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Abstract

solder is demonstrated in this work.

Thermal management of integrated circuit chip is an increasing important challenge faced today. Heat dissipation
of the chip is generally achieved through the die attach material and solders. With the temperature gradients in
these materials, high thermo-mechanical stress will be developed in them, and thus they must also be
mechanically strong so as to provide a good mechanical support to the chip. The use of multi-walled carbon
nanotube to enhance the thermal conductivity, and the mechanical strength of die attach epoxy and Pb-free

Introduction

Electronic packaging is to protect and cool the micro-
electronic chips as well as to provide electrical and
mechanical connections between the chip and the out-
side world. It controls the chips’ electrical performance,
size, cost, and reliability. As the power densities of
microelectronic chips are increasing with faster and den-
ser circuits on the chips, heat dissipation of the packa-
ging becomes critical in determining their reliability and
performances as both the high temperature and the
associated large thermo-mechanical stress within the
packages can degrade the circuit performances and the
lifetime of the chips. As most of the heat generated by
the chips is dissipated via the die attach material and
solders, the thermal and mechanical properties of the
die attach material and solder should be improved with
technology, and the use of fillers is a common strategy
employed. For example, a key strategy to enhance the
electrical and thermal properties of dielectric polymers
is to add metal particles into it [1,2].

Among the different types of filler used in composite
materials, the only one having exceptionally high thermal
conductivity [3-17] and unique mechanical properties
[18,19] is the carbon nanotube [CNT]. However, exploit-
ing CNT is not always an obvious task. What may appear
as an advantage at one time may turn out to be a major
disadvantage in another circumstance. For instance, the
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chemical inertness of CNT is a very interesting property
which ensures that the material does not change or
degrade with time. Conversely, this same property
becomes quite troublesome when the solubility and
anchoring of the fillers in the host matrix are concerned.

In this paper, we report our experimental work on the
development of chemical treatments by grafting the
molecules on the surface of multi-walled CNT
[MWNT], and uniform dispersion with good interface
transfer is obtained. Using this treated CNT, we show
an improvement in the thermal and mechanical proper-
ties of epoxy, and this can be applied to die attach mate-
rial to enhance heat dissipation from the chip to the
lead frame and/or substrate. We also report another
experiment where we embedded Ni-coated CNT into
lead-free solder to enhance its properties.

Chemical treatment of MWNT for epoxy applications
Traditionally, to debundle CNTs, they are put in an
aprotic, polar solvent such as dimethylformamide or N-
methylpyrrolidone and sonicated for some hours
[20-23]. However, the limit of such a strategy is that the
fillers and solvent are added to the epoxy, and the sol-
vent is then evaporated from the composite by heating
it up and thorough mixing. Often, residual amounts of
the solvent are found to remain at the interface of the
fillers and matrix, rendering almost no improvement in
the load and heat transfer.

The method developed here is to covalently functiona-
lize the CNTs with molecules that can take part in the
polymerization process of the epoxy resin [24,25] so
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that strong chemical bonds between the nanotubes and
the epoxy matrix can be achieved. The functionalization
also causes the CNTs to be slightly polar and thus
debundle themselves with the electrostatic interaction.
These chemical bonds help to improve the mechanical
load transfer between the matrix and the MWNT, and
they can also enhance the thermal dissipation due to a
better phonon transport through the molecular bridge.

The covalent functionalization is done by grafting
molecules that contain an epoxide ring on the MWNTs.
Among the various methods that could potentially be
developed to bond such molecules, one which does not
attack too strongly the CNT lattice, should be used so
that the intrinsic properties of the nanotubes are not
too affected.

Method of covalent functionalization
The method chosen for functionalization in this work is
shown in Figure 1. The MWNTs used during the
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experiments are from Nanothinx Ltd (Nanothinx S.A.,
Platani, Rio-Patras, Greece). The basic physical charac-
teristics of the CNTs are as follows: purity > 95%, dia-
meter 10 to 20 nm, length 5 to 15 um, and amorphous
carbon 3%.

As the epoxy to be used in our experiments is
EPONS828 from Hexion Chemicals (Hexion Specialty
Chemicals Inc., Columbus, OH, USA), the molecules
that contain the epoxide ring is epichlorohydrin. How-
ever, to attach these molecules, broken bonds along the
MWNT sidewalls have to be created, and this is done
using a highly reactive n-butyllithium. The chemical
reaction is shown in Figure 2. The covalent nature of
the functionalization has been proven in our previous
work [25].

During the first phase of the reaction (1 in Figure 2),
butyl anions are covalently bonded to the MWNT side-
walls and tips. At some stage in this bonding process,
the negative charges are conferred to the butyl- MWNT
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Figure 1 Flow chart of covalent functionalization method used in this work.
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Figure 2 Chemical reaction for the functionalization.
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body. As a result, the butyl-MWNT molecules are nega-
tively charged while the charge balance is ensured by
the lithium cations present in the solution. Conse-
quently, the butyl-MWNTs anions naturally repel each
other by electrostatic repulsion resulting in CNT
debundling. The solution is uniformly black and remains
so as long as no other chemical reactions take place. If
the container is properly sealed, the CNTs can poten-
tially remain dispersed indefinitely. However, once the
second phase of the reaction takes place, the CNTs are
electrically neutralized and sediment. Nevertheless, the
tendency for bundling is lessened due to the CNT sur-
face non-uniformity resulting from the bonded
molecules.

After the functionalization with the conditions as
mentioned in Figure 1, the functionalized CNTs [f-
CNTs] are filtered out from the reacting solution by
centrifugation. During the first filtration run, a yellow
solution containing the reacted amorphous carbon,
lithium chloride salt, and non-reacted chemicals are
separated from the f-CNTs.

To remove any other potential chemical residues,
acetone is added to the f-CNT paste, and the mixture is
shook thoroughly to ensure a proper homogenization of
the f-CNTs and the remaining residual chemicals.

Subsequently, the mixture is centrifuged again to sepa-
rate the f-CNTs from the supernatant.

Finally, the paste containing only f-CNTs in acetone is
placed in a vacuum oven at 30°C to evaporate the acet-
one. Figure 3 shows the transmission electron micro-
scopy [TEM] photos of these f-CNTs.

Performance evaluation
Experiments are performed by dispersing the above f-
CNTs into EPON828 epoxy resin manufactured by Hex-
ion Chemicals. Dispersion is performed mechanically by
an overhead stirrer which is a traditional homogeniza-
tion method extensively used in the manufacturing pro-
cess of composite materials. During this process, no
solvents are used to disperse the CNTs. The f-CNT
powder is directly poured in the resin and mixed thor-
oughly for 4 h. Figure 4 shows the improvement results.
As shown in Figure 4, the room temperature in
Young’s modulus is about the same for all samples
(around 11 + 1 MPa). However, the tensile strength and
the strain at tensile strength vary depending on the
amount of CNTs present (Table 1). The physical inter-
pretation for such an occurrence is that the CNTs are
homogenously oriented in the composite, and the frac-
tion of CNTs oriented in the direction of the tensile
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MWNT sidewall.

A

Figure 3 TEM pictures of f-CNTs. (a) Functionalized site on the CNT sidewall. (b) Higher magnification TEM showing molecules bonded to the

force applied is not sufficient to have an impact on the
Young’s modulus. However, as the sample is stretched,
the CNTs are gradually aligned in the direction under
tensile testing and thus reinforce the material against
the fracture. This is illustrated schematically in Figure 4.
The more CNTs are added to the composite, the bigger
is the reinforcement and the higher is the strain.

We also observe a modification of the shape of the
curves with an increase in fillers’ amount. In fact, the
curvature of the lines varies as a function of the amount
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Figure 4 Tensile characteristics of epoxy composite.

.

of CNTs was added above the yield strength. This is
explained by the distribution in the orientation, length,
diameter, and anchoring of the CNTs, which results in a
distribution in the reinforcement capacity of the nano-
tubes [26].

Figure 5 shows the variation in specific heat capacity
of the composite at 100°C under constant pressure [cp]
as a function of the amount of the f-CNTs added. As
the thermal conductivity of a material is directly propor-
tional to c;,, the trend line gives an indication of the
relative improvement in thermal conductivity of the
composite material at different CNT loadings. However,
no absolute thermal conductivity measurement is made
at this time due to the unavailability of measuring
equipment.

Applications of MWNT to Pb-free solder
Pb-free solder is a necessity for today’s soldering material
due to the requirement of Reduction of Hazardous Sub-
stances directive, and the commonly used Pb-free solder is
Sn-Ag-Cu [SAC]. However, such a solder has the follow-
ing limitations: 1) higher melting points than traditional
Sn-Pb solder [27]; 2) poor wettability; and 3) higher coeffi-
cient of thermal expansion [CTE] [28]. With the ever-
increasing functional requirements and the miniaturiza-
tion of electronic components, new solder materials which
possess a combination of good mechanical, electrical, and
thermal properties are desired [29].

Studies have shown that by introducing CNTs into a
solder alloy, its overall performance can be improved
[30,31]. However, it is also reported that the interaction
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Table 1 Tensile strength and corresponding strain

Percent Tensile strength Strain at tensile strength
CNTs (MPa) (percent)

0 115 26

1 17.6 3.0

2 19.1 44

4 211 48

5 255 50

between Sn and CNT is weak, making a compromised
load transfer between the CNTs and the Sn matrix, and
hence a limited performance improvement [32].

In order to improve their interaction, Ni coating on
CNT is used. Ni is chosen as it can form stable phases
(Ni3Sny) in the Ni-Sn binary system. Also, Ni has good
wetting characteristics with Sn-Ag-Cu solder.

The Ni-coated MWNT [Ni-CNT] is purchased from
Tsinghua University, Beijing, China. The method of
mixing the Ni-coated MWNT followed the method
described by Nai et al. [30]. The method is basically a
powder metallurgy route where the powder and CNT
are pre-weighted, blended, uniaxially compacted, and
finally extruded to form an 8 mm diameter rod.
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Experimental results

Figure 6 shows the improvement results of wettability
due to the embedment of Ni-CNT in the solders [33].
The improvement is believed to be attributed to the
lower surface interfacial energy when reinforcements are
added [34].

Table 2 shows an improvement in the dimensional
stability of the composite solders as compared with their
monolithic counterparts. The lowest average CTE value
is observed for the case of SAC/0.05Ni-CNT, which
exhibits a 5% decrease in value as compared to that of
the monolithic SAC samples [29].

The typical indentation load-depth curves of the SAC
and SAC/0.05Ni-CNT solder samples are illustrated in
Figure 7. The penetration depths of the SAC solder at
the maximum load ranges from 1,740 to 2,450 nm, and
that for SAC/0.05Ni-CNT sample ranges from 1,700 to
2,310 nm, indicating a more creep resistant for Ni-CNT
than its monolithic counterpart [35].

Conclusion

In this work, we demonstrated the use of MWNT to
improve the thermal and mechanical properties of
epoxy using covalent functionalization method for CNT,
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Figure 5 Evolution of the specific heat capacity, ¢, for different amounts of CNTs added. The black dots are the results measured
experimentally and the dotted line, the corresponding trend line.
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Figure 6 Improvement in the wettability of solder with Ni-CNT.
The black square is the average contact angle and the lines below
and above the black squares are the error bars.

Table 2 CTE of monolithic and composite solders

Coefficient of thermal expansion (10°/°C)
SAC 29.15 + 0.15
SAC/0.05Ni-CNT 2770 £ 0.10
SAC/0.1Ni-CNT 2795 + 0.55

Materials

which establishes a covalent bond between CNTs and
the polymer molecules, thus ensuring the flow of pho-
non for enhanced heat conduction and a strong bond
for mechanical strength. We also successfully embed
commercially available Ni-coated CNT into Pb-free
solder to increases its wettability and mechanical
strength. The coefficient of thermal expansion of the
modified solder is also reduced through the embedment
of Ni-CNT.
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Figure 7 Typical indentation load-depth curves of SAC and
SAC/0.05Ni-CNT solder samples.
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These experimental results show the feasibility of
using MWNT to improve the packaging material prop-
erties to meet the increasing stringent requirements on
electronic packaging in order to ensure high reliability
and performances of integrated circuits. Further fine
tuning will be needed in order for these methods to be
widely applied in the electronic packaging industry.

Acknowledgements

The authors would like to appreciate the financial support from ST
Microelectronics for the CNT work in epoxy performed by the second
author. The authors would also like to appreciate the support from Dr. Wei
Jun from Singapore Institute of Manufacturing and Technology in the
experimentation.

Author details

'School of Electrical and Electronic Engineering, Nanyang Technological
University, Jurong, 639798, Singapore ST Microelectronics Asia Pacific Pte
Ltd, 7 Serangoon North Avenue 5, Serangoon, 554812 Singapore >School of
Materials Science and Engineering, Tianjin University, Tianjin, 300072, China

Authors’ contributions

TCM provided guidance to CB and YH as he was the supervisor. He is also
the person who wrote this paper. CB conducted the research study on the
chemical functionalization of CNTs for inclusion and homogenization in
epoxy resins. He also fabricated and characterized the f-CNT/epoxy
composite samples to observe the alterations in mechanical and thermal
properties of the epoxy resin due to f-CNT addition. YH conducted the
study on the properties of Ni-coated carbon nanotubes reinforced solders.
HJ characterized mechanical and thermal properties of the composite solder.
All authors read and approved the final manuscript.

Competing interests

The method of functionalization presented in this paper is undergoing
patent filing. This work is funded by ST Microelectronics for the epoxy
portion and by SIMTech for the solder portion.

Received: 30 November 2011 Accepted: 9 March 2012
Published: 9 March 2012

References

1. Bhattacharya SK, Chaklader ACD: Review on metal-filled plastics. Part 1.
Electrical conductivity. Polym-Plast Technol Eng 1982, 19:21-51.

2. Bhattacharya SK, Chaklader ACD: Review on metal-filled plastics. Part 2.
Thermal properties. Polym-Plast Technol Eng 1983, 20:35-39.

3. Berber S, Kwon YK, Tomanek D: Unusually high thermal conductivity of
carbon nanotubes. Phys Rev Lett 2000, 84:4613.

4. Osman MA, Srivastava D: Temperature dependence of the thermal
conductivity of single-wall carbon nanotubes. Nanotechnology 2001,
12:21.

5. Che JW, Cagin T, Goddard WA: Thermal conductivity of carbon
nanotubes. Nanotechnology 2000, 11:65.

6. Maruyama S: A molecular dynamics simulation of heat conduction of a
finite length single-walled carbon nanotube. Microscale Thermophys Eng
2003, 7:41.

7. Hone J, Whitney M, Piskoti C, Zettl A: Thermal conductivity of single-
walled carbon nanotubes. Phys Rev B 1999, 59:2514.

8. Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA,
Casavant MJ, Schmidt J, Smalley RE: Electrical and thermal transport
properties of magnetically aligned single walt carbon nanotube films.
Appl Phys Lett 2000, 77:666.

9. Hone J, Llaguno MC, Biercuk MJ, Johnson AT, Batlogg B, Benes Z, Fischer JE:
Thermal properties of carbon nanotubes and nanotube-based materials.
Appl Phys A: Mater Sci Process 2002, 74:339.

10. Vavro J, Llaguno MC, Satishkumar BC, Luzzi DE, Fischer JE: Electrical and
thermal properties of C-60-filled single-wall carbon nanotubes. App! Phys
Lett 2002, 80:1450.


http://www.ncbi.nlm.nih.gov/pubmed/10990753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10990753?dopt=Abstract

Tan et al. Nanoscale Research Letters 2012, 7:183
http://www.nanoscalereslett.com/content/7/1/183

11. Shi L, Li DY, Yu CH, Jang WY, Kim D, Yao Z, Kim P, Majumdar A: Measuring
thermal and thermoelectric properties of one-dimensional
nanostructures using a microfabricated device. J Heat Transfer 2003,
125:881.

12, Yi W, Lu L, Zhang DL, Pan ZW, Xie SS: Linear specific heat of carbon
nanotubes. Phys Rev B 1999, 59:9015.

13. Xie SS, Li WZ, Pan ZW, Chang BH, Sun LF: Mechanical and physical
properties on carbon nanotube. J Phys Chem Solids 2000, 61:1153.

14. Lu 'L, Yi W, Zhang DL: 3 omega method for specific heat and thermal
conductivity measurements. Rev Sci Instrum 2001, 72:2996.

15. Borca-Tasciuc T, Vafaei S, Borca-Tasciuc D-A, Wei BQ, Vajtai R, Ajayan PM:
Anisotropic thermal diffusivity of aligned multiwalled carbon nanotube
arrays. J Appl Phys 2005, 98:054309.

16. Yang DJ, Zhang Q, Chen G, Yoon SF, Ahn J, Wang SG, Zhou Q, Wang Q,

Li JQ: Thermal conductivity of multiwalled carbon nanotubes. Phys Rev B
2002, 66:165440.

17. Kim P, Shi L, Majumdar A, McEuen PL: Thermal transport measurements
of individual multiwalled nanotubes. Phys Rev Lett 2001, 21:215502.

18. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W,

Zuppiroli L: Mechanical properties of carbon nanotubes. Appl Phys A
1999, 69(3):255-260, {AU QUERY: The journal title of reference 18 was
modified. Please confirm if correct}.

19.  Ruoff RS, Qian D, Liu WK: Mechanical properties of carbon nanotubes:
theoretical predictions and experimental measurements. Comptes Rendus
Physique 2003, 4:933.

20. Hilding J, Grulke EA, Zhang ZG, Lockwood F: Dispersion of carbon
nanotubes in liquids. J Dispers Sci Technol 2003, 24:1-41.

21. Ellery WN, Schleyer MH: Comparison of homogenization and
ultrasonication as techniques in extracting attached sedimentary
bacteria. Mar Ecol Prog Ser 1984, 15:247-250.

22, Liu J, Casavant MJ, Cox M, Walters DA, Boul P, Lu W, Rimberg AJ, Smith KA,
Colbert DT, Smalley RE: Controlled deposition of individual single-walled
carbon nanotubes on chemically functionalized templates. Chem Phys
Lett 1999, 303:125-129.

23. Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M: Organic solvent
dispersions of single-walled carbon nanotubes: toward solutions of
pristine nanotubes. J Phys Chem B 2000, 104:8911-8915.

24, Baudot C, Tan CM: Solubility, dispersion and bonding of functionalised
carbon nanotubes in epoxy resins. Int J Nanotechnol 2009, 6:618-627.

25. Baudot C, Tan CM, Kong JC: FTIR spectroscopy as a tool for nano-material
characterization. Infrared Phys Technol 2010, 53:434-438.

26. Tarfaoui M, Choukri S, Neme A: Effect of fibre orientation on mechanical
properties of the laminated polymer composites subjected to out-of-
plane high strain rate compressive loadings. Composites Sci Technol 2008,
68:477-485.

27.  Miric AZ, Grusd A: Lead-free alloys. Solder Surf Mt Tech 1998, 10:19.

28. Zeng K, Tu KN: Six cases of reliability study of Pb-free solder joints in
electronic packaging technology. Mat Sci Eng R 2002, 38:55.

29. Han YD, Nai SML, Jing HY, Xu LY, Tan CM, Wei J: Development of a Sn-Ag-
Cu solder reinforced with Ni-coated carbon nanotubes. J Mater Sci: Mater
Electron 2011, 22:315.

30. Nai SML, Wei J, Gupta M: Lead-free solder reinforced with multiwalled
carbon nanotubes. J Electron Mater 2006, 35:1518.

31, Kumar KM, Kripesh V, Andrew AQ: Single-wall carbon nanotube (SWCNT)
functionalized Sn-Ag-Cu lead-free composite solders. J Alloys Compd
2008, 450:229.

32.  Guerret-Piecourt C, Lebouar Y, Loiseau A, Pascard H: Relation between
metal electronic structure and morphology of metal compounds inside
carbon nanotubes. Nature 1994, 372:761.

33. Han YD, Tan CM, Nai SML, Xu LY, Jing HY, Wei J: Effect of Ni-coated
carbon nanotubes on the microstructure and properties of a Sn-Ag-Cu
solder. Electronic Components Technology Conference (ECTC), 2010
Proceedings 60th: June 1-4 2010; Nevada 2010, 979-984.

34, Arenas MF, Acoff VL: Contact angle measurements of Sn-Ag and Sn-Cu
lead-free solders on copper substrates. J Electron Mater 2004, 33:1452.

35. Han YD, Jing HY, Nai SML, Xu LY, Tan CM, Wei J: Nanomechanical
properties of a sn-ag-cu solder reinforced with ni-coated carbon
nanotubes. Int J Nanosci 2010, 9:283.

doi:10.1186/1556-276X-7-183
Cite this article as: Tan et al: Applications of multi-walled carbon
nanotube in electronic packaging. Nanoscale Research Letters 2012 7:183.

Page 7 of 7

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.springeropen.com/
http://www.springeropen.com/

