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1. INTRODUCTION:

There has been intensive studies recently on estimation of the parameters of multidimen-

sional exponential signals. In many applications, such as synthetic aperture, radar imaging,

frequency and wave number estimation in array processing and nuclear magnetic resonance

imaging, it is often desired to estimate multidimensional frequencies from multidimensional

data. For recent literature on the topic of multidimensional exponential signal parameters

estimation, the reference may be made to the works of Bose (1985), McClellan (1982), Bar-

bieri and Barone (1992), Cabrera and Bose (1993), Chun and Bose (1995), Dudgeon and

Merserasan (1984), Hua (1992), Kay (1980), Kay and Nakovei (1990) and Lang and McClel-

lan (1982). The multidimensional (M-D) superimposed exponential signal model in additive

white noise, in its most general form can be written as follows:

y(n1, . . . , nM) =
P1∑

j1=1

, . . . ,
PM∑

jM=1

Aj1...jM e
i(n1ω1,j1

+...+nMωM,jM
) + e(n1, . . . , nM) (1.1)

for n1 = 1, . . . , N1, . . . , nM = 1, . . . , NM . Here y(n1, . . . , nM)’s are the observed noise cor-

rupted signals, i =
√
−1, ω1,1, . . . , ωM,PM

∈ (0, 2π) are the unknown frequencies. A11...1, . . .,

AP1...PM
are the unknown amplitudes and they can be complex also. It is assumed that the

noise random variables e(n1, . . . , nM )’s are independent and identically distributed (i.i.d.)

random variables with zero means and finite variances. The problem is to estimate the

unknown parameters assuming P1, . . . , PM are known a priori.

It may be mentioned that different particular cases of this model are well studied in signal

processing and time series literature. For example, when M = 1, the model can be written

as

y(n) =
P∑

j=1

Aje
iωjn + e(n). (1.2)

This is a very well discussed model in statistical signal processing, see for example the review

articles of Rao (1988) and Prasad, Chakraborty and Parthasarathy (1995). The interested
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readers may consult Stoica (1993) for an extensive list of references up to that time and

Kundu and Mitra (1999) for some recent works. The corresponding real version of this

model (1.2) takes the form

y(t) =
P∑

j=1

(Ajcos(ωjt) +Bjsin(ωjt)) + e(t). (1.3)

The model (1.3) is a very well discussed model in time series analysis, particularly when

e(t)’s are from a stationary sequence, see for example Hannan (1971, 1973), Walker (1971),

Rife and Boorstyn (1974), Kundu (1993a, 1997), Kundu and Mitra (1996, 1997) and Quinn

(1999) and the references cited there. It plays an important role in analyzing many non

stationary time series data. When M = 2, the model (1.1) can be written as

y(n1, n2) =
P1∑

j1=1

P2∑

j2=1

Aj1j2e
i(n1ω1j1

+n2ω2j2
) + e(n1, n2). (1.4)

One particular case of the model (1.4) is

y(n1, n2) =
P∑

j=1

Aje
i(n1ω1j+n2ω2j) + e(n1, n2). (1.5)

Both (1.4) and (1.5) have wide variety of applications in Statistical Signal Processing see Rao

et al. (1994, 1996). Different estimation procedures and the properties of these estimators

are studied quite extensively by Cabrera and Bose (1993), Chun and Bose (1995), Kay and

Nekovei (1990), Rao et al. (1994, 1996) and Kundu and Mitra (1996). Recently it is observed

that the following two dimensional model,

y(m,n) =
P∑

k=1

Akcos(mλk + nµk) + e(m,n), (1.6)

can be used quite effectively in texture classifications. See for example the works of Man-

derekar and Zhang (1995) and Francos et al. (1990). Different estimation procedures and

their properties are studied by Manderakar and Zhang (1995), Kundu and Gupta (1998) and

Nandi and Kundu (1999).
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In this paper we consider the most general model (1.1), and therefore all the other

models mentioned in (1.2), (1.3), (1.4), (1.5) and (1.6) are particular cases of this general

model. In this paper, we consider the least squares estimators of the different parameters and

study their asymptotic properties. We mainly consider the consistency and the asymptotic

normality properties of the unknown parameters. We obtain an explicit expression of the

asymptotic distribution of the least squares estimators. It is observed that the asymptotic

variance covariance matrix coincides with the Fisher Information matrix even in the general

situation as it was observed by Rao and Zhao (1993) and Rao et al. (1994) for one and

two dimensional cases respectively under the assumptions of normality of the error random

variables.

We obtain the consistency of the least squares estimators of the general model. Although

it seems that the asymptotic normality results should follow along the same line as Rao et al.

(1994) or Kundu and Mitra (1995), but obtaining the exact asymptotic variance covariance

matrix may not be a trivial task. Looking at the variance covariance matrix of the 2-D case

(Rao et al.; 1994 or Kundu and Mitra; 1996) it becomes immediate that the exact variance

covariance matrix may not be in a simple form for the general case. It is observed that if we

arrange the parameters in a different way, then for some special cases the asymptotic variance

covariance matrix has a more convenient form. We provide some special cases separately

because these cases have some practical applications and these results may not be obtained

that easily from the general case.

The rest of the paper is organized as follows. In section 2, we provide two special cases

and in section 3, we provide the general form. We consider the estimation of the error

variance in Section 4. Finally we draw conclusions from our results in section 5. From

now on we will be using the following notations. N = N1 . . . NM , n = (N1, . . . , NM) and

N(1) = min{N1, . . . , NM}, N(M) = max{N1, . . . , NM} and almost sure convergence will be
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denoted by a.s.. The constant C may indicate different constant at different places. The

parameter vector θ and the matrix D might be different at different places, but they will

be defined properly at each place. In theorems 2, 4, 6 and 8, the dispersion matrices are

evaluated at the true parameter values. We have not make it explicit for brevity. It should

be clear from the context.

2. TWO SPECIAL CASES:

In this section we consider two special cases. One is the real valued multidimensional

sinusoidal model (Model 1) and the other one is the multidimensional complex valued sum

of exponential model (Model 2).

Model 1:

y(n) =
P∑

k=1

Akcos(n1ω1k + . . .+ nMωMk + φk) + e(n). (2.1)

Here Ak’s are arbitrary real numbers, ω1k ∈ (−π, π), ω2k, . . . , ωMk, φk ∈ (0, π). Here e(n) is

a M -dimensional sequence of i.i.d. random variables with zero means and finite variances

and ‘P ’, is assumed to be known. The problem is to estimate the unknown parameters Ak’s

and ωjk’s for j = 1, . . . ,M and k = 1, . . . , P . The least squares estimators can be obtained

by minimizing

Q(θ) =
N1∑

n1=1

. . .
NM∑

nM=1

(

y(n)−
P∑

k=1

Akcos(n1ω1k + . . .+ nMωMk + φk)

)2

(2.2)

with respect to the unknown parameters. We use the following notations after rearranging

the parameters

θ1 = (A1, φ1, ω11, . . . , ωM1), . . . ,θp = (AP , φP , ω1P , . . . , ωMP )

θ = (θ1, . . . ,θP ).
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Let’s consider the following assumptions:

Assumption 1: Let A1, . . . , AP be arbitrary real numbers, not any one of them is identically

equal to zero, ω1k ∈ (−π, π) and φk, ωjk ∈ (0, π) for k = 1, . . . , P and j = 2, . . .M , and they

are all distinct.

Assumption 2: Let {e(n)} be a i.i.d. sequence of M array real valued random variables

with E(n) = 0 and V ar(e(n)) = σ2.

Theorem 1: Under the assumptions 1 and 2 and as N(M) →∞, the least squares estimators

of the parameters of the model (2.1) which are obtained by minimizing (2.2) are strongly

consistent estimators of the corresponding parameters.

We need the following lemmas to prove the above results.

Lemma 1: Let {e(n)} be a i.i.d. sequence of M-dimensional random variables with mean

zero and finite variance, then

lim
N(M)→∞

sup
α1,...,αM

∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

e(n)cos(n1α1) . . . cos(nMαM)

∣
∣
∣
∣
∣
∣

→ 0 a.s. (2.3)

Proof of Lemma 1: See Appendix A.

Consider the following set

Sδ,T = {θ = (θ1, . . . ,θM); |A1 − A0
1| > δ, |θ| < T or . . . |AM − A0

M | > δ, |θ| < T or

|ω11 − ω0
11| > δ, |θ| < T, or . . . |ω1P − ω0

1P | > δ, |θ| < T or ,

...

|ωM1 − ω0
M1| > δ, |θ| < T, or . . . |ωMP − ω0

MP | > δ, |θ| < T}.

Here A0, . . . , A
0
M , ω

0
11, . . . , ω

0
MP are the true value of the parameters.
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Lemma 2: If

lim inf
N(M)→∞

inf
θ∈Sδ,T

1

N
(Q(θ)−Q(θ0)) > 0 a.s.

for all δ > 0, then θ̂, the least squares estimator of θ0, is a strongly consistent estimator of

θ0.

Proof of Lemma 2: The proof is simple see in Appendix C.

Proof of Theorem 1: Expanding the square term of Q(θ) and using lemma 1, it can be

shown that lemma 2 is satisfied. Therefore the result follows. See in Appendix C.

The more important question is what is the asymptotic distribution of the least squares

estimator θ̂ of θ as N(1) → ∞. We use the matrix D as a P (M + 2) diagonal matrix with

diagonal elements as

D = diag{N 1
2 , N

1
2 , N1N

1
2 , . . . , NMN

1
2 , . . . , N

1
2 , N

1
2 , N1N

1
2 , . . . , NMN

1
2}

The following theorem provides the asymptotic distribution of θ̂.

Theorem 2: Under the assumptions 1 and 2 as N(1) → ∞, the limiting distribution of

(θ̂ − θ)D is a P (M + 2) variate normal with mean zero and dispersion matrix 2σ2 Σ−1,

where

Σ−1 =






Σ−1
1 0 . . . 0

0
. . . . . .

...
0 . . . 0 Σ−1

P






Here Σi and Σ−1
i are both (M + 2)× (M + 2) matrices and
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Σi =














1 0 0 . . . . . . 0
0 A2

i
1
2
A2
i . . . 1

2
A2
i

0 1
2
A2
i

1
3
A2
i

1
4
A2
i . . . 1

4
A2
i

0 1
2
A2
i

1
4
A2
i

1
3
A2
i . . . 1

4
A2
i

...
...

...
. . .

...
0 1

2
A2
i

1
4
A2
i

1
4
A2
i . . . 1

3
A2
i














Σ−1
i =













1 0 0 0 . . . 0
0 ai bi bi . . . bi
0 bi ci 0 . . . 0
0 bi 0 ci . . . 0
...

...
...

...
. . .

...
0 bi 0 0 . . . ci













ai =
3(M − 1) + 4

A2
i

, b1 = −
6

A2
i

, ci =
1

A2
i

36(M − 1) + 48

3(M − 1) + 4
.

Proof of Theorem 2: The main idea is to expand the first derivative vector of Q(θ)

by Taylor’s series and use the proper normalizing constant to obtain the limiting normal

distribution. For each j = 1, . . . , P (M + 2),

0 =
∂Q(θ̂)

∂θj
=
∂Q(θ0)

∂θj
+ (θ̂ − θ0)

∂2Q(θ̄j)

∂θj∂θ
T
, (2.4)

where θ̄j lies on the line segment between θ0 and θ̂. Now let’s define the 1×P (M+2) vector

Q′(θ0) whose jth column is ∂Q(θ0
)

∂θj
and the P (M+2)×P (M+2) matrix Q′′(θ̄1, . . . , θ̄P (M+2))

whose jth column is ∂2Q(
¯θj)

∂θj∂θ
T . Therefore, from (2.4) we obtain,

(θ̂ − θ0) = −Q′(θ0)[Q′′(θ̄1, . . . , θ̄P (M+2))]
−1

For notational simplicity let’s define Q′′(θ̄) = Q′′(θ̄1, . . . , θ̄P (M+2)). Therefore,

(θ̂ − θ0)D = −Q′(θ0)D−1[D−1Q′′(θ̄)D−1]−1.

It can be shown (see in Appendix C) that Q′(θ0)D−1 converges in distribution to a P (M+2)

variate normal distribution with mean zero and dispersion matrix 2σ2 Σ, using the central

limit theorem and the results of the following types,

lim
n→∞

1

n

n∑

t=1

sin2(βt) =
1

2
and lim

n→∞

1

n2

n∑

t=1

tsin2(βt) =
1

4

for β 6= 0 (see Mangulis; 1965). Similarly it can be shown that D−1Q′′(θ̄)D−1 converges

almost surely to Σ. Therefore the result follows.
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Comments: Because of the rearrangement of the parameters, the M -dimensional result

becomes more convenient than the two dimensional result. Also when M = 2, the result

matches with that of Kundu and Gupta (1998). It is also interesting to note that the vectors

θ̂i and θ̂j are asymptotically independent. Also the asymptotic variances of ω̂1i, . . . , ω̂Mi are

all same and they are inversely proportional to A2
i . The asymptotic covariance between ω̂ji

and ω̂ki is zero and as M increases, the variances of both ω̂ji and ω̂ki converge to 12
A2

i

.

Now we describe another particular model:

Model 2:

y(n) =
P∑

k=1

Ake
i(n1ω1k+...+nMωMk) + e(n). (2.5)

This model has its special importance in statistical signal processing. For M = 2, this model

coincides with the model (1.5). Here Ak’s are arbitrary complex numbers and ωjk ∈ (−π, π)

and they are all distinct. The error e(n) is aM -dimensional complex valued random variable

with mean zero and finite variance. The least squares estimators are obtained by minimizing

Q(θ) =
N1∑

n1=1

. . .
NM∑

nM=1

∣
∣
∣
∣
∣
y(n)−

P∑

k=1

Ake
i(n1ω1k+...+nMωnM

)

∣
∣
∣
∣
∣

2

.

Similarly as Assumptions 1 and 2, we use Assumptions 3 and 4 for the complex case.

Assumption 3: Let A1, . . . , AP be arbitrary complex numbers, not anyone of them is

identically equal to zero, ωjk ∈ (−π, π) for j = 1, . . . ,M, k = 1, . . . , P and they are all

distinct.

Assumption 4: Let {e(n1, . . . , nM)} be a i.i.d. sequence of complex valued random vari-

ables, with

E(e(n)) = 0, V ar(Re{e(n)}) = V ar(Im{e(n)}) = σ2

2
.

The Re(e(n)) and Im(e(n)) are independently distributed. Now we state the following

consistency results:
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Theorem 3: Under the assumptions 3 and 4 as N(M) → ∞, the least squares estimators

of the parameters of the model (2.5) are strongly consistent estimators of the unknown

parameters.

Proof of Theorem 3: The proof can be obtained similarly as theorem 1 (see also the proof

of theorem 1 of Kundu and Mitra; 1996), therefore it is omitted.

To obtain the asymptotic distribution of the least squares estimators, we rearrange the

parameters and use the following notations:

θ1 = (A1R, A1I , ω11, . . . , ωM1), . . . θP = (APR, API , ω1P , . . . , ωMP ),

θ = (θ1, . . ., θP ).

AkR, AkI denote the real and imaginary part of Ak for k = 1, . . . P . We use θ̂ for the least

squares estimator of θ. Now we use D as a P (M + 2) diagonal matrix with the diagonal

elements as follows:

D = diag{N 1
2 , N

1
2 , N1N

1
2 , . . . , NMN

1
2 , . . . , N

1
2 , N

1
2 , N1N

1
2 , . . . NMN

1
2}.

Similarly as theorem 2, we have the following result for the asymptotic distributions of the

least squares estimators.

Theorem 4: Under assumptions 3 and 4 as N(1) →∞, the limiting distribution of (θ̂−θ)D

is a P (M + 2) variate complex normal distribution with mean zero and dispersion matrix

σ2Σ−1, where

Σ−1 =






Σ−1
1 0 . . . 0

0
. . . . . .

...
0 . . . 0 Σ−1

P




 .

Here Σj and Σ−1
j are M + 2×M + 2 matrices as follows:
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Σj =











2 0 −AjI . . . . . . −AjI

0 2 AjR . . . . . . AjR

−AjI AjR
2
3
|Aj|2 1

2
|Aj|2 . . . 1

2
|Aj|2

...
...

...
. . . . . .

...
−AjI AjR

1
2
|Aj|2 . . . 1

2
|Aj|2 2

3
|Aj|2











and

Σ−1
j =











a b d d . . . d

b c e e . . . e

d e f 0 . . . 0
...

... 0 f . . .
...

d e 0 . . . . . . f











Here

a =
1

2
+

3

2

A2
jI

|Aj|2
M, b = −3

2
M
AjIAjR

|Aj|2
, c =

1

2
+

3

2
M

A2
jR

|Aj|2

d =
3AjI

|Aj|2
, e = −3AjR

|Aj|2
, f =

6

|Aj|2

Proof of Theorem 4: The proof follows quite similarly as Kundu and Mitra (1996) and

therefore it is omitted. The important point is to rearrange the parameters in the specified

manner then the asymptotic dispersion matrix can be expressed in a convenient form.

Comments: Note that the results of Rao and Zhao (1993) and Kundu and Mitra (1999)

follow from theorems 3 and 4. It is interesting to see that all the frequency estimators are

asymptotically independent and the asymptotic variances of the frequency estimators are

inversely proportional to the corresponding amplitude estimators. The asymptotic variances

of the frequency estimators are independent of M , whereas the asymptotic variances of

the amplitude estimators are directly proportional to M . Therefore, as M increases the

asymptotic variances of the amplitude estimators increase. Interestingly if the real part or

the imaginary part of the amplitude is zero then the asymptotic variance of the corresponding

imaginary part or the real part of the amplitude estimator is independent of M .

3. M-DIMENSIONAL CASE:
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In this section we present the asymptotic distribution of the least squares estimators of

the general M -dimensional model (1.1), under the following assumptions.

Assumption 5: { ω1,1, . . . , ω1,P1 , . . . , ωM,1, . . . , ωM,PM
} are all distinct and they lie between

(0, 2π).

Assumption 6: ||Aj1...||2 =
∑P2

j2=1 . . .
∑PM

jM=1 |Aj1...jM |2 > 0. Similarly ||A.j2...||2 . . . , ||A...jM ||2

are defined ||A.j2...||2 > 0 . . . ||A...jM ||2 > 0 for j1 = 1, . . . , P1 . . . jM = 1, . . . , PM .

We use the following notations:

ω1 = (ω1,1, . . . , ω1,P1), . . . , ωM = (ωM,1, . . . , ωM,PM
)

A = (A1...1, . . . , AP1...PM
), θ = (ω1, . . . , ωM , Re(A), Im(A))

Note that the LSE’s of θ of the model (1.1) can be obtained by minimizing

Q(θ) =
N1∑

n1=1

. . .
NM∑

nM=1

∣
∣
∣
∣
∣
∣

y(n)−
P1∑

j1=1

. . .
PM∑

jM=1

Aj1...jM e
i(n1ω1,j1

+...+nMωM,jM
)

∣
∣
∣
∣
∣
∣

2

(3.1)

We define the matrices CT
j,M+1 = CM+1,j = CT

j,M+2 = CM+2,j of order P1 . . . PM × Pj as

follows. Label the P1 . . . PM rows of the matrix CT
j,M+1 as (1 . . . 1), (1 . . . 2), . . . , (P1 . . . PM)

respectively and the Pj columns as 1, . . . , Pj. Then the k th. (= 1, . . . , Pj) column of CT
j,M+1

has non zero entries at the rows

(1, 1, . . . , 1
︸ ︷︷ ︸

j−1

, k, 1, . . . , 1
︸ ︷︷ ︸

M−j

), (1, . . . 1
︸ ︷︷ ︸

j−1

, k, 1, . . . , 1, 2
︸ ︷︷ ︸

M−j

), . . . , (P1, . . . , Pj−1, k, Pj+1, . . . , PM)

and they are A1,...,1,k,1,...,1, A1,...,1,k,1,...,1,2, . . . , AP1,...,Pj−1,k,Pj+1,...,PM
respectively. For better un-

derstanding we provide CT
1,M+1, C

T
2,M+1 and CT

M,M+1 in the Appendix B..

The matrices Σ and Σ−1 are of the order (P1 + . . . + PM + 2P1 . . . PM) × (P1 + . . . +

PM + 2P1 . . . PM) and are defined as follows:
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Σ =






Σ11 . . . Σ1,M+2
...

. . .
...

ΣM+2,1 . . . ΣM+2,M+2




 Σ−1 =






Σ11 . . . Σ1,M+2

...
. . .

...
ΣM+2,1 . . . ΣM+2,M+2






where Σii and Σ
ii are both Pi×Pi matrices for i = 1, . . .M and P1 . . . PM×P1×PM matrices

for i = M + 1,M + 2. The elements of Σij and Σij are defines as follows:

Σ11 =
2

3
diag{||A1...||2, . . . , ||AP1...||2}

... =
...

ΣMM =
2

3
diag{||A...1||2, . . . , ||A...PM

||2}

Σ12 = ((σ12
ij )) = ΣT

21, σ12
ij =

1

2

P3∑

j3=1

. . .
PM∑

jM=1

|Aijj3...jM |2

... =
...

ΣM−1,M = ((σM−1,Mij )) = ΣT
M,M−1, σ

M−1,M
ij =

1

2

P1∑

j1=1

. . .

PM−2∑

jM−2=1

|Aj1...jM−2ij|2

ΣT
j,M+1 = ΣM+1,j = −Im(CT

j,M+1), ΣT
j,M+2 = ΣM+2,j = Re(CT

j,M+2),

ΣM+1,M+1 = ΣM+2,M+2 = 2IP1...PM
, ΣM+1,M+2 = ΣM+2,M+1 = 0

Σ11 = 6 diag{||A1...||−2, . . . , ||AP1...||−2}
... =

...

ΣMM = 6 diag{||A...1||−2, . . . , ||A...PM
||−2}

Σi,M+1 =
(

Σ−1
M+1,i

)T
=

1

2
Im

(

Σ−1
ii Ci,M+1

)

Σi,M+2 =
(

Σ−1
M+2,i

)T
= −1

2
Re

(

Σ−1
ii Ci,M+2

)

for i = 1, . . . ,M .

ΣM+1,M+1 =
1

4

(

Im(CM+1,1)Σ
11Im(C1,M+1) + . . .+ Im(CM+1,M)ΣMMIm(CM,M+1)

)
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+
1

2
I

ΣM+2,M+2 =
1

4

(

Re(CM+1,1)Σ
11Re(C1,M+1) + . . .+Re(CM+1,M)ΣMMRe(CM,M+1)

)

+
1

2
I

ΣM+1,M+2 = −1

4

(

Im(CM+1,1)Σ
11Re(C1,M+2) + . . .+ Im(CM+1,M)ΣMMRe(CM,M+2)

)

= Σ(M+2,M+1)T

and the remaining Σij matrices are zero matrices. Now we can state the general result as

follows.

Theorem 5: Under the assumptions 4, 5 and 6 as N(M) →∞, the least squares estimators

of θ of the model (1.1) is strongly consistent.

Proof of Theorem 5: The detailed proof for M = 2 when N(1) →∞ is provided in Kundu

and Mitra (1996, Theorem 1). Note that in Kundu and Mitra (1996) it is assumed that the

fourth order moments are finite and N(1) → ∞ where as here Lemma 1 is proved using the

finiteness of the second order moments and as N(M) → ∞. For general M the idea of the

proof is exactly the same and it follows using Lemma 1 and Lemma 2.

If we denote the diagonal matrix D as

D = diag{N1N
1
2 , . . . , N1N

1
2

︸ ︷︷ ︸

P1

, . . . , NMN
1
2 , . . . , NMN

1
2

︸ ︷︷ ︸

PM

, N
1
2 , . . . , N

1
2

︸ ︷︷ ︸

2P1...PM

}

with N = N1 . . . NM . Then we have the following result.

Theorem 6: Under the assumptions 4, 5 and 6 as N(1) → ∞, the asymptotic distribution

of (θ̂− θ)D is asymptotically (P1+ . . .+PM +2P1 . . . PM) variate normal distribution with

mean zero and dispersion matrix σ2 Σ−1, where Σ−1 is as defined in this section before.

Proof of theorem 6: The main idea of the proof is quite simple. It involves the routine

14



computation of the first and second derivative of Q(θ), where

Q(θ) =
N1∑

n1=1

. . .
NM∑

nM=1

∣
∣
∣
∣
∣
∣

y(n)−
P1∑

j1=1

. . .
PM∑

jM=1

Aj1...jM e
i(n1ω1,j1

+...+nMωM,jM
)

∣
∣
∣
∣
∣
∣

2

Then expanding the first derivative of Q(θ) in terms of Taylor series and use the proper

normalizing constant to obtain the limiting normal distribution. The crucial point is to

obtain the matrix Σ and then the matrix Σ−1.

Comments: Note that the results of Bai et al. (1987), Rao et al. (1994), Rao and Zhao

(1993) and Kundu and Mitra (1996, 1999) follow from theorems 5 and 6. Theorems 5 and 6

generalize all the existing one or two dimensional results to their most general form.

4. CONSISTENCY AND ASYMPTOTIC NORMALITY OF σ̂2:

In this section we state the consistency and the asymptotic normality results of σ̂2, an

estimator of σ2, obtained as follows;

σ̂2 =
1

N
Q(θ̂). (4.1)

Here Q(θ) is same as defined in (3.1). We have the following results.

Theorem 7: If θ̂ is the LSE of θ0 of the model (1.1) and the error random variables e(n)’s

satisfy assumption 4, then as N(M) →∞, σ̂2 is a strongly consistent estimator of σ2.

Proof of Theorem 7: Using lemma 1, the proof can be obtained similarly as the one

dimensional case (see Kundu and Mitra; 1999), so it is omitted.

Theorem 8: If σ̂2 is the estimator of σ2 as defined in (4.1) and the error random variables

e(n)’s satisfy assumption 4. Furthermore if

E[(Re{e(n)})4] <∞ and E[(Im{e(n)})4] <∞

15



then
√
N(σ̂2 − σ2)→ N(0, σ∗) as N(1) →∞,

where σ∗ = E[(Re{e(n)})4] + E[(Im{e(n)})4]− σ4

2
.

Proof of Theorem 8: This proof is also quite similar to the proof for the one dimensional

case, therefore it is not provided here. The detailed proof can be obtained on request from

the author.

5. CONCLUSIONS:

In this paper we discuss the asymptotic properties of the least squares estimators of the

multidimensional exponential model. It is observed that several particular cases mainly one

or two dimensional results can be obtained as particular cases. We consider two special cases

of the general multidimensional model and obtain the asymptotic distribution. It may be

mentioned that other than the least squares estimators, it may be possible to consider the

approximate least squares estimators as defined by Hannan (1971) or Walker (1971). The

approximate least squares estimators of the frequencies can be obtained by maximizing the

periodogram function. It can be proved along the same line as the one dimensional case that

the least squares estimators and the approximate least squares estimators are asymptotically

equivalent. Therefore, the asymptotic distribution of the ALSE’s will be same as that of the

LSE’s in all the cases considered. Note that in this paper we assume that the errors are

independent and identically distributed. Suppose that we have the following error structure

X(n) instead of e(n) in (1.1),

X(n) =
Q1∑

i1=1

. . .
QM∑

iM=1

ai1...iM e(n1 − i1, . . . , nM − iM) (5.1)

here ai1...iM are unknown constants and Q1, . . . , QM are known integers. The error structure

(5.1) indicates that the errors are of the moving average type in M dimensions. The results
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can be extended even when the errors are of the type (5.1), see for example Nandi and Kundu

(1999) for the two dimensional result in this context.

Now we would like to mention some open problems. First of all the estimation of

P1, . . . , PM is very important but difficult problem. Even in the case of two dimensions,

the problem is not yet resolved (see Rao et al. (1996)) satisfactorily. May be some model

selection criteria like AIC or BIC or their modifications can be used to resolve this problem.

Numerically obtaining the LSE’s of the one or two dimensional problems are well known to

be very difficult problems. It will be important to find out some good estimation schemes

for obtaining the LSE’s of the unknown parameters for higher dimensional model. Another

important problem is to study the properties of the LSE’s when the errors are from a sta-

tionary distribution not necessarily from a finite order moving average type. If the errors

are from a stationary random field then it will be important to derive the properties of the

LSE’s. More work is needed in these directions.
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Appendix A

First we prove the following lemma:

Lemma 0: Let {e(n)} be a i.i.d. sequence of M-dimensional random variables with mean
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zero and finite variance, then

lim
N(1)→∞

sup
α1,...,αM

∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

e(n)cos(n1α1) . . . cos(nMαM)

∣
∣
∣
∣
∣
∣

→ 0 (A1.1)

Proof of Lemma 0: Note that proving (A1.1) is equivalent to prove

lim
N1 →∞

...
NM →∞

sup
α1,...,αM

∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

e(n)cos(n1α1) . . . cos(nMαM)

∣
∣
∣
∣
∣
∣

→ 0 a.s.

Consider the following random variables

Z(n) = e(n) if e(n) ≤ (n1 . . . nM)
3
4

= 0 otherwise

First we will show that Z(n) and e(n) are equivalent sequences. Consider

N1∑

n1=1

. . .
NM∑

nM=1

P{e(n) 6= Z(n)} =
N1∑

n1=1

. . .
NM∑

nM=1

P{|e(n)| ≥ (n1 . . . nM)
3
4}.

Now observe that there are at most 2kkM−1 combinations of (n1, . . . , nM)’s such that n1 . . . nM <

2k. Therefore, we have

N1∑

n1=1

. . .
NM∑

nM=1

P{|e(n)| ≥ (n1 . . . nM)
3
4}

≤
∞∑

k=1

∑

2k−1≤r<2k

P{|e(n)| ≥ r
3
4} here [r = n1 . . . nM ]

≤
∞∑

k=1

2kkM−1P{|e(1, . . . , 1)| ≥ 2(k−1)
3
4}

≤ C
∞∑

k=1

2kkM−1

2(k−1)
3
2

≤ C
∞∑

k=1

kM−1

2
k
2

<∞.

Here C is a constant and it may take different values at different places. Therefore, e(n) and

Z(n) are equivalent sequences. So,

P{e(n) 6= Z(n) i.o.} = 0.
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Here i.o. means infinitely often. Let

U(n) = Z(n)− E(Z(n)),

then

sup
α1,...,αM

∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

E(Z(n))cos(n1α1) . . . cos(nMαM)

∣
∣
∣
∣
∣
∣

≤ 1

N

N1∑

n1=1

. . .
NM∑

nM=1

|E(Z(n))|.

Since E(Z(n))→ 0 as N(1) →∞, therefore,

1

N

N1∑

n1=1

. . .
NM∑

nM=1

|E(Z(n))| → 0.

as N(1) →∞. So, it is enough to prove that

sup
α1,...,αM

∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

U(n)cos(n1α1) . . . cos(nMαM)

∣
∣
∣
∣
∣
∣

→ 0

as N(1) →∞. Now for any fixed ε > 0, −π < α, β < π and 0 < h ≤ 1

2N
3
4
, we have

P







∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

U(n)cos(n1α1) . . . cos(nMαM)

∣
∣
∣
∣
∣
∣

≥ ε







≤ 2e−hNε
N1∏

n1=1

. . .
NM∏

nM=1

Eeh(U(n))×cos(n1α1)...cos(nmαM )

Since |hU(n)cos(n1α1) . . . cos(nMαM)| ≤ 1
2
, using ex < 1 + x+ x2 for |x| ≤ 1

2
, we have

2e−hNε
N1∏

n1=1

. . .
NM∏

nM=1

Eeh(U(n))×cos(n1α1)...cos(nmαM )

≤ 2e−hNε(1 + h2σ2)N .

Choose h = 1

2N
3
4
, therefore for large N1, . . . , NM ,

P







∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

U(n)cos(n1α1) . . . cos(nMαM)

∣
∣
∣
∣
∣
∣

≥ ε






≤ Ce−N

1
4 ε

2 .

Let K = N 2, choose K points β1 = (α11, . . . , αM1), . . ., βK = (α1K , . . . , αMK) in (−π, π) ×

. . . × (−π, π) such that for each β = (β1, . . . , βM ) ∈ (−π, π) × . . . × (−π, π), there exists a

point βj satisfying

|β1j − β1|+ . . .+ βMj − βM | ≤
2π

N2
.
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Note that
∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

U(n){cos(n1α1) . . . cos(nMαM)− cos(n1α1j) . . . cos(nMαMj)}
∣
∣
∣
∣
∣
∣

≤ C
1

N

N1∑

n1=1

. . .
NM∑

nM=1

N
3
4

N2
(n1 + . . .+ nM)→ 0 a.s.

as N(1) →∞. Therefore, for large N1, . . . , NM , we have

P







∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

U(n)cos(n1α1) . . . cos(nMαM)

∣
∣
∣
∣
∣
∣

≥ 2ε







≤ P



max
j≤N2

∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

U(n)cos(n1α1j) . . . cos(nMαMj)

∣
∣
∣
∣
∣
∣

≥ ε







≤ CN 2e−N
1
4 ε

2

Since
∑∞

t=1 t
2e−t

1
4 <∞ therefore as N(1) →∞,

sup
α1...αM

∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

U(n)cos(n1α1) . . . cos(nMαM)

∣
∣
∣
∣
∣
∣

→ 0 a.s.

Proof of Lemma 1: Note that N(M) goes ∞ if and only if k of the Ni go to ∞ and M − k

of the Ni are bounded for k = 1, . . . ,M . For k = M , lemme 1 reduces to lemma 0. We prove

the result for k = 1, . . . ,M − 1. Consider any fixed k, and with out any loss of generality

we can assume that N1, . . . , Nk go to ∞ and Nk+1, . . . , NM are bounded. Therefore, lemma

1 will be proved if we prove the following, for any bounded Nk+1, . . . , NM ,

lim
N1 →∞

...
Nk →∞

sup
α1,...,αM

∣
∣
∣
∣
∣
∣

1

N

N1∑

n1=1

. . .
NM∑

nM=1

e(n)cos(n1α1) . . . cos(nMαM)

∣
∣
∣
∣
∣
∣

→ 0 a.s. (A1.2)

Since

lim
N1 →∞

...
Nk →∞

sup
α1,...,αk

∣
∣
∣
∣
∣
∣

1

N1 . . . Nk

N1∑

n1=1

. . .
Nk∑

nk=1

e(n)cos(n1α1) . . . cos(nkαk)

∣
∣
∣
∣
∣
∣

→ 0 a.s. (A1.3)

24



(follows from lemma 0 by putting n = k), therefore, (A1.2) follows simply by taking limit

inside the summation and repeatedly using (A1.3).

Appendix B

CT
1,M+1 =


























A1...1 0 . . . 0
...

...
...

...
A1P2...PM

0 . . . 0
0 A21...1 . . . 0
...

...
...

...
0 A2P2...PM

. . . 0
...

...
. . .

...
... . . .

... AP11...1
...

...
...

...
...

...
... AP1...PM
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CT
2,M+1 =




















































































A11...1 0 . . . 0
...

...
...

...
A11P3...PM

0 . . . . . .

0 A121...1
...

...
...

...
...

...
0 A12P3...PM

. . . . . .
...

...
...

...
0 0 . . . A1P21...1
...

...
...

...
0 0 . . . A1P2P3...PM

A21...1 0 . . . 0
...

...
...

...
A21P3...PM

0 . . . 0
0 A221...1 . . . 0

0
...

... 0
0 A22P3...PM

. . . 0
...

...
...

...
0 0 . . . A2P21...1
...

...
...

...
0 0 . . . A2P2P3...PM

...
...

...
...

AP11...1 0 . . . 0
...

...
...

...
AP11P3...PM

0 . . . 0
0 AP121...1 . . . 0
...

...
...

...
0 AP12P3...PM

. . . 0
...

...
...

...

0
... . . . AP1P21...1

0
...

...
...

0 0 . . . AP1P2...PM
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CM,M+1
T =

































A11...1 0 0 . . . 0
0 A11...12 0 . . . 0
...

...
...

...
...

0 0 0 . . . A11...1PM

A11...21 0 0 . . . 0
0 A11...22 0 . . . 0
...

...
...

...
...

0 0 0 . . . A11...2PM

...
...

...
...

...
AP1...PM−11 0 0 . . . 0

0 AP1...PM−12 0 . . . 0
...

...
...

...
...

0 0 0 . . . AP1...PM
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Appendix C

Proof of Lemma 2: In this proof only we write θ̂N1...NM
as the least squares estimator of

θ0 and Q(θ) as defined in (2.2) as QN1...NM
(θ). Suppose θ̂N1...NM

is not consistent, therefore

either

Case I: For all subsequences (N1k, . . . , NMk) of (N1, . . . , NM), |θ̂N1...NM
| → ∞ with a positive

probability or

Case II: There exists a δ > 0 and a T < ∞ and a subsequence (N1k, . . . , NMk) of

(N1, . . . , NM), such that θ̂N1k,...,NMk
∈ Sδ,T ,

for all k = 1,2, . . . . Now note that

1

N1k . . . NMk

QN1k,...,NMk
(θ̂N1k,...,NMk

) ≤ 1

N1k . . . NMk

QN1k,...,NMk
(θ0) a.s. (A3.1)

as θ̂N1k,...,NMk
is the least squares estimator of θ0, when N1 = N1k, . . . , NM = NMk from the

strong law of large numbers and using the similar argument as of the proof of lemma 1, it

easily follows that

lim
N(M)→∞

1

N
QN1,...,NM

(θ0)→ σ2 a.s.

where σ2 = Var(e(n)). In both the cases under the definition of QN1k,...,NMk
(θ) (see (2.2))

and because of the assumption of Lemma 2, we get that there exists a M0 > 0 such that for

all k ≥M0,

1

N1k . . . NMk

QN1k,...,NMk
(θ̂N1k,...,NMk

) >
1

N1k . . . NMk

QN1k,...,NMk
(θ0),

with a positive probability. This contradicts (A3.1). It proves the lemma.

Proof of Theorem 1: Note that

1

N
Q(θ) =

1

N

N1∑

n1=1

. . .
NM∑

nM=1

e(n)2 +
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1

N

N1∑

n1=1

. . .
NM∑

nM=1

(
P∑

k=1

A0
kcos(n1ω

0
1k + . . .+ nMω

0
Mk)−

P∑

k=1

Akcos(n1ω1k + . . .+ nMωMk)

)2

2

N

N1∑

n1=1

. . .
NM∑

nM=1

e(n)

(
P∑

k=1

A0
kcos(n1ω

0
1k + . . .+ nMω

0
Mk)−

P∑

k=1

Akcos(n1ω1k + . . .+ nMωMk)

)

.

(A3.2)

Now observe that as N(M) → ∞, the first term on the right hand side of (A3.2) converges

to σ2 a.s. because of the strong law of large number and the third term converges to zero

because of Lemma 1. Therefore due to Lemma 2, to prove the consistency of the least squares

estimator it is enough to prove

lim inf
N(M)→∞

inf
θ∈Sδ,T

g(θ,θ0) > 0 a.s., (A3.3)

where g(θ,θ0) =

1

N

N1∑

n1=1

. . .
NM∑

nM=1

(
P∑

k=1

A0
kcos(n1ω

0
1k + . . .+ nMω

0
Mk)−

P∑

k=1

Akcos(n1ω1k + . . .+ nMωMk)

)2

.

Consider the following sets

A1δ = {θ : (θ1, . . . ,θM); |A1 − A0
1| ≥ δ, |θ| ≤ T}

...

AMδ = {θ : (θ1, . . . ,θM); |AM − A0
M | ≥ δ, |θ| ≤ T}

ω11δ = {θ : (θ1, . . . ,θM); |ω11 − ω0
11| ≥ δ, |θ| ≤ T}

...

ω1Mδ = {θ : (θ1, . . . ,θM); |ω1M − ω0
1M | ≥ δ, |θ| ≤ T}

...

ωP1δ = {θ : (θ1, . . . ,θM); |ωP1 − ω0
P1| ≥ δ, |θ| ≤ T}

...

ωPMδ = {θ : (θ1, . . . ,θM); |ωPM − ω0
PM | ≥ δ, |θ| ≤ T}.
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(A3.4)

Since Sδ,T is the union of all the sets defined above in (A3.4), therefore to prove (A3.3), it is

enough to prove

lim inf
N(M)→∞

inf
θ∈V

g(θ,θ0) > 0 a.s. (A3.5)

where V is any one of the set defined in (A3.4). We show (A3.5) for V = A1δ,

lim inf
N(M)→∞

inf
θ∈A1δ

g(θ,θ0) = (A1 − A0
1)

2 lim
N(M)→∞

1

N

N1∑

n1=1

. . .
NM∑

nM=1

cos2(n1ω
0
1k + . . .+ nMω

0
Mk)

≥ δ2 lim
N(M)→∞

1

N

N1∑

n1=1

. . .
NM∑

nM=1

cos2(n1ω
0
1k + . . .+ nMω

0
Mk) > 0 a.s.

For other V , it follows along the same line. It proves Theorem 1.

The proof thatQ′(θ0)D−1 converges in distribution to a P (M+2) variate normal distribution

with mean zero and dispersion matrix 2σ2 Σ (page 6).

The different elements of Q′(θ0)D−1 can be written as follows:

∂Q(θ0)

∂Ak

= −2
N1∑

n1=1

. . .
NM∑

nM=1

e(n)cos(n1ω
0
1k + . . .+ nMω

0
Mk)

∂Q(θ0)

∂ω1k

= 2
N1∑

n1=1

. . .
NM∑

nM=1

e(n)A0
kn1sin(n1ω

0
1k + . . .+ nMω

0
Mk)

∂Q(θ0)

∂ωMk

= 2
N1∑

n1=1

. . .
NM∑

nM=1

e(n)A0
knMsin(n1ω

0
1k + . . .+ nMω

0
Mk)

All the elements of Q′(θ0) satisfy the Lindeberg- Feller condition (Chung, K.L.; 1978, A

Course in Probability Theory). Therefore, Q′(θ0), with proper normalization will converge

to a multivariate normal distribution. Now let’s look at the asymptotic covariance matrix

of Q′(θ0). Using the results

lim
n→∞

1

n

n∑

t=1

sin2(βt) =
1

2
and lim

n→∞

1

n2

n∑

t=1

tsin2(βt) =
1

4
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lim
n→∞

1

n

n∑

t=1

cos2(βt) =
1

2
and lim

n→∞

1

n2

n∑

t=1

tcos2(βt) =
1

4
,

we have for i, j = 1, . . .M and for k = 1, . . . P ,

1

N
cov

(

∂Q(θ0

∂Ai

,
∂Q(θ0

∂Aj

)

→
{

0 if i 6= j

2σ2 if i = j

}

1

NiNjN
cov

(

∂Q(θ0

∂ωik
,
∂Q(θ0

∂ωjk

)

→
{

2
3
σ2A02

k if i = j
1
2
σ2A02

k if i 6= j

}

.
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