x,y _-ITX_;S dxdy | (45b)

C(x
%( . Yé_d%
Coﬂg (-.x,y)Mo(x,y) oy dxdy

= C z* .,
o

Z* 1s the ordinary expected welght of ﬂrapped particles when the ; -
welghting factors of the random walk have the additional factor

C(x,y)/I(x,y). The variance is
V, = Cz% - 3° ‘ (46)
2 o *

The formula COF for WZ is exactly what would have been ex-

pected. If a random walk uses the p.d.f.'s of Equation (40) and the
welghting of (29) then |

. o ’y% Sy (47)
1 Ix,y,) T Tx ¥ I(x; ¥, )
1 174
W= m(exp,y vy (48) -
I(xoyyo) I(xl’yl) . Isz}’IS I
For the z* random walk with the same p.d.f.'s ' -
1 gy, I(x 2 )I(xl’yl) Txgo974y 10xgoyy )

Vi~ C
(o]
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wh = m*(:xI,yI)wg ‘ (50)

C(xI’YI)

C (X 'y )
e L6 S
I(XI>YI) I
a2 32
= Clxpyyp Wy /8,
= wz/bo
Therefore C_We = W (51a)
Cw* = W (52b)"
=C 2% .
°
The equation does, however, indicate how the variance can be
_estimated for an importance function I'(x,j), when an I(x,y) is
actually used in the calculation. The weight vy is multiplied by the
factor
1 1 1 ‘
n' = Cllxgry,) C'lxyyy) | C'xy qyyy ) (52)
. T ] '
Tlxyg) T'laqay) Ty oy )
and the trapped weight W by the additional factor C'(xI,yI)/I'(xI,yi)
W' =W C'(XO’yo) . C'(xl,y ) ces C'(xI,yi) | (52b)
Dlxgy,) T'hqayy) Ty =

P ;
Q} Ly (\‘. [
(%4
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The sampling variance, if I'(x,y) had been used instead of
I(x,y) 1=
Iyt o 5 .
2 o z . . (53)

Estimating the Importance I(x,v)

Method I.

Usually the most convenient method for obtaining good import~
ance functions 18 to try to calculate S(:x,y) by some approximate
analytic, numerical, or experimental procedure. It 1s somewhat
easier to do this than might be thought because only relative values
of the function are needed. If there is a consistent bilas in fhe
approximate calculation, even if it is large, it may cencel itself
"out for the purposes of sampling. In many cases the computer has
suffigient intuition about the problem to be able to guess a reason-

able I(x,y) with very little work.

" Method II.

The sampling is set up so that the p.d.f.'s have paremeters in
them. The parameters can then be varied until the estimated value of
“2 is sufficiently small. While V does not change when the. parameters
are varied, the author has found that there is usually sufficlent
positive correlation between ¥ = W - W and W, that VAR s a better

guide than just V.

Method III,

Method II can be used in a little more sophisticated manner if
the results of Equations (53), (54), and (55) are applied. It is
- usually relativel& cheap to carry along with the sampling for the

¢

@™

6 201
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answer, some additional maéhinery which will enable the computer té
estimate what the variance would have been if a different import-
ance function had been used. As soon & information aboﬁt the
saﬁpling characteristics of different importance functions is ob=

tained, it can be fed back into the problem.

Method. IV

It is perfectly feasible to interchange the roles of the normal
and adjoint equations. Sampling can then be done cn the adjoint
equation and S(:x,y) estimated. This estimated S(:x,y) can then be
used to improve the sampling that éstimates M(1x,y) and vice versa.
If necessary the iteration procedure could be carried through many.
times. As far'asthe author knows Method IV has never been used in -

a systematic fashion., The first three have,

Importance Sampling Onlz;In The x Space

It is sometimes desirable to separate the x and y spaces and do
Importance Sampling only on the former. The simplest thing to do is

to take I(x) proportional to an approximate S(ix) where 3(tx) is‘a
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sultable average of S(:x,y). This corresponds to the sampling pro-
portional to z(:x) in the second chapter and like that sampling is
by no means optimal. However, the description of the optimum
sampling for the x space only is extremely non-intuitive and while
a short discuaaionhis included here for the sake of completeness,
the equations that determine this optimum sampling in the x space
do not seem very useful.

The Greens function E(x",y":x',y') is defined by the equation

Cix!

' |
AT dxdy + (54a)

E(x",y":x',y') =.f?"i(x",y":x,y)K(x,y:x',y?)
b(xn_xl )6(y"—y' ).

By multiplying Equation (44a) by K(x",y":x,y) and integrating over

(xyy), the equation

M*(x",y") = é{f;f?;} ,z?'i(xn,yn:x,y)Hs(x,y)dxdy (54b)

is obtained. By substituting Equations (41b) and (54b) into (458) an

expreasion for H2

W = .AQ”I(x,y)Ko(x,y)dxdyJ.f?ﬁf?%(x,y)i(x,y:x',y')Mb(x'?y')dxdydx'dy' (55)

can be written in terms of I(x,y) where K(x,y:x',y') depends implicitly
on I(x,y) through Equation (54a). This dependence is very complex,
even when I(x,y) 1s specislized to be a function of x only. Therefore,
when the condition that makeq Wz a minimum 45 derived, the equations

are relatively intractable and non-suggestive.

(’\

[Pl

K&(“\
3%}
G
€&




- 197 -

3. Systematic Sampling

The most important appiication of systematic sampling 1s to the
sampling of initial points. This subject is discussed in the section
on sampling Po(x,y) and also in Section 6 on correlation. The dis-
cussion which focllows concerns the much less important but still
interesting subject of the systematic sampling of the transition
probabilities. | |

A surface xJ(x,y) can be defined by the equations:

p(x'1xyy) =/p(x'yy:x,y)dy’

X,
J i - 1/

If systematic sampling is used when picking values of X, then the Xy
" ‘values will fall on one of theée N surfaces xj(xi-l’yi—l)' However,
.8ince some of the N particle histories will have.terminated before
reaching the 1'th collision it is not true that each one of the
- surfaces vill have an x, value on 1t.
The reduction in variance due to systematic sampling cen be
calculated exactly as in Section 15 of the oreviovs chapter. A random

variable U, is defined which is equal to the weight W of the trapped

1
particle given that the particle had at least 1-1 collisione before

being trapped. Then

(56)

(57)

Uy Cowg_yaxy yayy_yoxpoyy) = vy gmlxgsyyixy ¥y 38Caxgoyy) A5 (xpp34) 4n & (58)

= ( xi lyyi l) if (xi,yi) in trap state
¢G40 ANEY
Ve




e

- 198 -

? I ,
Ui(wi-l?xi-l’yi-l’xi,yi) = vigg® (xgayy ey yoyy ) TGixgoyy) AF (x7,) 1n A

(59)
= ui_lmz(:xi_l,yi_l) if (xi,yi)-in trap state )
The p.d.f. for (“i-l’xi-l’yi-l’xi’yi) -
s £y 3wy yoxy o7y o IP(xysyy iRy 103y 3 )/Ry )
where Py = K £_4(vyxyy)dwdxdy | (€0) ‘

\[/ Pi_l(x,y)dxdy

at

is the probability that a particle will have an i-1st collision,
- and Uf can be calculated by integrating this p.d.f..against the
conditional expected values defined in Equations (58) and (59). It .

is also necessary to definé the expected value,
Ui(:j), of Ui(:vi_l,xi_l,yi_l;xiyyi)

on the equiprobability surface xj(xi—l’yi-l)’ While the surface is
defined independently of the collision number, ii(:j) depends on it

because the ped.f. 18 a function of {.

- @ -
U () = /ay, {/ dxy_19Y41 ﬁ'i—lu E"i—l’xi-l’yi-l’xj(xi-l’yi-l)’yi] (61)
-00 [+ :

TR/ BUSRIRY
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=& dyi{ﬁ“i-ldyi-f" Exj(xi-l’yi-lﬂ . E‘J("i-l’yi-l)’yi"‘i-l”i-l:l
My (xy1995)

where S'K' is defined as equal to SK if (x ) 18 in A and is equal

J,yi
to m(:xi_l,yi_l)p(:xi_l,yi_l) if (xj,yi) is in the trap state.
If Nl particles had an i-1st collision and ordinary sampling

was used then the variance of the estimate of Nl 61 would be Nl(Ui - ﬁi).

By a trivial modification of the technique of 3B it can be shown that

- -2
this variance is approximately reduced by an amcunt NJ;Ui(xj) - Ué] .

Therefore the variance of the original sempling problem is reduced
- - 12
L Pi-l[“i(‘-” - Ui] y

If systematic sampling is used on y, then a surface yk(xi-l’yi—l’xi)
1s defined by '
Plygsxy_1o7g 10%y) = PUxayyixy 1 0¥y 3 )/P(xgixy 1yyy ) (&)

Yelxy 1975 30%)
k - 1/2 -
p(yi:xi_l’yi—l’xi)dyi = § k= 1, 2,..., N (63)

and the expected value of U(xwi_l,xi_l,yi_l,xi,yi) on thiq surface by

- ® : .
. ' - .
Uy (o) = /g Sy jay, S E"i’yk("i-l’yi-l"iﬂ K2 [y o3y (g g9y 0% )3

- (64)
X197 1-2] My (=g 197y

The reduction in variance is Pi-l[?i(:k) - -i]z . If systematic
sampling 1s used at several points in the particles history then the

reductions are approximately additive.
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4o Stratified Sempling

As in systematic sampling the important application is to the
initial positions of the particles. This subject is discussed in the
section on sampling Po(x,y) and also in Section 6 on correlation.

The application to the transition probabilities seems completely

negligible and will not be discussed.
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. ' 5. Use of Expected Values
Type 1 B

Let H denote the set of numbers, ("o’xo’yo’ W 9X)3Yqd eeed
wI,xI,yI), that constitute a history. The estimate W is a simple
function of H:

W= mlxpyyp)vg (73)

There are many other functions of H that can be used to estimate z.
Because most of them can be 1ntuitively Justified by replacing a
random variable by its expected value, they are discussed in this
section. The estimate in Equation (73) will be referred to by the
symbol.yl\and will be called a Type I estimate. A few other functions

of H that can be used will now be discussed.

" Type I1
Instead of recording the weight of the particle after it jumps
into the trap state, the computer calculates the weight that every

collision is expected to puﬁ into the trap state by:

I
L2 = z;)wip(:xi,yi)m(:xi,yi) " (74)

-~

The expected value of any term of L2 can be obtained by
calculating the expected value of the weight given that the particle
‘is at (x,y), and then averaging over all (x,y).

The fcrmer is given by

T:,_(:X,y) = Mi(X,y)/Pi(x,y), : (75)
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the latter by

Py aliags7y) = Ly )plixsydal ixy3 )P, (xyy Daxdy (76)

= dﬁfﬁi(x,y)p(:x,y)m(:x,y)dxdy .
If each term is replaced by 1its expected value the sum must be taken

tc infinity instead of just to I and

L

2 My dpl iy al oy ety (77)

A7 M(x,y)p(:xyy)m(:x,y)dxdy

=z,
The expected value of Lg can also Be calculated
122 D wp(ix, sy m(ex, sy, e plix, oy, Jmlixy 57, ) (78)
2 = pI. J’yJ ¢ J’ J 1p * 19 i ¢ i’yi
01
i“( m?( ) m% 20y n w p( ) )
= w,p X,y IX,9Y.) t 2 :Z; v, plex,,y.)m(:x, 45, v, plix, 357, )mlx,,¥y

i= i 1774 1’74 { J=i+lj hiadh! J7737°1 1774 1774

The expected value of the i'th term in the first sum is

wipz(:xi,yi)m?(:xi,yi) = .A?'wi(:x,y)pz(:x,y)n?(x,y)Pi(x,y)dxdy (79)

= 9 (x,3)p" (s, Jm° (1, )axdy

since wf(:x,y) = Qi(x,y)/Pi(x,y).
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If the ("j’xj’yj

sum would drop out of the calculation of the variance. Because

) vere independent of (vi,xi,yi), the second

there i8 a positive'correlation between the two sets of random
variables the variance is increased. It is convenient at this point

to make some additional definitions.

pi(x',y':x,y) = ,C7ii_r(x,y:x",y")pr(x",y":x',y')dx"dy" 1<r<i-1 (e1)
A

P, (xy:xty3') = plxyyix'yy')

K, (x,y:x'y3') = _A7ki_r(x,y:x",y")Kr(x“3y":x',y')dx"dy" 1<r<i1 (82)
A

- K (nyyixtyy9) = mlxyyix!yy! )p(x,yyixtyy')

= K(x,yy:x'yy*)
ni(X',y'ix',y) = K (x',y':x,5)/py (xt 5y ixy3) - - (83)

py(x,y:x'yy') 18 the prdbab@lity that a particle which starts at (x,y)
1s at (x',y') on its 1'th collision. Ki(x?,y':x,y) is the expected
weight at (x',y') after i collisions, given that the particle starts
at (x,y) with weight one. m, (x';y':x,y) is the expected factor by
which the original weight of the particle is multiplied if the
particle goes from (x,y) to (x',y') in i collisions.

The expected value of w, in the second sum of Equation (78) is

J
‘ vj(:xjan,vi,xi,Yi)‘= vyl (X553 3%053,) | &)
C“ng QBLE?
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The expected-value of xnj_i(xj,y:’:xi,yi)p(:xj,y.j )m(:xj,yj) for given
(Xi’yi) is

"{ﬁlj-i(xj’yj:xi,yi)p(zxj ’yj )m(zle’yj)pj—i(xj’yj =Xi.:yi)dxjdyj - (85)
=‘A[/Kj_i(x,y:xi,yi)p(:x,y)m(:x,y)dxdy

= Sj—»i( :xi,yi) .

The expected value of the (1,j)'th term of the second sum in
Equation (78) is

ﬂsj_i(x,y)vi( 1%y )p( 2%,y Jm( 1,y )P, (x,y)dxdy

(86)
A .

=.ﬁ7fsj_i(x,y)p(:x,y)m(:x,y)Qi(:x,y)dxdy

The sum from j=i{+l to ® replaces the Sj_i(:x,y) by[s(xx,y) - So(:x,y)].
The sum from 1{=0 to oo replaces Qi(x,y) by Q(x,y) in both Equations (79)

and (86). Making these changes and substituting So(x,y) = p(ix,y)m(:x,y),

the expected value of Lg becomes

I‘g = 7 Qx,y)p°(:3y3)m2( 1%,y Jaxdy + 2-‘(fs(=xvy)0(x;y)p(=x,y)m(=x,'y)dxdy (87)

= 2/ Qxyy)p? (1xyy )02 ( 1%,y )dxdy

=[/Q(X,y)p(m,y)m(:x,y)[é.S(:x,y) - p(:x,y)m(:x,y):ldxdy

Li - Lg =ﬂQ(x,y)p(:x,y)m(:x,y)[m(:x,y) + p(ixyym(:x,y) - 28(:x,yz| dxdy. (88)

1




LY
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The method is useful when the appropriately weighted average

m(:x,y)[__l + p(;x,y_)] - 28(:x,y) >0 .

In some problems S(:x,y) is of the order am(:x,y)R(:x,y).

Using this rough estimate roughly glves

p(:x,y) < 1 = 2aR(:x,y)

fér the condition that is necessary for Lg to be less than Li. The
implicaticn is that the estimate is useful when p(ix,y) or R(:x,y)
is small. This is in contrast to a type I estimate which works best
when p(:x,y) or a suitable average of R(:x,y) 1s large.

The method is particularly advantagecus when estimates of

. .the function M(x,y) are desired. The usual estimate of M(x,y) is

glven directly by the history, H, end can be written

~ I
Mt (x,y) = Eé%wib(x.- xg)8(y - yi)-

If the results for a number of histories are averaged and smoothed
out in the manner discussed in the section on estimating z(:x) and
22(:x), then something like a Type I estimate of M(x,y) is obtained.

The corresponding Type II estimate would be
M(x,y) = Eéi viK(x,y:xi,yi) + MS(x,y).

Equation (92) has a familiar look. It corresponds to improving an
approximate solution, M'(x,y), of an integral equation by iterstion.
N'(x,y) is substituted into the right side of Equation (1b) and

integrated. An iterative procedure of this type is especially

(89)

(90)

(91)

(92)
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effective when there' is a large separation between the first two
eigenvalues of K(x',y':x,y). In the present statistical situation,
iteraticn may be useful even if the condition on the eigenvalues is
not satisfied, because every sample is allowed a better chance to
contribute effectively to the answer. The expected value and

variance of the estimate can be calculated in a straighf.forvard

‘manner}
= %.2) _
M(x,y) = ;Z;:.ﬁ?rw1(=1',y')K(x,y=X',y')Pi(X',y9dX'dY' + M (x,y)

(+.¢] .
i;va'x(x,y:x',y‘)Mi(x',y")dx'dy" + Mo(x,y)

L K(xyyixt,y! M(x",y! dx'dy? + Mo(x,y)

u(x’)')

R . = 2 2
“{x,y) = 1; _A/fvi(:x',y')x (x,y:x',y')Pi(x',y')dx'dy'

- — ,
+2 Z/fo(m',)")K(x,ym',Y')Pi(x',y" Jaxtay' >

1T & =141

~

K(X)WX“,Y" )mj-l(x" sy ixt,y! )pj-l(x" sY"yx'yy! )dJF"dY" |

00
+ Zno(x,y) %ﬂﬁl(‘:x',y')x(x,y':x',y') Pi(x',y')dx'dy'

50 213

(53)

(94)
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=_[/'K2(x,y:x',y')Q(x',y')dx'dy'
A

co : :
+2 12 {fK(x,y:x',y')Qi(x',w)dx'dy‘ jZHlKJ-i:l(x’y:x"y”

+ ZHO(X,y)E‘I(x,y) - Ho(x,yﬂ + Ni(x,y)
={/K2(x,y=x"_,y')Q(x',y')dX‘dy' + Z{K(x,y:x',y')Q(x',y') '
[M(x,y:x',y') - K(x,y:x',y'.):' dy‘dy"
+2M_(x,y)M(x,y) - .lz(x,y)

= 7 Kyt sy Rty ) [gxt ') - Kyt syt ) axtayt

+ wo(x,y)ﬂ(x,y) - Mﬁ(x’y)

where

M(x,y:x',y') = fKi(x,y:x',y') ' (95)
i=1

1s the expected total weight at (x,y) if the particle starts at

(x'yy*). The variance of the estimate is

Y

W = B - 0P | (96)

"

K(xyy:x'yy*)Q(xt,y') EZM(x,y:x',y') - K(x,y:x',j' )] dx"dy'

’ 2
-[M(x,y) - Ho(x,y)] |
The expression could have been obtained directly from Equation

(87), essentially by substituting K(x,y:xf,y') for p(:x',y')m(:xi,y?).
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It seems difficult to make any general commenté about Equation (96)
without making further assumptions on K(x',y':x,y); therefore they
will be deferred to the chapters on applications.

It is sometimes inconvenient to compute p(:xi,yi)h(:xi,yi) or
K(x,y:xi,yi) for use in Equations (74) and (92) respectiveiy. In
particle diffusion problems particularly the expressions may become
simpler if the collisions are "mixed." For example, if X4l is used

with vy the first estimate is changed to something of the form

I

L, = 1Z=o"1P(’x1+1’y1)“‘(‘xi’yi’x1+1)’”("1+1”‘1’y1)

The detailed discussions of these estimates are alsc deferred to the

chapters on applications.

Type III

The Type I estimate can usually be obtained very cheaply even if
one of the oth@r estimates are being used. It might therefore be
‘ conjectured that it would be efficient to use an appropriate average

of Type I and any other estimate. For exemple

Ly =oyly + oI,
a,.+a, = 1

172

is an estimate of 2 with a variance of

2 . 2 2 2
c'a-alcrl +2a1a2¢°o"1<rz + “2°'§

&
(7
(:”»
a0
SN
&

(97)

(98)

(99)
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It is shown in Section 6B of the previous chapter that 0"32 is

: o‘i -f’c'lcrz
& minimum if a = =5 2 * The variance then becomes
o, - 2P, t o
1 - 7172 2
. 22 (147)
2 _ _1-2
5 = 2 ) (100)
1~ 2/’61'.0'2 + o,
Whether it is advantageous to use this estimate depends rather -
sensitively on 2 and y = 0.2/62'1 [and on the computer's ability to
- estimate c{j . It is particularly advantageous if .2 1s negative. The
exact dependence on 2 and y 1s given in Graph 1 of Chapter II. _°o is
given by the standard formula.
poyoy = LiL, - LL, (101)
-7 =2
= L1L2 -2
—_— @® @®
L1L2 = %Z; ;2; "Im(’xI’yI)";Ezzxi’yi)p(‘xi’yi) (102)

The expected vaiue of any term in the above sum is easily calculated:

wl.m( :xI,yI)wim( :xi,yi)p( :xi,yi) = :'-I.( :xI,yI,wi,xi,yi)m( $Xp¥1 )vixn( xxi,yi)p( :xi,yi)
(103)

- ,
- = mp_y (xpyypixgsyy mGxpyyphimlexg 3, Jp(axg,y, )

. | —
-’-‘/f/ﬁI_i(XI’foiaYi Jm( ’xI’yI)p( 1X19Y1 ' ( 3X17Y1)

m( :xi’yi)p( ,xi,yi)pl_i(xls_ylxxi,-yi)

Pi(xi,yi)dxidyidxldyl




= ‘////XI-i(xI’yI:xi’yi)m( X1¥y )P( =xI’yI)

m(3xy 5y, IPCixy 57 )Qy (%457, Jax, dy,

dede

= /B 1q ixgoyy Imlaxg 3y IpCaxy oy IR, (3 vy Jax,dy,

Summing from IFL to @ gives

[0 0]
ot EZ;"yS(:xi’yi)m(‘xi’yi)p(:xi’yi)Qi(xi’yi)dxidyi

= _/5(x,y)m(:x,y)p(:x,y)Q(x,y )dxdy

= _//8(x,y)2(x,y)Q(x,y)dxdy

[l
[
i

-2
Z

[ oy M Gy danay ]
= [/fz(vx,y)ﬁ(x,y)dxdy]z
=I:z?s(x,y)Mo(x,y)dde]Ek7§(x,y)N(x,y)dxdy]

There will be some discussion of the application of these formulse in

Chapter VII.

Type IV

Sometimes the transition functions are of such & nature that it
is possible to write (xi,yi,wi) as a simple function of (xo,yo,wé).
For example, if a history (wo,xo,yogvl,xl,yl; .o ;wI,xI,yI) has been

calculated, then an equally good history can be obtained by picking

(104)

(105a)

(105b)

(105¢)
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a y! from Po(y:xo), calculating w! = wo(xo,yé) and then getting a

new history H' =[}g,x°»yg;V{,xi(xo,yo), ¥ (xo¥l) ooe ;w{,X{(H,yg),yi(H,yg{}-
The functions in;H,ng and yi [H,y(';l are the xg
been obtained if the history had started with (ué,xo,yé) instead of

and Yy that would have

(vo,xb,yo) and the same random numbers used. The w! are calculated by

{
wl
wi= =2 m(xf,yiixsy!) oo mlx)yyiaxg 19y, ;) (106)
o]

In most of the situations in which the technique is useful

Equation (106) reduces to

e
]}
o® lo':-

vy (107)

When the calcglation of xi,yi, and wi is ccmpgrétively easy an

: estimate, LL’ can be obtalned by picking -several yé's for each H

'and averaging their estimates. This reversed splitting technique,

in which the "same" final history is Joined on to different initial -
~ points, is useful when there 1s a marked dependence on initial
conditions. It is especially cheap to do this when the new history
can be produced by translations or reflestions, or rotations,

The history H' may want to terminate sconer or later than H
doesy a corresponding adjustment must be made by adding or dfopping
(wi,x{,yi) sets.

If the functions xi(H,yo) and yi(H,yo) are sufficiently simple,
it 18 possible to get a very useful estimate by integrating a Type I
estimate over all possible yé. Let Bi be a subspace of yé such that

all (xsyyi),J < 1, are in A but (xi+l,yi+l) is in the trap state.
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Then, using the Type I estimate for H' and integrating over all

Yo in B1

© :
L, = > J/pwim(:xi,yi)?(yoxxo)dyo (108)
i=0 Bi v

In most problems the B, go to zerc at some finite i. Whether

b
or not this happens, it is always possible to use a Russian Roulette
procedure to keep down the number cf terms (Section 7). Type IV -
estimates are important not only because they cut decwn the variance,

but because the computer, using the seme histories, can study

simultaneously different A regions or different initial conditions.

This lest often results in & very large saving of computing time.
Some typical situations in which an integration over initial
values can be useful occur when ¥ is: a position varieble in plane
slab problemsj an energy variable when the diffusion process is
independent of the energy; an angle variable where it is possible
to take advantage of some symmetry ccnditionj an angle variable for
a problem in which, by revolving the history, a target area can be

hit with a high degree of probability; setc.

Type V .
Integration over initial conditions can be combined with a

Type II estimate. The Bi must then be defined as the subspace of -

o such that all [;S(H,yo),ys(ﬂ,yoi] are in A for j < i. The

estimate 18
® e |
L5 = E;g dépwip(:xi,yi)m(:xi,yi)?o(yozx)dyo - (209)
i
€2 ﬁﬂég




- 213 -

A disadvantage of this technique over Type IV is the necessity for
calculating p(:x,y). In some problema this calculation is more

tractable 1f L_ is used with a "mixed" collision. L_ is useful for

5 5

the same sorts of situations as L&' It is obvious that LL and L5
could alsoc be defined in terms of an integration over X, instead
of o or it 1s conceivable that both integrations could be done

simultaneously.

Type VI
If the kernel K(x',y':x,y) has the form

K(x',y'ix,y) = k(y':ixyy,x* )k (x':x) -(110) i

i1t is possible to treat the k(x':x) as the kernel of a simpler

- ‘integral equation
M(x') = /& (x' ex)M(x) + M (x) (111)

Ho(x) =/ﬁ°(Xay)d}'

and a set qf histories in x calculated. Each-history in x space can
then be used in calculating a history in y space. For example, the
angle and energy histories of a particle diffusing through a homo-
geneous medium are independent of the space histories and a library

of energy - angle histories can be calculated in advance. This

library can then be used to calculate space histories for different

problems, or a Russian Roulette and splitting technique can be used

¥

and many space histories calculated for a single angle-energy history.

In the early days of Monte Carlo when computing was done on I.B.M,

\

N

&

i

@
)
& 3
&
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punched card machinery or by hand, this procedure was sometimes
followed. It does not seem to be efficient for the high speed
computers. ‘

In some problems it is possible to write down the kernel
ki(yi:xo,xl,...xi,yo) for the expected weight at y, given y_ and
the history in x space. If it is possible to calculate integrals
with ki(yi:xb,xl,...,xi,yo) as part of the integrand then a
potentially useful Type VI estimate can be made. For example if

(xi,yi) is in the trap state and (xb,yo) is in A then

® ~
Ly = £§;¢6Zi(:xi,yi)ki(y{:xo,xi,...xi,yo)ﬂo(yo:xo)dyidyo (112)

is an estimate cf z. The most important case where L6 can be
calculated is when Y i3 a random variable associated with survival
or absorption, and x is all the other variables of the problems.

L6 is then evaluated in a trivial fashion to be the product of the

’ 'éurvival probabilities of each separate collision. It is actually

poesible to evaluate L6 analytically in other cases, but the author
does not know of any in which the formulae are not too cumbersome
to be useful. As always an equation similar to (112) could be

written for a Type II estimate instead of a Type I.

* Martin Berger of the Natioral Bureau of Standards has in-
formed me that he is planning to use an L, type estimate ‘in
treating the diffusion of ¥rays in finite plane slabs where
the x space is the angle-energy history and the y space the
distarice into the slab. L 338
G50 o il
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6. Correlation

As in Section 16 of Part II there are two fundamentally different
ways of correlating problems. The first, and possibly the most
important, is tc use the same Po(x,y) and p(x',y':x,y) and to let
the weights and/or weighting factors be different for the different
problems. Specificall& if two problems are determined by the
functions:

‘B Mo(x,y),K(x',y':x,y), and z(x,y)

- b M(x,y),K'(x')y':xyy), and 2'(x,y)
respectively, the éomputer can use any convenient Po(x,y%p(x',y‘:x,y),
vand p(:x,y) to compute the partial history (xb,yo,xl,yl,...,xl,yl).
. The wi's and W's for the two problems can then be obtained from the
(“‘weights and weighting factors:

8. - _(xyy) = M_(x,3)/P_(x,y) | | - (113)
m(x!,y'tx,y) = K(x',y':1x,y)/p(x",y':x,¥)
n(:xyy) = 3(x,y)/p(ixyy)

be wi(xsy) = ML (xs3)/P (x3) . o (114)
nt(x',y'ixyy) = KV (x!yy':xy5)/p(x 5t ix,yy)
m'(:xyy) = 8'(x,5)/p(sx,y)

As discussed in Part II, the strength of the correlation is

measured by o o = W - W W', WWt can be calculated as the expected

value of a random walk. If S"(:x,y) and M"(x,y) are defined by the
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equations

8" (sx,y) =,f?’8"(zx',y')n(x',y’zx,y)m'(x',y':x,y)p(x',y':x,y)dx'dy'

+ plixyy)m(:xyy)m? (:xyy) (114a)

= /7St (exyy P IR(x"yyt1x,y)K (x',y':x,y) 2(x,y)z' (x,5)
{f plxtyy':ix,y) dxlay! + ptm,y)

and ,
L .
M (xyy) = [(xyy:x'yy ' m' (x,37:x? 5" )p(x,y:xtyy! M (xf,y1 Jax'dy’
A
+ Po(x,y)wo(x,y)vé(x,Y) (114b)
K(xay:x'av! K (X vex? y® M (x!,v! Mo(x,y)H;(x,y) .
=ﬂ_1_.x_~__.x_).(_Lu;_%_l_ﬁ_ﬂ_2 dx'dy! +
A PAXyyiX"H»y . Pé(x,j) -
then : .

— M (x,y)M' (x,y)
= n(. o o dxdy
wW! {S (oX,Y) Po(x’y)

=/ Hnixyy) A3 gy

The other important method of correlation is to use the same
random numbers at a corresponding'point,in the two calculations. It
is then usually somewhat more than twice as costly to do the two |
problems than to do one of them. By contrast, carrying along an
.extra weighting factor usually increases thg cost by an almost negli-
gible amount. The implication is that the variance, if the second
method of correlation is used, should be les$ than half of what it

would be if the first were used. If, as defined in Section 3,

(6@ ]
o
i
™
W)
€V
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1(xt '
xj(xi-l’yi-l) and xj(x -197 1—1) are equiprobability surfaces for
the two problems, then using the second type of correlated sampling
on the x space is equivalent to picking the same j surface in the

two problems. In this case the expected value of WW! is given by

i-2

M (x§ )dx

K (x] 1-1091-1

]
Dyiixd oy My (x 1’3'1 1 g-1 **° 99y

t oo oyt 1
where b[ii xJ(xi)]guarantees that X4 and x, are on the same J

1-2
g v, Z WL T8 xg9yy )8! (xi’yi)b[ x3( i)}x(ii’yixi-l’yi-l)

(116)

surfaces and the convention Las been made that SK = m(x:i_l,yi_l)p(:xi_l,yi_l)

1KV = p( sx? i ) '
and S'K m('xi-l’yi-l)p('xi-l’yi~1) when (xj,yJ) is in the trap
state. Neither of the expressions in Equations (115) or (116) is
particularly revealing. The reader will probably get more out of
considering the examples at the end of this section and in Appendix

V than by studying the above equations.

Parametric Study of Mo(x,y)

In many important uses of correlation by weighting, the effect
of correlation, while beneficial, is secondary. The reduction in
cost is the primary reason for using it. For example it ma& be
desirable to study what happens when different Ms(x,y) are used and
everything else is left unchanged. This situation could arise when
.Ms(x,y) is one of the design parameters being studied, orlmore.

likely different M (x,y) correspond to different idealizations of

o 4
- : o
%0
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the physical problem. It is almost no extra work to calculate three
or four problems simultaneously by using the same histories with
different wo(xo,yo). It is convenient in this case tc stratify

the initial distribution of (x,y) according to some P:(x,y) and to
let wo(x,y) = 1. The Monte Carlo calculation can then be used to
eétimate S(:x,y) and T(:x,y). fhe estimated S(:x,y) and T(:x,y) can
be integ;ffed against Mo(x,y) end Mi(x,y)/Po(x,y) to get estimates
of 'z and z° respectively for any Mo(x,y) and Po(x,y). If 1t 1s
inconvenient to estimate S(:x,y) and T(:x,y), then labeling each , | -
history with the subscript n, the (x,,9¥ 2%, ) can be recorded and

the estimates

N M(x _,y )
~_ 1 Z o' “on’’on
7 = W CICRR] (117)
N n=1 © P"(xon’yon :
;é = % Mi(xon’yog) (118)
p=1 ¢ PG‘on’:‘(on)lw(xon’yon)
used.
Param c S of K(x',vy!': i
J .
Let K(x',y':x,y) = ko(x',y':x,y)'+ ;%jejkj(x',y':x,y) (119a) .
. J
3(x,5) = z_(x,y) + Zi.zj(x,y) (119b) -
1 J

where the €j are small. If the transition probabilities are

p(x'yy':x,y) and p(:x,y) then
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)

2(xpyy;) Il

: ) SO AVE A,
W = - _1_1_1__1_1__1__$7
Yool plixpayp) 4z PURypaYye1%geYy

. J
z W+ "b(xo’yo) 2§jerj

where

RN i1 Uiy Ko (X4419¥ 447 754 97y)
o~ Yool plixpyyy) gz PlXge1a¥iey R0y

N (xryy7) I;} K (X4 4q9¥5405%07,)
pE’xI’YIS 1=0 pixi"‘l’yi"’l:xi’yig
I-1

and the symbol W' means that the term r=i is left out of the
- r=0

product. In an actual computation the Yj can be computed by a simple

- {terative scheme and not by the rather formidable looking formula in

the above equations. To first order in EJ.

J
+ ng Ejijo(ko,yos

=|

(o]

If the Monte Carlo calculation -is used tc estimate ib and vy,w (x ,yo)

J70' 0
then the computer can use these estimates to study how z varies as a
fupction of EJ in the region around Ej = 0. A much more interesting
problem is to assume that z is known and the éj unknown. An example
of such a problem would be when the results of bulk scattering
experiments are known and the computer wants to use these results to

improve the knowledge of the differential scattering cross sections.

(f\

(d'\

&
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o;

. & (II,)'I) Iil k,(x +l’yi+l:xi’yi) I;r:}' ko(xr‘i'l’yr"’].: r’yr)
YJ pi :xI,yI; 190 pixi+l,y1+lzxi,yi’ =0 ﬂxﬁlyyﬁl:xr’yrr

(121a)

© (121p)

(122)
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In this situation the results of K different problems must be given
with K> J. Each of the K problems then determines an equation like
(122). By using a least squares technique it is possible to obtain
J simultaneous equations which can be solved for the ej’ It is not
known as a practical matter under what conditions the proéess can be
carried through accurately. The question is currently being studied
in connection with the problems discussed in Chapter VI, and 1t is

hoped that some resulte will be available soon.

Com Diff. Stra D k.

Let us assume that the computer wishes to compare two different
drawing strategies. A simple way to achieve correlation would be to
uaevidentically shuffled decks and play out the two types of strategiles.
Thié would not be very satisfactory though, because the two decks

would get out of step as soon as the number of cards drawn in the

“two strategies differed. The obvious solution to the difficulty is

to discard the extra cards. This has the happy result that a zero
difference reéulte wvhenever the two strategles are the same and the
Monte Carl&iis being used to estimate directly only the frequency and
inporténce of the eituations in which there is a difference between

the two stratégies.

*
Comparing Different Bombing Strategies

If a strategic or tactical bombing cempaign is studied by Monte

Carlo it is customary to introduce some or all of the following random
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elements.

1. Number of planes that abort : -

2. Number of planes shot down by area defense on the way in

3. Number of planes that stray ihrough navigational errors

4. Number of planes shot down by local defense

-5. Weather conditions over target

6. Place where bombs land

7. Damage done

8. Good or bad reconnaissance

9. Number cf planes shot down by area defense on the way out

10. Number of planes that don't get back for a miscellany of
minor reasons "

Because some of the probabilities concerned depend on the number
of planes, the above problem is non-linear. This dces not prévent the
use of any of the techniques suggested.

If the computer wishes to compare different bombing strategies
it 1s often effective to use correlation t§ cut ddﬁn the sample sige
required to get significant information. If the correlation is donq
by using the same random nunbers, there will be different nunbéra éf‘
planes aborting, shot down, etc. The computer cannot use a single
list of random numbers in sequence in the two problems, for they
would soon get out of step. He can either throw away the éxceaé |
random nunbefa'or vhat 1s sometimes better, save them for use on
later strikes. For example, if a larger number of targets were
attacked on the first strike of strategy one, the extra random nﬁﬁbers

that vere used to determine the weather on these excess tdrgets can

(f; [ d

o s I
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Se saved. If in a later strike an excess mumber of targets is
attacked under strategy two, the saved random numbers can then be
used on these targets. Correlation can thus be achieved by using
the same random numbers whenever the two strategies give rise to the
same type of contingencies - even if they are on different strikes
with different planes and targets.

If the different strateglies are such that a definite type of
event is all-important to the coupariabn then correlation by weight-
ing may be better than using the same random numbers. For example,
if the effect of different types of defensiQe armament are being
studied, the same kill probebilities could be used for the enemy
fighters in the sampling, and weighting factors carried along to
account for the differences. The correlation may be higher if this
i8 done, because exactly the same number of bombers are shot down
each time, so all of the subsequent history is the same. If the

correlating were done by using the same random numbers, different

- numbers of planes would be éhot down and the actual progress of the

two strategle campalgns would be quite different. It would still be
pessible to obtain cofrelation b& using the same random numbers for
the same types of contingencies, but it is unlikely that the correla-.
tion would be as high,

Another case where welghting might be preferable tc using the
same random numbers would be when two different reconnaissance devices
were being compared. The possible weather situations can then be
clessified according to the following criteria:

l. Both devices work

[cAl)

Q\

@
d3
&2
5




- 223 -

2. One works and the other does not

3. FKeither works

Cnly situation 2 makes a difference between the two devices so
that in the sampling only it should be allowed to occur. If 1 and 3
occur, the sample would give zero for'the estimate, so they need not
be calculated, only the percent, P, of time they occur is needed.
This 1s automatically calculated by the weighting factors. If
ingtead of béing an all or nothing situation the devices have dif-

ferent probabilities of werking as the weather changes, then the

appropriate modification must be made in the sampling. If the same
randcm numbers were used to do the correlating then (1-P) of the time

the sample would be wasted.

Polarization.
In tracing y rays through a medium 1t simplifies the problem L

greatly to assume that the y rays are unpolarized. This assumption

can be checked by doing two correlated problems, one using the exact

laws and the bther the approximate one that is obtained when it is

assumed that the particles are unpolarized. If weighting factors are

used to d§ the correlating they would fluctuate wildly because the

differential scattering laws are quite different in the two cases.

The actual effect of polarization turns out to be quife small in most

problems of interest. This 1s shown very effectively if the correlating

is done by using the same random numbers. It then turns out, in most

situations, that even though quite different azimuthal angles are picked

* The above technique has also been used independently by Lewis V. Spencer
of the National Bureau of Standards.

- 0': s
S50 wov




in the two problems every time a y ray scatters » the answer is not

affected very sharply.

K(x' L7 3%,7) ® k(y'ix,v,x! Jk' (x'ix),

When the kernel of the integral equation is as in Equation
(llO) and the computer finds itivery easy to treat Equation (111)
either analytically or by some numerical technique, then the
technique at the end of Section 18 of Part II [Eliminating the
Variance of E(:x)] can be used in the manner described there to

cut ‘down the variance,
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7. RUSSIAN ROULETTE AND SPLITTING

In Section 2 on Importance Sampling théré was‘a fairly
complete discussion on the cirteria to use in choosing transi-
tion probabilities for a Monte Carlo calculation. In many
p}obabilistic problems, however, the set of transition prob-
abilities and ;eighting functions giien directly by the physi-
cal situation are often computationally much simpler to sample
from than the ones that the computer would choose if the princi-

ples of importance éampling were followed., It is possible to

~use a non optimum (iﬁ the sense of importance sampling) set of

transition probgbilities and still spend most the computing time
on "important regions" by using Russian -Roulette and Splitting.
The discussion which follows, assumes that a Type I esti-
mate is being used. If some other type is used an appropriate
modification of -the formulae and results must be made.
The variance of a Russian Roulette and Splitting sampling
procedure was calculated in Part II by representing the
variance of the straigﬁtforward sampling procedure in a form

such as

- 5
4/62(:x)f(x)dx +_/1?(zx)~- z| f(x)dx

and then noticing that the first term is modified in a very
simple fashion if Russian Roulette or Splitting is used and

that the second term is not affected by the modification. The
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same technique will be used in this section.
If W(ix,y,w) is the conditional random trapped weight
given that the particle starts at (x,y) with weight w and no

Russién Roulette or Splitting is used, then -
W(ix,y,w) = wS(1x,y) (130a)

F(’X:Yﬂ’) = ‘z'r('x’Y) . (13%) -

The variance V(:x,y,w) of W(:x,y,w) is given by the usual

expression

‘ - 2
V(:x,y,w) = [W(tx,y,w) - W(tx,y,V)] (131)
2 2
-w [‘r(':x,y) -5 (SX,Y)J
Define w' as the weight of the particle after collision.

w' o= wm(xt,y'ix,y) - (132)
Then using Equation (30b) for T(:x,y) an integral equation can

be written for V(ix,y,w)
V(sx;y,w) -{/W'z'r(tx' ,y');;(x',y':X.y)dx'dy? | (133a)

+ wzmz(tx.y)p(u.y) - w52 (1x,3)

- (/V(tx',y',w' Jp(x’,y'1x,y)dx'dy" (133b)
+{fw'282(=x' ¥ )p(x',y" 1x,y)dx' dy"

+ w2m2(=X.§)p(:X.y) - ¥5%(1x,)

- {fv(u' »¥' 5w )p(x',y' 1x,y)dx' dy’ (133c)

+ f/E"S(nt'.y‘) - wS(zx,y)]gp(x',y‘ tx,y)dx'dy'

2
+ wz[m(:x,y) - S(tx,y)] p(tx,y)

i)
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The variance of the sampling procedure is given by

2
v -_{ﬁ[lX,y"’o(X’y)] Po(x,y)dxdy $‘{/[W°(X,y)5(lx,y) - ;] Po(x,y)dxdy

As alregdy indicated only the firast term is affected by the
introduction of Russian Roulette and Splitting. It is con-
. venient at this point to introduce a few definitions:
- : ﬁ. W#(:x,y,w) is a conditional random variable that is the
sum of the random trapped weights of the particles
‘produced by a parent particle that starts from (x,¥)
with weight w. Because the expected v;lue of the
trapped weight is not changed by the use of Russian
Rouldtts or Splitting, »
W (ix,y,w) = T(sx,y,w) ; (135)
= wS(1x,y) &
The expected values of w§2(:x,y,w) is changed.

Let

T (1x,7,) = We2(13,7,¥) (136a)
U(ix,y,w) = T*(1x,y,w) = HQSQ(:x,y,v) . '(136b)

b. Ri is a subarea of A. The initial (x,y) point ia
picked out of Po(x,y). If it happens to be in 3i,

a Russian RQulette procedure with a probability
qo(x,y) of survival is used. If the particle sur-

. vives it 1is agsigned a weight

LA wo(x,y)/qo(X,Y) . (137)

" oy
GLg R34

(13k)



The variance associated with this event is given by

2 2
[ (xysm)a,(x) - v s (xy))  (138)
R = A - R} is the rest of A. If the initial (x,y)
point is in R}, the particle is split into no(x,y)
independent particles, each of wéight
Vo VO(X,y)/no(x,y) (139)
The variance associated with this event is

V*(:x,y,voz)no(x,y) , ' (140)

‘“Rl(x,y,v) is a subarea of A'that depends on the parti-

cle position and weight. ‘If the particle jumps to a
point (x',y') in Rl(x,y,w) then a Russian Roulette |
procedure with probability q(x',y'xx,y,w) is ﬁaod
before the next collision point is chosen. If the
particle survives the Russian Roulette it is given a
weight )

wi - wn(x',y':x,y)/q(x',yZ:x,y,w) | (141)

- w'/Q(x' A ’xyy,w)'

The variance introduced by an event of this type is

.[Tl(tx',y',wi)q(x',y'tx,y,v) - w"zsz(:x',y'i] (142)
Rg(x,y,w) - A - Rl(x,y,w) is the rest of A. If
(x';y')vis in Rz(x,y,v), then the particle is split
into n(x',y'sx,y,w) independent particles. Each of
these particles is given a weight

) = wm(x',y'1x,¥)/n(x',y' 1x,y,%) . (153)

- w'/n(x',y'tx,y,¥) -

-
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(
{ ) n(x',y'1x,y,w) must be an integer, but in the very
rough derivation which follows it will be considered
as being a continuous variable. The variance intro-
- ' duced by the n(x',y':x,y,w) independent particles is
n(x',y’zx,y,w)v*(sxf,y',vé) , (14L)
Usiné_'a' to 'e' the modification of Equation (133b)
appropriate to Russian Roulette and Splitting can new be
written
v*(:x,y,w)-chE?*(:x',y',wi)q(x',y':x,y,ﬁ)- w'zse(:x',y'ip(x',y':i,y)dx'dy'
(145a)
. {/V*( 1x',y',wh)n(x’ ! 1,7, 9)p(x' ;7" 1x,7) dx'dy’ ‘.
2

+ /fv'zsz( ix',y')p(x',y" 1x,y)dx'dy"
A

w2m2(3x,y)p(lx,y) - '252('1:1)

- [/ (sxt 3 swida(x!,y'1x,y,w)p(x' 7" sx,5)dx'dy’  (LU5b)
Ry

_[/-V*( 1x',y! ,\'é)n(x' »¥'3x,¥,w)p(x',y' 1x,y)dx'dy’
- R ‘
2

] ~ ' sz(x,y,Rl) + W?B(x,y.) '

sz(x.Y.ﬁll - ff[v'izsg(tx' sy )alx!,ytix, %)~ v'2_82( tx',y! )__]p('x' »¥':x,y)dx'dy’

-{lfw'zsz(m' ,Y')[-(——}———- )‘ l]p(x',y'xx,y)dx'cV'
' - lalx',y'ix,yw ‘ '

- g?[?éz(xx',y‘)mz(x',y':x,y)

- 1.]p(x'. y'ix,y)dx'dy’
By

W
Fegmmet




B(x,y) -/sz(nc' ,y')mg(x' , 7' 1%,¥)p(x' ¥ 1x,y)dx'dy"  (LL6b)

+ mz(:x,y)p(rx,y) - 82(=x,y)

Equation (13L) becomes

V7 - ‘R[/V( 3x’y’wol)qo(x’Y)Po(x’Y)dxdy' (1L7)
1

{_f( ‘X:Y:“og)no(x)Y)Po(x9}')dXdy> )

2
*'_{/E'O(X:Y)S(”(’Y) - ;] Po(pr)Wo -

B(x,y) is independent of the choice of q(x',y':x,y,w),

n(x',y'sx,y,w), and the regions R1 and R If the computer

o°
chooses
p(x',y':x,y) -.S(:x',y')K(x‘,y':x,y)/s(:x,y) (1L8)
p(:x,y) = 2(x,7)/8(ix,y)
mn(x',y':x,y) = Slsx,y)/s(:x',y")
a(sx,y) = S(sx,y)
then 1t 1s easy to show [by using Equation (15)] that B(x,y)
is gero.

If in addition the region Rl is chosen to be zero so that
no Russian Roulette is used, then A(x,y,ﬂl) is zero and there-
fore also V#(:x,y,w). Since the above choice weighting functions
and transition probabilities corresponds to optimum or zero

variance importance sampling it is'not completely surprising

that the splitting process should still be zero variance.

&™
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It was shown in Section 19 of Part II that the Russian
Roulette or Splitting should be done in such a manner that the
weights ﬁi or wé assigned to the final particle or particles
ére independent of w', but unique (differert) functions of the
position. In the discussion which follows it will be assumed
that the computer has decided to carry out a scheme in which
the particle or particles will always end up with a weight
always equal to some function, 1/\U(x,y). Since this final
weight does not depend on whether the particle has just gone
through the ordeal of Russian Roulette or merely split, the
scheme will not be optimum, but it will be close enough for
all practical purposes. The scheme is as follows:

a. The region Ri is determined by

wo(x,y) < 1/20(x,y) (1L9a)
and the probability of survival
% (x,5) = N(x,y)w (x,5) (1k9p)
R NCRVLNERD
= 1/20(x,y) o (1L9c)
b. In the complementary region ké
v (%,5) > 1/A0(x,y) (150a)
n(x,y) = Wix,y)¥ (x,5) S (150m)
Yoz = ¥ (x,7)/n_(x,y)
- 1/20(x,y) , (150¢)
c. The region Rl(x,y) no longer depends explicitly on

the weight since w = 1/\U(x,y) is a function of (x,y).

R Ly Ras®
(. ﬁﬁ,x)d
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The region is determined by the inequality

t gt - 1 ‘
" (1512)

and

alx',y'1x,y) = M n(x',y':x,y)
U(X:Y)

d. In the complementary region R,(x,y),

m(x')Y' 'X1Y) - 1

Uxy)  U(x',y) (157) .
n(x',y':x,y) = Uxl,y') m(x',y':x,y) (152b)

. U(x)Y)

It is clear that rules 'a' te 'd' will result in the
particle always having a weight equal to the desired 1/\U(x,y).

Under these circumstances Equations (1L5b) and (1L7) become

V’Ex:y» - }-/fvﬁ[w’y" * ‘Jg(x',y')"‘(x'»Y"x,y)p(x',y'u,y)drdy‘
U (x,y) RL A (x',y')) U(x,y)

L
‘//V* [:x';Y': lt }Uéx‘,y : m(x',y'1x,5) .
R, A(x',y' ) U(xy) p(x',y' tx,y)dx! dy"

A(x9Y)R2) B(x

2+ o2l 53

AU (x,y) XU (x,y)

1 .
v "//15"'* &x,y,m:l\U(x)y)wo(x.y)Po(x,y)dxiv (15L)

+

] )\U(X,Y)F'IO(X,Y)PO(X,Y)GX‘&Y

. S 2 ,
f/]‘[?o(x,y)s(xx,y.) - 2] Po(x,y)dxdy .

¢
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By combining the regions Bl and 32, defining

va(1x,y) = XBV* [:x,y, ] (155)

0 (x,y)

and making standard substitutions the equations

v (:x,y) -.//V*(zx' »7') 9_&1((_,13_) K(x',y'1x,y)dx'dy’ (156)
X,y

Ax,¥,R5)  B(x,y)
+
12(x,y)  UR(x,y)

+

v, = % /‘Zﬁ(:x,y)U(x,y)Mo(x,y)dxdy. | (157) |

2 .
f{/[vo(x,y)s(my) - ;] P (x,y)dxdy .

are derived. If the correspondence

S(x,y) —> W(ix,y)U(x,y) : (158a)
s(xyy) — A2TR2) | B(xy) (158b)
i U(x,y)  U(x,y)

M (x,5) —> ¥ (x,y) (158¢)

is made, then Equation (156) is the same as Equation (2b) and
the first integral in (157) is the same as (Pa). Therefore

by using the equivalent of Equation (3), (157) can be written
1 A(x,y’RQ)

V, = -
T Ah 0 Ulx,y)

M(x,y)dxdy (159)

// SEX ) M(x,y)dxdy

” _
+{ wo(x,y)S(tx,y) - ;] Po(x,Y)dde

(&)

=y
&
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s
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In addition to the variance V., of the sampling procedure,

7
the cost C must be considered. Let:
C, be the expected marginal cost of starting a history.
Cl(x,y) be the expected cost of tracing a history that
starts with weight 1/AU(x,y) .
C,(x,¥) be the expected cost of terminating history that
Jumps to the trap state from (x,y).
CB(x,y)»is the cost of computing a new collision point
starting from (x,y).
The expected marginal cost of a sample is given by
C = /7t (x,37)q,(x,¥)P_(x,y)dxdy 'f{Cl(X.y)no(x,y)Po(x,y)dxdy + C_ (160a)
4
B RS |
- 5{7&1(x,y)U(x,y)wo(x,y)Po(x,y)dxdy + Co

= W/ (x,7) U9 (x,7)dxdy + C (160b)
A

Cl(x,y) is determined by the integral equation

Cl(x,y) - ‘/];31(1' QY' da(xt,y’ 3XJY)P(X' »y' 1x,y)dx'dy! (161a)

R
1

*//Cl‘(x' 2T In(x',y' tx,y)p(x',y' 1x,y)dx"dy"

R,

+ [1 - p(:x,y)] 03("’1’) + p(!X.}')Cg(x,Y)

'fﬁl (x',y') -%‘—*z;l m(x',y' tx,y)p(x',y' 1x,y)dx'dy’ + D(x,y)
X,y

-_[7@ (x',y") gﬁ%-lzsl K(x',y'tx,y)dx'dy' + D(x,y) (161b)
XY

1
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where )
D(X’Y) - CB(x,Y) + PB(X)Y)[Cg(XQY) - CB(X:Y)] (161c)
In the same way that Equation (159) was derived,
Equation (160b) and (161b) imply that

Ce= }[ﬁ(x’Y)D(x:Y)H(x,Y)dXdy + Co‘ (162)
A

Equation (159) and (162) are essentially the same as
" Equations (224) and (227) of Part II. They are a little
more complicated because A(x,y,Rl) in Equation (159) is a
function of U(x,y). Using Equations (1L6éa) and (151b),

A(x,y,Rl) can be written

A(x,¥,R)) = U(x’yléz;x’y)s 2(s x'.g(lffz')y :xly) dx'dy'  (163)

‘ff S (rxf.Y')m?(x' »Y'ix,y)p(x',y'1x,y)dx'dy"’

Rl X,¥)
Therefore V7 ¢an be written:
Lo Y anayyy, | S M) gy 4
A R, (x,y) U(x',y*') .

‘19’51541-d dyj?’ Sz(xx',y')mz(x',y':x,y)
U(x5y) R, (x,¥)
p(x',y':x,y)dx"'dy"

/fuzx’y)n('x,y)dxd& -

2
*{/[wo(x.y)s(xx,y); - E].Pd.(x,y)d;dx. .




By interchanging the order of integration, the first term can

1// —i“‘nd"d?f/ E(x,y1x',y' M(x',y" )dx'dy" - J

be written:
U(X:Y) . 2 X)Y)
77 can then be written in the form
1. ‘ ‘
v7 - VeV o, (165)
where .
-l Yix,y) M(x,y)dxdy ' (166a) _
A U(x,y)
. 2
v '{/['o(xn) - z] P (x,7)dxdy (166b)

P
V(x,y) = -—Silel_ZQr E(x,yix',y' )M(x',y" )dx'dy' (166¢c)
H(x,y) Rz(X)Y) .

°J6f | S“(zx',y')mz(x',y'}x,y)p(x',y‘:x,y)dx'dy'
Rl(x:Y)

+ B(x,y)
' C can be written [Equation (162)]

C=2C) ¢ C_ (}67) )
where -

C} = // U(x,y)D(x,yM(x,y)dxdy | (167a)

CO - CO ° | (167b) ¢

To minimize. CV7 with respect to A, let o l




This value of \ makes
V .
Vo =V, +\lc—° cLvy 0 (169a)
. (o}

(169v)

[o]
C=C,+ V; cive
Vo 'vo . ( )
- . 1690
C C’; .
v, = ( Ve, * \lc:)v;j, - (1694)

To minimize CV. with respect to U(x,y) it is sufficlent to minimize

7
CéVé.- This minimum is obtained by taking

U(x,y) = \@ (170)

where D(x,y) is the expected cost of calculating a single collision from

the point (x,y) and V{(x,y) is approximately [tha first two terms of Equation
(16€c) have a tendency to cancq%] B(x,y). B(x,y) can be written [Equation
(16b)]

4 + [m(:x,y) - S(=x,y)]2p(:x,y)o

B(x,y) is therefore the variance of a random variable'which has an expected
value S(:x,y), a discrete probability p(:x,y) of taking on the value m(:x,y),

and a p.d.f. p(x',y':x,y) for taking on values S(:x!',y').

This concludes the exposition of the moreé formal part of the theory

of Monte Carlo techniques.,

B,y = Jslxt,yintet,yx,9) - s(x,9) Bp(xt v i aiayt (T
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APPENDIX I

Generation of Psuedo-~Random Numbers

!

It was shown in Part I that if one wishgs to produce random numbers according
to any distribution, this can be done by choosing numbers from another distribution
and then performing certain arithmetical transformations on these numbers. There-
fore, when one talks about using random nuhbers; he need only talk about using a
certain basic set of random numbers and getting the other kinds of random numbers
from this basic set by a transformation. By general convention and convenience,
the random numbers defined as being uniformly distributed between zero and one
comprise the basic set,

To call a set of numbers random is not so much to make a statement about the
properties of the numbers themselves but a statement about their history. It implies
that the numbers were produced by some sort of stochastic process. Therefore,
when one talks about random numbers one is really talking about stochastic processes.
Thg%e are many processes which can be used to produce numbers, such as gambling
devices of any kind, physical processes such as radio-active decay or "shot noise",
otc; Howe§er, while it is perfectly possible to adapt such a device to a high speed
machine (and in fact this has been done in at least one case) it is actually incon-
venient to use such devices, both because of the minor technical fact that it is
difficult to tell when it is in working order and the much more important reason
that one wishes to reproduce a calculation to see if it is correct. In order to do
this one has to know what random numbers entered into the calculation.

It is, of course, conceivable that if one was using a random device one could
simply print all the numbers that are used and then reuse them in the check calcu-

lations or as an alternative one could prepare the numbers in advance. This is,

gm
€
o
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‘of course, not convenient or practical becauge of the limited memory and input-
output capacity of modern machines. However, there are extensive card taﬁles_and
several books of random numbers available, and The RAND Corporation has put out a
book with a million such numbers so that if desired one can use this alternative.
What is really desired is for the machine to compute in a perfectly determiﬁis-
tic fashion a set of numbers which are operationally indistinguishable from
numbers which result from the random process. By "operationally indistinguishable®
we mean indistinguishable by an reasonablel statistical test. (These tests are dis-
cussed iﬁ the references.) Such numbers have been called "psuedo-random numbers”-and
there are a number of methods for getting them. In this Appendix we will discuss
only one. The reason we restrict ouf attention to this one is that it seems to be
almost completelysatisfactory for our purpose and while other methods can have some *
’ minpr advantages in certain situations, we know of no case where the advantage is
~ really important.
.~ The following is the method of congruences. Let So be any odd integer between
1 and n., Let Si =k Si-l (mod n). The choice of k and n depends on the machine
used. n is usually equal to the capacity of a single register in the machine, a
power of 2 or 10, according to whether the machine is binary or decimal, If the
- multiplication kSi-1~is done with double precision, then it is the n least signifi-
cant digits of the product which form the next random integer. Ri -,Si/n’are the
psuedo-random numbers in the interval (0,1). v
One usually chooses k'to be the largest integer, which will conveniently fit in
one storage register, and which will realize the maximum possible period length of

‘the sequence. It is chosen large mainly to avoid local correlation between the

By "reasonable" we mean "good enough for our purposes"z.

2 By "good enough", . .




numbers produced. When the congruence is modulo 23; this period is at most 25-2.
Ifp>3 k= Sd for any odd d will achieve this greatest length. If the con-
gruence is modulo 10P, then the maximum period is 5 » 10P2, If > 5 and k = 3¢,
where d is prime to 10, the maximum will be obtained. There are other multipliers

which will also do, but for thase purposes, they seem to be equivalent.
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APPENDIX III

‘Constrained Maximuml of a Funetion

I. Consider the problem of finding the maximum of a function'f(xi,..;,xh)
subject to the inequalities

3 SX Zby (1)

The above inequalities define a region in the (xl,...,xn) space. If any of the

x; happen to be equal to a; or bi’ we will say that independent varialnle is at a
boundary, otherwise, e will.refer to the independent variable as being interior;

It is well known that at the maximum point the following equationslhéve to‘be :

‘Qsatiafied:

i

wm0ifa,  <x, <b (xi interior)

SES

(W
[
[
[

(2)

= b

>0 if N

X5

grm
W L

of
3;; <01ir x, =a

'(xi at a boundary)

The above equations are intuitively obvious. They state that at a maximum point you
can't increase f by changing the value of any Xg by a small amount either because f
is stationary with respect to that X, or because the xy is at a boundary. (It is
of course possible that equation (2) will be satisfied and yet we will not have a

maximum. We will defer discussing that possibility for a moment.)

l The changes that have to be made for a minimum will be obvious to the reader.

N
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In actual practice about the only way to solve a maximization problem like the
above is to do it iteratively. An iterative procedure that works well in a large
2
number of cases (when there are no intervals with ?&2 ¥ 0) is to consider first the
i

system of equations

ga,-t; = O for all Xy (3).

i

After this system is solved one checks to see if any x, violate the limits
a, <x, <b, (L)

If they do, one then moves these xi'to their limiting values and solves the

reduced system of equations
Eakf— = (S)
i -
for all the other independent variables. One then checks again to see which new x5

violate their limits and also if the previously placed Xy should be left at the

boundaries, and repeats the process until convergence.

II. Let us now consider a slightly more complicated maximization problem. That
is, let us consider the problem of calculating the maximum of f(xl,...,xn) subjéct
to the new condition

8(x)5eu0sx ) = K 6) -
as well as the old conditions

a; <x <b _ o (1)
g(xi,..o,xn) = K defines a surface in the old volume. The point (xl,...,xn) mst, lie

on @hig surface. It is eagy to see,. in this case, that at the maximum whenever one -

m,
20
@
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of the independent points is interior, that is

ai < xi < bi . (8)
that
af
&
g = A, a constant for all interior x; (9)
i

That is, the rate of change‘of f with respect to any interior wheﬁ divided by

the rate of change of g with respect to that same Xy is a constani. Thg reason for
this is clear. If this ratio differed for any two interior independent variables
then we could for insiance increase the x; for which the ratio was large and decrease
the x; value for the ratio which was small. By this means we could increase the
value of f without changing the value of g. By the same line of reasoning then it

must also be true that for any x; that are at a boundary

of
3
-Ea-x?-:)x forxi-bi
i .
(10)
of
=
57 < N for X, =a
=1
. . . |
|
It is customary to write equations (9) and (10) in the form
|
of og . o
‘&;"‘3% 33 <X < by
af 3 o S
xI'as xg =By - (1)
i .
of 3 e
Gl Xy = &

550 <oV
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The above equations cah be solved by the same sort of iterative procedure as
suggested for the first maximization problém. One first chooses some value of A
and finds the (xl,...,xn) that satisfy equations (11). 'One then substitutes this
(xl,...,:%) in g(x.l,...,xn) (equation (6) ) to find K. In this way one can find K
as a function of A, One can then find by inverse interpolation the A that makes

g(xl,...,xn) equal to the desired value of K.

III. Let us consider a third maximization problem: to choose f(x) to maximize

B
1= /L[f(x),x]dx (12)

A
subject to the conditions B

Mfr(x),x)ax = | (13)
A

a(x) < f(x) < b(x) ’

It is clear that if we divide the interval (A,B) into n subintervals and write

n

, I = ZL [f(xi),xi] bx,

n ()
Zl[i‘(xi),XJ Ax, = K
i=]
a.(xi) < f(xi) < B(xi)
~ that there .’Ls a formal similarity with Case II with
f(xi)-—> X;
0 I—’f(xl,...,xn)
zn[f(xi),xi]ui—a Bxyye0e,x) - . (15) -
i=] . a(xj-)-_)ai : .
b(xi) —)bi
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so that I will be a maximum when °

%% - g; when a{x) < £(x) < b(x)

%i.i > %4- shen f(x) = b(x) ' (16)

g% <X g—"f vwhen f(x) = Va(x)

and the iterative method of finding the solution is identical to Case II.

- We should mention that in many cases in the text where we had

) I-[ (: dx .
’ (7)
ff(x)dx-x-l

.,

@ 4

£(x) = @ ‘ (18).

-
- \g(x) |
JATOL

L. J. Savage pointed out to me that one can get the same result by using Schwarz's

that equations (16) become

* -~ Inequality which states

2 2 ' 2
/u (x)dx /ﬁ (x)dx z[ﬁ(X)B(X)bXJ (19)

with equality if and only a(x)olB(x). .We can simply take az(k) ';_'g(x)/f(x) and

82 (x) = £(x).

6.3
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APPENDIX V

The Variance Associated With Double Systematic Sampling

In discussing double systematic sampling, it is advantageous to define two

new functions yj(x) and z(:3) by

yy(x)
/ g(yix)dy = l;}-@ J =1, 2,..,8 (1)

z(23) '/z[x,yd(x)] r(z)dx (2)

For any x, the probability that y < yj(x) is 1?—‘13; yj(x) is therefore a
curve of equiprobability. z(;J) is the expected value of =z(x,y) along this curve.
The more or less horizontal strip defined by yj-l/Z(x) <Y<Y /z(x) will be
called the Jﬁ Trow, 'the vertical strip defined by X1 /2 <x< "191/2 is called

the 1¥® colum. The region of integration is divided into N

subareas by the q
intersections of the columns and rows. The points picked in double systematic
sampling lie approximately in the center of N of these subareas on the intersec-

tions of the curves ¥, (x) and the vertical lines defined by x = x One and only

il
one of the selected subareas lies in each column and row.

It is instructive to consider the variance of this sampling scheme when it

]

is used to evaluate a triple rather than double integral. It will therefore be
assumed that there are three independent random variables (W,X,Y) and that the
-quantity to be estimates is

E= //[ £ (w,x,y)f(w,x,y)dwdxdy | (3)

The conditional p.d.f. for W is

h(wix,y) = £(w,x,y)/2(x,y) (L)
35@ 253
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'he standard definitions

30x,y) = [ alw,x,y)hGex, v C(8)

| :"(sx,y) - / 22 (w, %, y)h(w1x,y)aw | (6)

L oz(nr,j) - ;7(:1,)') -.52(t.x,y) ‘ (7)

are also néeded. If 02(:x,y) = 0, w is a deterministic function of (x,y) and the

- results for the triple integral reduce to the double integral.

If the (xi,yi) are picked without replacement as described, but the w, are
selected randomly from h(wvxi,yi) then the variance is
. v3 . (‘3 - ;) (8) = e

.{%Z[z(wi,xi,yi) - '5]}2
?Z [s(vi”‘vyi) - SJ ;gz [z( »%53y) ][z(wd,xj,yj) - 4

143

- ‘% v, %(N -1) [z(v,x.y) - ;] [!('f",'xl,‘yl) _ ;]

BAN

_where the primes indicate that (x',y') is not in the same row or column as (x,y).
W and w! are, of course, picked independently from their respective p.d.f's.
= -The second term is the difference in variance due to double systematic samp-

ling. Denoting this difference by S:

S = E(W.x,y) - a['(" »X',y') - i] (9)

={[s00%,7) = 30, )] + [50x,9) = 8] } { [swrx0,3) = Bty 31)] + 5oz, y) - 3]}

- [36x,9 - 3] flaxt,3) - §)

Q“"\
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because it is the only term in the sum of four products which is not O, Before
"~ the 'expected value can be calculated, it is necessary to write down the Jjoint
pod.fo for (x,y,x',y').

\

I(x,7,x',5") = J(x',y :x,f)f(x,y) (10)

Since (x!',y') has the same p.d.f. as (x,y) except that it is not allowed to fall
in the same row or column as (x,y), J(x',y'i1x,y) must be either zero or propor-
tional to f£(x',y'). If the point (x,y) falls in the 1% colum and the 1¥2 row,

then the area Al(x,y) from which (x',y') is exaluded is defined by

Xja1/2 <X S X440/

(11)
YJ_l/z(x') <y' < yj’l/Z(x').
.where 1 and j are to be considered as functions of (x,y). Therefore
o (x',¥') in A (x,y) |
J(X"y"ng) - £( ) (2.2)
. x',y! ( toyt) - A '
- _//f(x"y')u'dy' x',y') inf 1("")]
Al(x’Y)

The normalizing factor, 1 = //f(x',y')dx'dy‘, is approximately equal to-
Al(x:Y)'
1 - 2/N for (using equations (155), (164) and 174) ) the integral on’Al(k,y) can

be done oo . Y501 /2(x') Xi41/2 .
//f(x',y')dx'dy'r- / £(x' )dx! /g(y':x')dy'_* £(x* )dx? /g(y':x“)dy' (13)
Al(x,y) ' - Y3172 (x!) 1-1/2 - oo,

o o0 Xie1/2 -
= ¥ /f(x')dx' . /f(x')dx'
— O 11_1/2

1L
2N

[&]
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8 can now be calculated:

/f[ﬂ(m,y) - &) £(x,y) / ["‘( xt,y) - 3] P [ axtay andy (1)
-/

l(Y!y)

[z(=X',y') - 8|f(x',y" )dxtdy* =
"Al(x:Y)

//[‘i(:x',y') - i]f(x',y' Yaxtdy* - //[i(xx',y') - E]f(x',y' Ydx'dy*
A

Ay

Tge1/2(x" *ielf2 o .
[f(x')dx' /[z(:x',y') - g(y'sx')dy' - /f(x')dx'/[i(:x',y') - ZJg(y'zx' )dy?

Yyo1/2(x') Xap 0%
1+1/2
= - /f(x')dx'{ [x',yj(x)] - 2} - /r(x')dx' [z( x!) - z]
X4-1/2 - :
— 3B -3 - § [y - R




AN

- -%[f(x)dx%,i

Neglecting terms. in if , it follows that

Substituting the result in equation (1),

(1-9s=-¢ j[ [Ex,y) - 3){3G:9) - ]t(xy)axdy - § // [ex,y) - &0 - 3]

£(x,7)dxdy (16)

- OQ. | j’l/Z(X) oo
@ - % [f(x)dxi [E(:x,y) - 'i] [i(::]) - ;]g(yxx)dy - % /[5(:1) - E]zf(x)dx
- o0 J=1 3_1/2(1) - - oo

{;Ex,yd(x)] - z} s -4 : R,

=1

sbr T

Ve -2 -} few - 87 | .

v, - v3 .%{' 's'A(:J.)' - ;I! . li(tx) - ;]2} o an

and the varlance is reduced by the sum of the fluctuations due to the variation

of z(13) and 2(:x).
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